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Summary 

• Plants produce large numbers of phytochemical compounds affecting plant physiology 
and interactions with their biotic and abiotic environment. Recently, chemodiversity 
has attracted considerable attention as an ecologically and evolutionary meaningful 
way to characterize the phenotype of a mixture of phytochemical compounds. 

• Currently used measures of phytochemical diversity, and related measures of 
phytochemical dissimilarity, generally do not take structural or biosynthetic properties 
of compounds into account. Such properties can be indicative of the compounds’ 
function and inform about their biosynthetic (in)dependence, and should therefore be 
included in calculations of these measures. 

• We introduce the R package chemodiv, which retrieves biochemical and structural 
properties of compounds from databases and provides functions for calculating and 
visualizing chemical diversity and dissimilarity for phytochemicals and other types of 
compounds. Our package enables calculations of diversity that takes the richness, 
relative abundance and – most importantly – structural and/or biosynthetic 
dissimilarity of compounds into account. We illustrate the use of the package with 
examples on simulated and real datasets. 

• By providing the R package chemodiv for quantifying multiple aspects of 
chemodiversity, we hope to facilitate investigations of how chemodiversity varies 
across levels of biological organization, and its importance for the ecology and 
evolution of plants and other organisms. 

Key words: chemical communication, chemical ecology, chemodiversity, phytochemicals, 
plant defence, R package, secondary metabolites 

Introduction 

Plants produce an astonishing diversity of phytochemical compounds (Kessler & Kalske, 
2018; Wang et al., 2019). With functions such as chemical defence, attractant or repellent 
signalling and protection against abiotic stressors, phytochemicals (also referred to as 
secondary metabolites) are crucial for mediating mutualistic and antagonistic interactions 
between plants and other organisms and the abiotic environment (Hartmann, 2007; Junker & 
Tholl, 2013; Kessler & Kalske, 2018; Whitehead et al., 2021b). Understanding the 
evolutionary processes generating this phytochemical diversity, and the ecological functions 
of it are central goals in the field of chemical ecology (Fraenkel, 1959; Ehrlich & Raven, 
1964; Hartmann, 2007; Raguso et al., 2015). 

Traditionally, research has mostly focused on understanding the function (e.g. herbivore 
protection or pollinator attraction) of individual phytochemical compounds (Richards et al., 
2016; Dyer et al., 2018). However, phytochemicals occur in multicompound mixtures, the 
composition of which represents a complex phenotype that may vary along multiple 
dimensions (Marion et al., 2015). Recently the concept of chemodiversity has received 
increased attention as a way to quantify this phenotype (Junker et al., 2018; Wetzel & 
Whitehead, 2020; Müller et al., 2020). Chemodiversity can be quantified using diversity 
indices (Doyle, 2009; Hilker, 2014; Marion et al., 2015; Kessler & Kalske, 2018; Wetzel & 
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Whitehead, 2020), and multiple studies have found that function may be dependent on a 
diverse mixture of compounds (e.g. Iason et al., 2005; Bruce et al., 2005; Richards et al., 
2015; Junker et al., 2018; Tewes et al., 2018; Whitehead et al., 2021a; Cosmo et al., 2021). 
Less appreciated is the fact that phytochemical compounds are produced by a limited number 
of biosynthetic pathways and are characterized by different chemical structures (Wink, 2010; 
Wang et al., 2019). Considering such properties of compounds as a part of the phytochemical 
phenotype can be important to account for interdependences due to shared biosynthetic 
pathways (Junker, 2018; Junker et al., 2018), and crucially, a factor contributing to explaining 
the function of phytochemicals (Wetzel & Whitehead, 2020; Cosmo et al., 2021). 

Chemodiversity is often measured using indices such as Shannon’s diversity index. While 
originally used to quantify species diversity, numerous studies have used diversity indices to 
quantify phytochemical diversity at different levels of biological organization, and explored 
its effects on ecological interactions and evolutionary processes. This includes examples 
where phytochemical diversity influences insect performance (Tewes et al., 2018; Glassmire 
et al., 2020), shapes patterns of herbivory and insect diversity across plant communities 
(Richards et al., 2015; Salazar et al., 2016), and where it changes over evolutionary time in 
different plant genera (Becerra et al., 2009; Cacho et al., 2015). Mechanistically, a high 
diversity of compounds might be selected for and enhance function in a number of different 
ways (Wetzel & Whitehead, 2020). Synergistic effects may cause the effect of a mixture of 
compounds to be larger than the sum of the effects of individual compounds (Richards et al., 
2016). Alternatively, a diverse set of phytochemicals may result from the multitude of 
interactions plants experience, each imposing selection on different compounds with different 
functions (Berenbaum & Zangerl, 1996; Iason et al., 2011; Junker, 2016). Regardless of the 
exact mechanism, under each scenario an increased diversity of phytochemical compounds 
within a plant may increase its fitness. 

Using indices such as Shannon’s diversity, most studies on phytochemical diversity consider 
compound richness and evenness, but ignore disparity, the third component of diversity (Daly 
et al., 2018). Analogous to measures of functional diversity, where species’ traits are included 
in calculations of indices such as Rao’s quadratic entropy index (Petchey & Gaston, 2006), 
the biosynthetic and/or structural disparity of phytochemicals (hereafter referred to as 
compound dissimilarity) can and should be included in calculations of phytochemical 
diversity. All else equal, a phytochemical mixture of structurally dissimilar compounds 
produced by different biosynthetic pathways is arguably more diverse than a mixture of less 
dissimilar compounds from a single biosynthetic pathway. How dissimilar the compounds in 
a phytochemical mixture are, is thus a crucial component of the mixture’s overall diversity. A 
higher structural diversity among compounds might mediate interactions with or increase 
effects against a broader set of interacting organisms or influence synergies between 
compounds (Becerra et al., 2009; Whitehead et al., 2021a; Cosmo et al., 2021; Philbin et al., 
2022), thereby affecting function. A few methods to measure such structural variation exist. 
Quantifications of compound dissimilarity based on tandem (MS/MS) mass spectra (Wang et 
al., 2016), have been used in metabolomics (Tripathi et al., 2021) and ecology (Sedio et al., 
2017) to calculate sample dissimilarities and construct molecular networks. Additionally, 
Richards et al. (2015) pioneered quantifying phytochemical diversity using 1H-NMR spectra 
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with a measure reflective of both inter-molecular and intra-molecular diversity. Such 
measures have been shown to influence plant-insect interactions (Richards et al., 2015; Sedio, 
2017; Glassmire et al., 2019; Sedio et al., 2020; Cosmo et al., 2021; Philbin et al., 2022), 
indicating that structural diversity may be an important factor shaping ecological interactions. 
Phytochemical data, however, is often analysed using standard GC-MS or LC-MS methods, 
where individual compounds are identified and quantified. We propose using similar methods 
to quantify compound dissimilarity for such datasets. By quantifying compound 
dissimilarities for datasets with identified compounds (Box 2), and calculating phytochemical 
diversity and dissimilarity of samples using measures of functional Hill diversity and 
Generalized UniFrac dissimilarities (Chen et al., 2012; Chao et al., 2014) (Box 1), we aim to 
enable chemical ecologists to quantify all components, including the richness, evenness and 
disparity, of phytochemical diversity. 

We introduce chemodiv, a package for analyses of chemodiversity in the statistical software R 
(R Core Team, 2022). The package allows users, with data on relative abundances of 
identified phytochemical compounds in different samples, or any other type of chemical 
composition data, to quantify different types of chemical diversity and dissimilarity. These 
calculations include all components of diversity, where the richness, evenness and, 
importantly, the biosynthetic and/or structural properties of the compounds are considered. By 
using such comprehensive measures, we hope that researchers will be able to efficiently test 
what dimensions of phytochemical diversity are most important in shaping interactions 
between plants and their biotic and abiotic environment. 

Box 1. Measures of diversity and dissimilarity 

Diversity can be divided into components of richness, evenness and disparity (Daly et al., 
2018). The most simple diversity measure is simply the richness, in this case the number of 
phytochemical compounds detected in a sample. Studies on phytochemical diversity often use 
Shannon’s diversity index, calculated as 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖

𝑆𝑆

𝑖𝑖=1

 

where S is the total number of compounds in the sample and pi is the relative abundance 
(proportion) of compound i. This index takes evenness into account, such that for a given 
number of compounds, diversity is maximized when they occur at equal proportions. For 
diversity measures also considering disparity, functional diversity indices such as Rao’s Q can 
be used. For phytochemical diversity, Rao’s Q measure the average dissimilarity between two 
randomly drawn compounds, weighted by their abundance, from a sample. It is calculated as 

𝑄𝑄 = ��𝑑𝑑𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖

𝑆𝑆

𝑖𝑖=1

𝑆𝑆

𝑖𝑖=1

 

where pi and pj are the relative abundances of compounds i and j, and dij is the dissimilarity 
between compounds i and j. In this way, a dissimilarity matrix containing pairwise 
dissimilarities between phytochemical compounds, calculated based on biosynthetic or 
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structural properties of the molecules (Box 2), can be included in measures of phytochemical 
diversity.  

While these traditional diversity indices are frequently used, a consensus has developed that 
Hill numbers represent a more suitable way of quantifying diversity (Ellison, 2010). Hill 
numbers, also referred to as Hill diversity or effective number of species (Hill, 1973; Jost, 
2006; Chao et al., 2014), are related to the traditional indices, and defined as 

𝐷𝐷𝑞𝑞 = ��𝑝𝑝𝑖𝑖
𝑞𝑞

𝑆𝑆

𝑖𝑖=1

�

1/(1−𝑞𝑞)

, 𝑞𝑞 ≥ 0, 𝑞𝑞 ≠ 1. 

This measure is undefined for q = 1, but this can still be calculated because its limit as q 
approaches 1 equals 
 

𝐷𝐷1 = lim
𝑞𝑞→1

𝐷𝐷𝑞𝑞 = exp�−�𝑝𝑝𝑖𝑖

𝑆𝑆

𝑖𝑖=1

log 𝑝𝑝𝑖𝑖�. 

The parameter q is the diversity order, and controls the sensitivity of the measure to the 
relative abundances of the compounds. For q = 0, the measure is simply equal to the number 
of compounds, so that 0D = S. For q = 1, compounds are weighed in proportion to their 
abundance, and 1D is equal to the exponential of Shannon’s diversity. For q > 1, more weight 
is put on abundant compounds, and at q = 2, 2D is equal to the inverse Simpson diversity. 
Using Hill numbers to measure diversity has several advantages (Chao et al., 2014). First, the 
parameter q controls the sensitivity of the measure to the relative abundances of compounds. 
Adjusting q, the behaviour of the index can be controlled to enable a more nuanced measure 
of diversity. Second, Hill numbers are expressed in units of effective numbers, which is the 
number of equally abundant compounds required to obtain the same value of diversity. In this 
way, the units behave intuitively, facilitating comparisons between groups. Third, partitions of 
Hill numbers into α-, β- and γ-diversity is straightforward (Jost, 2007). Finally, Hill numbers 
can be generalized to a measure of functional diversity, so that compound dissimilarity can 
also be taken into account (Chiu & Chao, 2014; Chao et al., 2014). In this way, it is possible 
to measure several types of functional diversity in the Hill numbers framework. The most 
central of these is (total) functional diversity, which can be calculated as 

𝐹𝐹𝐷𝐷(𝑄𝑄) = ���𝑑𝑑𝑖𝑖𝑖𝑖 �
𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖
𝑄𝑄
�
𝑞𝑞𝑆𝑆

𝑖𝑖=1

𝑆𝑆

𝑖𝑖=1

�

1/(1−𝑞𝑞)

𝑞𝑞  

where Q is Rao’s Q (Chiu & Chao, 2014). This measure is also undefined for q = 1, but its 
limit as q approaches 1 equals  

𝐹𝐹1 𝐷𝐷(𝑄𝑄) = lim
𝑞𝑞→1

𝐹𝐹𝑞𝑞 𝐷𝐷(𝑄𝑄)  = exp �−��𝑑𝑑𝑖𝑖𝑖𝑖 �
𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖
𝑄𝑄
� log �

𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖
𝑄𝑄
�

𝑆𝑆

𝑖𝑖=1

𝑆𝑆

𝑖𝑖=1

� . 

The index qFD(Q) is a function of all three diversity components. This functional diversity 
quantifies the effective total dissimilarity between compounds in a sample (Chiu & Chao, 
2014). It can therefore be used as a comprehensive measure of phytochemical diversity, 
sensitive to variation in richness, evenness and disparity. Overall, Hill numbers provide a 
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unified approach to quantifying phytochemical diversity but so far only the non-functional 
version (qD) has been used in a few studies (e.g. Marion et al., 2015; Cosmo et al., 2021; 
Philbin et al., 2021). 

Diversity measures combining richness, evenness and disparity into a single metric may 
obscure independent variation in each component. However, Hill numbers enable separate 
and combined quantification of all three components. As mentioned, Hill diversity at q = 0 
simply equals the richness, while at q = 1 it is dependent on richness and evenness. Functional 
Hill diversity adds a layer of data by also considering disparity. At q = 0, it is equal to the sum 
of the pair-wise dissimilarities in the dissimilarity matrix, a measure known as functional 
attribute diversity (Walker et al., 1999). At q = 1, it is a measure sensitive to all three 
components of diversity. For a given number of compounds, functional Hill diversity 
increases with increasing compound dissimilarities, and, in contrast to Rao’s Q (Shimatani, 
2001), is always maximised at complete evenness. Evenness can also be calculated in this 
framework (Tuomisto, 2012). Thus, the Hill numbers framework can quantify all components 
of diversity. Overall, it is crucial to understand the indices’ behaviour, and additional ways of 
calculating diversity exist (Petchey & Gaston, 2006; Chao et al., 2019).  

Hill numbers measure α-diversity, quantifying the diversity within a single sampling unit. 
Quantifying differences between samples can be done by calculating β-diversity from 
measures of α- and γ-diversity (Jost, 2007). Alternatively, and more common in chemical 
ecology, Bray-Curtis dissimilarities can be calculated between samples, and visualized with a 
non-metric multidimensional scaling (NMDS) plot (Brückner & Heethoff, 2017). Bray-Curtis 
dissimilarities measure the compositional dissimilarity between samples, but do not take 
compound dissimilarity into account. A method to do so was developed by Junker (2018), 
who calculated a biosynthetically informed dissimilarity measure using Generalized UniFrac 
dissimilarities (Chen et al., 2012). Here, compound dissimilarities are calculated based on the 
proportion of shared enzymes, which is then incorporated in calculations of sample 
dissimilarities as Generalized UniFrac dissimilarities, such that two samples containing more 
biosynthetically different compounds have a higher dissimilarity. Collectively, with Hill 
numbers and Generalized UniFracs, it is possible to quantify both phytochemical diversity 
within sampling units and phytochemical dissimilarity between sampling units in a way that 
considers compound dissimilarities (Fig. 1). Therefore a generalized way to quantify 
compound dissimilarities is needed (Box 2).  
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Box 2. Quantifying compound dissimilarities 

Calculating functional diversity in the Hill numbers framework, and dissimilarity with 
Generalized UniFracs, requires a way to quantify dissimilarities between phytochemical 
compounds. We utilize three different complementary methods to quantify compound 
dissimilarity that only require knowing compound identities. The first method is based on a 
hierarchical classification of phytochemicals. H. W. Kim et al. (2021) developed 
NPClassifier, a deep-learning tool that, based on expert knowledge, automatically classifies 
natural products into three hierarchical levels (pathway, superclass and class) that largely 
correspond to the biosynthetic pathways the compounds are produced in. Using a similar 
approach as in Junker (2018), we use this classification to calculate Jaccard dissimilarities 
between phytochemicals, as a measure of their biosynthetic dissimilarity. The second method 
uses molecular fingerprints to quantify compound dissimilarities based on structural 
properties of the molecules (Cereto-Massagué et al., 2015). We use the PubChem 
Fingerprint, which consists of 881 binary variables representing the presence or absence of 
different features in the molecule, including specific elements, bonds and ring structures 
(Bolton et al., 2008; Cereto-Massagué et al., 2015). The fingerprints are then used to calculate 
Jaccard dissimilarities between compounds, as a measure of their structural dissimilarity. The 
third method is a graph-based flexible Maximum Common Substructure (fMCS) method (Cao 
et al., 2008b; Wang et al., 2013). The fMCS of two compounds is the largest substructure that 
occurs in both of them, allowing for a set number atom/bond mismatches in the identified 
substructures. By comparing the number of atoms in the common substructure to the total 
number of atoms in the molecules, Jaccard dissimilarities can be calculated based on fMCS, as 
a measure of their structural dissimilarity. Using fMCS is more computationally intensive than 
PubChem Fingerprints, but may have increased performance (Wang et al., 2013). Both 
measures have recently been successfully used to create mixtures of phytochemical 
compounds with different levels of structural diversity (Whitehead et al., 2021a). Using three 
different methods to quantify compound dissimilarity provides a choice upon which 
properties (biosynthetic: NPClassifier; structural: PubChem Fingerprints, fMCS) to compare 
phytochemicals (see Results and Discussion). Data needed for dissimilarity calculations is 
accessed by the NPClassifier tool (H. W. Kim et al., 2021), and the PubChem database (S. 
Kim et al., 2021) via functions in the chemodiv package.  
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Fig. 1 A conceptual illustration of how phytochemical diversity and dissimilarity is 
quantified. Leaves from three different plant species contain different phytochemicals, at 
equal abundances. Species 1 and 2 contain two and three structurally similar monoterpenes 
(linalool, β-myrcene, trans-β-ocimene), respectively. Species 3 contain three structurally 
more dissimilar compounds produced in different biosynthetic pathways (indole, an alkaloid; 
cis-3-hexen-1-ol, an aliphatic/fatty acid derivative; benzaldehyde, a benzenoid). The 
dendrogram illustrates structural dissimilarities between the compounds (calculated using 
PubChem Fingerprints). Species 1 and 2 contain similar compounds, and have a low 
phytochemical dissimilarity. Species 3 contains different compounds, and has a high 
phytochemical dissimilarity to the other species. The phytochemical diversity of the species 
depends on how it is quantified, indicated by the bar plots. All species have equal evenness. 
Hill diversity is lowest in species 1 because it contains only two compounds. Functional Hill 
diversity, taking compound dissimilarities into account, is higher in species 3 than in species 
2, as an effect of the former having a set of more dissimilar phytochemicals. 
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Methods 

chemodiv is available as an R package on the Comprehensive R Archive Network, CRAN 
(https://CRAN.R-project.org/package=chemodiv). It contains a number of functions to easily 
calculate and visualize different types of phytochemical diversity and dissimilarity. The 
package utilizes other packages for retrieving and processing chemical data, including 
webchem (Szöcs et al., 2020), ChemmineR (Cao et al., 2008a) and fmcsR (Wang et al., 2013); 
and for diversity and dissimilarity calculations, including vegan (Oksanen et al., 2022), hillR 
(Li, 2018) and GUniFrac (Chen et al., 2022). In this section, we describe the functions of the 
package, and provide examples of analyses on real and simulated datasets. Details on 
calculations of diversity and quantification of compound dissimilarity are described in Box 1 
and Box 2, respectively, and are jointly summarized in Fig. 1. 

Data requirements 

Two sets of data are required to fully utilize the functions in the chemodiv package. First, a 
data set on the relative abundances of phytochemical compounds in different samples, as 
commonly obtained from GC-MS and LC-MS analyses. Second, a list with the common 
name, SMILES and InChIKey for all the compounds in the first dataset is needed. SMILES 
and InChIKey are chemical identifiers, and are readily compiled by searching for compounds 
in chemical databases such as PubChem (S. Kim et al., 2021), or using its automated tool 
Identifier Exchange Service. These identifiers are used to download data on biosynthetic and 
structural properties of the phytochemical compounds from different databases.  

Description of functions in the R package 

The chemodiv package functions are summarized in Table 1. A full analysis of the diversity 
and dissimilarity of a set of phytochemical samples includes a number of largely sequential 
steps. First, the function chemoDivCheck can be used to check that datasets are correctly 
formatted. Second, the function NPCTable enables the use of the NPClassifier tool (H. W. 
Kim et al., 2021) directly within R, to classify compounds into three hierarchical levels 
largely corresponding to biosynthetic pathways. Third, the function compDis uses the list of 
compounds with their chemical identifiers to generate a dissimilarity matrix with 
dissimilarities between compounds, calculated based on the biosynthetic classification by 
NPClassifier, and/or structural properties of the compounds (PubChem fingerprints, fMCS; 
Box 2). Fourth, three different functions can be used to calculate different types of diversity 
for the samples. Function calcDiv calculates diversity within samples using the most common 
indices of α-diversity and evenness, including Shannon’s diversity, inverse Simpson diversity, 
Rao’s Q, two types of evenness, and both types of Hill diversity (Box 1). Functional Hill 
diversity and Rao’s Q use the dissimilarity matrix generated by compDis in the diversity 
calculations. Function calcDivProf can be used to generate a diversity profile, where both 
types of Hill diversity are calculated for a range of q-values. When plotted, a diversity profile 
can provide a more nuanced view of the diversity. Function calcBetaDiv calculates β-
diversity as both types of Hill diversity. Fifth, the function sampDis generates a dissimilarity 
matrix with phytochemical dissimilarities between samples, calculating either Bray-Curtis or 
Generalized UniFrac dissimilarities, the latter of which uses the compound dissimilarity 
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matrix generated by compDis. Sixth, functions molNet and molNetPlot generate and plot 
molecular networks, where nodes represent compounds and edges (links) represent 
similarities between compounds. Such networks can illustrate dissimilarities between 
compounds, calculated by compDis, and simultaneously visualize their abundances. Finally, 
the function chemoDivPlot can be used to conveniently create basic plots of the calculated 
measures of compound dissimilarity, sample diversity and sample dissimilarity, for different 
groups of samples that may represent treatments, populations, species or similar. Additionally, 
the function quickChemoDiv is a shortcut function that uses the other functions to calculate or 
visualize phytochemical diversity for a dataset in a single step. The central parts of the 
workflow are shown in Fig. 2. A detailed demonstration of the functions is included in a 
vignette in the package. All functions produce output in standard formats, facilitating 
statistical tests on the diversity and dissimilarity measures. 
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Fig. 2 An illustration of the workflow of the main functions in the chemodiv package. A 
dataset with relative abundances of phytochemical compounds in four samples belonging to 
two different groups (red and blue), and a list with the common name, SMILES and InChIKey 
for the compounds in the dataset are required. The compDis function uses the list of 
compounds to generate a dissimilarity matrix with dissimilarities between compounds (1). β-
Myrcene (B) and trans-β-ocimene (C) are two linear monoterpenes that have a low structural 
dissimilarity, while benzaldehyde (A), a benzenoid, is more dissimilar to the other 
compounds. In combination with the sample dataset, the compound dissimilarity matrix is 
used to calculate phytochemical diversity within samples (2; functions calcDiv and 
calcDivProf) and phytochemical dissimilarity between samples (3; function sampDis). 
Functions molNet and molNetPlot are used to create a molecular network (4), while 
chemoDivPlot is used to create multiple plots of compound dissimilarity, sample diversity and 
sample dissimilarity (5). 
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Table 1. Overview of the functions available in the chemodiv package, and a description of 
what they do. 

Function call with default parameters Description 
chemoDivCheck(sampleData, 
compoundData) 

Checks that datasets are appropriately formatted 

NPCTable(compoundData) 
Classifies phytochemical compounds into a hierarchy 
of biosynthetic groups using NPClassifier 

compDis(compoundData, type = 
"PubChemFingerprint", npcTable = 
NULL, unknownCompoundsMean = FALSE) 

Calculates dissimilarities between compounds using 
biosynthetic (NPClassifier) and/or structural 
(PubChem Fingerprints, fMCS) properties 

calcDiv (sampleData, compDisMat = 
NULL, type = "HillDiv", q = 1) 

Calculates selected types of α-diversity and evenness 
measures, in both traditional and Hill numbers 
frameworks 

calcDivProf (sampleData, compDisMat 
= NULL, type = "HillDiv", qMin = 0, 
qMax = 3, step = 0.1) 

Calculates diversity profiles in the Hill numbers 
framework 

calcBetaDiv (sampleData, compDisMat 
= NULL, type = "HillDiv", q = 1) 

Calculates β-diversity in the Hill numbers framework 

sampDis (sampleData, compDisMat = 
NULL, type = "BrayCurtis", alpha = 
1) 

Calculates Bray-Curtis and/or Generalized UniFrac 
dissimilarities between samples 

molNet (compDisMat, npcTable = NULL, 
cutOff = "median") 

Creates a molecular network based on compound 
dissimilarities, and calculates some network 
properties 

molNetPlot (sampleData, 
networkObject, groupData = NULL, 
npcTable = NULL, plotNames = FALSE, 
layout = "kk") 

Uses the output of molNet to create a plot of the 
molecular network 

chemoDivPlot (compDisMat = NULL, 
divData = NULL, divProfData = NULL, 
sampDisMat = NULL, groupData = 
NULL) 

Creates selected plots to visualize phytochemical 
diversity, compound dissimilarity and sample 
dissimilarity 

quickChemoDiv (sampleData, 
compoundData = NULL, groupData = 
NULL, outputType = "plots") 

Makes use of other functions in the package to 
calculate or visualize phytochemical diversity for a 
dataset in a single step 

 

Examples on simulated and real datasets 

To demonstrate the applicability of the chemodiv package for measuring phytochemical 
diversity and dissimilarity, we analysed a number of simulated and real datasets with it. 

The first example includes a semi-simulated dataset on plant defence compounds. 
Glucosinolates is a class of phytochemicals produced by most species in the Brassicaceae 
family. They provide protection against generalist herbivores (after being hydrolysed by 
myrosinase), but are less efficient against specialist herbivores (Hopkins et al., 2009). Plants 
in the Erysimum (Brassicaceae) genus have additionally gained a novel chemical defence in 
the form of cardenolides, a class of phytochemicals that provides protection against some 
glucosinolate-adapted specialist herbivores. A diverse mixture of phytochemicals from both 
groups could therefore maximise herbivore protection (Züst et al., 2018, 2020). However, 
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quantifying such diversity is not straightforward, as e.g. Shannon’s diversity do not consider 
that these two groups of compounds contain structurally different molecules produced in 
different biosynthetic pathways. To demonstrate the applicability of calculating measures of 
phytochemical diversity and dissimilarity that take such difference into account, we used a 
haphazardly selected set of eight glucosinolates and eight cardenolides found in Erysimum 
cheiranthoides L. (Züst et al., 2020; Mirzaei et al., 2020). Thereafter, by sampling from 
different normal distributions, we simulated data on the relative concentration of these 
compounds in three groups of 16 individual plants each: (1) plants with a high concentration 
of glucosinolates and a low concentration of cardenolides, (2) plants with a low concentration 
of glucosinolates and a high concentration of cardenolides, and (3) plants with a high 
concentration of four glucosinolates and four cardenolides, and a low concentration of the 
remaining glucosinolates and cardenolides. Using the functions in the package, we quantified 
compound dissimilarity based on the structure of the compounds using fMCS, calculated 
functional Hill diversity and a corresponding diversity profile, calculated sample 
dissimilarities using Generalized UniFracs, and visualized results. 

The second example is a fully simulated dataset designed to further examine the use of 
functional Hill diversity as a measure of phytochemical diversity. This example includes a 
base dataset with relative concentrations of eight phytochemicals (four at high concentration, 
four at low concentration) simulated in a similar way as example one. This time, also 
compound dissimilarities were simulated, by sampling from a binomial distribution. We then 
created additional groups of samples that had an increased richness, evenness and/or 
compound dissimilarity for a total of eight groups with all combinations of high and low 
values for the three diversity components. We then calculated and plotted compound richness, 
evenness and both versions of Hill diversity for the different groups. 

The third example is a dataset on floral scent from Larue et al. (2016), where floral volatiles 
were collected from Achillea millefolium L. and Cirsium arvense L. in a scent manipulation 
experiment. Here we only include plants in the control treatment. Using the package 
functions, we calculated and created plots of the compound dissimilarities (based on 
PubChem Fingerprints), functional Hill diversity and sample dissimilarities (using 
Generalized UniFracs), and created molecular networks to compare the two species. 

Finally, we compared the three methods (NPClassifier, PubChem fingerprints and fMCS) for 
quantifying compound dissimilarities. For this, we used a collection of 2 855 phytochemical 
compounds from the KEGG database (Kanehisa & Goto, 2000). The heaviest 20% of 
molecules were excluded to reduce computation times. Then, from this subset, 20-40 
compounds were randomly selected, and dissimilarity matrices were calculated using the 
compDis function with the three different methods. Mantel tests were then used to calculate 
correlation coefficients between matrices. This was repeated 50 times, and results were 
plotted in order to examine how comparable compound dissimilarities generated with the 
different methods were to each other. 
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Results and Discussion 

Evaluating examples on simulated data 

Analyses for the semi-simulated dataset with cardenolides and glucosinolates exemplify how 
the structural component of phytochemical diversity can be quantified. Compound 
dissimilarity, quantified using fMCS, is low among glucosinolates and among cardenolides, 
but higher when comparing glucosinolates to cardenolides, as evident by the dendrogram 
separating the two groups of compounds (Fig. 3a). These differences in compound 
dissimilarity influence the phytochemical diversity measured as functional Hill diversity (Fig. 
3b). Even without variation in compound richness or evenness, there are clear differences in 
the diversity of samples from the different groups. Diversity is lowest for the group with high 
concentration of only glucosinolates, intermediate for the group with high concentration of 
only cardenolides (due to a somewhat higher average compound dissimilarity among 
cardenolides than among glucosinolates) and highest for the group containing a high 
concentration of compounds from both classes. The diversity profile displays functional Hill 
diversity for q = 0 to q = 3, varying how much weight is put on low-concentration compounds 
(Fig. 3c). At q = 1 (also shown in Fig. 3b), equal weight is put on all compounds. At q = 0, 
compound proportions are not taken into account and the functional Hill diversity is thus 
equal for all three groups. Lastly, the NMDS illustrates Generalized UniFrac dissimilarities of 
samples (Fig. 3d). Samples cluster in groups, as an effect of being dominated by different 
compounds. Within-group dispersion is highest for the group containing high concentrations 
of both types of compounds, as a result of higher average compound dissimilarity. A 
comparison between the diversities and dissimilarities calculated here, and the traditionally 
used Shannon’s diversity and Bray-Curtis dissimilarities is shown in Fig. S1. 
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Fig. 3 Phytochemical diversity and dissimilarity for the semi-simulated dataset with 
glucosinolates and cardenolides, visualized by the chemoDivPlot function in the chemodiv 
package. (a) Dendrogram of compound dissimilarities based on fMCS, with a clear separation 
between cardenolides (upper branch) and glucosinolates (lower branch). (b) Functional Hill 
diversity (q = 1) for the groups containing a high concentration of cardenolides (Card), a high 
concentration of glucosinolates (Gluc), and both (Both). (c) Diversity profile showing the 
functional Hill diversity for q = 0 to q = 3. Thick lines represent group means while thin lines 
represent individual samples. (d) NMDS plot visualizing sample dissimilarities (Generalized 
UniFracs) between the three groups. 

Results from the second example, with the fully simulated dataset, are summarized in Fig. S2. 
In short, this example illustrates the behaviour of different diversity measures, and 
demonstrates the overall suitability of using functional Hill diversity as a measure of 
phytochemical diversity. By simulating samples with low and high richness, evenness and 
compound dissimilarity, as expected we found that functional Hill diversity is lowest when all 
three components have low values, intermediate when some components have high values and 
other have low values, and highest when all three components have high values. 

While many studies have found that phytochemical diversity, measured as e.g. Shannon’s 
diversity, can shape interactions between plants and other organisms (e.g. Iason et al., 2005; 
Glassmire et al., 2016; Tewes et al., 2018), the structural dimension of phytochemical 
diversity may also be important for ecological interactions (Richards et al., 2015; Junker et 
al., 2018; Cosmo et al., 2021). In the example with glucosinolates and cardenolides, the group 
with structurally dissimilar compounds from two different biosynthetic pathways had the 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495236doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495236
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

highest diversity when measured as functional Hill diversity. On a general level, two 
structurally similar molecules can be expected to have a more similar biological activity than 
two structurally dissimilar molecules (Berenbaum & Zangerl, 1996; Martin et al., 2002), 
although there are contrasting examples where e.g. different enantiomers have different 
function (He et al., 2019). Therefore, a set of structurally dissimilar phytochemicals from 
different biosynthetic pathways may be more diverse in regards to its function (Philbin et al., 
2022), with potential effects on plant fitness. For example, increased structural diversity of 
phytochemicals in leaves, quantified from 1H-NMR spectra, has been found to decrease 
herbivory in multiple Piper species (Glassmire et al., 2019; Cosmo et al., 2021; Philbin et al., 
2022). Additionally, Whitehead et al. (2021a) found that increasing the structural diversity of 
phenolics in the diet of eight insect and fungi plant consumers increased the proportion of 
those consumers negatively affected by the phenolics. Hence, calculations of compound 
dissimilarity based on molecular structure (PubChem Fingerprints, fMCS), and subsequent 
measures of sample diversity or dissimilarity, may inform about how diverse in regards to 
function a set of phytochemical compounds is (Berenbaum & Zangerl, 1996; Philbin et al., 
2022). 

If compound dissimilarities are instead calculated based on NPClassifier, this may help to 
account for non-independence of compounds due to shared biosynthetic pathways (Junker, 
2018). Additionally, this informs about biosynthesis differences between sets of compounds, 
which can be useful for studies on the evolution of these pathways and their importance for 
producing different types of compounds for herbivore protection (Becerra et al., 2009). While 
efficient, this method has a lower resolution compared to using manually collected data on 
enzymes (Junker, 2018), because the classification is limited to three hierarchical levels. It 
should also be noted that structural dissimilarity has been used as a proxy for biosynthetic 
similarity in other studies (Dowell & Mason, 2020; Cna’ani et al., 2021), and in our 
simulations dissimilarities calculated with all three methods were correlated (Fig. S3), 
indicative of an overall consistency between methods. Additionally, the structural and 
biosynthetic similarity of compounds may correlate with similarity of physicochemical 
properties such as volatility, reactivity and polarity, that may be ecologically important 
(Rasmann & Agrawal, 2011; Conchou et al., 2019). Researchers should make a deliberate 
choice of how to quantify compound dissimilarities based on what questions are addressed. 
Overall, the structural and biosynthetic components of the compounds, readily quantified by 
the chemodiv package, are important parts of the phytochemical diversity that should be 
included in measures of it. 

Evaluating examples on real data 

Analyses of the A. millefolium and C. arvense dataset indicate that phytochemical diversity of 
the floral scent bouquet was higher in the latter species (Fig. 4b-c), mainly due to a higher 
average number of compounds (A. millefolium = 36.3, C. arvense = 48.4). The floral scent 
composition was also clearly different between species (Fig. 4d). Illustrations of compound 
similarities by the molecular networks (Fig. 5), indicate the presence of two main clusters of 
structurally similar compounds mainly consisting of the pathways “Terpenoids” and 
“Shikimates and Phenylpropanoids” respectively. The scent bouquet of A. millefolium plants 
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was dominated by compounds from the first group (Fig. 5a), while the scent bouquet of C. 
arvense plants was dominated by compounds from the second group (Fig. 5b). 

Most examples on the effect of phytochemical diversity on ecological interactions regard 
herbivores, where the diversity represents a complex phenotype important for herbivore 
defence through toxic effects of compounds during consumption (Marion et al., 2015; Kessler 
& Kalske, 2018). In contrast, for a pollinator in search of nectar, or a herbivore searching for 
host plants, phytochemical diversity, in the form of volatile organic compounds (VOCs), 
represents information in a complex environment (Kessler, 2015; O’Connor et al., 2019). 
With potential correlations between compound properties and neural/behavioural response 
(Khan et al., 2007; Haddad et al., 2008; but see Knaden et al., 2012), a structurally diverse set 
of VOCs may be functionally diverse, and may therefore enable a generalist plant to 
efficiently attract different pollinators and/or simultaneously repel antagonistic insects 
(Schiestl, 2010; Junker & Blüthgen, 2010; Gershenzon et al., 2012; Junker, 2016). In other 
cases, diverse mixtures of leaf VOCs can make it difficult for herbivores to locate suitable 
host plants Zu et al. (2020). Using comprehensive measures of diversity may enable a better 
understanding of its effects on both antagonistic and mutualistic interactions between plants 
and other organisms. 
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Fig. 4 Phytochemical diversity and dissimilarity for Achillea millefolium and Cirsium arvense 
(n = 9 for both species), visualized by the chemoDivPlot function in the chemodiv package. 
(a) Dendrogram of compound dissimilarities based on PubChem Fingerprints (compound 
names have been excluded for clarity). (b) Functional Hill diversity (q = 1) for the two 
species. (c) Diversity profile showing the functional Hill diversity for q = 0 to q = 3. Thick 
lines represent species means while thin lines represent individual samples. (d) NMDS plot 
visualizing sample dissimilarities (Generalized UniFracs) between the species. 
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Fig. 5 Molecular networks of the compounds found in Achillea millefolium (a) and Cirsium 
arvense (b), visualized by the molNetPlot function in the chemodiv package. Edge width 
represents similarities between compounds (with a cut-off of 0.75) and node colour represents 
the pathway classification from NPClassifier, indicating to which major biosynthetic group 
compounds belong. These are identical in (a) and (b). Node size represents proportional 
concentration (mean values for each species), and differs between (a) and (b). Note that nodes 
with white fill represent zero values, i.e. compounds not present in that species, and that edges 
connecting to such nodes are a lighter shade of grey. 
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Applicability and caveats 

chemodiv allows chemical ecologist to easily and comprehensively analyse phytochemical 
diversity. A few aspects should be considered when using the package and quantifying 
diversity. The package requires that compounds have been identified in order to quantify 
compound dissimilarity. The functions can handle unknown compounds, but chemodiv is of 
most use for datasets where most compounds are identified. If that is not the case, diversity 
can instead be calculated with indices not considering compound dissimilarities. 
Alternatively, other methods to quantify the dissimilarity of unknown compounds can be 
used. For example, in metabolomic analyses where individual compounds are not identified, 
the GNPS ecosystem provides methods for calculating cosine similarities between MS/MS 
spectra (Wang et al., 2016), which could be used in diversity calculations.  

Even if chemodiversity is an ecologically relevant measure, other aspects of the 
phytochemical phenotype are undoubtedly also important. First, functions such as pollinator 
attraction, herbivore defence or plant-bacteria interactions often depend on individual 
compounds rather than mixtures (Junker, 2016; Zhou et al., 2017; Burdon et al., 2018). 
However, such examples often regard the effect of a compound on a single interacting 
species, while in nature, plants simultaneously interact with numerous mutualists and 
antagonists. Each of these might select for the occurrence of different compounds, resulting in 
evolution of increased chemical diversity (Berenbaum & Zangerl, 1996; Iason et al., 2011; 
Whitehead et al., 2021a). Second, an important aspect of the phytochemical phenotype is total 
abundance, which of course may be important for function. Diversity indices consider relative 
values, such that two samples with the same compounds in identical proportions will have 
identical diversity, even if they differ in absolute concentrations. Related to this, the number 
of compounds detected in a sample may partly depend on total abundance (Wetzel & 
Whitehead, 2020). Therefore, direct comparisons of phytochemical diversity should ideally be 
done for samples collected with identical methods. If this is not the case and total abundances 
vary substantially among samples, diversity can be quantified using Hill numbers at higher 
diversity orders (e.g. q = 2). Doing so, less weight is put on low concentration compounds, 
which may be less functionally important, decreasing any potential influence of differences in 
total abundance on measures of diversity. 

Notably, quantification of molecular structural dissimilarity is not limited to phytochemicals. 
Diversity of chemical mixtures have been quantified for e.g. fungi VOCs (Guo et al., 2021), 
snake venom (Holding et al., 2021), coralline algae metabolites (Jorissen, 2021) and fish fatty 
acids (Feiner et al., 2018). Instead of using traditional measures, such studies can also include 
the structural dissimilarities of compounds for more comprehensive measures of 
chemodiversity. It is also worth mentioning that we have focused on quantifying diversity on 
the level of individual samples, often likely to represent individual plants. Others have instead 
utilized phytochemical compounds as functional traits to measure diversity on a community 
level (Salazar et al., 2016), representing a complementary approach which can answer 
questions related to trait-based ecology and niche processes (Müller & Junker, 2022; Walker 
et al., 2022). 
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Conclusions 

Plants produce a remarkable number of phytochemicals. By now, it is widely accepted that, 
rather than being metabolic waste products, they are functionally important, and their 
diversity is the result of adaptive processes (Hartmann, 2007). However, much is still 
unknown about how the complex phenotype that is the composition of phytochemical 
compounds affects interactions between plants and other organisms (Wetzel & Whitehead, 
2020). We believe the diversity of the compounds, including their structural and biosynthetic 
properties, to be an important dimension of this variation that deserves further attention. The 
chemodiv package provides an easy yet comprehensive way to quantify this diversity for 
many types of data collected by chemical ecologists. By providing this tool, we hope to give 
researchers the opportunity to more efficiently test in what ways phytochemical variation 
influences ecological interactions and evolutionary processes, which should increase our 
understanding of the vast diversity of phytochemical compounds found in plants. 
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Supporting Information 

 

 

Fig. S1 Comparison of different measures of phytochemical diversity (a-c) and dissimilarity 
(d-e) for the semi-simulated dataset with cardenolides and glucosinolates. For measures of 
phytochemical diversity, Shannon’s diversity (a) and Hill diversity (b) (equal to the 
exponential of Shannon’s diversity) do not take compound dissimilarity into account, and all 
three groups have similar diversity. In contrast, functional Hill diversity (c) depends also on 
compound dissimilarity, with the result that the group with a high concentration of both 
cardenolides and glucosinolates (red) has a higher phytochemical diversity than the groups 
with only cardenolides (green) or only glucosinolates (blue) at high concentrations. For 
measures of phytochemical dissimilarity, when Bray-Curtis dissimilarities are used, the 
within-group dispersion is similar in all three groups. In contrast, when Generalized UniFrac 
dissimilarities are used, which take compound dissimilarity into account, the group with both 
types of compounds at a high concentration has a higher within-group dispersion, as an effect 
of containing a mixture of more dissimilar compounds.  
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Fig. S2 Compound richness (a), Pielou's evenness (b), Hill diversity (c) and functional Hill 
diversity (d) for eight different groups of simulated phytochemical samples. Each group 
consists of 16 samples simulated to have a high or low richness (r/R), evenness (e/E) and 
compound dissimilarity (d/D). Lowercase letters indicate a low value, uppercase letters 
indicate a high value. Richness (a) is the number of compounds in the samples (and is equal to 
Hill diversity at q = 0). Evenness (b) depends only on the relative abundances of compounds. 
Hill diversity (q = 1) (c), equal to the exponential of Shannon’s diversity, depends on both 
richness and evenness, and is therefore higher for groups with high richness and/or evenness. 
Functional Hill diversity (q = 1) (d) is dependent on all three components of diversity 
(richness, evenness and disparity). It is lowest when richness, evenness and disparity is low, 
intermediate when one or two of the components is high, and highest when richness, evenness 
and dissimilarity are all high. In this regard, functional Hill diversity is therefore the most 
comprehensive measure of diversity. 
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Fig. S3 Comparison of compound dissimilarities calculated using the three different methods 
in the compDis function. In 50 iterations, 20-40 phytochemical compounds were randomly 
selected, and compound dissimilarities were calculated using three methods: NPClassifier, 
which compares compounds based on a classification of compounds into groups largely 
corresponding to biosynthetic pathways, and PubChem fingerprints and fMCS, which 
compare compounds based on structural properties of the molecules using binary fingerprints 
and substructure matching, respectively. Mantel tests were then used to calculate Pearson’s 
correlation coefficients between dissimilarity matrices. Each box includes the median, and 
upper and lower quartiles of these correlation coefficients. Data points of individual 
comparisons are overlaid. Correlations were overall relatively strong, and statistically 
significant (P < 0.05) in all cases. Mean correlation coefficients were highest between 
dissimilarity matrices based on PubChem fingerprints and fMCS (mean r = 0.58), and 
somewhat lower between dissimilarity matrices based on PubChem fingerprints and 
NPClassifier (mean r = 0.48) and dissimilarity matrices based on fMCS and NPClassifier 
(mean r = 0.45). 
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