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A B S T R A C T   

Background: Transcranial direct current stimulation (tDCS) is a promising tool to enhance therapeutic efforts, for 
instance, after a stroke. The achieved stimulation effects exhibit high inter-subject variability, primarily driven 
by perturbations of the induced electric field (EF). Differences are further elevated in the aging brain due to 
anatomical changes such as atrophy or lesions. Informing tDCS protocols by computer-based, individualized EF 
simulations is a suggested measure to mitigate this variability. 
Objective: While brain anatomy in general and specifically atrophy as well as stroke lesions are deemed influential 
on the EF in simulation studies, the influence of the uncertainty in the change of the electrical properties of the 
white matter due to white matter lesions (WMLs) has not been quantified yet. 
Methods: A group simulation study with 88 subjects assigned into four groups of increasing lesion load was 
conducted. Due to the lack of information about the electrical conductivity of WMLs, an uncertainty analysis was 
employed to quantify the variability in the simulation when choosing an arbitrary conductivity value for the 
lesioned tissue. 
Results: The contribution of WMLs to the EF variance was on average only one tenth to one thousandth of the 
contribution of the other modeled tissues. While the contribution of the WMLs significantly increased (p≪.01) in 
subjects exhibiting a high lesion load compared to low lesion load subjects, typically by a factor of 10 and above, 
the total variance of the EF didnot change with the lesion load. 
Conclusion: Our results suggest that WMLs do not perturb the EF globally and can thus be omitted when modeling 
subjects with low to medium lesion load. However, for high lesion load subjects, the omission of WMLs may yield 
less robust local EF estimations in the vicinity of the lesioned tissue. Our results contribute to the efforts of 
accurate modeling of tDCS for treatment planning.   

1. Introduction 

Transcranial direct current stimulation (tDCS) is currently 
researched as a therapeutic tool, for example, for relieving pain (David 
et al., 2018), promoting rehabilitation (Awosika and Cohen, 2019), or 

attenuating cognitive decline (Summers et al., 2016). Older adults 
represent an important target group for tDCS applications as most 
neurological diseases like Alzheimer’s disease, Parkinson’s disease, or 
stroke predominantly manifest in the aging brain. However, tDCS 
studies report a high inter-subject variability in the stimulation effects 
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(van Asseldonk and Boonstra, 2016; Ammann et al., 2017). A relation-
ship between the electric field in tES simulations and physiological 
modulations assessed by functional MRI or motor evoked potential 
measurements was recently revealed (Jamil et al., 2020; Laakso et al., 
2019). This, in turn, attributes the electric field a role in the individual 
modulation of cortical function induced by tDCS. Moreover, modeling 
studies identified an immediate impact of subject-specific anatomical 
differences on the distribution of the electric field within the subject’s 
head (Laakso et al., 2015; Kim et al., 2013; Im et al., 2018; Filmer et al., 
2019). These anatomical differences become more pronounced in the 
aging brain when considering large-scale structural brain changes such 
as atrophy (Indahlastari et al., 2020; Woods et al., 2019; Mahdavi et al., 
2018) and brain lesions (Wagner et al., 2007; Datta et al., 2011; Minjoli 
et al., 2017). An individualized electrode montage (Laakso et al., 2017; 
Parazzini et al., 2017) and current dosage (Evans et al., 2020) informed 
by numerical computer simulations of tDCS, taking into account such 
anatomical variations, are suggested measures to mitigate the response 
variability of tDCS, particularly for elderly subjects as a recent review on 
tDCS for the aging brain concluded (Habich et al., 2020). 

Electrostatic simulations as the underlying technology of individu-
alized tDCS therapy crucially depend on an accurate representation of 
the electrically relevant structures of the head of individual subjects 
(Shahid et al., 2011; Opitz et al., 2015; Sadleir et al., 2010). During the 
aging process, the gray matter structure (Salat et al., 2004) but also the 
white matter is subject to major changes (Liu et al., 2017). Microstruc-
tural alterations like the disruption of white matter tracts, vessel im-
pairments such as cerebral microangiopathy in the presence of vascular 
risk factors, inflammation, or the loss of myelination may cause atrophy 
and lesions of the white matter tissue. Despite their frequent manifes-
tation in the aging brain (De Leeuw et al., 2001), white matter lesions 
(WMLs), or leukoaraiosis, have only very recently gained attention in 
the context of tDCS simulations (Indahlastari et al., 2021). 

To investigate the influence of WMLs on the electric field by means of 
a simulation study, they must be representable geometrically and 
physically in a head model. A segmentation of WMLs from MR images 
can be performed automatically (Shiee et al., 2010; Lampe et al., 2019), 
allowing their geometric representation. However, the change in the 
electrical properties of the lesioned white matter tissue is not quantified 
in the literature. Even the conductivity of healthy tissue varies among 
subjects (Katoch et al., 2018), rendering the conductivity of all tissues in 
the human head, but especially that of lesioned white matter, an un-
certain input to the simulation. Fixed default conductivities, like the 
usage of cerebrospinal fluid for the physical modeling of lesions (Wagner 
et al., 2007; Datta et al., 2011; Minjoli et al., 2017; Indahlastari et al., 
2021), may yield inaccuracies in the simulation results, which an un-
certainty analysis can quantify. 

An uncertainty analysis is a promising tool to model tDCS simula-
tions with uncertain inputs. The physical properties of the head model 
are represented by a multi-dimensional input space instead of a set of 
fixed conductivity values. A relation between this input space and the 
output quantities (i.e. the electric field) is established and statistics such 
as the mean electric field magnitude, its variance, and the contribution 
of each tissue to that variance can be derived. 

This process is a computationally expensive task. The input space 
must be sampled sufficiently enough, performing a complete, standard 
tDCS simulation on each sampling iteration to determine the relation to 
the output quantity reliably. One technique to mitigate this computa-
tional effort is the so-called generalized polynomial chaos expansion, 
which efficiently determines a surrogate model of the output quantity 
based on fewer samples, requiring much less computational resources 
(Saturnino et al., 2019). 

This technique was previously introduced in tDCS and TMS case 
studies in a single young, healthy adult (Saturnino et al., 2019; Schmidt 
et al., 2015). McCann et al. recently employed this approach to assess 
the influence of age-related conductivity changes of the skull bone on 
the electric field distribution during a tDCS application (McCann and 

Beltrachini, 2021). Investigating a wider range of phenotypes in a group 
uncertainty analysis and considering abnormal brain tissue remain open 
tasks. 

Here, the influence of white matter lesions on the electric field dis-
tribution during tDCS with two different electrode setups is investigated 
by means of a computational uncertainty analysis using the generalized 
polynomial chaos expansion. We expected an elevated total variance of 
the electric field induced by an increasing contribution of the WMLs to 
the variance proportional to the lesion load. To systematically assess the 
influence of the lesion load on the electric field and to account for the 
spatial variability of the lesions, simulations were performed using the 
imaging data of in total 88 subjects. They were assigned to one of four 
groups according to their Fazekas score (Fazekas et al., 1987) with a 
parametrically increasing lesion load ranging from an absence of lesions 
(Fazekas 0) to a high lesion load (Fazekas 3). All tissue classes were 
modeled uncertain, with WMLs exhibiting the highest uncertainty. The 
contribution of the WMLs to the total variance of the computed electric 
field is assessed, representing the robustness of the simulation results 
given incorrectly modeled electrical conductivity of the lesioned tissue. 
Our results inform whether white matter lesion tissue must be consid-
ered as a separate structure for accurate modeling of tDCS in the elderly 
population, contributing to the efforts of individualized tDCS therapy 
guided by computer simulations in elderly subjects and patients. 

2. Methods 

2.1. Imaging data 

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) 
and T2-weighted fluid-attenuated inversion recovery (FLAIR) head im-
ages of each subject were selected from a pool of 2029 datasets. These 
imaging data were collected previously on a MAGNETOM Verio scanner 
(Siemens, Erlangen, Germany) using a 32-channel head receiver coil and 
a body transmitter coil as part of the large cross-sectional imaging study 
of the Leipzig Research Centre for Civilization Diseases (LIFE study) 
(Loeffler et al., 2015). Detailed MR acquisition parameters can be found 
in Supplementary Section S1. 

2.2. Subject sample 

Imaging data of 88 subjects, gender (45 female) and age-matched 
(70.83 yrs., sd. 4.15 yrs.), were selected from the database of the LIFE 
study. Subjects were assigned to four groups according to their Fazekas 
score (Fazekas et al., 1987), which quantified the amount of lesioned 
tissue in the periventricular and the deep white matter. To exclude 
differences in brain athropy between groups as a possible source of 
variation, the normalized total brain volume for each subject was 
assessed in SIENAX (Smith et al., 2002) from FSL v6.0 (Smith et al., 
2004) (see Supplementary Section S3). See Table 1 for a detailed over-
view of the groups. Fig. 1 displays a summarized overlay of the white 
matter lesions in all groups and across all subjects. Refer to Supple-
mentary Fig. S1 for exemplary MR images of single subjects from each 
group. 

Table 1 
Characteristics of the subject sample. In total, 88 subjects evenly distributed across 
four groups with increasing lesion load (assessed on the Fazekas scale) with matching 
age were randomly selected. The age range was determined by the age of the Fazekas 3 
subjects, which were exclusively aged 59 or older.  

Group 
Lesion load 

Fazekas 0 
Absence 

Fazekas 1 
Low 

Fazekas 2 
Medium 

Fazekas 3 
High 

# subjects 22 (11 ♂) 22 (11♂) 22 (11♂) 22 (12♂) 
Age (yrs) 70.67 

(sd: 1.51) 
71.02 
(sd.: 1.86) 

70.99 
(sd.: 1.62) 

70.63 
(sd.: 6.85) 

Percentage of affected 
white matter 

0.0 (sd: 
0.0) 

0.72 (sd.: 
0.7) 

2.11 (sd.: 
1.81) 

8.94 (sd.: 
3.48)  
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2.3. TDCS simulations 

The tDCS simulations were conducted using our workflow (Kalloch 
et al., 2020), relying on the finite volume method (FVM) toolkit Open-
FOAM (v.7) (The OpenFOAM Foundation, 2020) for the electromagnetic 
simulations. Electrodes were modeled and positioned in the 3D- 
modeling software Blender (v2.79) (Blender Foundation, 2020). The 
head mesh was generated using our custom tool, which combines 
surface-based and image-based meshing using a Delaunay refinement- 
based implementation from the Computational Geometry Algorithms 
Library (CGAL v.4.13.1) (Fabri et al., 2009). The head models of the 
subjects in this simulation study comprised the structures skin, skull and 
enclosed air cavities, the subarachnoid cerebrospinal fluid (CSF), the 
CSF in the ventricles, gray matter (GM), white matter (WM), and white 
matter lesion (WMLs). The image-based meshing was applied to the 
lesioned tissue, the internal air, and the ventricles. These tissues would 
disrupt a nested arrangement, a topological requirement of the surface- 
based meshing, which was applied for the remaining parts. The resulting 
meshes contained between 3.5⋅106 and 4⋅106 tetrahedral elements. The 
meshes were optimized by reducing the global mesh energy using a 
CGAL-implementation of Lloyd’s algorithm (Chen, 2004; Du et al., 
1999), and Delaunay slivers, i.e. flat tetrahedra, were removed. The 
meshes were inspected visually. Their quality was validated using the 
OpenFOAM tool checkMesh, which acknowledged the generated meshes 
to be suitable for the subsequent FVM-simulations in terms of mesh non- 
orthogonality, element skewness, element aspect ratio, element volume, 
and face area in all cases. The T1-weighted head images were segmented 
using our segmentation pipeline (Kalloch et al., 2018), which relies on 
robust, atlas-based segmentation approaches that are implemented in 
the Java Image Science Toolkit (JIST v.3.2) (Lucas et al., 2010), an 
extension to the Medical Image Processing, Analysis, and Visualization 
(MIPAV v7.8) (Mcauliffe et al., 2001) software. This entailed a three- 
step, semi-automatic segmentation procedure. First, the skin tissue 
and skull were segmented by registering 20 individual template seg-
mentation images from the BrainWeb database to the T1 image of each 
subject. Voxels with the highest probability of being skin or skull were 
identified in a majority-voting process specified by the STAPLE algo-
rithm (Warfield et al., 2004). Second, the multi-object geometric 

deformable model (MGDM) algorithm (Bogovic et al., 2013) was 
employed to segment the intracranial compartments of the head, 
including deep, subcortical structures, in a topology-preserving manner. 
This ensured a continuous boundary of the structures cerebrospinal- 
fluid, gray matter, and white matter. Third, the air-filled cavities of 
the skull were extracted using a pseudo-CT template from (Rorden et al., 
2012) that was co-registered to each T1 image. These intermediate 
segmentation images were merged into one image, which was post- 
processed by a series of image morphological operations to ensure a 
suitable quality for the head mesh generation. The WMLs did not 
interfere with these procedures, but they were also not segmented. 
Instead, they were segmented automatically from the T2-FLAIR head 
images, where WMLs are expressed as hyperintensities. The involved 
segmentation process of the white matter hyperintensities was based on 
an adapted version of the lesion-TOADS algorithm (Shiee et al., 2010) 
and is detailed in (Lampe et al., 2019). 

To compute the electric field, the quasi-static form of Maxwell’s 
equations was solved by our custom solver application employing the 
OpenFOAM API. OpenFOAM implements the cell-centered finite-vol-
ume method. As such, it operates on cell centers instead of nodes and 
result fields are cell-based instead of point-based. The outer boundaries 
of the electrodes were assigned Dirichlet boundary conditions. The 
electric potential φ at the center of each tetrahedral mesh element was 
computed solving ∇⋅(σ∇φ) = 0 in the head volume conductor models 
with piecewise constant electrical conductivity σ. The involved Laplace 
operator was discretized using a Gauss discretization scheme with linear 
interpolation at a residual of 10− 6. The solution was iterated until the 
residual of the entire system of equations fell below 10− 5. The electric 
field E as the gradient of the potential field φ, E = − ∇φ, at the center of 
each tetrahedral element was discretized using a least-squares gradient 
scheme. Its solution was derived by our solver application as well. 

The magnitude of the electric field at the cortical mid-layer of each 
head model was of particular interest for the subsequent analyses. The 
laminar package of the neuroimaging processing library Nighres (Hun-
tenburg et al., 2018) was employed to compute the cortical laminae in 
an anatomically informed manner (Waehnert et al., 2014) and the mid- 
layer was extracted. The Marching Cubes (Lorensen and Cline, 1987) 
implementation of ParaView 5.6.3 (Ahrens et al., 2005) was used to 

Fig. 1. Lesion overlays of the analyzed groups. Overlays of the spatially normalized white matter lesions of all subjects (top row) and within the individual groups at various 
slices of the volume. The color of a voxel represents the number of subjects that exhibit lesioned white matter tissue at that location. 
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create the surface representation of the boundary of the mid-layer seg-
mentation image. The surface was smoothed in Meshlab (Cignoni et al., 
2008) using the Taubin smoothing algorithm (λ = 0.5, μ = − 0.53)
(Taubin, 1995) and remeshed using the isotropic remeshing capability 
of CGAL 4.13.1. The mid-layer surfaces were created independently of 
the respective head volume meshes and were, thus, not embedded in 
their structure. Instead, after each completed simulation pass, the 
resulting electric field magnitude was interpolated onto the mid-layer 
nodes from the cell data of the head volume mesh using an interpola-
tion scheme based on weighted linear interpolation. Supplementary 
Section S4 elaborates more on that interpolation. 

2.3.1. Simulation case setup 
Each head model exhibited the same seven structures, namely skin, 

skull, the air cavities of the skull, cerebrospinal fluid (CSF), gray matter 
(GM), white matter (WM), and the WMLs. As part of the sensitivity 
analysis, their homogenous, isotropic electrical conductivity values 
were not fixed but modeled as random variables σi. Each variable was 
characterized by a beta distribution (shape parameters α = 3, β = 3) 
and bound within a specified range of conductivity values (Fig. 2) based 
on a previous study (Saturnino et al., 2019). A beta distribution was 
chosen for its boundedness and resemblance to a normal distribution 
given the mentioned shape parameters. WMLs exhibited the highest 
conductivity range, representing the increased uncertainty in their true 
conductivity value due to insufficient evidence from the literature. The 
range was selected to cover the entire spread of conductivity values in 
the human brain. The conductivity of air was fixed to 10-15 S/m, acting 
as an insulator. Two electrode setups were simulated, each using 
quadratic 25 cm2 pad electrodes (Fig. 3). In setup 1, the bihemispheric 
setup, the electrodes were positioned on both hemispheres over the 
10–20 electrode coordinates C3 and C4 aimed at motor cortex stimu-
lation. The second setup, the frontal-occipital setup, was chosen to 
maximize the distance between the electrodes to yield a more extensive 
subcortical distribution of the electric field (Gomez-Tames et al., 2020). 

This setup was used before to stimulate arousal (Mauri et al., 2015). The 
electrodes were positioned over the 10–20 coordinates Oz and Fpz. A 
current strength of 2 mA was applied in both setups. 

2.4. Uncertainty analysis 

In general, an uncertainty analysis aims to determine the variation of 
the output quantity q of a system due to the uncertainties of its n input 
quantities ξ = [ξ1,⋯, ξn] spanning a multi-dimensional input space Ξ. 
The uncertainty of a quantity is described by its probability density 
function (PDF), representing the likelihood of any arbitrary interval of 
the quantity. The PDFs of the input quantities are defined by their 
probability distribution within a finite range. The PDF of the output 
quantity can be estimated, in a naïve fashion, by computing a suffi-
ciently high number of samples of the output quantity with varying 
input values. Depending on the modeled problem, computing a single 
sample of the output quantity may require up to several minutes of 
computation time rendering the naïve Monte Carlo sampling of the input 
space not feasible. 

The generalized polynomial chaos expansion (gPC) is an established 
approach to drastically reduce the number of simulations by con-
structing a surrogate of the computationally expensive original model of 
the output quantity. The surrogate model is represented by joint poly-
nomial basis functions Ψak (ξ) assembled from orthonormal (in space Ξ)
polynomials ψ (i)

a(i)k
(ξi), which are defined for each input variable ξi 

Ψak (ξ) =
∏n

i=1
ψ (i)

a(i)k
(ξi). (1) 

The degree of the polynomials is denominated by the multi-index 
ak ∈ A, k ∈ {1, ⋯, K}, where K denotes the total number of joint basis 
functions. 

The polynomial series with its coefficients uk replaces the actual 
system under investigation by approximating the true mapping from the 
input to the output space (Crestaux et al., 2009) at the location r given 
the input quantities ξ 

q(ξ, r) ≈ q̃(ξ, r) =
∑

ak∈A
uk(r)Ψak (ξ). (2) 

Consequently, the input space can be sampled more efficiently since 
it merely involves evaluating a polynomial function instead of evalu-
ating the modeled problem. Finally, to establish the surrogate model, far 
fewer samples are required than for the setup of the actual output PDF 
by the Monte Carlo method. 

Fig. 2. Illustration of the conductivity ranges and their probability density 
function of the head model compartments. Different colors represent corre-
sponding tissue types in the exemplary segmentation image in the top left corner. The 
electrical conductivity values of the structures of the head model were distributed 
according to a beta-distribution function as shown by violin plots (shape parameters: 
α = 3,β = 3, for illustrative purposes the y-axis of the distributions was normalized 
in this plot). 

Fig. 3. Illustration of the electrode setup. All simulations were conducted using a 
bihemispheric electrode setup over the 10–20 coordinates C3 & C4 and a frontal- 
occipital setup over the coordinates FPZ & OZ. 
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2.4.1. Application of the generalized polynomial chaos expansion for the 
sensitivity analysis of tDCS simulations 

For our tDCS simulations as the system under investigation, the 
electric field magnitude ||E|| represents the output quantity and the 
homogenous, isotropic electrical conductivity values of each structure in 
the head model constitute the input quantities,σ = [σ1,⋯,σn]. In a pre-
vious study (Saturnino et al., 2019), the electric field magnitude was 
found to be the most sensitive to the uncertainty in tissue conductivity 
compared to the direction of the electric field and the general electric 
field pattern. 

Calculating one sample of the output quantity for a tDCS simulation- 
based uncertainty analysis implies performing a full simulation with a 
randomly (according to the input PDFs) selected fixed conductivity for 
each tissue compartment. Every simulation pass, thus, represents a 
mapping from the input space (conductivities) onto the output space 
(‖E‖). For the sensitivity analysis of the tDCS simulations, the compu-
tational effort was mitigated by approximating the electric field 
magnitude locally by a gPC-series based on the approach described in 
(Saturnino et al., 2019) and implemented in the Python package pygpc 
(Weise et al., 2020). 

The gPC of the electric field magnitude was determined only at the 
cortical mid-layer and the regions of interest. The mid-layer as the main 
site of the cortical neurons is considered the central area of interest for 
the stimulation. The gPC of the electric field magnitude was not 
computed for the entire head model because the electric field at the 
interface between two tissues, for example, at the cortical surface, tends 
to be less smooth between local samples, resulting in larger approxi-
mation errors. 

With the gPC of the electric field magnitude, the mean electric field 
magnitude and its variance, given the uncertain input, can be derived 
directly from the (gPC) coefficients (Saturnino et al., 2019) for each mid- 
layer node and each mesh element within the regions of interest. To 
investigate the contribution of the uncertainty of the electrical con-
ductivity of each tissue to the variance of the electric field magnitude, 
variance-based importance measures, so-called Sobol indices, were 
computed directly from the coefficients of the gPC series. The Sobol 
index indicates the sensitivity of the output quantity, that is, the electric 
field magnitude, to a particular input variable σi, i.e. the electrical 
conductivity of tissue i, or to a combination of multiple input variables. 
In addition, it is influenced by the uncertainty of the input variables 
meaning the shape and range of their probability density function. The 
sum of the Sobol indices of all input variables and their interactions 
equals the total variance of the electric field magnitude. 

2.4.2. Technical realization of the sensitivity analysis 
On an Intel Core i7 6700 workstation equipped with an SSD drive 

and 32 GB RAM, the simulation time for one simulation pass per subject 
was approximately 8 min. Between 51 and 96 simulations were neces-
sary per subject to expand the gPC series with a residual of 10− 3. This 
resulted in third-order polynomial series with 34 to 64 coefficients. Up 
to 4 simulation passes were performed in parallel, which typically 
resulted in a total computation time of 2–4 h for the uncertainty analysis 
of one subject. 

The average relative error across all test cases between the electric 
field magnitude computed by the polynomial series and the actual 
simulated value was 0.56% (sd: 0.2%). 

2.5. Statistical analysis 

The uncertainty analyses focused on determining the mean electric 
field magnitude, the associated variance, and the Sobol indices as result 
quantities. We distinguish between two levels of means and variances of 
the electric field magnitude. The first level is the mean electric field 
magnitude mean(‖E‖)) and its associated variance var(‖E‖)) due to the 
uncertainty in the electrical conductivity of the structures in the head 
model. These result quantities of the uncertainty analysis are defined at 

each node of the cortical mid-layer and each mesh element within the 
volumetric regions of interest. The second level is obtained by spatially 
averaging these result quantities on the cortical mid-layer in subject 
space (in the following denoted as “whole-brain”) and within eight re-
gions of interest (ROIs, Supplementary Section S5), creating a spatial 
average of the mean electric field magnitude as well as a spatial average 
of the variance of the electric field magnitude within the analyzed re-
gions. In the following, we report these spatial averages of the 
mentioned result quantities at the cortical mid-layer (and within the 
ROIs in Supplementary Section S5). To gain an additional estimate of the 
result quantities outside the regions of interest and particularly in the 
vicinity of the WMLs, we further present individual subject data from a 
sampling line running from electrode to electrode through the entire 
intracranial volume in Supplementary Section S6. 

2.5.1. Regions of interest 
Here, results from the entire cortical mid-layer, denoted as whole- 

brain results, are presented. Further regions of interest (ROIs) were 
defined at four locations on the cortical mid-layer and by four deep 
structures. The cortical mid-layer ROIs were chosen as the cortex rep-
resented the primary target site for tDCS. The selected deep brain re-
gions were reported to likewise receive a pronounced electric field 
magnitude (Gomez-Tames et al., 2020). Furthermore, the electric field 
in those deep regions was expected to experience a more substantial 
influence of the white matter and white matter lesions. See Supple-
mentary Section S5 for further details on the regions of interest, their 
creation, and ROI-specific results. 

2.5.2. Statistical methods 
Statistics of the spatially averaged results of the uncertainty analysis 

were computed in R v.3.4.4 (R Core Team, 2020; Wickham, 2016) for 
the four Fazekas groups: Fazekas 0 (absence of lesions), Fazekas 1 (low 
lesion load), Fazekas 2 (medium lesion load), and Fazekas 3 (high lesion 
load). Normality was determined using the Shapiro-Wilk test. Signifi-
cant deviations between group means for normally distributed samples 
were tested with a one-way ANOVA with the Fazekas groups as factors 
and corrected for multiple comparisons, taking into account the number 
of regions of interest. A Bonferroni corrected paired-samples t-test was 
used as a post-hoc test. Non-normally distributed samples were tested 
with the Kruskal-Wallis (KW) rank test and corrected for multiple 
comparisons. Subjects were again grouped according to their Fazekas 
score. A post-hoc test was conducted using the Bonferroni-corrected 
Dunn’s test. The effect size measure η2 was calculated for significant 
KW tests based on their H-statistic (Tomczak and Tomczak, 2014). 

3. Results 

The electric field magnitude is analyzed in terms of its mean, mean 
(‖E‖), and its variance caused by the uncertainty in tissue conductivity 
as well as the Sobol indices representing the decomposition of the total 
variance into the contributions of each input variable. See Figs. 4 & 5 for 
a visualization of the magnitudes of these metrics on the mid-layer of an 
exemplary subject from the Fazekas 3 group with both electrode mon-
tages. The electric field shows the typical diffuse pattern induced by 
tDCS. In both electrode setups, the variance of the electric field 
magnitude is the strongest in the sulci. The magnitude of the Sobol 
indices of skin and skull is highest in the area under the electrodes. The 
gray matter Sobol index peaks in the sulci underneath the electrodes. 
The pattern of the Sobol index of the cerebrospinal fluid is similar to the 
pattern of skin and skull but less pronounced. The Sobol indices of white 
matter and WMLs are small compared to the Sobol indices of the other 
tissue classes. The white matter Sobol index exhibits its highest magni-
tude medially. The Sobol index of the white matter lesions peaks in 
distinct areas where the lesions are close to the cortical sheath. In the 
frontal-occipital electrode montage, the pattern of the Sobol indices of 
white matter and WMLs are unidentifiable on the mid-layer, indicating 

B. Kalloch et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 35 (2022) 103071

6

Fig. 4. Illustration of the main outcome measures of the sensitivity analysis with the bihemispheric electrode montage. (A) The mean electric field magnitude, (B) the 
associated total variance due to the uncertain input, and (C) the Sobol indices of all tissue types are displayed on the cortical mid-layer of a representative single subject from the 
high lesion load group (Fazekas 3). 
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Fig. 5. Illustration of the main outcome measures of the sensitivity analysis with the frontal (FPZ)-occipital (OZ) electrode montage. (A) The mean electric field 
magnitude, (B) the associated total variance due to the uncertain input, and (C) the Sobol indices of all tissue types are displayed on the cortical mid-layer of a representative 
single subject from the high lesion load group (Fazekas 3). 
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that their influence might be further reduced in this electrode setup. 
By further analyzing the Sobol index of the white matter lesions, 

their impact on the electric field can be inferred. 

3.1. Analyses of the mean electric field magnitude and its variance 

The spatially averaged mean electric field magnitude, mean(‖E‖), on 
the whole-brain level is depicted in Fig. 6 and Supplementary 
Tables S1.1 and S1.2. 

Generally, no significant difference in mean(‖E‖) between groups 
could be found on a whole-brain level and in all ROIs for the bihemi-
spheric electrode setup (for detailed ROI results see Supplementary 
Section S5.2.1). However, for the frontal-occipital setup, group means of 
mean(‖E‖) differed significantly (Supplementary Table S3.2) on the 
whole-brain-level (p = .001,η2 = .152) and in the M1 ROIs (M1 left: p≪ 
.001,η2 = .198, M1 right : p≪.001,η2 = .193). A similar pattern could be 
observed for the variance of the electric field magnitude (Supplementary 
Section S5.2.2, Supplementary Table 3.2). Post-hoc analyses revealed 
that both differences were mediated by a reduced mean(‖E‖) in the 
Fazekas 3 group compared to all other groups except the Fazekas 1 
group (Supplementary Table S4.2). 

3.2. Analyses of the Sobol indices 

The analyzed Sobol indices of order one on the whole-brain level are 
plotted in Fig. 7 (and Supplementary Tables S2.1 – S2.4) for both elec-
trode setups. 

Across all groups and conditions, the group averaged WML Sobol 
index was only a fraction of the Sobol indices of all other investigated 
structures (i.e. typically between a tenth to a thousandth, depending on 
the Fazekas group and tissue type) and, thus, on average the lowest 
contributor to the electric field variance. However, the contribution was 
modulated by the lesion load. As expected, the Sobol index of WML from 
all three groups was consistently the highest in the Fazekas 3 group 
across all conditions and decreased with decreasing lesion load. Overall, 
the difference in the Sobol index of WML tissue between the Fazekas 1 
and Fazekas 3 group was at least one order of magnitude (i.e. a factor of 
ten) in both electrode setups. Consequently, the group average WML 
Sobol indices differed significantly between the high and medium lesion 
load group (Fazekas 2, Dunn’s test: p≪.001) as well as the high and low 
lesion group (Fazekas 1, Dunn’s test: p≪.001) (Supplementary Table 4.1 
& 4.2). Similarly, there was a significant difference in the group average 
white matter Sobol index, which was primarily driven by a significantly 
decreased contribution of healthy white matter to the electric field 

variance in the Fazekas 3 group (bihemispheric setup; Fazekas 0: ρ =
0.0002, Fazekas 1: ρ = 0.0049, Fazekas 2: ρ = 0.0016. frontal-occipital 
setup; Fazekas 0: ρ ≪ 0.001, Fazekas 1: ρ = 0.0001, Fazekas 2: ρ ≪ 
0.001). The mid-layer and deep ROIs generally confirm these observa-
tions with varying effect sizes (Supplementary Section S5.2.3, Supple-
mentary Tables S2.1 – S2.4, 3.1 & 3.2, 4.1 – 4.3). 

The strongest influence on a single-subject level on the mid-layer was 
found in a location within the right Electrode ROI in the bihemispheric 
setup in a Fazekas 3 subject with a contribution of 11.25% to the total 
variance. In the deep ROIs, the 99th-percentile highest, single-subject 
WML Sobol index reflected a contribution of 91.8% to the total elec-
tric field variance at a distinct location in the right thalamus in a Fazekas 
3 subject when using the bihemispheric electrode montage. Notably, the 
white matter lesions of this subject were directly adjacent to the right 
thalamus. 

4. Discussion 

In this work, the impact of white matter lesion (WML) tissue on the 
electric field magnitude during the application of transcranial direct 
current stimulation was assessed using a group-level computational 
uncertainty analysis. Two electrode montages were simulated, a bihe-
mispheric setup targeting the motor cortex and a frontal-occipital setup 
targeting deeper, subcortical structures. The mean electric field magni-
tude, its associated total variance, and decomposition of this variance 
into the contributions of each tissue by means of Sobol indices were 
analyzed at the cortical midlayer and in superficial cortical and deeper 
regions of interest in four groups with increasing lesion load. A consis-
tent pattern for both electrode montages was a significant increase in the 
contribution of white matter lesion tissue to the variance of the electric 
field magnitude in the high lesion load group compared to the low lesion 
load group. This increase could be detected in all analyzed regions of 
interest but varied in strength. However, the contribution of the white 
matter lesion tissue to the electric field variance was on average the 
lowest compared to the other tissue classes within all ROIs. Data on a 
single-subject level from a sampling line through the intracranial 
compartment suggested that a major part of the electric field variance 
was accounted for by WMLs only directly within the lesioned tissue and 
its immediate surroundings with the highest radius in a Fazekas 3 sub-
ject. Concludingly, WMLs could be omitted in most head models. Still, 
additional modeling effort may be required for an accurate simulation of 
subjects with a high lesion load if the lesion location is close to the 
stimulation site or when deeper subcortical structures are targeted. 

White matter lesions, also known as leukoaraiosis, are characterized 

Fig. 6. Group-wise boxplots of the mean electric field magnitude with both electrode montages. Values were averaged on a whole-brain level for every subject (rep-
resented as individual dots). Boxplots provide a group comparison. For comparison, the average mean electric field magnitude on a whole-brain level from the uncertainty 
analysis of a young adult (Saturnino et al., 2019) was marked with an orange dot within the scatter-plot data of the Fazekas 0 group. 
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by the absence of apparent clinical symptoms. However, they may co- 
occur with several neurological diseases that develop in the aging 
brain, such as Parkinson’s disease (PD), Alzheimer’s disease, or stroke. 
TDCS interventions for improving gait in PD (Lee et al., 2019), for 
slowing down cognitive decline in Alzheimer’s disease (Cruz Gonzalez 
et al., 2018), or facilitating the rehabilitation process after a stroke (Biou 
et al., 2019; Orrù et al., 2020) are currently being researched. A problem 
common to all these intervention studies is response variability, that is, 
the observation that the treatment shows an effect in some patients but 
not all, with no evident pattern (van Asseldonk and Boonstra, 2016; 
Ammann et al., 2017). One possible explanation for this variability in 
the stimulation effect is the subject-specific anatomy of the human head 
that irregularly perturbs the induced electric field (Laakso et al., 2015; 
Kim et al., 2013; Im et al., 2018; Filmer et al., 2019). Atrophy and brain 
lesions, consequences of the aging brain, further amplify anatomical 
differences. Individualizing the tDCS protocol (Parazzini et al., 2017; 
Evans et al., 2020; Habich et al., 2020) according to anatomical differ-
ences (Datta et al., 2011) may increase the stimulation effect and 
thereby the treatment success. A key to individualization is an accurate 
computer simulation of the electric field considering the individual 
anatomy, as studies show a linkage between electric field calculations 
and physiological responses (Jamil et al., 2020; Laakso et al., 2019; 
Antonenko et al., 2019). Modeling studies have investigated the influ-
ence of atrophy and stroke lesions on the electric field and deemed them 
a decisive factor in modeling the aging brain (Indahlastari et al., 2020; 
Mahdavi et al., 2018; Minjoli et al., 2017). Our results augment the 
knowledge on accurate modeling of tDCS in the aging brain by in-
vestigations of sub-cortical alteration of the white matter fiber structure, 
leukoaraiosis. In contrast to previous studies on stroke lesions (Wagner 
et al., 2007; Datta et al., 2011; Minjoli et al., 2017) and white matter 
lesions (Indahlastari et al., 2021), we did not model white matter lesions 
using the physical properties of existing structures, for example, cere-
brospinal fluid. Instead, we introduced the lesions as a new tissue type, 
with a distinct uncertainty in tissue conductivity. This method mitigated 
approximation errors in the modeling due to a simplified conductivity 
profile of the lesioned tissue. 

An entirely different approach to investigate the influence of WMLs 
on the electric field during tDCS was taken recently by Indahlastari et al. 

(2021). In this study, FEM simulations of subjects exhibiting WMLs were 
conducted with the presence and artificial absence of their WMLs. A 
difference measure between both modes of simulation was established 
and correlated to the individual total lesion volume. The lesioned tissue 
was physically modeled as CSF and the electrode setup was different 
from our two setups. Despite these fundamental differences, similar 
findings were reported: brain regions with the most changes due to the 
WML tissue were found primarily in the white matter compartment 
surrounding the lesioned tissue. Our uncertainty analysis provides 
robust support for the rather local influence of the WMLs. Besides, with 
the Sobol decomposition of the electric field variance, we contribute an 
estimate of the robustness of the simulated electric field magnitude in 
the presence of WMLs on the cortical level and in deeper brain regions. 

Despite the significantly higher contribution of WMLs to the total 
variance of the electric field magnitude in the Fazekas 3 group in both 
electrode setups, this variance was not increased across all conditions 
and ROIs. Instead, the contribution of healthy white matter tissue 
decreased in the Fazekas 3 group in all ROIs of both electrode montages. 
This indicates 1) that the WMLs did not cause a global perturbation of 
the electric field and 2) that healthy and lesioned white matter share 
their contribution to the total variance. The shared volume of healthy 
and lesioned white matter in the brain may be a possible explanation for 
their shared contribution to the total variance — a higher lesion load 
results in a lower volume of healthy white matter. 

The local influence of the WMLs on the electric field variance is 
further supported by three observations: 1) elevated levels of the WML 
Sobol index could only be found up to 4.3 mm distant from WML areas 
on the intracranial volume sampling line (Supplementary Section S6), 2) 
the exemplary visualizations of the Sobol indices on the mid-layer sur-
face show only faint spots of minimally increased WML Sobol indices, 3) 
despite the closer location of deep regions of interest to the white matter 
lesions, the WML Sobol index was still the lowest in the deep ROIs except 
for one subject in the Fazekas 3 group where the WMLs were directly 
adjacent to the right thalamus yielding a peak contribution of the WMLs 
to the electric field variance of 91.8 % at distinct locations in the 
thalamus. 

From both electrode setups, general conclusions concerning the in-
fluence of white matter lesions on the electric field could be drawn. 

Fig. 7. Group-wise boxplots of the Sobol indices of all tissue classes that were modeled uncertain on the whole brain level with both electrode montages. Note that the 
results are shown in log-scale. Values were averaged on a whole brain level for every subject (represented as individual dots). Boxplots provide a group comparison. For 
comparison, the average Sobol index on a whole-brain level from the uncertainty analysis of our earlier study of a young adult (Saturnino et al., 2019) was marked with an 
orange dot within the scatter plot data of the Fazekas 0 group. 
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However, a few differences between both setups were apparent. 
Whereas in the mid-layer ROIs, no significant difference in the spatially 
averaged mean electric field magnitude between the groups could be 
identified in the bihemispheric electrode montage, there was a signifi-
cant difference between the Fazekas 3 group and both the Fazekas 2 and 
Fazekas 0 groups in the M1 ROIs and on the whole brain level in the 
frontal-occipital setup (Supplementary Fig. S6, Supplementary 
Table 4.2). As a result, the variance of the electric field magnitude was 
likewise significantly decreased (Supplementary Fig. S9), which further 
affected the Sobol indices of several structures (skin, CSF, GM, Supple-
mentary Fig. S12). Brain atrophy was determined a factor for decreased 
cortical electric field magnitude in transcranial electric stimulation in 
previous studies (Indahlastari et al., 2020; Woods et al., 2019; Mahdavi 
et al., 2018). Our subjects were aged matched to mitigate differences in 
cortical atrophy. For verification, we assessed the normalized volume of 
gray and white matter and the normalized total brain volume for each 
subject SIENAX (Smith et al., 2002) from FSL v6.0 (Smith et al., 2004) 
(see Supplementary Section S3). Indeed, there was no systematic 
decrease in brain volume with increasing lesion load, but the Fazekas 3 
group had a significantly lowered total brain volume compared to the 
Fazekas 0 group. This difference was mainly driven by a significant 
decrease in white matter volume, possibly due to the advanced stage of 
the lesioned white matter. Yet, no significant correlation between total 
brain volume and the electric field magnitude could be found in any of 
the ROIs or electrode setups. Finally, despite the reduction in variance, 
the Sobol index of WMLs is still significantly higher in the Fazekas 3 
group than all other groups on the whole-brain level, in the M1 ROIs, 
and the occipital electrode ROI, underlining the robustness of the re-
ported effects. 

By quantifying the contribution of the distinct tissue classes to the 
variance of the electric field magnitude due to their uncertainty in 
electrical conductivity, our results provide an estimate of the robustness 
of the results derived from tES simulations when choosing an arbitrary 
conductivity value from the analyzed ranges. In this study, the influence 
of uncertainty in the electrical conductivity of WML tissue was of 
particular interest. We consider the influence of the lesioned tissue on 
the electric field in Fazekas 1 and 2 subjects virtually negligible in su-
perficial, cortical targets for both electrode configurations. No signifi-
cant difference between the two groups was found and the WML Sobol 
index was, on average, approximately only a thousandth of that of the 
skin tissue class (Supplementary Tables S2.1 – S2.2). We found a simi-
larly low influence in deeper targets. Thus, the primary concern for 
accurate, individualized tDCS simulations in these cases is the correct 
electrical conductivity of the skin, skull, and gray matter tissue, rather 
than that of deeper subcortical structures. Only the Fazekas 3 group 
showed a significantly higher contribution of WMLs to the total vari-
ance, an increased radius of WML influence around the lesioned tissue 
on the exemplary line plots, and a major contribution to the variance of 
the electric field magnitude by the WMLs on a single-subject level in the 
deeper regions of interest when the lesions were adjacent. For these 
subjects with a high lesion load, we recommend examining the location 
of the lesions. The exclusion of subjects with lesions close to the target 
site from individualized simulation-informed tDCS intervention studies 
should be considered while the actual conductivity value of WMLs re-
mains unknown. Otherwise, the estimations from the simulated electric 
field should be regarded as less reliable. 

In this study, we selected an electrode montage that is commonly 
used for motor cortex stimulation (Lindenberg et al., 2010; Mordillo- 
Mateos et al., 2012; Morya et al., 2019; Waters-Metenier et al., 2014), 
and a montage that reaches deeper cortical targets (Gomez-Tames et al., 
2020) and has been used before to stimulate arousal (Mauri et al., 2015). 
Indeed, the spatially averaged mean electric field magnitudes in the 
deep ROIs were similar to averaged mean electric field magnitude at the 
mid-layer ROIs for the frontal-occipital electrode montage confirming 
the observations in (Gomez-Tames et al., 2020) (Supplementary Section 
S5.2.1, Supplementary tables S1.1 & S1.2). Both setups show the same 

trend of an increased but generally low influence of WMLs with 
increasing lesion load on a group level in cortical targets. We cannot 
directly infer whether the presented results hold for other electrode 
configurations. The comparison to results from (Saturnino et al., 2019) 
showed a high correspondence in the Sobol indices at the mid-layer 
despite differences in electrode montage (bihemispheric vs. unihemi-
spheric) and age range (young vs. old). This may suggest that the Sobol 
indices are robust against different electrode positions. In addition, 
Indahlastari et al. (2021) find similarly the strongest changes rather 
localized within and around the WMLs. This may indicate that the re-
ported effect is stable across electrode configurations and is rather 
dependent on the lesion location than on the electrode position. Given 
that we found further reduced WML Sobol indices on a group-level in the 
frontal-occipital setup compared to the bihemispheric configuration, the 
intensity of this effect might be modulated mildly by the electrode 
configuration but within a generally low range. 

One limitation of the presented work might be that white matter 
anisotropy was not included in the physical properties of the head 
models because of lacking suitable diffusion-weighted imaging data. The 
imaging data were obtained from the existing pool of data of a large 
cross-sectional study, the LIFE-Adult study (Loeffler et al., 2015). 
Modeling studies have shown that the consideration of white matter 
anisotropy changes the electric field in simulations of tES (Miranda 
et al., 2003; Suh et al., 2012; Wagner et al., 2013; Shahid et al., 2014). 
Therefore, its role in the interplay of the electric field and white matter 
lesions is an important subject for further future investigations. Despite 
this lacking level of detail in modeling the physical properties of the 
white matter tissue, we consider the reported findings plausible and 
reliable. Huang et al. (2017) provide first evidence from intracranial 
recordings of three subjects that simulated electric fields from tES sim-
ulations with pure scalar elecftrical conductivity can achieve the same 
accuracy as fields from simulations with anisotropic white matter con-
ductivity. Individually adjusted electrical conductivity values, so-called 
calibrated electrical conductivity values, for each subject were deemed 
of greater importance than modeling anisotropic white matter conduc-
tivity. Within the scope of our uncertainty analysis, a wide range of 
electrical conductivity values for each tissue class, including white 
matter, was covered. These ranges were selected to include the set of 
optimal conductivity values, which would yield the most accurately 
simulated electric field for each subject. Moreover, our analysis provides 
an assessment of the variance of the electric field due to non-optimally 
selected conductivity values complementing the concept of calibrated 
electrical conductivity by an estimate of the robustness of the simulated 
electric field magnitude. 

To verify our entire workflow, we compared the previous work of 
Saturnino et al. (2019) to our results on a whole-brain level (Figs. 6 & 7, 
Supplementary Figs. S4, S8, S11 and S12, orange dot). While the same 
framework for sensitivity analysis was used, the head modeling and 
simulation pipeline was entirely different. Despite these differences, the 
variance of the electric field and the Sobol indices of the healthy tissue 
reported in Saturnino et al. (2019) integrate well into our group results. 
Therefore, we consider our results comparable to previous work. 

The presented results were obtained in participants with subcortical 
lesions of vascular origin. The electrical conductivity of these lesions 
was modeled highly uncertain in the sensitivity analysis. For this reason, 
these results might also apply to other patient populations with other 
types of subcortical lesions caused by diseases such as multiple sclerosis, 
infectious encephalitis, and leukodystrophy. 

Our study systematically examined the influence of pathological 
brain structures on a group level in an uncertainty analysis. With 88 
individual head models of both sexes, a wide range of phenotypes was 
covered. By leveraging a sensitivity analysis, the limitation of unknown 
conductivity of the structure under investigation, namely white matter 
lesions, was overcome. Our results support that white matter lesions 
must only be considered on an individual level in the case of a high 
lesion load and if the lesions occur in the vicinity of the stimulation site 
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when conducting a tDCS intervention. 
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