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Abstract

Quantum networks gain increasing attention because they enable quantum secure commu-
nication and also provide technology to connect individual quantum computers and enhance
their processing power. As a building block for quantum networks, individual erbium dopants
are highly attractive because they promise long-lived spin quantum memories with an optical
interface at a telecom wavelength, where loss in optical fibers is minimized.

In this thesis, I investigate erbium dopants in yttrium orthosilicate, which is a system
with well-known material parameters and good coherence. By performing spectral hole-
burning spectroscopy, I characterize spin relaxation processes and spectral diffusion due to
interactions with the crystal environment. To measure the spin coherence of an erbium
spin ensemble, I implement optical spin initialization and readout techniques and build a
microwave resonator that enables homogeneous and coherent spin control. Strikingly, the
coherence of spin ensembles is limited by dipolar interactions in the form of instantaneous
spectral diffusion. To overcome this limit, I follow two approaches: decoupling the interac-
tions by suited control sequences, and reducing the dopant concentration to unprecedented
values.

In the first approach, I conduct an analytical and experimental study of dynamical decou-
pling in ensembles of erbium spins, with a focus on the rarely discussed case of ensembles with
strongly anisotropic magnetic interactions. I find that conventional decoupling sequences can
alleviate but never fully eliminate instantaneous diffusion due to dipolar interactions.

In the second approach, I reduce the spin concentration to a minimum and work with
a nominally undoped crystal with trace impurities of erbium of ∼ 0.3 ppm. To still enable
spectroscopy, I increase the optical depth by embedding the crystal in a Fabry-Perot cavity. By
combining passive vibration isolation techniques with active feedback, I achieve stabilization
of a cryogenic resonator with an unprecedented finesse of 105. In fluorescence measurements,
the inhomogeneous Purcell enhancement of the ensemble is in excellent agreement with a
detailed modeling of the cavity modes and their coupling to erbium dopants. For optimally
coupled emitters, a Purcell factor of 58 is obtained, while the optical coherence of erbium
dopants is well preserved, approaching the lifetime limit. At the end of this work, the full
potential of cavity-enhanced spectroscopy is demonstrated by resolving spectral lines of single
and few emitters.
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1 Introduction

In the past decades, remarkable progress has been made in the control of quantum sys-
tems, enabling the development of first prototypical applications in quantum computation
[DiVincenzo2000, Harty2014, Bruzewicz2019], quantum simulation [Bloch2012], quantum sensing
[Degen2017, Schmitt2017] and quantum communication [Gisin2007, Krenn2016].

A common challenge in all platforms is the scaling to a higher number of controllable qubits
in a single device. In this respect, solid-state solutions like color centers and quantum dots are
attractive because they require no complex laser control for trapping and cooling of isolated
quantum systems [Awschalom2018, Gao2015]. Among all quantum emitters in solids, rare-earth
dopants stand out for several reasons [Macfarlane2002, Thiel2011, Zhong2019b]: first, due to their
electronic structure, they exhibit transitions which are effectively shielded from the crystal
environment like in a Faraday cage, leading to good preservation of their atomic properties
and rather weak coupling to lattice phonons. Second, they exhibit the narrowest homogeneous
optical linewidths known today (down to 73Hz [Böttger2003]), while static disorder causes a
distribution of optical frequencies over typically ∼ 1GHz [Thiel2011]. Therefore, rare-earth
dopants offer a huge potential for frequency multiplexing, i.e. an increase of the number of
addressable qubits within a single optical mode. Finally, many rare-earth dopants have large
magnetic moments (up to 7µB), which shows their potential for quantum sensing and makes
them an attractive platform for microwave-to-optical conversion [Williamson2014, Fernandez-
Gonzalvo2015, Bartholomew2020].

Of all color centers and rare-earth impurities in solids, erbium dopants have the unique
property of a coherent optical transition at 1.5 µm, as shown in this thesis [Merkel2020]. At
this wavelength, optical attenuation in silica fibers is minimized (fig. 1.1). Because of the
exponential scaling, the difference to shorter wavelengths is dramatic: while a 50 km long
fiber transmits about 10% of all photons at 1.5 µm, the transmission drops to less than
10−6 for wavelengths < 1 µm. Consequently, all classical fiber-optic communication already
operates in the telecom band around 1.5 µm, and a variety of fiber-coupled technologies have
been developed for these wavelengths, including erbium-based lasers and amplifiers, as well
as modulators. Therefore, erbium dopants are not only expedient as optical interface for
long-distance quantum communication; their use for quantum information processing also
promises good integration into existing fiber network infrastructure.

In this work, we investigate erbium dopants in an yttrium orthosilicate host crystal, whose
properties are described in chapter 2. After characterizing the material system in optical
spectroscopy experiments (chapter 4) using a novel experiment setup (chapter 3) built in the
course of this thesis, we probe its spin coherence with microwave pulses (chapter 5). Here, we
analytically and experimentally study the effectiveness of dynamical decoupling in systems
with highly anisotropic magnetic interactions and find that the coherence time of erbium
spins is limited by their dipolar coupling to similar spins.

To suppress dipolar interactions in the ensemble of erbium dopants, we then turn to very
low spin concentrations. Since this results in a very weak interaction with light, we embed the
crystal in a Fabry-Perot cavity and study the Purcell-enhanced fluorescence and the coherence
of the optical transition (chapter 6).
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Figure 1.1: Bottom panel: Wavelength-dependent attenuation of a silica fiber. Typ-
ical loss in optical fibers is dominated by Rayleigh scattering at short wavelengths (blue) and
infrared multi-photon absorption at long wavelengths (orange); the shaded areas reflect possible
variations with fabrication technique [Guenot2003]. The resulting theoretical limit (black curve)
has minimum attenuation in the telecom window around 1.55µm, which is well approached by
commercial optical fibers (red curve, data from [Agrawal2010]), except for additional absorption
peaks, caused by indiffusion of water during the fiber drawing process and vibrational resonances
of the OH-group [Thomas2000].
Top panel: Emission wavelengths of commonly studied solid-state emitters:
InAs/GaAs quantum dots (purple line), color centers in diamond (blue diamonds), defects in
silicon carbide (green squares) such as vacancies (filled) and vanadium dopants (open squares)
[Atatüre2018, Wolfowicz2020], as well as commonly studied rare-earth dopants (black circles)
[Thiel2011, Ortu2018]. Erbium dopants (red circle) emit in the center of the telecom window
at 1.55µm.
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2 Material system Er:YSO

Before we turn to the experimental investigation of erbium-doped crystals, we first discuss
the key properties of the material system in this chapter. On the one hand, erbium dopants
can be represented by an effective four-level system – the simplest realization of a non-zero
spin ground level and the corresponding optically excited states. On the other hand, all
properties of such four-level system are highly anisotropic, as a consequence of the underlying
low crystal lattice symmetry. We show how anisotropic magnetic coupling can be treated
analytically and also discuss possible extensions of the simple four-level scheme that include
coupling to nuclear spins in the host crystal or hyperfine interaction in erbium isotopes with
non-zero nuclear spin.

2.1 Crystal field level structure

An optical transition at the telecom wavelength of ∼ 1.5 µm is characteristic for trivalent
erbium, Er3+, its most common and stable oxidation state found in solid-state environments
[Morss1976]. Its electron configuration [Xe] 4f 11 exhibits some properties typical for rare-earth
elements: electrons in the partly filled 4f shell are located much closer to the nucleus than
the fully occupied 5s and 5p orbitals, which shield them from the environment like a Faraday
cage [Freeman1962]. The large orbital angular momentum associated with 4f electrons gives
rise not only to large magnetic moments but also to a rich variety of electronic levels. In a free
atom, most angular momentum states would be degenerate because of rotational symmetry.
In a solid-state environment, however, interactions with other crystal constituents lead to a
splitting of the electronic levels, depending on the remaining symmetry at the crystallographic
site. Their impact can be modeled as an effective crystal field.

2.1.1 Choosing a host crystal for erbium dopants

In order to optically drive the 1.5 µm transition between 4f electronic states in Er3+ ions,
breaking the symmetry via the crystal field is favorable, because otherwise the intra-shell
transition would be electric-dipole-forbidden [Reid2005]. In addition, a lower symmetry lifts
the degeneracy, reduces undesired scattering into dispensable states close-by, and removes
an additional degree of freedom that otherwise could obstruct clean qubit control. In other
respects, symmetry can also be beneficial to qubit properties: the absence of a first-order
Stark shift due to a vanishing permanent electric dipole in inversion symmetric systems makes
qubits more robust against slowly fluctuating electric fields. Such symmetry was confirmed for
Yb:YVO4 [Kindem2018] and Nd:YVO4 [Bartholomew2018], for example, but the large induced
electric dipoles in these materials could still be perturbed by local fields.

Two more aspects should be considered when assessing the capability of a material to
host erbium dopants for application in quantum technology: first, is it feasible to incorporate
erbium ions into the host crystal at well defined sites without inducing lattice defects or too
large strain? And second, which possible interactions would be expected between erbium
dopants and other crystal constituents?

The first question addresses the concern that fluctuating spins and charges occupy lattice
defect states and cause decoherence in the erbium qubits [Thiel2011, Zhong2019b]. Also, a well-
defined crystal environment improves the homogeneity of dopants in the ensemble [Kunkel2016,
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Welinski2017, Jang1995], which increases reproducibility and lowers the ion concentration re-
quired to accumulate a certain number of similar dopants. While particular inhomogeneities
are a resource that can be used, for example, to increase the potential bandwidth of the
system [Maniloff1999, Afzelius2009, Chen2020], in general one desires control over that degree of
freedom.

In this regard, materials that can incorporate erbium during the growth process are typ-
ically preferred over crystals to which erbium was added by ion implantation, because such
process would damage the lattice. Historically, different erbium doped materials have been
studied in the context of laser design, including yttrium aluminum garnet (YAG) because of
its thermal properties [Moncorgé2005], or LiNbO3 because of its electro-optical and acousto-
optical tuning capabilities [Baumann1996]. Among those crystals, yttrium compounds turned
out to be a good fit: because the ionic radii of both elements are comparable and they have
the same charge configuration [Shannon1976], erbium can substitute for yttrium and occupy
its well-defined lattice sites.

The second question refers to any interactions with other atomic magnets in the sam-
ple, even in absence of magnetic impurities. In LiNbO3, for example, both lithium and
niobium have large nuclear magnetic moments of 3 − 6µN , with the nuclear magneton µN

[Stone2005]. Due to dipole-dipole interactions, these nuclear magnets would couple to erbium
spins and potentially limit their performance in qubit storage applications [Askarani2019,
Thiel2010]. Similarly, YAG crystals are not optimal because of significant nuclear magnetic
moments of aluminum.

Yttrium, on the other hand, with its nuclear spin of 1/2, has a nuclear magnetic moment
of only 0.137µN , 45 times smaller than that of niobium. Of particular interest are yttrium
compounds with oxygen and silicon, whose most abundant isotopes, 16O and 28Si, have no
nuclear spin. Overall, the remaining low magnetic noise caused by nuclear spins in yttrium
oxides and yttrium silicates seems to be a small price to pay for the convenience of its growth
and doping capabilities. Indeed, the first coherence measurements on yttrium orthosilicate
(Y2SiO5, YSO) were promising [Macfarlane1997], and soon more systematic studies on that
material system confirmed its potential, when a record-narrow homogeneous linewidth of
73Hz was observed [Böttger2003, Böttger2006b, Böttger2009].

Because of its wide band gap of ∼ 6 eV and the large transparency window down to a
wavelength of 200 nm [Pang2005, Upadhyay2019], YSO is an attractive host material for a variety
of other rare-earths with emission in the near-infrared, such as Nd [Zhong2015b], Yb [Ortu2018]
and Tm [Venet2019], or in the visible spectrum, such as Eu [Zhong2015a], Pr [Utikal2014] and
Ce [Kornher2020, Suzuki1992].

2.1.2 Y2SiO5 crystal properties and lattice structure

Yttrium orthosilicate grows as a monoclinic crystal with lattice parameters a = 10.41Å,
b = 6.721Å, c = 12.49Å, and an angle β = 102.65◦ between a and c axis (see figure 2.1a)
[Maksimov1970]. In each unit cell, there are in total 16 yttrium atoms: two distinct crystallo-
graphic sites (1 and 2) with different coordination numbers to oxygen [Becerro2004], each of
which appears eight times, according to the I 2/a (C6

2h) space group. For each site there are
two orientations (classes I and II), which are related by a C2 inversion on the b-axis and thus
are magnetically inequivalent.

Optical experiments provide no means to determine the orientation of the crystal axes
a,b,c directly. Instead, a different, orthogonal set of coordinate axes D1,D2,b can be defined
by the crystal’s polarization eigenaxes: YSO is birefringent, and the polarization of light
passing through the crystal will change if it is not aligned with one of its eigenaxes [Beach1990,
Sabooni2016]. Because of the low lattice symmetry, b is the only crystal axis that is also a
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polarization eigenaxis, while D1 and D2 lie in the a-c plane but do not coincide with one
of both crystal axes. Since the refractive index for a polarization vector E⃗ is the same as
for its opposite orientation, −E⃗, it is unfortunately not possible to infer the crystal axes
unambiguously from optical measurements alone; instead, measurements of the magnetic
properties are required.

1.5 µm
(195 THz)

1.2 THz

I13/2

I15/2

a) b)

D1

D2

b

c a

b

Figure 2.1: a) Unit cell of yttrium orthosilicate (YSO). While the crystal orientation is
typically described relative to the polarization eigenaxes D1, D2, and b, the lattice axes a and c
are not aligned with them. In each unit cell, there are 8 silicon atoms (grey), 40 oxygen atoms
(blue), and 16 yttrium atoms, which are classified as site 1 (orange) or site 2 (red) depending
on their coordination number to oxygen. b) Sketch of crystal field levels of Er3+:Y2SiO5.
The optical transition between the lowest levels of the 4I15/2 and 4I13/2 manifolds occurs at a
telecom wavelength of 1.5µm. Within each manifold, different crystal field levels are separated
by ∼ 1THz, each of which is a Kramers doublet that will split into two states in an external
magnetic field.

2.1.3 Erbium in YSO: crystal field levels
Er3+ dopants can substitute for yttrium ions and occupy any of their sites, with equal prob-
ability for site 1 and 2 [Böttger2006a]. Since yttrium ions in YSO are trivalent as well, no
additional charge compensation is required.

In agreement with Hund’s rule, the lowest energy level of erbium ions with [Xe] 4f 11 elec-
tron configuration is 4I15/2, with a total number of 2J+1 = 16 individual states [Abragam2012].
Because of the low C1-symmetry of each erbium site, the crystal field level lifts all but one
angular momentum degeneracies, which is – according to Kramers’ theorem – the maximum
impact of interactions with purely electric fields. Lifting the remaining degeneracy is only
possible by applying magnetic fields. As a result, the 4I15/2 ‘ground state’ and the 4I13/2
‘excited state’ manifolds consist of 8 and 7 crystal field doublets. The telecom transition at
1.5 µm occurs between the lowest doublets of each manifold (see figure 2.1b).

Because the splitting between different crystal fields within each manifold is on the or-
der of ∼ 1THz [Doualan1995] and therefore much larger than thermal energy at cryogenic
temperature (∼ 40GHz at 2K) or inhomogeneous broadening (∼ 1GHz), the erbium ion
is typically modeled as effective spin-1/2 system with just a single doublet in ground and
excited state (see figure 2.2a) [Abragam2012]. This approximation, however, loses validity if
strong magnetic fields & 2T are applied, as then the Zeeman splitting becomes comparably
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large. Then, the full crystal field Hamiltonian has to be used to calculate energy levels and
transitions between them [Horvath2019].

In the following section we will review the level structure of Er3+:YSO in the effective
spin-1/2 model.

2.2 The Zeeman Hamiltonian in the effective spin-1/2 model
Energy and time evolution of qubit states are defined by the system Hamiltonian. An accurate
knowledge of this operator helps us understand dynamics and spectra observed in experiments
and make predictions about outcomes for other laboratory conditions.

While in general the interactions of 4f -electrons with the crystal field and among them-
selves need to be known, the effective spin-1/2 model assumes a single electron, whose prop-
erties are modified such that its behavior reflects that of the full system. For example, the
Zeeman Hamiltonian of an electron in a magnetic field B⃗ is given by its Landé factor g and
total angular momentum J⃗ , and with the Bohr magneton µB it reads

HZ =
µBg

~
B⃗ · J⃗ . (2.1)

In an isolated atom, the angular momentum is a good quantum number, and the Landé
g-factor a scalar value. The crystal field levels of erbium ions in YSO, however, are superpo-
sitions of states with different angular momentum – thus, there is no simple expression for
the Zeeman energy EZ . Still, it scales linearly with the magnetic field amplitude B = |B⃗|,
and it can be modeled as interaction of an effective spin-1/2 with an effective g-factor, geff,
that condenses all crystal field effects into a single number:

EZ = ±1
2
µBgeffB (2.2)

2.2.1 g-tensor and effective magnetic field
A more general approach takes into account the low symmetry of the crystal field, which
makes the effective g-factor depend on the direction of the magnetic field. As a result, the
scalar g-value needs to be replaced with a three-dimensional, symmetric tensor g, and the
Zeeman Hamiltonian for a spin vector S⃗ now reads

HZ =
µB

~
B⃗ · g · S⃗. (2.3)

This Hamiltonian describes the precession of the spin vector in an effective magnetic field
B⃗eff = B b⃗eff, implicitly defined by B⃗ · g = B⃗eff geff and geff = |B⃗ · g|/B.

An explicit expression for b⃗eff and geff can be derived in the g-tensor eigenbasis, where g
is diagonal with eigenvalues gx, gy, gz. Let bx, by, bz be the components of the magnetic field
unit vector along the g-tensor eigenaxes. Then we can write

B⃗

B
· g =

bx
by
bz

 ·

gx 0 0
0 gy 0
0 0 gz

 =

bx gx
by gy
bz gz

 = b⃗eff geff, (2.4)

which yields the effective g-value given by

geff =
√
(bxgx)2 + (bygy)2 + (bzgz)2. (2.5)

Clearly, if the g-tensor is anisotropic, gx ̸= gy ̸= gz, the precession axis is not aligned with
the external magnetic field, b⃗eff ∦ B⃗, and the effective g-value depends on the field direction.
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Figure 2.2: a) Level scheme in the effective spin-1/2 model. For magnetic fields below a
few tesla, higher crystal field levels of Er:YSO can be ignored, and the lowest Zeeman doublets of
ground and excited states can be treated as effective spin-1/2 system, with effective g-values gg,eff
and ge,eff, respectively. b) Effective g-values for ground and excited state. Because of a
high g-tensor anisotropy, the effective g-values vary strongly with the magnetic field orientation,
here for site 1 dopants. If the magnetic field is applied in the D1-D2 plane, the ground state
splitting is always larger than the excited state splitting.

2.2.2 Diagonalizing the Zeeman Hamiltonian
To calculate the eigenstates of the Zeeman Hamiltonian, we express the effective magnetic
field unit vector b⃗eff and the spin vector S⃗ by their components along the eigenaxes of the
g-tensor. We choose spherical coordinates Θ and Φ to represent the direction of the effective
magnetic field, and express the spin operators by Pauli matrices acting on the two-dimensional
spin Hilbert space { | +1

2
⟩, | −1

2
⟩ }:

HZ =
µBgeffB

~

sinΘ cosΦ
sinΘ sinΦ

cosΘ

 ·

Ŝx

Ŝy

Ŝz

 (2.6a)

=
1

2
µBgeffB

(
cosΘ sinΘ(cosΦ− i sinΦ)

sinΘ(cosΦ + i sinΦ) − cosΘ

)
(2.6b)

Diagonalizing equation 2.6b gives the two Zeeman eigenstates

|↑⟩ = cos Θ
2
|+1

2
⟩ +eiΦ sin Θ

2
|−1

2
⟩ (2.7a)

|↓⟩ = −e−iΦ sin Θ
2
|+1

2
⟩ +cos Θ

2
|−1

2
⟩ (2.7b)

with the Zeeman energies EZ = ±1
2
µBgeffB.

2.2.3 g-tensor anisotropy of Er:YSO
For erbium ions in YSO the g-tensor is highly anisotropic, and there is no intrinsic connection
between the eigenaxes of the g-tensor and the crystal axes. Furthermore, ground and excited
state have different g-tensors, which have not even the same eigenaxes.

For site 1, investigated throughout this thesis, the g-tensor components in the D1-D2-b
coordinate system are for the ground state [Sun2008]

gg =

 3.070 −3.124 ±3.396
−3.124 8.156 ∓5.756
±3.396 ∓5.756 5.787

 , (2.8)
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with eigenvalues gx = 0.560, gy = 1.798, gz = 14.654. Here, the different signs belong to the
two magnetically inequivalent classes I and II.

The g-tensor components for the excited state are

ge =

 1.950 −2.212 ±3.584
−2.212 4.232 ∓4.986
±3.584 ∓4.986 7.888

 (2.9)

with eigenvalues gx = 0.247, gy = 0.848, gz = 12.974.
As a result of the low lattice symmetry, the effective g values of both magnetic classes are

the same only if the external magnetic field is applied along the b-axis or in the D1-D2 plane.
Most experiments in this work were conducted in one of these settings. The exact magnetic
field orientation in the D1-D2-b coordinate system is typically denoted by the polar angle
ϑ, measured from the b-axis, and the azimuthal angle φ, measured from the D1-axis. The
effective g-values for a field in the D1-D2 plane (ϑ = 90◦) are exemplarily shown in figure 2.2b.

2.3 Optical transitions in the four-level scheme
In a free ion, optical transitions between states of the I15/2 and I13/2 manifold would be
electric-dipole-forbidden because their wavefunctions have the same parity, leaving magnetic-
dipole transitions or higher-order multipoles as main coupling mechanisms to radiation. Ions
doped into a solid, however, have reduced symmetry due to interactions with the crystal field,
resulting in significant electric-dipole contributions for optical transitions between ground
state doublet and excited state doublet [Li1992, Reid2005].

The exact transition strength depends both on direction and polarization of the incident
light, and is represented by an absorption tensor, similar to magnetic interactions being
described by the g-tensor [Petit2020]. Unfortunately, the eigenaxes of the absorption tensor do
not coincide with the lattice axes or the g-tensor eigenaxes. If the laser beam is propagating
along the b-axis, as it was the case for most experiments in this work, the absorption coefficient
for light polarized as E⃗ ∥ D2 is twice as high as for E⃗ ∥ D1 [Böttger2006a].

The center wavelength of the transitions between states in ground and excited Zeeman
doublet is 1536.48 nm for site 1 and 1538.90 nm for site 2 [Böttger2006a], but can also be slightly
altered by strain in the crystal [Zhang2020, Böttger2008, Welinski2017]. The large splitting be-
tween the transition wavelengths of both sites allows us to perform site-selective experiments.
In the following, we focus only on site 1 erbium dopants.

Although the Zeeman Hamiltonians of ground and excited state do not commute and there-
fore their spin precession axes are always different, we still call |↓⟩g → |↓⟩e and |↑⟩g → |↑⟩e
spin-preserving transitions, and |↓⟩g → |↑⟩e and |↑⟩g → |↓⟩e spin-flip transitions. Their
relative strengths depend on the misalignment of the magnetic moments in ground and ex-
cited state and thus on the magnetic field orientation. While for most configurations the
spin-preserving transition is about 9 times stronger than the spin-flip transition [Hastings-
Simon2008], for certain other orientations of the external field both transitions are equally
probable (see chapter 4.3.1).

The decay of the excited state back to the ground state is not only caused by the transitions
within the four-level scheme of the effective spin-1/2, but also by other decay paths via higher
crystal field levels of the I15/2 manifold. By comparing the transition strengths in the four-
level scheme with the measured excited state lifetime of about 11ms, one can derive the
branching ratio β: typically, only a fraction β = 0.21 of all decay events happen via the
spin-preserving transition without participation of higher crystal field levels [Böttger2006a].
This particular value was derived for a single optical mode (E⃗ ∥ D2) that was close but not
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exactly aligned with the maximum absorption; in general the transition strengths and thus
the branching ratio depend on the polarization of the considered mode.

Note that these ratios were calculated with respect to the total decay rate, including
any non-radiative decay or emission into phonon-sidebands. For rare-earth elements doped
into YSO, however, coupling to phonons is expected to be small [Rebane2002, Reed1973]; the
crystal field branching ratio is equivalent to the decay probability into the zero-phonon mode
at ∼ 1536 nm. For comparison: in NV centers in diamond, for example, only ∼ 3% of all
excitations decay into the zero-phonon mode. [Gao2015]

2.4 Magnetic interaction in the Zeeman eigenbasis

Interpreting the g-tensor anisotropy as tilt of the effective magnetic field axis, around which
the spins precede, turns out to be not helpful when interacting spins are considered. The rea-
son is that not spins but their magnetic moments are the origin of Zeeman energy and dipolar
interactions. In systems with an anisotropic g-tensor, the spins are aligned with the effective,
tilted magnetic field axis, but their magnetic moments are not: they still precede perpendic-
ular to the untilted magnetic field axis as expected for any classical dipole. [Maryasov2013,
Maryasov2020]

A similar argument questions the meaning of spin operators in the context of qubit eigen-
states |↑⟩ and |↓⟩: since Zeeman Hamiltonian and Ŝz operator do not commute, the spin
z-component will continuously change, even though the system is in an eigenstate. To dis-
cuss processes like spin-flips and qubit rotations, it is therefore not beneficial to use the spin
operators Ŝx, Ŝy, Ŝz as it was done above.

Instead, by a more elegant choice of basis operators we could write all interactions as
rotations of the effective qubit, not the spin. Such a set of qubit operators is still provided by
the Pauli matrices σ̂x, σ̂y, σ̂z, similar to the spin operators, only that they are now defined
in the qubit basis: [Maryasov2012, Baibekov2014]

σ̂x = |↓⟩⟨↑| + |↑⟩⟨↓| (2.10a)
σ̂y = i |↓⟩⟨↑| −i|↑⟩⟨↓| (2.10b)
σ̂z = |↑⟩⟨↑| − |↓⟩⟨↓| (2.10c)

Since these operators, together with the identity matrix, form a complete basis of operators
in the two-dimensional Hilbert space, it is possible to write any magnetic moment as a linear
combination of them:

m⃗ = −µB

~
g · S⃗ = −µB

2
[u⃗xσ̂x + u⃗ yσ̂y + u⃗ zσ̂z] (2.11)

A representation of the directional vectors u⃗x, u⃗ y, u⃗ z in the g-tensor eigenbasis can be
found by calculating g · S⃗ first in the Ŝz-basis and then making a basis transformation to the
Zeeman eigenbasis via eq. 2.7. One arrives at

m⃗ = −µB

2

 gx(cos
2 Θ

2
− sin2 Θ

2
cos 2Φ)

−gy sin
2 Θ

2
sin 2Φ

−gz sinΘ cosΦ

 σ̂x +

−gx sin
2 Θ

2
sin 2Φ

gy(cos
2 Θ

2
+ sin2 Θ

2
cos 2Φ)

−gz sinΘ sinΦ

 σ̂y

+

gx sinΘ cosΦ
gy sinΘ sinΦ
gz cosΘ

 σ̂z

 (2.12)
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Note that because of the g-tensor anisotropy the directional vectors are not orthogonal
to each other. But since they were constructed via the Zeeman eigenstates, they still fulfill
B⃗ · u⃗x,y = 0 and B⃗ · u⃗ z = geffB, and therefore simplify the Zeeman Hamiltonian to

HZ = −B⃗ · m⃗ = 1
2
µBgeffB σ̂z (2.13)

2.4.1 Dipolar coupling Hamiltonian between similar erbium ions
The large magnetic moments of erbium ions induce magnetic fields, which in turn couple to
other magnetic moments. In its most general form, the resulting interaction between two
magnetic dipoles m⃗1 and m⃗2 is given by [Abragam2012, Smith1992]

Hdd =
µ0

4π r3
[m⃗1 · m⃗2 − 3(m⃗1 · r̂)(m⃗2 · r̂)] , (2.14)

where µ0 is the magnetic constant, r̂ the unit vector connecting the dipoles, and r their
distance.

In this section, we will focus on the dipolar coupling Hamiltonian Hdd for similar erbium
dopants, i.e. ions with the same Zeeman energy. In systems whose eigenenergies are dominated
by the Zeeman Hamiltonian, one can make a secular approximation and ignore terms that
could cause transitions between Zeeman eigenlevels of different energy [Edén2014]. By rewriting
the expression for the magnetic moment (eq. 2.11) using ladder operators σ̂± = (σ̂x± iσ̂y)/2,
we can easily identify those non-secular terms like σ̂+σ̂z, σ̂+σ̂+, etc. and discard them. We
arrive at

Hdd =
µ0

4π r3

(µB

2

)2 [
(u⃗x· u⃗x + u⃗ y· u⃗ y) (σ̂+σ̂− + σ̂−σ̂+) + (u⃗ z· u⃗ z) σ̂zσ̂z

− 3
(
(u⃗x · r̂)2 + (u⃗ y · r̂)2

)
(σ̂+σ̂− + σ̂−σ̂+)− 3(u⃗ z · r̂)2 σ̂zσ̂z

]
. (2.15)

In the context of pairwise interactions, the product of two spin operators always denotes the
tensor product in this work, e.g. σ̂zσ̂z = σ̂z ⊗ σ̂z.

Thus, the Hamiltonian has the form

Hdd = 2JS (σ̂+σ̂− + σ̂−σ̂+) + JI σ̂zσ̂z. (2.16)

The first term couples anti-parallel spin-pairs with their opposite orientations, |↑↓⟩ ↔ |↓↑⟩, a
process that we call flip-flop and discuss in chapter 4.4.3. In contrast, the second term induces
an energy shift depending on the spin state of the interaction partner, which will eventually
lead to dipolar broadening and spectral diffusion (see section 4.2.3). Therefore, we will refer
to JS and JI as the flip-flop and spectral diffusion coupling coefficients.

We can derive a more compact expression for JI by introducing the angle α = ∠ (u⃗z, r̂),
and writing u⃗z = g · b⃗eff (cf. equations 2.12, 2.4 and 2.6):

⟨↑↑|Hdd |↑↑⟩ = JI =
µ0

4π r3

(µB

2

)2 [
u⃗ z · u⃗ z − 3 (u⃗ z · r̂)2

]
(2.17)

=
µ0

4π r3
h2γ2

eff
4

[
1− 3 cos2 α

]
(2.18)

with the effective gyromagnetic ratio γeff, expressed in the components of the magnetic field
unit vector b⃗ = B⃗/B:

γeff =
µB

h
|u⃗ z| = µB

h

√∑
g4i b

2
i∑

g2i b
2
i

(2.19)
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Similarly, an analytical expression for JS could be obtained as well [Car2019], but it is more
lengthy because of its dependence on two angles, ∠(u⃗x, r̂) and ∠(u⃗ y, r̂), and not necessary
for this work.

As we will discuss in more detail in section 5.2.3, the spectral diffusion mechanism sets an
upper bound to the achievable coherence time of interacting spin ensembles. The effect corre-
sponds to an inhomogeneous emission linewidth ∆νfwhm that can be calculated by averaging
eq. 2.18 over random spin configurations of neighboring dopants (see appendix A.1):

∆νfwhm =
2π

9
√
3
µ0hγ

2
eff n (2.20)

Dipolar interaction between dissimilar erbium ions

If the Zeeman energies of both spins are not the same, e.g. because they belong to different
crystallographic sites, the secular approximation disallows flip-flop processes and the coupling
Hamiltonian reduces to a pure σ̂zσ̂z term. The coefficient JI , however, looks more complex
than in eq. 2.17, because in general the two spins have different g-tensors and thus their
directional vectors u⃗z

1 and u⃗z
2 are not aligned.

The resulting dipolar broadening due to dissimilar spins can be calculated by [Lim2018]

∆νfwhm =
2π

9
√
3
µ0hγeff,1γeff,2 n, (2.21)

as we will numerically validate in section 4.2.3. Here, γeff,1 and γeff,2 are the effective gyro-
magnetic ratios of site 1 and site 2, and n is the density of just the perturbing spins.

2.5 Superhyperfine structure

To fully understand the dynamics and energy spectrum of Er3+:YSO, we also need to take
interactions between erbium dopants and the magnetic moments of other crystal constituents
into account, most prominently due to yttrium nuclear spins. To distinguish such coupling
from the hyperfine interaction between electron and nuclear spin of the same ion, the interac-
tion between erbium electron and yttrium nuclear spin is called ‘superhyperfine interaction’.
It can be modeled as dipole-dipole coupling and with no significant contribution from con-
tact interaction, since erbium 4f states are confined to their own nucleus and have negligible
overlap with neighboring nuclei [Macfarlane1998, Car2018].

Yttrium has a magnetic g-factor of gn = −0.274 and a spin of I = 1/2, resulting in a
magnetic moment of about h · 1MHz/T [Stone2005]. Although this value is four to five orders
of magnitude smaller than a typical magnetic moment of an erbium electron spin, coupling
to yttrium nuclear spins can be significant because they are in close proximity to each erbium
dopant. Still, the coupling is extremely asymmetric: while the average magnetic field induced
by an erbium electron spin at the nearest-neighbor yttrium site can be more than 100mT,
the reciprocal magnetic field induced by the yttrium nuclear spin at the erbium ion is only
on the order of ∼ 5 µT. Therefore, a perturbative treatment seems reasonable.

We can assume that the precession axis of erbium magnetic moments is solely determined
by the external magnetic field B⃗, while the precession axis of yttrium spins also depends on
the magnetic field induced by the nearest erbium ion, B⃗Er→Y. Because the Larmor frequency
of the erbium electron is much higher than that of the nuclear spin, the induced magnetic field
only depends on the expectation value of the erbium magnetic moment, ⟨m⃗⟩. In a system
with isotropic g-tensor, this would be the projection of the magnetic moment on the B⃗-axis,
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but in general the expectation value is not aligned with the field, and we find (eq. 2.11):
⟨m⃗⟩ = ∓µB u⃗ z/2. As a result, the induced field is

B⃗Er→Y = ± µ0

4π r3
µB

2

(
u⃗ z − 3 (u⃗ z · r̂) r̂

)
(2.22)

and the perturbation Hamiltonian then reads

Hshf = −gnµN I⃗ ·
(
B⃗ + B⃗Er→Y

)
, (2.23)

where µN is the nuclear magneton and I⃗ the nuclear spin vector of yttrium.
If there was only a single yttrium site coupled to the erbium ion, the four electron spin

states in ground and excited level would each split into two (see figure 2.3). The magnitude
of such superhyperfine splitting depends on the particular yttrium site and its distance and
orientation relative to the erbium magnetic moment, with maximum values of a few 100 kHz.

Furthermore, not only the amplitude but also the orientation of the induced magnetic
field B⃗Er→Y changes between ground and excited state of the erbium electron, because their
g-tensors are different. As consequence, optical excitation of the erbium dopants can stimu-
late transitions between yttrium nuclear spin states, which we will discuss in more detail in
chapter 4.3.3. As we will show, such optical superhyperfine transitions can be suppressed by
applying a high external magnetic field.

Although a level scheme consisting of four doublets can be used to describe the coupling
between the erbium ion and a specific yttrium site, the combined frequency shift due to
interaction with all neighboring nuclear spins will rather appear as inhomogeneous broadening,
which we will discuss in more detail in section 4.2.4.

g

g

e

e

g

g

e

e

Figure 2.3: Superhyperfine states for a single dipole-coupled Er-Y pair. Because
the yttrium nuclear spin (⇑ or ⇓) interacts with the magnetic field induced by the erbium
electron spin (↑ or ↓), all states split into superhyperfine doublets. In general, the superhyperfine
splittings in ground and excited state are different because they depend on the electron g-tensor.
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2.6 Hyperfine structure of 167Er

Of all stable erbium isotopes, 167Er is the only one with a nuclear spin (I = 7/2); its natural
isotope abundance is about 23% [Stone2005, Meija2016]. Because of the additional nuclear spin
degree of freedom, 167Er has in total 16 hyperfine states in place of each ground and excited
state doublet. While at high magnetic fields they can be clearly separated into electron-like
and nuclear-like states, the presence of a non-zero hyperfine tensor, A, leads to a hybridization
at low magnetic fields. Together with a quadrupole interaction tensor, Q, we can write the full
hyperfine Hamiltonian for 167Er in the effective spin-1/2 model as [Horvath2019, Abragam2012]

Hhf = µBB⃗ · g · S⃗ − µNgnB⃗ · I⃗ + I⃗ ·A · S⃗ + I⃗ ·Q · I⃗ (2.24)

Since now the Hilbert space is 16-dimensional, the spin components of S⃗ and I⃗ along the
coordinate axes need to be expressed in the product space spanned by both operators:

S⃗ =
∑

i∈{x,y,z }

e⃗i Ŝi ⊗ 1̂ , and I⃗ =
∑

i∈{x,y,z }

e⃗i 1̂⊗ Îi, (2.25)

where e⃗i are the basis vectors of the coordinate system and ⊗ denotes the outer product.
Because the dopants have an electron spin of S = 1/2, we can still write the spin operators

as multiples of the Pauli matrices, Ŝi = ~ σ̂i/2. For the nuclear spin with I = 7/2, however,
we have to use generalized spin matrices that can be derived from the properties of the angular
momentum and the ladder operators I± = Ix ± i Iy. For an arbitrary angular momentum I ,
the corresponding matrix elements are as follows: [Weil2006]

(Ix)mn =
~
2
(δm,n+1 + δm+1,n)

√
(I + 1)(m+ n− 1)−mn (2.26)

(Iy)mn =
i ~
2

(δm,n+1 − δm+1,n)
√
(I + 1)(m+ n− 1)−mn (2.27)

(Iz)mn = ~ δm,n (I + 1−m) (2.28)

Here, m and n are the matrix row and column, with 1 ≤ m,n ≤ (2I + 1), and δm,n is the
Kronecker delta.

These expressions allow us to write the hyperfine Hamiltonian in eq. 2.24 as 16-dimensional
matrix. By diagonalizing it numerically, we can calculate the expected level structure, as
shown in figure 2.4. The typical splitting between nuclear-like hyperfine states is about
∼ 765MHz.

Due to their smaller magnetic moments, nuclear spins of 167Er provide a qubit resource
even at high magnetic fields, where all paramagnetic impurities occupy their electronic ground
states. In combination with their weaker coupling to magnetic noise from other nuclear
magnetic moments in the crystal, the coherence time of 167Er nuclear spins can extend to
more than a second. [Rančić2018]

While we present an absorption spectrum for an isotope-enriched 167Er-doped crystal in
section 4.3.4, the focus of this work is on zero-nuclear-spin isotopes 164Er, 166Er, 168Er and
170Er, as found in erbium-doped crystals with natural isotopic composition.
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Figure 2.4: Hyperfine levels of 167Er:YSO. About 23% of all erbium ions have a nuclear
spin of I = 7/2, and the resulting hyperfine interaction splits ground and excited level into 16
hyperfine states, each. Here, the states were calculated from eq. 2.24 for a magnetic field along
the D1 axis, with parameters (for site 1) taken from [Horvath2019].
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3 Experimental setup and lab equipment

Before we turn to the actual spectroscopy experiments in the next and following chap-
ters, we give an overview over the hardware used in this work and provide details on some
technical aspects. In this chapter, we focus on the crystals, the cryostat geometry and the
laser system. Spectroscopy of single dopants also requires sufficient laser stability. To this
end, we develop and characterize a fiber ring-resonator as potential alternative for an optical
frequency reference.

3.1 Transmission measurements of Er:YSO at cryogenic tem-
perature

In order to resolve the 1.5 µm zero-phonon line and manipulate and study the spin of erbium
dopants in YSO, their coupling to phonons needs to be suppressed by operating at cryogenic
temperature. In this work, we work with different cryostats, crystals and magnetic field
orientations, and the actual measurement geometry depends on all three of them. In the
following, we first specify which crystals we investigate, then we show different measurement
geometries, and in the end we list all hardware that we use in a typical experiment.

3.1.1 YSO crystals
In this work, we use YSO crystals grown by Scientific Materials. For holeburning spectroscopy
in chapters 4 and 5, the crystals are doped with 10 ppm of erbium (relative to the total
concentration of yttrium sites), while the cavity experiments in chapter 6 are performed
on nominally undoped crystals with a residual erbium contamination of about 0.2 ppm (see
section 6.3.3).

All samples are thin slabs that are cut along the D1-D2 plane; with thicknesses along the b-
axis of 2mm for holeburning experiments in chapter 4, 0.5mm for microwave experiments in
chapter 5, and 0.02mm for cavity experiments in chapter 6. In order to apply magnetic fields
along specific directions relative to the crystal axes, we use different measurement geometries
as described in the following.

3.1.2 Cryostat setups
In most of our experiments we use a helium closed-cycle cryostat ‘Attodry2100’ with a base
temperature of ∼ 1.8K and optical access through a top window. By mounting the sample
at the bottom of a ∼ 1m long sample stick that is suspended at the top of the cryostat, it
is – to some extent – isolated from vibrations generated by the cryostat pulse tube, while
thermalization occurs via helium exchange gas.

In the simplest geometry for a transmission measurement, the erbium-doped crystal slab is
placed horizontally on a mirror. A laser beam incident from the top is reflected at the mirror
and passes the sample twice before leaving the cryostat through the top window again (see
figure 3.1a). Because the superconducting solenoid in the cryostat can only generate vertical
magnetic fields, however, such configuration only allows for measurements with the magnetic
field B⃗ oriented along the crystal b-axis.

By placing the crystal upright in a rotation mount, the magnetic field is applied in the
D1-D2 plane, such that the two crystallographic subclasses I and II are also equivalent. Now
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we implement a measurement geometry where the excitation beam and the transmitted beam
propagate separately along the sample stick (see figure 3.1b). Optical elements along the beam
path ensure robust coupling and can be altered to shape the beam at the crystal position,
e.g. by creating a focus point with additional lenses.

rotation mount
+ crystal

displacement prisms

photodiode

1:1 telescope

crystal
on mirror

photodiode

B along b-axis B in D1-D2 plane

a) b)

Figure 3.1: a) Beam path in the cryostat sample stick for B⃗ ∥ b. For low-temperature
transmission measurements, the crystal is mounted at the bottom end of a sample stick inside
a closed-cycle cryostat, with a vertical magnetic field provided by a superconducting solenoid.
Since crystals used in this work are slabs parallel to the D1-D2 plane, the sample is oriented
horizontally in order to apply the magnetic field along the crystal b-axis. b) Beam path in
the cryostat sample stick for B⃗ ⊥ b. In order to study different magnetic field orientations
in the D1-D2 plane, the crystal is mounted vertically in a rotation mount. 45◦-mirrors deflect the
output of a fiber collimator into the cryostat, through the crystal, and back along the sample
stick onto a photodiode. Since the optical access is restricted to a 1-inch window while the
vacuum tube diameter is 5 cm, a pair of prisms displaces the transmitted beam closer to the
sample stick axis. To reduce beam pointing sensitivity, a pair of lenses form an inverting, non-
magnifying telescope. All components are mounted on aluminum plates connected by fiber glass
rods.

Setup with permanent magnets

For experiments on coherent spin control with microwaves and dynamical decoupling in chap-
ter 5 we use a different closed-cycle cryostat, the ‘PhotonSpot’ helium sorption fridge with a
base temperature of 0.8K. Instead of thermalization via exchange gas, the sample is connected
to a copper cold finger, so that a long sample stick is obsolete and a compact construction
is possible. Because this cryostat does not include superconducting coils, we use a pair of
neodymium disk magnets with 7 cm diameter (Maqna) that are placed on opposite sides out-
side of the sample space (see figure 3.2). By moving them horizontally around the cryostat,
we can change the magnetic field orientation and strength, up to a maximum amplitude of
∼ 30mT.
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Figure 3.2: Measurement geometry in the PhotonSpot cryostat (top view). Because
there is no superconducting solenoid inside the PhotonSpot cryostat, we place two permanent
magnets outside to generate a magnetic field, here for B⃗ ∥ D2. We mount the crystal on a
printed circuit board (PCB) to apply microwaves (see section 5.1.3), with a hole for optical
access. In early experiments, the laser beam is collimated and fiber-coupled with anti-reflection
coated gradient-refractive-index lenses next to the crystal; in later experiments, windows were
added to the cryostat for free-space optical access.

3.1.3 Laser system and experiment control
For optical excitation of the erbium ions at ∼ 1536 nm, we use commercial narrow-band
laser systems: the NKT Photonics BASIK X15 laser ‘Koheras’, the OEwaves Gen 3, and
a Toptica DL pro. Because of its inferior short-term stability, the latter one is only used
for microwave experiments in chapter 5, where all spectral features have widths of several
megahertz. In order to achieve excellent long-term stability, we establish phase-locks for
all lasers to a frequency comb (Menlo Systems FC1500-250-ULN) that in turn is locked to
a frequency reference. In the beginning of this project, a radio-frequency reference with
stability of 10−14 was used, but over the course of the experiment it was upgraded to an
optical resonator (Menlo Systems ORS1500) with sub-hertz stability.

Gating of the laser beams is implemented using Gooch & Housego acousto-optical mod-
ulators operating at modulation frequencies of 100, 200 or 300MHz, provided by a direct
digital synthesis (DDS) radio-frequency source that also allows for fast frequency sweeps.
The detection of optical excitation and transmission signals is done either with conventional
InGaAs photodiodes (Thorlabs PDA10) or with an avalanche photodiode (Thorlabs APD430C
or PDB570C). A field-programmable gate array (FPGA) from National Instruments (cRIO-
9035) with 50 ns time resolution triggers the DDS rf source and records the photodiode volt-
ages.

Note that the laser setup for cavity experiments is more complex, because an additional
laser is required to stabilize the cavity length and the erbium fluorescence is detected with a
single photon counter that needs to be protected by a series of filter elements. More details
will be provided in section 6.2.5.
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3.2 Laser stabilization to a fiber ring resonator at cryogenic tem-
perature

While the frequency comb setup, to which we lock our lasers, can provide an optical ref-
erence with sub-Hz linewidth and stability of 10−15, such an ultra-stable optical frequency
reference is expensive and requires professional maintenance, and it became only available to
our group after we had started this project. Here, we explore the potential of a cryogenic
fiber ring-resonator as an alternative frequency-stable reference. Such an approach is partic-
ularly attractive, because its cryogenic operation at a temperature-insensitive point promises
lower thermal noise, which otherwise limits the short-term stability of state-of-the-art optical
resonators.

In this section, we first review current technologies and how they motivate the development
of a cryogenic fiber-based frequency reference. We explain in more detail the competing
mechanisms that give rise to a temperature-insensitive point around 3.5K and describe the
technical details of our resonator. Then, we characterize its sensitivity to vibrations and
fluctuations in temperature and pressure. In the end, we extrapolate the stability observed
in our proof-of-concept experiment to the controlled environments that are achieved in other
work and compare the expected stability with already existing systems.

Overview and motivation

The construction of lasers with ultra-high frequency stability is a key enabling technology for
optical atomic clocks [Ludlow2015] and a large variety of precision measurements [Krohn2014,
Ghelfi2014, Derevianko2014, Hogan2016, Canuel2018, Karr2019]. In spite of recent alternative ap-
proaches [Norcia2018], the best results have been obtained with lasers locked to ultra-stable
external frequency references. Well-studied examples for such system include spectral holes
in rare-earth doped crystals [Thorpe2011, Cook2015], fiber-optical delay lines [Kéfélian2009,
Dong2015, Dong2016], as well as whispering-gallery-mode [Lim2017] and Fabry-Perot resonators
[Salomon1988, Webster2008, Kessler2012]. The latter have demonstrated an impressive perfor-
mance down to a relative frequency stability of 4 · 10−17 [Matei2017]. In that experiment,
the detrimental effect of temperature fluctuations has been minimized by operating a crys-
talline silicon resonator at a zero-crossing of its thermal expansion coefficient around 124K.
The achieved frequency stability has then been limited by thermal noise of the mirror coat-
ings [Numata2004]. While this noise can be reduced by cooling to even lower temperature
[Zhang2017, Robinson2019], this comes at the prize of a larger sensitivity to temperature drifts,
as the system is then operated below the zero-crossing of the thermal expansion coefficient of
silicon.

Therefore, in this section we explore a cryogenic fiber-based resonator as an alternative
design for a frequency-stable reference. This has two advantages: First, such resonator is
easier to implement as it only requires off-the-shelf components. Second, we show that our
fiber resonator exhibits a temperature-insensitive point around 3.55K, 35-fold lower than
that of crystalline silicon studied previously [Zhang2017].

Fiber delay lines have been investigated at room temperature, mainly because of their
lower cost and complexity [Kéfélian2009] as compared to Fabry-Perot resonators. Recent exper-
iments have demonstrated sub-Hz short-term stability [Dong2015]. However, both temperature
fluctuations and thermal noise have been limiting the performance [Dong2016]. Here we show
that both of these limitations can be alleviated when operating at cryogenic temperature.

Our experiment is intended as a proof-of-concept. We thus do not target or achieve the
ultra-high precision of other cryogenic experiments with Fabry-Perot resonators [Zhang2017] or
rare-earth doped crystals [Thorpe2011, Cook2015]. Still, we perform a detailed characterization
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of our device with respect to vibrations as well as temperature and pressure instability. The
observed low sensitivity and in particular the existence of a temperature-insensitive point
make our approach promising for future precision experiments.

3.2.1 Expected temperature dependence
In our experiment we use a fiber ring resonator which exhibits a ladder of equidistant res-
onances with free spectral range fFSR = c/(nL). Here, n is the refractive index, L the
length of the fiber, and c the speed of light. In most Fabry-Perot frequency references in-
vestigated to date [Matei2016, Webster2008] the cavity field is in vacuum with constant n = 1.
Thus, a temperature-insensitive point is observed when the thermal expansion coefficient
α = L−1(∂L/∂T ) exhibits a zero-crossing. In contrast, in our experiment the light is guided
in a silica fiber, whose refractive index changes with temperature T , as described by the
normalized thermo-optic coefficient βTO = n−1(∂n/∂T ). In our setting, both the thermal
expansion [White1975] and the thermo-optic coefficient [Arcizet2009] change with temperature.
The combined sensitivity α + βTO of fused silica exhibits a zero-crossing around 13K [Ar-
cizet2009], making it a promising material for cryogenic frequency references.

Instead of pure glass, we use a commercial fiber, which gives an additional contribution to
the total temperature sensitivity. The fiber cladding will exert a radial pressure on the core if
their thermal expansion coefficients are not the same, which changes both the refractive index
and fiber length. The effect on phase stability has been studied recently down to temperatures
below 100K [Zhu2020], finding that acrylate coatings transition to a stiff, glass-like state with
thermal expansion converging to zero at 0K. In our modeling, we include the effect of thermal
strain as coefficient βTS, getting the total temperature sensitivity:

1

f

df

dT
= −(α + βTO + βTS). (3.1)

The existence, temperature and curvature of a temperature-insensitive point, which cor-
responds to a zero-crossing of eq. 3.1, will thus depend on the used fiber. In particular the
material and diameter of the core, cladding, and acrylate coating will determine the thermal
strain coefficient. While we use a standard commercial product for our initial experiments,
this gives access to a large parameter space for future optimization.

19



3.2.2 Setup
In our experiment, we fabricate a fiber ring resonator by splicing the ends of a 95:5 fused
fiber beam-splitter to a ∼ 120m long fiber. The latter is coiled to an aluminum cylinder of
4 cm outer diameter that fits into the sample space of our closed-cycle cryostat. To avoid
bend-induced loss that would limit the finesse, both the beam-splitter and fiber are made
from Corning® ClearCurve® bend-insensitive fiber. We do not expect that the properties of
the fused coupler (Evanescent Optics Inc., type 954) significantly influence our measurements.

We first determine the resonator properties at cryogenic temperature by measuring its
transmission at 1535 nm through the two open ports of the beam-splitter, cf. figure 3.3. After
adjusting the input polarization to match one of the resonator eigenmodes, we observe a
free spectral range of 1.71(4)MHz and a fwhm linewidth of 87(7) kHz. This corresponds
to a finesse of 20(1) and a round-trip transmission of about 70%. This value is limited by
the splice-, bend- and absorption loss of the fiber and the excess loss of the beam splitter,
and might be further increased in future devices. The sample is thermalized to its cryogenic
environment via helium exchange gas, whose pressure is monitored with a Pirani pressure
gauge at ambient temperature. To characterize the sensitivity of the device to perturbations,
we attach a cryogenic vibration sensor and a resistive thermometer in close proximity to the
ring resonator.

Laser AOM EOM

VCO

Transmission

error signal

Digital
oscilloscope Cryostat

100 MHzfastslow

Comb

Figure 3.3: Experimental setup. A cryogenic fiber ring resonator serves as a frequency
reference for stabilizing a laser at 1535 nm. To this end, the transmission is measured by a fast
photodiode. An error signal is generated using the Pound-Drever-Hall technique with the help
of a radio-frequency source at 100 MHz, an electro-optical modulator (EOM) and a mixer. The
feedback signal is applied to a voltage-controlled oscillator (VCO) that drives an acousto-optical
modulator (AOM). In addition, slow drifts of the laser frequency are compensated via its tuning
port. To characterize the frequency stability, the beating signal of the laser light with an ultra-
stable frequency comb is recorded.

20



3.2.3 Vibration sensitivity
We now study the stability of the resonator against external perturbations. To investigate
its short-term stability, we lock the laser (Koheras BASIK X15) to the frequency comb. We
then tune the laser to the side of the fiber resonator transmission dip. Fluctuations of the
resonator frequency will lead to a fluctuation of the transmitted power, which we transfer to
frequency deviations using the independently measured spectral response. The resulting time
trace is shown in figure 3.4a.

A fast-Fourier-transform gives the spectral properties of the frequency shift (3.4b), which
exhibits a number of peaks at different frequencies (black). The reason for the peaked struc-
ture is acoustic resonances that are excited by the broadband noise of our pulse tube cry-
ocooler. The position and width of the resonances shows large similarities with the vibration
spectrum measured by the attached piezo-electric sensor (blue).

Deviations in the amplitude of the peaks can be explained by the sensor being only sensitive
to vibrations along the axis parallel to the coil center, while the resonator will be sensitive
to vibrations along all axes. By comparing the peaks in the spectra of sensor and resonator
between 0.3 and 4 kHz, we can estimate that the vibration sensitivity of our resonator is
about < 5 · 10−11 (m/s2)−1 in that frequency range.
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Figure 3.4: Short-term stability. (a) Frequency shift of the resonance as a function of time
(grey), with running averages over 10ms (black) and 100ms (red). (b) Transmission spectrum
(black) of the fiber ring resonator obtained from the data in (a), compared to the sample stage
vibrations (blue) measured by a cryogenic acceleration sensor. The red dashed line indicates the
calculated noise floor caused by measured temperature drifts of about 1mK/s.

3.2.4 Characterization of temperature and pressure sensitivity
As a next step, we investigate the sensitivity with respect to temperature and pressure changes
by locking the laser to the resonator using the Pound-Drever-Hall technique [Black2001], with
an input power of ∼ 0.1mW. We use a modulation frequency that is much larger than
the free-spectral range and tuned such that the sidebands are halfway between higher-order
resonances and thus not phase-shifted upon transmission. We then record the frequency
difference between the laser and frequency comb after changing the sample space temperature
and waiting a few seconds until full thermalization.

The obtained temperature dependence (with a constant amount of helium in the sample
space) is shown in figure 3.5a. We observe a first-order temperature-insensitive point around
3.55K. The data is well-fit by a third-order polynomial (red curve), from which we extract
the curvature at the turning point, −22(1) · 10−9 K−2. We repeat this procedure for different
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Figure 3.5: Temperature and pressure sensitivity. a) The frequency shift of the fiber ring
resonances with temperature shows a turning point around 3.55K, shown for an exchange gas
pressure of 18mbar. The measured data (black dots) are fit by a third-order polynomial (red
line) to extract a curvature of −22(1) · 10−9K−2 at the turning point. b) Shift of the resonance
frequency with pressure at a temperature of 3.55K. At low pressure (grey dots) the resonator
thermalization may be impaired. A fit to a third-order polynomial (blue line) gives a pressure-
insensitive point around 15mbar, with a remaining pressure dependence of 4.2(2) ·10−11mbar−2.

amounts of helium gas in the sample space and thus different pressures. We find that the
temperature of the turning point and its curvature do not change significantly (not shown).

To directly investigate the pressure sensitivity, we evacuate the sample space and then
repeatedly add small amounts of helium while the temperature of the sample space is kept
at the insensitive point, ∼ 3.55K. The observed frequency shift (figure 3.5b) corresponds to
a sensitivity of . 5 · 10−10 mbar−1 over a large pressure range, with a first-order insensitive
point around 15mbar.

Measurements at lower pressure (grey) are less reliable as the thermalization of the fiber
resonator with the surroundings is impaired when the pressure is too low. Similarly, we cannot
exclude that changing temperature gradients contribute to the measured pressure dependence.
Thus, the above value should be considered as an upper bound.

Still, we note that the observed low pressure sensitivity justifies that our temperature
scans have been performed at constant helium filling level instead of constant gas pressure.
The reason is that in the investigated regime, the pressure changes at . 2.5mbar/K. Thus,
its impact on the temperature sensitivity is only . 1.25 ·10−9 K−1, i.e. small compared to the
observed temperature dependence. For the same reason, compensating temperature changes
by connecting the sample space to a room-temperature helium reservoir, as pioneered in
[Cook2015], does not seem promising in our fiber-based ring resonator unless the temperature
sensitivity can be further reduced by materials engineering.
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3.2.5 Long-term stability
After characterizing the sensitivity to external perturbations, we measured the stability over
a period of sixteen hours, see figure 3.6. The inset shows the raw data with a slow linear
drift by about 5 · 10−11 h−1, similar to the isothermal creep reported for other amorphous
materials such as ultra-low expansion glass commonly used in reference cavities [Webster2008].
As it may originate from the thermal stress exerted by the fiber cladding, different fiber types
may show a different linear drift. Still, after subtracting a linear fit, our resonator exhibits a
long-term stability around 20 kHz, or 10−10, limited by the moderate temperature stability
of ±100mK obtained in our cryostat.
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Figure 3.6: Long-term stability. Shift of the laser frequency when locked to the fiber ring
resonator (with 60 s averaging intervals to eliminate the influence of vibrations). The tempera-
ture is kept within 100mK around the temperature-insensitive point of 3.55K. The inset shows
the raw data, while the main graph has been obtained by subtracting a linear fit.

3.2.6 Discussion and outlook
Our implementation does not achieve a stability that exceeds previous experiments, neither
those with fiber interferometers at room temperature (5 · 10−15) [Dong2015], nor that of cryo-
genic silicon resonators (4·10−17) [Matei2017]. The reason is that our setup does not include any
thermal shields or vibration-damping enclosures. Instead, it constitutes a proof-of-concept
experiment to determine the sensitivity to pressure, temperature and vibrations, which we
discuss in the following.

Vibration sensitivity

The extracted vibration sensitivity of our fiber coil, < 5·10−11 (m/s2)−1, is only about tenfold
larger than that of specially optimized, unitary aspect ratio ultra-low expansion glass cavities
at room temperature [Webster2008, Leibrandt2011] and that of crystalline silicon resonators
[Matei2017]. Operating our resonator in a closed-cycle cryocooler with decoupled vibrations
down to a level of . 10−3 m/s2 [Zhang2017], we expect that our fiber ring resonator would
perform around 10−14 short-term stability.

Even better short-term stability can be achieved with improvements of our resonator
design. First, additional vibration damping material may be inserted between the aluminum
cylinder and the fiber coil. Second, increasing the fiber length while reducing the finesse
may be advantageous. Third, an optimized geometric arrangement of the fiber may reduce
the vibration sensitivity, with a fifty-fold lower value demonstrated at room temperature
[Huang2019]. Finally, our setup does not require coupling of a free-space optical beam into
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a micro-sized resonator mode. Thus, it should be possible to build an effective cryogenic
vibration isolation stage. As the thermalization is done by exchange gas, one could e.g.
simply use a large mass on a soft spring to hold the fiber resonator while damping out all
high-frequency vibrations. Alternatively, active damping and magnetic levitation could be
implemented in cryostats with larger sample space, offering the potential for unprecedented
short-term stability.

Temperature and pressure sensitivity

In this context, also the upper bound of the pressure sensitivity, 4.2(2) · 10−11 mbar−2, is
important. It is much smaller than the linear change of ∼ 3 · 10−7 mbar observed with
Fabry-Perot cavities at room temperature and atmospheric pressure [Egan2015]. Getting the
stability to the 10−16 level would require pressure stabilization to 10−4, which should be
straightforward in a closed cryogenic volume. Alternatively, placing the system in cryogenic
vacuum with typical pressures ≪ 10−9 mbar will eliminate the influence of pressure and its
fluctuations.

Next, we compare the observed temperature sensitivity of 22(1) · 10−9 K−2 to other ex-
periments. It is about an order of magnitude worse than ultra-low expansion glass cavities at
room temperature, 1.5 ·10−9 K−2 [Webster2008], but close to that of Fabry-Perot cavities made
from crystalline silicon and operated at their temperature-insensitive point, 17 · 10−9 K−2 at
124K [Kessler2012].

Therefore, to estimate the potential of our cryogenic fiber ring resonator, we make an
explicit comparison with the most stable sub-10 K resonator to date: a silicon cavity operated
around 4K [Zhang2017, Robinson2019]. To achieve the same linear sensitivity (0.02 ppb/K),
we would need to stabilize the fiber within 1mK proximity to the turning point, which is
directly feasible in most commercial cryocoolers. With additional passive and active heat
shields, temperature fluctuations below 10 µK have been demonstrated [Zhang2017]. For our
resonator, this would lead to an expected stability below 2 · 10−18. Optimization of the fiber
coating thickness and material may allow for even lower temperature sensitivity at the turning
point.

Noise analysis

Still, the question whether such setup would allow for unprecedented frequency stability
requires a careful analysis of thermal noise in the fiber. There are two main mechanisms pre-
dicted from theory [Wanser1992, Duan2010] and confirmed experimentally [Dong2015, Dong2016]:

At high frequencies, thermodynamic noise (thermoelastic and thermorefractive) dominates
the spectrum in room temperature experiments [Wanser1992]. This contribution scales with
T 2 df

dT
. When operating at cryogenic temperature, and in particular at the temperature

insensitive point, it should therefore be negligible.
The second cause of thermal noise can be derived from the fluctuation-dissipation theorem,

where the spectral density of spontaneous fiber length fluctuations reads [Duan2010]:

Sl(f) =
2kTLΦ0

3πE0Af
. (3.2)

Here, k is Boltzmann’s constant, L the fiber length and A its cross section, f the frequency,
E0 the value of Young’s modulus without loss and Φ0 its loss angle.

The T -scaling in the above formula suggests that cooling a fiber to cryogenic tempera-
ture may lead to an improved stability – comparing to measurements at room temperature
[Dong2015] even linewidths of a few mHz seem feasible. However, care has to be taken in this
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extrapolation, as the loss angle of the fiber assembly will also change when lowering the tem-
perature. While that of the fiber will likely increase [Arcizet2009], that of the acrylate coating
may be reduced when it transitions to a stiff, glass-like state [Zhu2020]. Therefore, additional
measurements are required to give a reliable estimation about the ultimately achievable sta-
bility of a cryogenic fiber-based setup.

Summary

In summary, we have characterized the sensitivity of a fiber-ring resonator to environmental
fluctuations at cryogenic temperature. Our approach may find direct application in laborato-
ries that operate cryogenic setups and have moderately high requirements on laser stability.
As an example, our setup is intended for spectroscopy of rare-earth doped crystals, as de-
scribed in chapters 4, 5 and 6.

In addition, the robustness and light-weight design of our resonator makes it promising
for laser stabilization in space [McRae2013]. Finally, when operated in an optimized closed-
cycle cryostat [Zhang2017], our system may also be considered for laser stabilization to an
unprecedented accuracy, depending on the yet unknown contribution of thermal noise at
cryogenic temperature. If this contribution is too large, however, further reduction by two
orders of magnitude seems feasible by operating our setup in a dilution refrigerator.
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4 Spectral holeburning and lifetime analysis

A simple method to study the level splitting of dopants in a solid is absorption spec-
troscopy: when the transmission of a laser beam through the sample is detected while the
excitation frequency is scanned, a drop in transmission can be observed whenever the laser is
resonant with a transition.

In a moderate magnetic field, the splitting between different transitions in the effective
four-level system will be larger than the ensemble broadening due to strain inhomogeneities,
and individual absorption peaks can be resolved (see figure 4.1). By measuring the full absorp-
tion spectrum, it is possible to reconstruct the complete level structure. Initially, this method
was used to determine the g-tensor of Er:YSO from absorption spectra at different crystal
orientations in the external magnetic field [Sun2008]. Since we already know the g-tensor, we
can use absorption spectra to identify the orientation of the crystal in our experiment. Fur-
thermore, the relative peak amplitudes reflect the thermal distribution of spins in the ground
states and can be used to extract the crystal temperature.
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Figure 4.1: Absorption scan (a) and level schemes (b). From transmission measurements,
we obtain the absorption spectrum of erbium dopants in YSO, which can be fit with a sum of
four Lorentzians (solid grey curve). At a magnetic field of 100mT along φ = 28◦ in the D1-D2

plane, we can resolve all four absorption lines of the ensemble, with inhomogeneous widths of
0.77GHz. The spin-flip transitions (blue and red arrows) are significantly weaker than the spin-
preserving ones (orange, green).

A simple absorption scan, however, can not resolve the level fine structure caused by
interactions, because the splittings are smaller than the inhomogeneous broadening. Without
controlled preparation of non-equilibrium states, an absorption spectrum does not reveal spin
dynamics, either. In order to measure characteristic time scales in our system, for example
the lifetime of ground state spins, and to investigate the dipolar coupling of erbium dopants
in the ensemble and to other magnetic sites, we choose an advanced technique, known as
holeburning spectroscopy.

In the next sections, we will first explain the basic measurement principle and how we can
use holeburning spectroscopy to study inhomogeneous line broadening and spectral diffusion.
Then, we discuss optical pumping, which creates non-equilibrium states and reveals the as-
sociated relaxation time constants as well as the level splittings. We demonstrate the great
potential of this spectroscopy method by applying it not only to the erbium electron spin but
also to the superhyperfine structure due to yttrium nuclear spins and to the hyperfine states

27



in 167Er isotopes with nuclear spin. In the end, we focus on the erbium electron spin lifetime
and discuss its dependence on temperature and magnetic field. We find lifetimes of 450ms
at low magnetic fields, which are limited by flip-flop processes caused by dipolar interactions.

4.1 Holeburning spectroscopy

At sufficiently high laser power, the 4I15/2 ↔ 4I13/2 transition will be saturated: then, on
average half of the dopants will be in the excited state, where an incident laser photon can
stimulate emission of a second photon, while the other half would be in the ground state and
could absorb an incoming photon. In total, the number of transmitted photons would be the
same as in the incident laser beam; there is no net absorption.

This effect can be demonstrated by a pump-probe experiment: first, an intense laser pulse
strongly drives a transition at one particular frequency, then a much weaker second pulse
probes the transmission while the laser frequency is swept. Dopants whose optical transition
was not resonant with the first pulse were not excited and still contribute to the absorption
spectrum. Only where pump and probe frequency match, the ions resonant with both lasers
were saturated and now appear transparent. Because of the frequency selection by the first
laser pulse, the absorption spectrum now shows narrow features called spectral holes (see
figure 4.2).

Spectral holeburning is a powerful tool for several reasons: first, because of the swept
probe frequency the signal is now the contrast between hole and baseline, which is more robust
against fluctuations in coupling and detection efficiency. Second, the burn pulse effectively
selects a small subset of ions resonant with the laser, and the spectral hole features provide
a frequency resolution that is no longer limited by the ensemble inhomogeneous linewidth of
the optical transition. And third, the first pulse (‘burn’) prepares a non-equilibrium state
in the crystal, and by varying time delay between burn and probe pulse, one can study the
dynamics of relaxation and spectral diffusion processes. In the following sections, we will look
into these aspects in more detail.
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Figure 4.2: a) Setup and sequence for holeburning experiments. A strong laser pulse
(‘burn’) resonant with a transition modifies the absorption spectrum, which is probed by a sec-
ond, weaker pulse (‘probe’). Both pulses are generated with acousto-optical modulators (AOMs),
and by varying pulse amplitudes, lengths, frequencies and delays, a variety of information about
the excited dopants can be extracted from these measurements. b) Frequency scan over the
spectral hole. After the burn pulse has saturated an optical transition, the reduced absorption
will appear as ‘spectral hole’ in a frequency sweep of the probe laser. The data were taken for
a magnetic field of 10mT along the b-axis and fitted by a Lorentzian.
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4.2 Hole broadening and spectral diffusion

By selecting only a subset of ions with the burn pulse frequency, holeburning creates spec-
tral features much narrower than the inhomogeneous absorption line of the entire ensemble.
The width of such a spectral hole, however, does not only depend on the length, power and
frequency stability of the burn laser pulse, but can also increase over time due to interac-
tions with the crystal environment, which is known as spectral diffusion. Understanding all
contributing mechanisms helps us to create narrow holes and suppress spectral diffusion.

Pursuing narrow spectral holes is motivated by some protocols for storing quantum states,
known as atomic frequency comb (AFC) memories, which shape the ensemble absorption line
into a comb-like periodic pattern by means of holeburning. Any photon absorption creates a
superposition of excitations at fixed detunings, set by the constant frequency spacing ∆ν of
the created AFC. In contrast to the random dephasing of excitations in a broad absorption
line, the periodic frequency structure of an AFC rephases automatically after a storage time
T = 1/∆ν, leading to collective emission of the input photon state.

While the AFC protocol provides multi-mode capability for storing qubits at the single
photon level [Riedmatten2008] and its memory time can be extended by mapping the optical
excitation onto ground-level spins [Afzelius2010], its fidelity is largely dominated by the finesse
of the atomic frequency comb [Afzelius2009], which is limited by the spectral width of its
teeth. Therefore, the creation of narrow spectral holes and the suppression of broadening
by spectral diffusion is essential for high-fidelity ensemble-based storage protocols. But even
research on single dopants requires knowledge and control of spectral diffusion, as it will be
seen as random jumps of the optical transition frequency over the course of an experiment.

In this section we first explain how properties of the burn laser pulse set the excitation
bandwidth. Then, we discuss the dominant spectral diffusion mechanisms, namely dipolar
coupling to other erbium spins in the ensemble and to yttrium nuclear spins. In the end, we
compare the time scales of such diffusion processes.

4.2.1 Pulse-dependent hole width

Some of the mechanisms contributing to the total width of a spectral hole are solely set by
properties of the burn laser pulse. First, the spectral shape of a laser pulse is determined by
its Fourier transform. Rectangular pulses, which have been used throughout this entire work,
are known to have a sinc-shaped spectrum with strong side lobes. By shaping the temporal
envelope, one could achieve pulses with narrower spectral widths, with the steepest side lobe
suppression provided by Gaussian pulses [Freeman1998]. Because of the non-linear response of
the ions, however, the excitation bandwidth of a laser pulse can significantly deviate from its
Fourier transform [McDonald1991].

For longer pulses, the excitation bandwidth is no longer dominated by the temporal en-
velope but by fluctuations of the laser frequency over the duration of the pulse. In this work,
we used lasers with good stability on timescales shorter than 1ms and locked them to an
optical frequency comb as stable long-term frequency reference (see section 3.1.3 for details).
Although the achieved stability varied, depending on wavelength, laser and lock parameters,
typical fluctuations were on the order of a few kilohertz.

A second contribution of the laser pulse to the spectral hole width stems from broadening
of the ion transition in case of high laser intensity. For a single ion, such power broadening
leads to an effective line shape given by [Citron1977]

A
(
∆̃
)
∼

P̃

∆̃
2
+ 1 + P̃

. (4.1)
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Here, we use dimensionless parameters that are obtained by normalizing the excitation power
P to the saturation power Psat, (P̃ = P/Psat), and the detuning ∆ to half of the transition
fwhm ∆fwhm,0 without power broadening, (∆̃ = 2∆/∆fwhm,0).

In our experiments, however, we observe a deviation of this saturation behavior (see
figure 4.3), because we illuminate the erbium-doped crystal with a Gaussian beam, and when
the peak intensity is high enough to saturate ions in the beam center, there will be still ions
further away from the beam axis that are not saturated. To reflect this aspect in the model,
we integrate over the Gaussian intensity profile, with a dimensionless distance r̃ =

√
2r/w

from the beam axis, where w is the beam radius and r the distance from the center:

A
(
∆̃
)
∼
∫ ∞

0

dr̃ r̃
P̃ exp (−r̃ 2)

∆̃
2
+ 1 + P̃ exp (−r̃ 2)

∼ ln

(
1 +

P̃

∆̃
2
+ 1

)
(4.2)

Small deviations from this model are expected if outer parts of the beam profile are clipped.
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Figure 4.3: Power broadening. The width (a) and depth (b) of a spectral hole are measured
for burn pulses of 1ms length and different power levels. Below a saturation power of about 1µW,
the width stays constant, while the hole depth scales linearly with power. Above saturation level,
the hole broadens, while the increase of the depth is slowed down. Both curves can be fit by
a model that integrates over ions in the radial intensity distribution of a Gaussian beam (solid
curves are fits to eq. 4.2). The data were taken at a magnetic field of 100mT applied along
φ = 20◦ in the D1-D2 plane.

4.2.2 Spectral diffusion of Er:YSO

While the laser pulse parameters determine the excitation bandwidth, the width of a spectral
hole can also grow over time due to interactions with a dynamically changing local environ-
ment, shifting the transition frequencies of individual ions in a random and uncorrelated way.
Such spectral diffusion is a common phenomenon in solid-state systems, where other mag-
netic impurities and charged defect states can alter the local electric and magnetic fields at the
dopants significantly. [Ambrose1991, Kuhlmann2013, Tyryshkin2012, Acosta2012, Bartholomew2017]

Charge fluctuations in YSO have a comparably little impact on spectral diffusion because
the optical transitions of erbium have small Stark coefficients of . 10 kHz/(V/cm) [Minář2009,
Macfarlane2007], more than one order of magnitude smaller than those of NV centers in di-
amond [Tamarat2006]. In addition, the large band gap of YSO (∼ 6 eV, about 1500THz
[Pang2005, Upadhyay2019]) suppresses free charge carrier generation by multi-photon absorp-
tion processes, so that the only relevant charge fluctuations are due to surface states or charged
defects. In this work, we studied only properties of bulk crystals, but in nanocrystals and
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micro-structured devices the close proximity to interfaces makes dopants more susceptible to
fluctuations from charged surface states.

In YSO, the major share of spectral diffusion stems from magnetic interactions with other
spins in the host crystal. These interacting spins can be either paramagnetic impurities or
nuclear spins. While paramagnetic impurities, such as erbium or other rare-earth dopants
and charge traps, typically appear in low density but with large magnetic moments, nuclear
spins of the host crystal (mainly of yttrium ions in YSO) have smaller moments but are more
abundant. In the following, we first calculate the spectral diffusion linewidth due to dipolar
erbium-erbium interactions; then we estimate the impact of yttrium nuclear spins.

4.2.3 Dipolar broadening due to Er-Er interactions
In chapter 2.4.1 we have discussed the dipolar coupling Hamiltonian between the magnetic
moments of two erbium ions and its contribution to a state-dependent energy shift: depending
on the spin orientation of the interaction partner, the energy of a single erbium electron spin
is shifted either up- or downwards. By summing over all possible interaction partners in the
ensemble of dopants, one can find the total energy shift, which then depends on the distances,
angular positions and spin orientations of all other dopants. Averaging the total energy shift
over random ensemble configurations yields a Lorentzian distribution, which accounts for a
broadening of the corresponding optical and spin transitions.

For similar erbium ions (i.e. dopants with the same g-tensor) at low dopant concentration
n, one can integrate the individual energy shifts (eq. 2.18) analytically and derive the dipolar
transition linewidth (see appendix A.1)

∆νfwhm =
2π

9
√
3
µ0hγ

2
eff n, (4.3)

where γeff is the effective gyromagnetic ratio as defined in eq. 2.19 (see figure 4.4, red curves).
For dissimilar spins, however, analytical treatment of eq. 2.17 is more difficult since the

magnetic moments of site-1- and site-2-dopants are not aligned because of their different
g-tensors. Instead, we adopt the proposed expression from [Lim2018],

∆νfwhm =
2π

9
√
3
µ0hγeff,1γeff,2 n, (4.4)

where γeff,1 and γeff,2 are the effective gyromagnetic ratios of site 1 and site 2, and n is the
density of just the perturbing spins. To validate this ansatz, we run a Monte Carlo simulation
of the total frequency shifts, each one calculated by numerically evaluating eq. 2.17 and
summing over 100 interaction partners. We find good agreement between equation 4.4 and
the simulation results (see figure 4.4, blue curves and error bars). The total linewidth can
then be calculated by summing over the individual contributions from both sites.

Note that the spin transition linewidth stays constant over a large range of magnetic field
orientations. This is a peculiarity of the high g-tensor anisotropy: in contrast to spins of
isolated atoms, the magnetic moments of erbium in YSO tend to align not with the external
magnetic field but with the g-tensor principal axis of the largest eigenvalue. At φ = 25◦, the
magnetic moment of site 1 is small and therefore less sensitive to magnetic field fluctuations,
and at φ = 80◦, magnetic moments of site 2 are small and contribute only little to local
magnetic fields.
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Figure 4.4: Spectral diffusion linewidth for spin (a) and optical transition (b) due
to interactions among erbium dopants. Energy shifts of site-1-dopants due to dipolar
interactions with site-1- (red) and site-2-dopants (blue) produce Lorentzian broadening of the
ensemble-averaged optical and spin transition. Their widths are calculated by 2000 runs of a
Monte Carlo simulation for an ensemble of 100 interacting ions (error bars). The results for the
spin transition broadening are compared with the analytical solution by eq. 4.3 and 4.4 (solid
curves), finding good agreement. We show the results for a total erbium concentration of 10 ppm
(5 ppm per site), as it was used for holeburning and spin decoupling experiments (full color),
and for 0.3 ppm, as found in undoped crystals used in the cavity experiments (light color).

Spectral diffusion linewidth of the optical transition

While the transition frequencies between the Zeeman ground states follow a Lorentzian distri-
bution with a linewidth determined by eq. 4.3 and 4.4, and an equivalent broadening occurs in
the excited levels as well, the distribution of the spin-preserving optical transition frequencies
as probed in holeburning experiments typically is narrower. For each optically active ion, the
effective local magnetic field induced by surrounding spins affects ground and excited state
in similar ways, and the resulting energy shifts are typically correlated.

For a full analysis, we extend the Monte Carlo simulation and first calculate the exact
optical transition frequency from the total energy shifts of ground and excited state for the
same spin configuration, before we average over different local environments (see figure 4.4b).
We observe again an almost constant inhomogeneous linewidth when changing the magnetic
field angle. Notably, for orientations around φ = 25◦, one would naively expect narrower lines
because the effective g-values for ground and excited state are the same. However, because
of the different g-tensors, the corresponding magnetic moments are not aligned, such that an
even stronger shift of the optical transition frequency originates from the local magnetic field
components perpendicular to the external field.

4.2.4 Er-Y interactions
Now we turn to the coupling of the optically active erbium dopants to their neighboring
yttrium nuclear spins. Such superhyperfine interaction causes shifts of the level energies just
like the dipolar coupling between erbium ions (see section 2.5). There are, however, few major
differences: the nuclear magnetic moment of yttrium is about four orders of magnitude smaller
than the typical erbium electron magnetic moment, and only yttrium atoms very close to the
erbium dopant contribute significantly to its spectral diffusion because of the 1/r3-dependence
of the dipolar interaction on the distance. On the other hand, all yttrium atoms in the crystal
have a magnetic moment, not just a fraction, and they occupy well-defined sites in the crystal
lattice.
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Instead of integrating over a spherically distributed dilute ensemble of interacting partners,
we now have to sum over all yttrium sites (at distances ri, with connecting unit vectors r̂i)
and sum up their induced magnetic fields at the erbium dopant. For simplicity, we consider
the high-field case, in which the external magnetic field B0 dominates over the field induced
by erbium dopants (B0 & 200mT, cf. figure 4.5b). Thus, the yttrium nuclear magnetic
moments are aligned with the external magnetic field axis (unit vector b⃗).

B⃗Y→Er =
µ0

4π

µNgn
2

∑
i

b⃗− 3(⃗b · r̂i)r̂i
r 3
i

(4.5)

Then, we can calculate the expected energy level frequency shift by multiplication with the
erbium magnetic moment (see figure 4.5a). We observe that the linewidth broadening due to
varying yttrium spin configurations can be as large as the spectral diffusion linewidth due to
erbium-erbium interactions in a 10 ppm crystal (compare figures 4.4 and 4.5a).

Around φ = 30◦, we observe only little broadening of the spin transition, because the
effective electron g-factor is small and thus the transition is less sensitive to perturbations of
the magnetic field. At the same orientation, the broadening of the optical transition is in-
creased, because the magnetic moments in ground and excited state are almost perpendicular
to each other and therefore the energy shifts in the excited state are not at all correlated with
the superhyperfine energy shifts of the ground state. As a consequence, the spectral diffusion
of the optical transition is not reduced to the difference of the individual linewidths in ground
and excited state, but instead increased to their sum.
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Figure 4.5: a) Spectral diffusion linewidth due to the yttrium nuclear spin bath.
Random orientations of the yttrium nuclear spins cause a Lorentzian frequency distribution for
the spin (black) and the optical transition (red) of site 1 erbium dopants. Their widths are
calculated by 2000 runs of a Monte Carlo simulation for the 550 closest yttrium sites, assuming
the external magnetic field is higher than the field induced by erbium dopants, B0 > BEr→Y.
b) Frozen core field distribution. The magnetic field at an yttrium site induced by an
erbium spin, BEr→Y, decays with distance r as 1/r3 (black line). For distances < 10 nm, it
dominates over the average magnetic field fluctuations by yttrium spins, ⟨BY→Y⟩ (grey dashed
line) and suppresses resonant flip-flops (frozen core effect). For comparison, the magnetic field
at the erbium site induced by yttrium spins, BY→Er, is five orders of magnitude smaller because
of the small nuclear magnetic moments (blue line).
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4.2.5 Timescale of spectral diffusion processes
In the previous sections, we have calculated the spectral diffusion linewidth as fluctuation
in transition frequency for varying local configurations of erbium and yttrium spins. While
the spectral diffusion linewidth only tells the magnitude of typical fluctuations in transition
frequency, the diffusion rate sets the timescale on which they take place and needs to be
considered as well. If the width of a spectral hole is probed quicker than the diffusion rate,
it will appear as narrow as the excitation bandwidth, while broadening of the hole will be
observed only for longer burn-probe delays.

In general, the diffusion rate is given by the correlation time of the surrounding spins,
which is bound above by their lifetime. While the flip-rate of erbium electron spins can be
fairly high and is typically dominated by spin-lattice relaxation processes (see section 4.4),
yttrium nuclear spins are more long-lived because phonons can not efficiently couple to their
small level splitting.

Frozen core effect

Instead of phonon-assisted relaxation, the flip-rate of yttrium spins is dominated by nuclear
spin flip-flops among nearest neighbor sites, which are mutual flips of anti-parallel spin pairs
[Böttger2006b]. Because flip-flops are resonant processes, they can only occur between yttrium
neighbors with comparable level splittings, which restricts the flip-flop partners to sites whose
local magnetic fields differ by less than typical field fluctuations induced by the yttrium spin
bath, BY→Y. In proximity to the large magnetic moment of an erbium electron spin, however,
the local magnetic field is heavily distorted and yttrium nuclear spins are no longer resonant
(see figure 4.5b). As a consequence, yttrium flip-flops are suppressed in a region around each
erbium ion, called ‘frozen core’, and nuclear spins within that region have even longer lifetimes
[Zhong2015a, Rančić2018].

Instantaneous diffusion

In addition to the randomization of spin configurations on a timescale set by their lifetime,
they can also be altered by optical or microwave pulses. As a simple example, the optical
excitation of erbium dopants changes their magnetic moments because of different g-tensors
in ground and excited state, which shifts the energy levels of all other ions in their proximity.
As consequence, any control pulse that addresses not only the central spin but also other
dopants close by will have an immediate affect on their transition frequency distribution.

Such ‘instantaneous spectral diffusion’ is less severe for optical laser pulses, as the narrow
excitation bandwidth typically addresses only . 1% of the entire erbium ensemble. In ex-
periments with microwave control pulses, however, we observe that instantaneous diffusion
poses a significant limit to achievable coherence times (see section 5.2.3).

In addition to instantaneous diffusion, optical excitation of erbium dopants also induces
spectral diffusion due to superhyperfine coupling. Although yttrium nuclear spins by them-
selves are not resonant with the laser pulses, they still respond to the modification of their
local magnetic fields. In particular, yttrium spins in the previously ‘frozen core’ will readjust
their axis of precession, which changes the magnetic field that they induce at the erbium site.
Furthermore, the hybridization of erbium electron and yttrium nuclear spin states effectively
stimulates yttrium spin flips when an erbium transition is driven (see section 4.3.3). Both of
these coupling mechanisms to yttrium spins, however, are suppressed when operating at high
magnetic fields (& 1T).

34



In holeburning experiments we can compare the impact of optically induced spectral dif-
fusion with the broadening due to the finite lifetime of spin configurations by varying burn
pulse parameters and burn-probe delay (see figure 4.6). As the hole width does not change
significantly with the burn-probe delay while it increases with the burn pulse length, we can
conclude that optically induced diffusion dominates the linewidth broadening. Note that for
this particular magnetic field orientation the superhyperfine coupling is significantly enhanced,
and efficient flipping of yttrium spins by optical excitation of the erbium ion is possible (see
section 4.3.3).
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Figure 4.6: Spectral diffusion timescale. While the width of the spectral hole increases
with the burn pulse length even for excitation levels below saturation (a), it stays constant
when the delay before the probe measurement is increased (b), indicating that optically induced
diffusion is the dominant process. The data were taken at a magnetic field of 100mT applied
along φ = 22◦ in the D1-D2 plane.
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4.3 Spin pumping
While the previous section dealt with the width of a spectral hole and its broadening over
time, now we turn to the time evolution of its depth, and how it decays.

After saturating the optical transition during the first burn pulse, the population will decay
from the excited state back into the ground state, and the initial spectral hole disappears on
a timescale governed by the excited state lifetime. In systems where the excited state can also
decay to other, meta-stable states, the population in the initial ground state might be reduced
even when no dopants are left in the excited state (see figure 4.7a). As a consequence, a lower
absorption on the burn pulse transition can be measured for probe delays longer than the
excited state lifetime. Such a ‘persistent’ spectral hole is an indication for spin pumping into
other ground level states, and its decay time constant reflects the life time of the participating
spin state.

In Er:YSO the decay via an optical spin-flip transition back to the ground level occurs with
a typical probability of . 10% [Hastings-Simon2008]. Therefore, it is possible to pump a small
but significant fraction of electrons into the other ground level spin state. In holeburning
experiments with varying burn-probe delays, the different relaxation processes will contribute
with exponential decays at their respective timescales to the total signal. The combination
of a decay from the excited state on a 11ms timescale and relaxation from the other spin
state with a ∼ 100ms lifetime is a bi-exponential function [Hastings-Simon2008] (figure 4.7b).
Since the optical lifetime is well known and does not change significantly with experimental
parameters like dopant concentration, magnetic field or temperature, probing the spin hole
decay allows us to measure the ground level spin lifetime.
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Figure 4.7: a) Optical spin pumping. After optically exciting an erbium ion (purple arrow),
it can decay into the ground level either by a spin-preserving transition (solid grey arrow) or by
an optical spin-flip transition (dashed grey arrow). As a result, spin population can be pumped
from the initial ground state (grey dashed circle) into the other spin state (yellow circle).
b) Decay of the central hole. After burning a spectral hole on the spin-preserving transition
of Er:YSO, the measured hole depth decays with increasing burn-probe delay on a fast timescale
set by the excited state lifetime of about 11ms. Due to significant optical spin pumping, a
population difference in the ground state is built up during the burn pulse and decays on a
slower timescale set by the spin lifetime, 430(20)ms. The data were taken for a magnetic field
of 50mT along the b-axis, and it was fit by a bi-exponential decay function (red curve).
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In the following sections, we first explain how the optical spin pumping efficiency and its
dependence on the magnetic field orientation can be calculated. Then, we discuss how the
absorption spectrum changes as a result of spin pumping. In the end, we show that optical
excitation can not only pump the electron spin of erbium dopants but also nuclear spins of
yttrium ions in their proximity or of 167Er-dopants.

4.3.1 Optical spin-flip transition probability
The excited state can decay either via one of the optical zero-phonon transitions in the
effective spin-1/2 system or via higher crystal field levels and subsequent phonon relaxation
into the ground state. Because latter decay path is a higher-order process and was found
to be predominantly spin-preserving [Lauritzen2008], for optical spin pumping only the decay
probability via a spin-flip transition in the effective four-level scheme is relevant, which we
calculate in the following.

Since the g-tensors in ground and excited state are different, the respective Zeeman Hamil-
tonians do not commute, and they do not share the same eigenstates – on the contrary, the
magnetic moments of ground and excited state are aligned along different precession axes.
Although the induced electric dipole transition does not couple to magnetic moments, it still
projects the excited state magnetic moment onto the ground state precession axis. Conse-
quently, when we neglect other decay paths via higher crystal field levels, we can calculate
the probability to decay via a spin-flip transition as

pflip = |g⟨↓ |↑⟩e |2 , (4.6)

where the individual eigenstates, |↑⟩e and |↓⟩e in the excited state and |↑⟩g and |↓⟩g in the
ground state, are obtained by diagonalizing the Zeeman Hamiltonians, according to eq. 2.7.

This number, pflip, does not only describe the probability of the excited state to decay via
an optical spin-flip transition, it also is a measure of the transition strength when exciting the
dopants. By providing sufficient laser power, however, efficient excitation is possible even on
a weak optical transition. Once the population has been transferred into the excited state,
the branching of its decay into a spin-preserving and a spin-flip optical transition determines
the resulting ground state spin polarization: while the cases pflip = 0 and pflip = 1 allow for
perfect preparation of a pure spin state in a single optical cycle, the spin pumping efficiency
for pflip = 0.5 would be minimal.

Therefore, a different measure is often used to characterize spin pumping capabilities: the
branching contrast ϱflip is defined such that it equals 1 in case of an equal likelihood to end
in either spin ground state after a single excitation event:

ϱflip = 4 pflip (1− pflip) (4.7)

By numerically calculating the strengths of the optical spin-flip transitions for different
magnetic field orientations in the D1-D2 plane (see figure 4.8), we find that over a large range
the branching contrast is almost constant at 11%, in agreement with [Hastings-Simon2008],
whereas it peaks around φ = 30◦ with a maximum contrast of 60%. This difference can
be observed even in simple absorption scans: while in the absorption spectrum at φ = 28◦

all four transitions are visible, in most other orientations the absorption at both spin-flip
transitions will be too low, and their lines disappear. Of course, in crystals with higher
dopant concentration and higher absolute signal the spin-flip transitions could be resolved
again.
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Figure 4.8: Branching contrast for the optical spin-flip transition. Depending on the
orientation of the external magnetic field, the magnetic moments of ground and excited state
are not aligned, and the excited state spin |↓⟩e overlaps with the opposite spin orientation in the
ground state, |↑⟩g. Therefore, the excited state can decay via a spin-flip transition (probability
pflip) or a spin-preserving one (1 − pflip), and the branching contrast between both transitions
can be calculated via eq. 4.6 and 4.7.

Rate equations for optical spin pumping

While the spin-flip probability and the branching contrast only set the relative strength of the
spin-flip transition compared to the spin-preserving one, the actual spin-pumping efficiency
after a burn pulse of certain length can be calculated with a set of rate equations [Lauritzen2008,
Hastings-Simon2008].

Let Pg(t), Pe(t), Ps(t) be the probabilities to find an ion in the states |↓⟩g, |↓⟩e, and |↑⟩g.
Driving the transition |↓⟩g ↔ |↓⟩e with the pump rate γp leads to the rate equations

d
dt
Pg(t) =−(γp + γs)Pg(t)+ (γp + (1− pflip)γopt)Pe(t) + γs Ps(t) (4.8a)

d
dt
Pe(t) = + γp Pg(t) − (γp + γopt)Pe(t) (4.8b)

d
dt
Ps(t) = + γs Pg(t) + pflipγopt Pe(t) − γs Ps(t), (4.8c)

where γopt = 1/Topt is the inverse of the excited state lifetime, Topt, and γs = 1/(2Tspin) is
the spin relaxation rate, normalized such that the polarization Ps(t) − Pg(t) decays with a
characteristic time Tspin.

Coherent effects are neglected because inhomogeneities predominate on the relevant time-
scale of spin-flip dynamics, and we assume a low magnetic field, so that the spin relaxation
rates in both directions are equal (otherwise, they had to be weighted with the respective
Boltzmann factors). Also, spin-flips in the excited state are then suppressed because the
small level splitting slows down spin-lattice relaxation, and there are no opposite spins for
flip-flops in the excited state.

These equations can be solved numerically to simulate the population before, during, and
after the illumination with a resonant burn laser pulse (figure 4.9a). Alternatively, one can
also derive an analytical expression for the maximum spin transfer into the opposite ground
state, Ps(∞). In the limit of strong driving, it reads

Ps(∞) =
γs + pflipγopt

3γs + pflipγopt
(4.9)

and is approached at a rate (3γs + pflipγopt)/2.
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For most magnetic field orientations, the probability of a decay via a spin-flip transition
is small, pflip < 10%, and the asymptotic spin transfer probability remains below 50%.
An easy way to overcome this limit requires optical excitation resonant with the spin-flip
transition instead of the spin-preserving one. In order to drive the weak optical spin-flip
transition, higher laser power is required; but once the population is in the excited state, the
high probability to decay via a spin-preserving transition is then in our favor.

The population transfer can be simulated with rate equations similar to eq. 4.8, but with
pflip and 1− pflip interchanged. As a result, for the same parameters, a higher maximum spin
pumping efficiency can be achieved, approaching Ps(∞) ≈ 1 (see figure 4.9b).
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Figure 4.9: Spin population dynamics for optical pumping on the spin-preserving
transition (a) or the spin-flip transition (b). Starting with a mixed state in thermal
equilibrium, the burn laser drives the optical transition from t = 0ms to t = 800ms. The
bottom panel shows the probabilities to find the system in the ground state resonant with
the laser, Pg(t) (purple), the opposite spin ground state, Ps(t) (blue), and the excited state,
Pe(t) (orange), which were calculated by numerically solving the rate equations 4.8, as well as
the analytical limit for the spin pumping efficiency, Ps(∞) (dotted blue line). Upon optical
excitation of the spin-preserving transition (a), population pumped into the excited state makes
up a great share of the measurable hole depth (center panel, red line), but it decays quickly once
the laser is turned off. Population transfer into the other spin ground state (dashed grey line)
happens on a longer time scale, but its contribution to the hole depth also decays slower. The
rates for this plot were chosen to match with figure 4.7b, but would depend on magnetic field
orientation and burn pulse intensity. If instead the spin-flip transition is excited (b), a larger
fraction decays into the opposite spin ground state, and a higher spin pumping efficiency can be
achieved.
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4.3.2 Sideholes and antiholes: fine structure
We can witness spin pumping not only by looking at the decay of the hole at the burn
laser frequency, but also by probing another optical transition, involving the other spin state
directly. For example, any transition from the other spin ground state will show higher
absorption, seen as antiholes, because optical pumping has created excess population in that
state (see figure 4.10) [Hastings-Simon2008].

Because the burn pulse selects only a subset of dopants that share at least one common
transition frequency, all holes and antiholes are much narrower than the ensemble inhomo-
geneous linewidth, and their splittings can be measured on a megahertz scale. This allows
precise measurements of the level structure even at small magnetic fields, when the ensem-
ble absorption lines still overlap. Note, though, that then the sidehole spectrum complexity
increases because the burn pulse addresses two different subsets of dopants: those whose
|↑⟩g → |↑⟩e transition is resonant, and those whose |↓⟩g → |↓⟩e is. [Hastings-Simon2008]

In contrast to a slow decay of the central hole (i.e. at the burn laser frequency), the
observation of antiholes is an unambiguous indication of spin pumping and allows for an
independent measurement of the spin lifetime: while optical pumping into any other long-
lived state would be seen as slow decay timescale of the central hole, the side- and antiholes
reflect the dynamics only of those states at a certain detuning from the initial state. An
example will be discussed later in section 5.1.4.

Note that typically the width of the antihole at the other spin-preserving transition is
as narrow as the central hole (. 1MHz), whereas the features at the spin-flip transitions
appear broader (∼ 10MHz). Apparently, there is an inhomogeneity in the level splittings of
ground and excited state, which causes this broadening; and while the splittings of ground
and excited state are correlated, the absolute optical transition frequency is not.
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Figure 4.10: Illustration of a sidehole spectrum (left) and level schemes (right) after
optical pumping. A burn pulse on the spin-preserving transition (dark green arrow) induces
spin pumping by decay via a spin-flip transition (grey arrow). This creates spectral holes on
transitions that share the same ground state (green, blue), while transitions from the other spin
ground state have increased absorption and show an antihole (red, yellow). The detunings of
sideholes and antiholes from the burn laser are determined by the magnetic field and the effective
g-factors of the ground and excited states, gg and ge, respectively. The shown widths of the
ensemble absorption line and the spectral hole features are not to scale.
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4.3.3 Superhyperfine hole spectrum
Similar to optical pumping of erbium electron spins into a different ground level spin state, it
is also possible to pump surrounding yttrium nuclear spins via the erbium optical transitions.
Since the electron magnetic moments of ground and excited state are not aligned because of
their different g-tensors, also the precession axes of the surrounding nuclear spins will change
upon optical (de-)excitation [Car2018, Terblanche2001]. In the same way as we calculated the
probability of an electron spin-flip on the optical transition in sec. 4.3.1, we can now write
down the probability of a nuclear spin-flip, pY-flip, and derive the branching contrast ϱY-flip
from it:

pY-flip = |g⟨↑⇑|↑⇓⟩e |2 (4.10)
ϱY-flip = 4 pY-flip (1− pY-flip) , (4.11)

To find the eigenstates, we first diagonalize the electron spin Zeeman Hamiltonian for the
external field and neglect any field induced by nuclear spins, since it can reach at most a few
µT, even for nearest neighbors (cf. figure 4.5b). Then, we calculate the total magnetic field
vector at the yttrium site by adding the field induced by the erbium spin, B⃗Er→Y, to the
external field B⃗0 (see section 2.5). The result will not only depend on the external magnetic
field orientation and strength but also differ between ground and excited state of the electron
spin:

B⃗
(g)
Y = B⃗0 + B⃗Er(g)→Y (4.12)

B⃗
(e)
Y = B⃗0 + B⃗Er(e)→Y (4.13)

Since these magnetic fields define the axes of precession (cf. Hamiltonian in eq. 2.23), the
branching contrast as defined in eq. 4.10 can also be expressed geometrically by the angle
β = ∠(B⃗(g)

Y , B⃗
(e)
Y ) between these total fields, reaching its maximum when the field vectors are

perpendicular to each other [Car2018]:

ϱY-flip = sin2(β) (4.14)

Note that the branching contrast still depends on the yttrium site and its relative position
with respect to the erbium ion, and so does the energy splitting between the superhyperfine
levels. Therefore, in holeburning experiments in magnetic field configurations where nuclear
spin pumping is possible at multiple Y sites, many sideholes will appear at different detunings
and amplitudes (figure 4.11).

When we calculate the superhyperfine splitting of the excited state for the five yttrium
spins with the highest optical branching contrast (indicated by vertical bars), we find indeed
good agreement with the observed sidehole positions. Note that the deepest sidehole can be
attributed to several yttrium sites with similar frequency splittings. In fact, all bulk yttrium
spins whose local magnetic field is dominated by the external field B0 rather than the erbium
magnetic moment have the same level splitting of γYB0, with the gyromagnetic ratio for
yttrium, γY = 2.1MHz/T.

The exact shape of the spectrum, however, is more complex: for example, the optically
pumped yttrium spins also cause stronger absorption at other superhyperfine transitions,
which would be visible as antiholes [Askarani2019, Thiel2010]. In addition, the interactions with
many yttrium spins can no longer be described by the four transitions of a single erbium-
yttrium pair and lead to spectral diffusion and a broadening of the lines. Furthermore,
calculations suggest that in this particular configuration the individual branching contrasts
depend very sensitively on the exact magnetic field orientation and amplitude (cf. figure 4.12).
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Figure 4.11: Sidehole spectrum after optical pumping of Y nuclear spins. For a
magnetic field of 200mT (blue) and 300mT (red) applied along φ = 21.8◦ in the D1-D2 plane,
the branching contrast of optical superhyperfine transitions is extraordinarily high, and efficient
pumping of the yttrium nuclear spins via the erbium dopants is possible. The curves were
measured for a burn pulse length of 100ms and are plotted offset along the y-axis. We can
fit each obtained sidehole spectrum with a sum of multiple Lorentzians (solid black lines) and
compare it with calculations of the predicted superhyperfine level splittings in the excited state
for the five yttrium spins with the highest branching contrast (vertical bars), finding good
agreement.

Consequences of optical superhyerfine coupling for quantum information processing

The observed superhyperfine spectrum in holeburning experiments clearly demonstrates that
optical addressing of nuclear spins via their coupling to the erbium dopants is possible. In
section 6.4.3 we can even show coupling to an individual yttrium site, seen as modulation in
photon echo experiments.

On the one hand, such coupling makes it possible to create entanglement between the
erbium electron spin and a neighboring yttrium nuclear spin, or to transfer quantum states
from the erbium dopant to a remote nuclear spin coherently. This could facilitate the use of
yttrium nuclear spins as long-term quantum memories that are interfaced optically via the
erbium ion, similar to the use of carbon nuclear spins as quantum register coupled to NV
defects in diamond [Jelezko2004, Dutt2007, Bradley2019].

On the other hand, the superhyperfine coupling can be undesired if long coherence of the
optical erbium transition is required. As soon as multiple yttrium sites couple to the erbium
electron spin at different rates, the optical coherence will quickly drop [Car2020]; the changes
in the nuclear spin bath induced by optical excitation accelerate spectral diffusion.

In order to identify configurations that allow for long coherence times on the erbium
optical transition, we calculate the individual branching contrast for the 36 nearest yttrium
spins depending on the orientation and strength of the external magnetic field. Then, we
subsume the overall effect in the cumulative branching contrast

ϱ
(cum)
Y-flip = 1−

∏
i

(
1− ϱ

(i)
Y-flip

)
. (4.15)

This number represents the probability that any optical branching occurs for at least one
yttrium neighbor. Since the superhyperfine coupling strength decreases with increasing dis-
tance from the erbium dopant, the cumulative branching contrast converges as the number
of considered yttrium sites approaches 36.

As shown in figure 4.12, branching of superhyperfine optical transitions occurs predom-
inantly for magnetic field orientations between φ = 20◦ and φ = 40◦ in the D1-D2 plane,
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because then the change in orientation of the erbium magnetic moments between ground and
excited state is maximal. Unfortunately, this is the same range, for which the differential
g value |gg − ge|, which reflects the magnetic field sensitivity of the optical spin-preserving
transition, is minimal. Therefore, it is not possible to simultaneously minimize superhyperfine
branching of yttrium spins and magnetic field sensitivity of the optical transition.
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Figure 4.12: a) Number of yttrium sites with significant branching contrast of their
optical superhyperfine transitions. For a given external magnetic field orientation and
amplitude, we can calculate the branching contrast of optical superhyperfine transitions via
eq. 4.14 for the 36 nearest yttrium neighbors. Because the coupling strength drops with distance,
in most cases only a handful of ions shows significant branching. b) Cumulative branching
contrast of optical superhyperfine transitions. To represent the overall effect of individual
superhyperfine couplings, we calculate the cumulative branching contrast via eq. 4.15. For a
magnetic field orientation around φ = 30◦, many yttrium sites show significant branching, and
optical coherence would quickly diffuse into different superhyperfine states. High magnetic fields,
however, suppress nuclear spin flips caused by superhyperfine coupling efficiently.

4.3.4 167Er hyperfine spectrum
Optical pumping can not only transfer the erbium electron into its other spin state or flip
the nuclear spin of neighboring yttrium sites; it can also involve hyperfine states of the 167Er
isotope with its nuclear spin of 7/2. While driving optical transitions between hyperfine states
and polarizing the nuclear spin is not fundamentally different from electron or superhyperfine
spin pumping, there are some peculiarities, which we will discuss in the following.

First, in crystals with natural isotopic composition only 23% of all erbium ions have
nuclear spin, and at low magnetic fields and a temperature of 1.7K all ground states will
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be populated equally, which lowers the effective concentration in each hyperfine states by
another factor of 16.

And second, the splitting of ground and excited levels into a large number of states results
in complex sidehole and antihole spectra (see figure 4.13a) [Baldit2010]. Preparation of a
hyperfine state with specific magnetic quantum number mI can not be achieved by a single
laser pulse anymore but requires the repeated sweeping of the burn laser across the ∆mI = ±1
optical hyperfine sidebands [Rančić2018].
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Figure 4.13: a) Sidehole spectrum of 167Er. At low magnetic field, the complex hyperfine
structure of 167Er isotopes leads to a rich spectrum of sideholes and antiholes, here measured for
a field of 57mT applied along φ = 10◦ in the D1-D2 plane, in an isotope-enriched crystal (erbium
concentration of 50 ppm, of which 93% is 167Er). In this experiment, burn pulses of 50ms length
were applied and scanned in frequency, while the probe pulse frequency was kept constant. b)
Second-long lifetime of hyperfine holes. After burning a spectral hole in the 167Er-enriched
crystal, its decay shows three distinct timescales, with the fastest (about 10ms) accounting for
decay of the optical excitation (see inset for zoom-in). On an intermediate timescale (∼ 100ms)
the decay of the electron spin component is visible, and the longest timescale of several seconds
indicates the lifetime of nuclear spin states of 167Er. The data were taken for the same magnetic
field configuration as in (a) and fitted with the sum of three exponentials.

Measurements in isotope-enriched crystals show a spectral hole lifetime of more than a
second (figure 4.13b), which is likely limited by comparably fast flipping of the electron spin
component at low magnetic field. At higher fields, the electron spin freezes out, and the
nuclear spin states can exhibit long lifetimes of several 100 s, while their coherence time can
exceed one second [Rančić2018, McAuslan2012].

While the prospect of long storage and coherence times makes erbium nuclear spins very
attractive for quantum information processing, the complex level structure and long lifetimes
can pose a challenge for spectroscopic studies. Furthermore, in chapter 6 we will investigate
erbium dopants coupled to an optical cavity with only ∼ 20MHz linewidth, which is orders
of magnitude smaller than typical hyperfine level splittings and prevents repumping and full-
optical control of 167Er dopants. Therefore, we will focus only on even erbium isotopes without
nuclear spin in the following.
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4.4 Spin lifetime
Eventually, the goal of this thesis is to explore if Er:YSO can be used for quantum information
processing – either by storing quantum states in the electronic spin of erbium ions themselves,
or by utilizing their optical interface and potential coupling to nuclear spins, which then could
serve as long-term quantum memories. In any case, there is a great desire to extend the
electron spin lifetime and understand which processes set a limit.

In this section, we first give an overview over all common spin relaxation processes and
discuss their temperature dependence, before we focus on flip-flop processes, which commonly
limit the spin lifetime at low magnetic fields.

4.4.1 Spin relaxation processes and their temperature dependence
In general, the electron spin-flip rate Γ is the sum of the flip-flop rate ΓFF and spin-lattice
relaxation rates, which include the one-phonon direct-flip process (coefficient αD) as well as
the two-phonon Raman (αR) and Orbach processes (αO) [Böttger2006b, Cruzeiro2017]. The
latter involve scattering of phonons between ground state and second-to-lowest crystal field,
with energy splitting ∆ = h · 1.2THz [Doualan1995]. These processes depend on the magnetic
field and temperature:

Γ = ΓFF sech2

(
µBggB

2kBT

)
+ αD g3gB

5 coth

(
µBggB

2kBT

)
+ αR T 9 + αO e−∆/kBT (4.16)

Since flip-flops occur among dopant pairs with anti-parallel spins, ↑↓ and ↓↑, their rate
scales with the product of the Boltzmann occupation probabilities, p↑p↓ ∼ sech2 (ϵ/2kBT ),
which is ≈ 1 for small Zeeman level splittings ϵ.

Spin-lattice relaxation processes, on the other hand, scale with the thermal occupation
of phonon modes and show a strong temperature dependence (figure 4.14). At temperatures
below 2K, the two-phonon relaxation processes can be neglected, and for small Zeeman level
splittings the temperature dependence of the one-phonon flip rate is approximately linear,
coth (ϵ/2kBT ) ∼ T .
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Figure 4.14: Spin-lattice relaxation times. At low temperature, the one-phonon direct-flip
process dominates and scales as ∼ B5 with the magnetic field, while two-phonon relaxation
by Raman and Orbach processes kick in at higher temperature. Here, flip-flop processes are
not included, and the curves were calculated for typical coefficients: gg = 10 (B⃗ ∥ D2), αD =
1.1 s−1T−5 [Böttger2006b], αR = 1.3× 10−3 s−1K−9 and αO = 2.5× 1010 s−1 [Kurkin1980].
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One-phonon spin-lattice relaxation

The direct spin-flip rate due to a one-phonon process is the sum of phonon absorption and
phonon emission rates, Γabs and Γem. Because of the bosonic nature of phonons, absorption
and emission rate have different dependencies on the phonon occupation number n [Noram-
buena2018]:

Γabs = 2π~−2 ρ(ϵ) J2 n (4.17)
Γem = 2π~−2 ρ(ϵ) J2 (n+ 1) (4.18)

Here we applied Fermi’s Golden Rule, with the density of states ρ(ϵ) ∼ ϵ3 and the tran-
sition matrix element J . For Kramers ions, this matrix element is only non-zero because of
admixtures of higher crystal field levels in the presence of a magnetic field [Shrivastava1983].
The lowest order magnetic field dependence is J ∼ O(B), and combined with ϵ ∼ ggB we
find

Γabs = αD g3gB
5 [exp(ϵ/kBT )− 1]−1 (4.19)

Γem = αD g3gB
5 [1− exp(−ϵ/kBT )]

−1 . (4.20)

Because it originates from higher crystal field level contributions in presence of a magnetic
field, the coefficient αD is likely anisotropic and depends on the orientation of the external
magnetic field. For other rare-earth dopants in YSO, like neodymium and ytterbium, such
anisotropy has already been extracted from measurements, with a maximum change in αD

by a factor of 5 [Lim2018, Cruzeiro2017]. Similarly, a different scaling with magnetic field is
expected above 1T, where the effective spin-1/2-model starts to break down and admixtures
of higher crystal field levels become more significant.

For many processes, only the sum of absorption and emission is relevant: after spin pump-
ing in holeburning experiments, for example, the population deviation from thermal equilib-
rium will decay with Γabs + Γem. Similarly, the redistribution of spins among the dopants
happens at that rate, causing spectral diffusion, and it also describes the decay of an equal
superposition, 1√

2
(|↑⟩+ |↓⟩). On the other hand, if we are operating with one particular spin

ground state only, the lifetime only depends on either Γabs or Γem, which has to be used in
eq. 4.16 instead. Possible scenarios could be experiments at high magnetic fields, for example
a study on (super-)hyperfine states or on the optical coherence.

4.4.2 Spin lifetime dependence on the magnetic field strength
Because flip-flop process and one-phonon spin-lattice relaxation have different dependencies
on the magnetic field amplitude, we can separate their contributions to the decay rate at
low fields (see fig. 4.15). At low temperature, the only free parameters in eq. 4.16 are the
flip-flop rate ΓFF and the direct-flip coefficient αD, whose dependence on the magnetic field
orientation is unknown.

As becomes clear: at low magnetic fields and low temperature, any spin-lattice relaxation
is highly suppressed, and the ultimate electron spin lifetime is set by flip-flop processes. In
the next section, we will explain in more detail how the flip-flop rate can be calculated, and
discuss approaches how to reduce it.
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Figure 4.15: Ground state spin lifetime vs. magnetic field. While spin-lattice relaxation
causes a drop of the spin lifetime at high magnetic fields, the plateau at low fields is determined
by flip-flops. Fitting the data to eq. 4.16 (solid curve) yields a flip-flop time of Γ−1

FF = 440(10)ms,
in agreement with the prediction (eq. 4.22) for a 10 ppm crystal and a 12MHz inhomogeneous
spin transition linewidth. The obtained direct-flip coefficient αD = 18 s−1T−5 is higher than the
value of 1.1 s−1T−5 measured for a magnetic field along the D1-axis [Böttger2006b].

4.4.3 Electron spin flip-flops
In contrast to Raman, Orbach and direct flip processes, the flip-flop mechanism is not related
to spin-lattice relaxation. Instead, it is a cross-relaxation process of anti-parallel pairs of
spins, governed by the σ̂+σ̂− terms of the dipolar coupling Hamiltonian between similar spins
(eq. 2.16).

In order to derive an analytical expression for the flip-flop rate, one can start with Fermi’s
Golden Rule [Car2019, Cruzeiro2017]:

ΓFF =
2π

~
ρ
〈
|⟨↑↓ |Hdd|↓↑⟩|2

〉
avg. (4.21)

Here, ρ is the density of final states |↓↑⟩, and ⟨·⟩avg denotes taking the average over all possible
spin pair configurations. With our short-hand notation of the dipole-dipole Hamiltonian
(eq. 2.16), the matrix element for a single pair of spins evaluates to ⟨↑↓|Hdd|↓↑⟩ = 2JS .

Car et al. provide an analytical solution to the averaging integral over solid angles and
express the effective density of states by the inhomogeneous spin transition linewidth Γs,
ρ ∼ 1/(~Γs):

ΓFF =
1

12 ~2
µ2
0 µ

4
B Ξ

(
gg, B⃗

) n2

α0Γs

, (4.22)

where α0 ≈ 1 is a dimensionless parameter introduced to define a cut-off interaction radius
for convergence reason, and we separate the dependence on the magnetic moment directional
vectors u⃗x,u⃗ y (cf. eq. 2.15) and the averaging over all solid angles into

Ξ
(
gg, B⃗

)
=

1

4π

∫
dΩ

∣∣1
4
(u⃗x· u⃗x + u⃗ y· u⃗ y)− 3

4

(
(u⃗x · r̂)2 + (u⃗ y · r̂)2

)∣∣2 . (4.23)

In figure 4.16 we perform the averaging numerically and calculate the electron spin lifetime
limit by flip-flops. Later, in chapter 5.2.5, we will apply the same approach to different
coupling coefficients JS that change under the influence of microwave pulse sequences.
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Figure 4.16: Flip-flop time constant. By numerically averaging over the solid angle, we
can calculate the flip-flop time constant Γ−1

FF from eq. 4.22, for a total dopant concentration of
10 ppm (5 ppm per site). When the magnetic field is rotated in the D1-D2 plane, the predicted
flip-flop time varies by several orders of magnitude.

Concentration dependence

An important result of the Golden Rule approach is the expected scaling of the flip-flop rate
with dopant concentration, ΓFF ∼ n2. Here, n is the concentration of similar erbium ions
with the same g-factor, which is significantly lower than the total erbium concentration in
the crystal: 50% of all ions occupy site 2 and can not participate in flip-flops with site-1-
dopants. Likewise, 50% of ions on site 1 belong to magnetic class II and are resonant with
class-I-dopants only for certain magnetic field orientations. And lastly, 167Er makes up 23%
of all ions, and because of its different hyperfine level structure it probably contributes less
to cross-relaxation processes with zero-nuclear-spin isotopes, if at all [Car2019].

It is even possible to reduce the number of potential flip-flop partners over the course of an
experiment by broadband optical pumping of all spins into one particular state [Welinski2020,
Cruzeiro2017]. Unfortunately, this comes at the price of increased cross-relaxation for the
opposite spin state. Alternatively, a magnetic field gradient should as well suppress flip-flop
interactions but might be undesired for other reasons.

While the spin lifetimes predicted by eq. 4.22 for a 10 ppm doped crystal were in good
agreement with their measurements, [Car2019] observed deviations from the model by up to
one order of magnitude for a higher-doped crystal with 50 ppm, which could be explained by
the role of inhomogeneous broadening. Since only spins with the same Zeeman splitting can
participate in flip-flops, the number of potential flip-partners is reduced by the inhomogeneous
width. This, however, is only true as long as spin transition frequencies show no correlation
with the dopant position in the crystal. With increasing dopant concentration, the mean
distance between two interacting spins can become smaller than the correlation length of dis-
order in the crystal [Welinski2017], and adjustment of the formula is necessary. Another effect
could be an increase in the inhomogeneous linewidth broadening due to dipolar interactions,
as already discussed in the context of spectral diffusion (section 4.2.3): the dipolar linewidth
is expected to scale linearly with concentration [Cruzeiro2017, Abragam2012].

Nevertheless, it is clear that in the low-concentration limit the flip-flop rates will quickly
drop below the direct-flip rate of the one-phonon process. This regime can be explored by using
nominally undoped YSO crystals and studying the remaining dopants due to contamination
with various rare-earth elements [Siyushev2014, Cruzeiro2017]. Efficient optical control and
readout, however, usually require coupling to optical resonators [Dibos2018, Kindem2020], an
approach that we will follow in chapter 6.
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5 Coherent spin control and dynamical de-
coupling

In the previous chapter, we have used optical spectroscopy to study the lifetime of the
electron spin of erbium dopants. To continue and now look into its coherence properties, we
need tools to rotate the Zeeman qubit state on the Bloch sphere. To this end, we build a
microwave resonator that provides us with homogeneous control over the ensemble of inves-
tigated spins. Using different dynamical decoupling sequences, we can extend the observable
coherence time and show that it is limited by dipolar interactions between similar spins. A
theoretical model supports these findings and suggests modified decoupling sequences tailored
to the anisotropic erbium g-tensor in order to reach the ultimate coherence time limit set by
dipole-dipole interactions.

5.1 Qubit control using microwave pulses
Probing the coherence of erbium spins is possible either optically by driving Raman tran-
sitions [Rančić2018, Serrano2018, Hartmann1968] or via oscillating magnetic fields at microwave
frequencies [Probst2015, Guillot-Noël2007]. In order to study the effect of dynamical decou-
pling sequences on the entire spin ensemble, we choose microwave fields as coherent control,
because the required homogeneity and peak power are easier to establish in the microwave do-
main than with laser beams. Still, achieving a sufficient pulse fidelity and control bandwidth
remains challenging and makes high demands on the technical implementation.

In this section, we first review the effect of microwave pulses on the Zeeman qubit states.
Then, we discuss all requirements for homogeneous coherent control and how they are met
with the microwave resonator designed for this work. In the end, we demonstrate efficient
spin initialization via holeburning and a high microwave pulse fidelity in Rabi flops, which
form the basis for later decoupling experiments.

5.1.1 Effect of microwave pulses on the Zeeman qubit

The qubit eigenstates |↑⟩ and |↓⟩ are defined by the Zeeman Hamiltonian of the erbium
electron spin, which reflects the energy of its magnetic moment m⃗ in the external field B⃗0.
By applying a microwave pulse, an oscillating component B⃗mw is added to the magnetic
field, and the former eigenstates start to undergo rotations, governed by the perturbation
Hamiltonian Hmw = −B⃗mw · m⃗. Because of the g-tensor anisotropy, the magnetic moment is
not aligned with the static field (see section 2.4), so even if the microwave field is perpendicular
to it, B⃗mw ⊥ B⃗0, the resulting microwave interaction Hamiltonian is a linear combination of
all rotations σ̂x, σ̂y, σ̂z on the Bloch sphere:

Hmw = 1
2
µBBmw (gmw,xσ̂x + gmw,yσ̂y + gmw,zσ̂z) , (5.1)

where the effective microwave g-factors gmw,i can be calculated from the directional vectors
u⃗ i of the magnetic moment (see eq. 2.11) by [Probst2013, Abragam2012]

gmw,i = u⃗ i · B⃗mw

Bmw
. (5.2)
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The effect of the microwave Hamiltonian Hmw with a time-dependent magnetic field am-
plitude Bmw = Bmw,max cos(ωt) can be discussed in the rotating frame, and much like in
systems with isotropic g-tensor, the components σ̂x, σ̂y of the microwave Hamiltonian di-
rectly translate into rotations in the rotating frame. [Vandersypen2005, Abragam2012]

Note that in general the microwave Hamiltonian also has a term ∼ σ̂z, even though the
microwave field is perpendicular to the static field axis (see figure 5.1). Because this term can
not induce spin flips, it is widely ignored in literature, although it might appear in higher-order
corrections as shift of the transition frequency for the duration of a pulse [Maryasov2012].
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Figure 5.1: Microwave g-factors. Because of the anisotropic erbium g-tensor, a microwave
field B⃗mw ∥ b induces always a combination of rotations σ̂x, σ̂y, σ̂z even if it is perpendicular to
the external field B⃗0 in the D1-D2 plane. Their relative strengths are given by the microwave
g-factors according to eq. 5.2, here compared with the effective g-factor geff from the static field.

5.1.2 Technical requirements for microwave control

In our experiments with bulk crystals, the signal originates from the individual contributions
of many erbium ions in an ensemble that is distributed in space and over different Zeeman
transition frequencies. In order to measure the coherence time and identify the effect of
decoupling sequences reliably, it is important that all ions behave similarly when microwave
pulses are applied.

In holeburning experiments, we measured a distribution of spin transition frequencies
over a width of ∼ 10MHz, which now defines the minimum excitation bandwidth that must
be covered by each microwave pulse. As a consequence, the pulses need to be intense, but
as short as possible – not only to ensure a wide Fourier transform and excitation bandwidth
[Freeman1998, McDonald1991], but also because short pulses can be applied at higher rates, which
increases the bandwidth at which interactions can be dynamically decoupled. In addition,
a very homogeneous microwave field is required to make sure the spatial position of each
individual ion does not play a role.

Because of the required high field amplitudes we choose to work with a microwave resonator
and place the sample in its near-field. The resonator must meet two more requirements:
first, its resonance frequency must match the electron spin-flip transition for typical static
magnetic fields of ∼ 25mT. And second, the resonator bandwidth must be high enough, not
only to cover the full inhomogeneous transition linewidth, but also to accommodate pulses of
the desired duration. For example, a resonator bandwidth of ∆ν = 10MHz would set the
minimum pulse length to ∼ 1/(2π∆ν) ≈ 16 ns.
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Which resonator design can be used and which microwave power can be deployed also
depends on the transition frequency itself: while low-frequency circuitry tends to allow for
simpler design techniques, resonant structures for frequencies below 1GHz quickly require
large dimensions that do not fit into our cryostat. On the other hand, transition frequencies
above 9GHz require expensive microwave equipment and can only be realized at consid-
erable static magnetic fields, which would let spin-lattice relaxation dominate over dipolar
interactions and eventually preclude any coherence time extension by dynamical decoupling.

Certain orientations of the static magnetic field offer large microwave g-factors, which
reduces the required power significantly. Unfortunately, at those orientations also the flip-
flop rates get very high and even exceed the excited state decay rate, which renders any
ground spin initialization by optical pumping impossible (compare figures 5.1 and 4.16).

Altogether, an absolute transition frequency of about 3GHz seems reasonable, which can
be realized with our setup for effective g-factors > 6. In the following experiments, we achieve
this by applying the external field along the D2-axis of YSO (φ = 90◦). In this configuration,
the typical inhomogeneous linewidth is about 10MHz, which we could pre-characterize in
holeburning experiments (cf. section 4.3.2; measurements will be shown later in figures 5.3b
and 5.4b).

5.1.3 Low-Q microwave resonator
Our microwave resonator is based on a design for a double split-ring resonator that is fabri-
cated as a printed circuit board (PCB) and which was shown to generate a very uniform field
[Bayat2014]. In contrast to a single split-ring resonator, which would form the most simple
resonant LC circuit, the nested arrangement of two split-rings with their gaps on opposite
sides greatly improves homogeneity of the microwave field inside (see figure 5.2a). Addition-
ally, we use a thin crystal slab of only 500 µm thickness, in direct proximity to the copper
traces in order to reduce the field inhomogeneity perpendicular to the PCB plane.

For an intuitive understanding of the design parameters, one can look at a single split-
ring LC circuit made out of thin wire, with a resonance frequency ω0 = 1/

√
LC. In a coarse

approximation, the inductance L scales linearly with the wire length while the capacitance
C is proportional to the inverse of the gap. Since a large gap degrades the field homogeneity
inside the split-ring, the resonance frequency can be tuned most effectively with the wire
length and thus the split-ring radius. In this simple picture it becomes clear that a finite-
width split-ring combines the resonance frequencies of rings at different radii, and we can
increase the design bandwidth by increasing the split-ring width.

By optimizing the parameters using a finite-difference time-domain solver (CST Microwave
Studio 2018), we finalize the resonator design with a resonance frequency at 3GHz and a
bandwidth of 50MHz (see figure 5.2b-d).
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Figure 5.2: Microwave double split-ring resonator. a) Photograph. Copper traces on
a PCB form two concentric split-ring resonators, into which microwaves are coupled via single
strip lines. The traces are highlighted for better visibility; the crystal (not shown) is placed
on top of the split-rings such that it covers the through-hole that provides optical access. b)
Magnetic field mode plot. The magnetic field vectors (arrows) and amplitudes (increasing
from blue to red) are plotted for a cross section through the PCB with the through-hole, the
inner ring copper trace and the crystal. c) Magnetic field profile. Line cuts of the mode
profile along the beam axis (blue) and perpendicular to it (red and orange) reveal an excellent
field inhomogeneity of . 2% over the typical beam width of . 0.2mm, and . 5% over the
crystal thickness of 0.5mm (solid blue line inside the crystal; dotted in air). d) Resonator
transmission. The measured resonance frequency and bandwidth (red curve) are close to the
simulated values of 3GHz and 50MHz, respectively (grey curve), but small shifts are observed
upon assembly of the resonator in a cryostat and cooldown to cryogenic temperature.

Pulse generation and amplification

Microwave pulses are coupled into the resonator via strip-lines that connect to coaxial cables.
To generate the pulses, we use a DDS source (Rhode & Schwarz SGS100A) as input for an
arbitrary waveform generator (Zurich Instruments HDAWG) that shapes the sine wave into
reproducible short pulses with controllable relative phases. These pulses are then amplified
to a maximum peak power of 100W (Mini Circuits ZHL-100W-352+) before they are fed via
the cryostat coaxial cables into the resonator. While optimized pulse shapes or composite
pulses could increase the pulse fidelity over the entire inhomogeneous linewidth, they would
also require higher peak power or longer pulses [McDonald1991, Genov2020], which would then
reduce the achievable decoupling bandwidth. Therefore, we decide to solely use rectangular
pulses in this work.
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5.1.4 Spin initialization and readout
After discussing the technical requirements of coherent spin control in the previous section,
we now turn to its implementation in measurement sequences. Since all our experiments in
this chapter were performed at low magnetic fields with a thermally distributed spin ground
state population in the ensemble, all measurements on the electron spin start with a state
preparation step, which we explain in the following.

Optical pumping as introduced in section 4.3 can be used to initialize the spin in one
particular ground state. To overcome the spin pumping efficiency limit set by the small
branching ratio (see section 4.3.1), we do not drive the spin-preserving but the spin-flip
transition with the burn laser (see figure 5.3a). Because the subsequent relaxation via the
spin-preserving transition is highly probable, an efficient population transfer into the opposite
spin ground state is possible, if sufficient laser power is available (∼ 1mW in our experiments).

To read out the ground state polarization and quantify the spin initialization efficiency,
we probe the antihole on the spin-preserving transition of the final spin state. By analyzing
its decay over time, we obtain a ground state spin lifetime of 53(5)ms, limited by flip-flops
(cf. figure 4.16). For this spin lifetime and the expected branching contrast, we can calculate
the maximum spin initialization efficiency from rate equations (eq. 4.8) and find a state
preparation efficiency of 0.9(1), in agreement with the measured antihole area relative to the
hole on the spin-preserving transition of the original spin state (see figure 5.3b).
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Figure 5.3: a) Schematics of spin initialization and readout. For spin initialization, the
burn laser drives the spin-flip transition to the excited state with opposite spin (purple arrow),
from where the spontaneous decay via a spin-preserving transition is favored (grey arrow), so
that spin population is transferred from one ground state (grey circle) to the other (yellow circle).
The ground state spin polarization is probed on the spin-preserving transition of the final spin
(orange arrow). b) Probing the spin polarization. After successful spin initialization, the
increase in absorption on the probe transition is seen as antihole (blue curve), which decays for
increasing burn-probe delays with the spin lifetime of 53(5)ms (inset). By comparing its initial
area with the spectral hole obtained when burning on the probe transition (red curve), a spin
initialization efficiency of 0.9(1) can be estimated.

Because erbium spins are only pumped if their optical transitions are addressed by the
burn laser, only a fraction of the entire ensemble is initialized. However, we do not observe a
correlation between the exact spin transition frequency of dopants and their spectral position
in the optical absorption line of the ensemble. Therefore, we expect the optically addressed
subset of ions to represent the coherence properties of the entire ensemble in the following
experiments.

Furthermore, we decide to deliberately introduce a small tilt of the magnetic field vector
perpendicular to the D1-D2 plane, so the spin transitions of both magnetic classes are sepa-
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rated and potential inhomogeneities are further reduced. The effective dopant concentration
addressed by microwave pulses is therefore reduced from initially 10 ppm (both sites, both
classes) only n ≈ 2 ppm, taking into account that 167Er isotopes have different level splittings.

5.1.5 Rabi oscillations
By applying a sequence of microwave pulses between spin initialization and readout, we can
observe its effect on the spin polarization as a change in the probed antihole area.

In a first experiment, we demonstrate coherent population transfer between the two ground
spin states by applying a single microwave pulse and varying its length tp (figure 5.4). De-
pending on the pulse area Ω tp we see population transfer into the other spin state (at odd
multiples of π) and back into the initial ground state (at multiples of 2π). These Rabi oscil-
lations P↓(tp) = sin2(Ω tp/2) are evidence of coherent spin manipulation and prerequisite for
decoupling measurements discussed in the next section.

We observe an exponential decay of the envelope function, which is caused not only
by pulse imperfections but also by a loss of coherence, partly due to dipolar interactions
[Baibekov2014]. Also, we see that the Rabi oscillation slows down with increasing pulse length.
A possible reason is heating of wires by the microwave pulse, which leads to increased resis-
tance and lower incoupling into the resonator.
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Figure 5.4: a) Measurement sequence with microwave control. After spin initialization
by burning on the spin-flip transition (purple arrow and pulse), a microwave pulse is applied on
the ground state spin transition (blue). The resulting spin polarization is read out optically on
the spin-preserving probe transition (orange). b) Readout before and after inversion. On
the probe transition, the antihole as obtained after spin initialization (blue curve) is inverted
after applying a microwave π pulse on the ground state spin transition (red curve), with a typical
pulse fidelity of 98% at the line center. c) Rabi oscillations. By varying the length of the
microwave pulse between spin initialization and readout, oscillations of the ground state spin
polarization are observed with a Rabi frequency of 2π · 14.9(1)MHz. By fitting only the first
0.3µs to a decaying sine function (solid red curve) and extrapolating it to longer pulse lengths
(dashed), a slowing down of the Rabi oscillation becomes apparent possibly due to heating of
cables and higher ohmic losses.
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While the measured spin-flip fidelity at the center of the transition reaches 0.98 (see
figure 5.4b), the average value for spins in the ensemble is lower because the flip efficiency
decays with detuning δν from the microwave frequency: [Agnello2001]

⟨sin2 θ⟩ =
∫ ∞

−∞
dδν

1

π

(∆ν/2)

(δν)2 + (∆ν/2)2
Ω2

Ω2 + (2πδν)2
sin2

(√
Ω2 + (2πδν)2 tp

2

)
(5.3)

For the Rabi frequency Ω = 2π · 14.9(1)MHz measured on resonance, and the ensemble
linewidth of the spin transition extracted from holeburning experiments, ∆ν ≈ 10MHz, we
calculate an average π-pulse fidelity of ⟨sin2 θ⟩ ≈ 0.78 for a π-pulse length of 33 ns. Such a
π pulse is a key building block of dynamical decoupling sequences that will be discussed in
the next section, together with π/2 rotations. To make sure that both pulses have the same
bandwidth and manipulate all ions in the same way, we use π/2 pulses of the same length as
for π rotations but with reduced microwave power.

5.1.6 Ramsey and spin-echo measurements
While Rabi oscillations are already a proof of coherent evolution, their exponential envelope
is not a good measure for the system’s coherence time because of the disturbance by contin-
uous microwave irradiation. A better approach is a Ramsey experiment, in which an equal
superposition state is prepared by a short pulse with area π/2, followed by a free-evolution
period. If the coherence is preserved, a second and final π/2 pulse will complete a full pop-
ulation inversion, while any dephasing reduces the readout contrast. If all pulses are much
shorter than the typical free-evolution periods, their impact on the state evolution can be
assumed to be instantaneous, and the readout signal directly reveals the coherence during a
free-evolution period.

Since the coherence time obtained in Ramsey experiments is limited by static disorder
and the inhomogeneous transition linewidth, we also employ spin-echo experiments, which
can correct for ensemble dephasing due to static frequency shifts, as shown in the following.

Ramsey experiments

A Ramsey experiment measures the phase coherence of the prepared superposition state
during a free-evolution period without any decoupling. But because the spin transition fre-
quencies in the investigated ensemble are not all exactly the same, different relative phases
will be acquired. Thus, the ensemble average over these superposition states decays over time
into a mixed state, which will appear as loss of coherence over time. The shape of the signal
decay depends on the temporal correlation of the relative detunings in the spin ensemble. It
is exponential for static disorder frequency shifts, while fast spectral diffusion could distort
the decay curve to a more Gaussian shape [Sousa2009, Bauch2020]. The observed character-
istic time T ∗

2 = 0.04(1) µs (see figure 5.5a) corresponds to an inhomogeneous linewidth of
1/(π T ∗

2 ) = 8(2)MHz, which is in coarse agreement with the observed spectral hole width of
6(1)MHz in these particular experiments. The hole width is narrower compared to fig. 5.4b,
likely because of a lower magnetic field inhomogeneity across the probed sample volume due
to a smaller beam diameter.
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Figure 5.5: a) Ramsey experiment. Because of different transition frequencies in the ensem-
ble, the ground state spin coherence as measured with a Ramsey sequence decays on a timescale
T ∗
2 = 0.04(1) µs set by the inhomogeneous linewidth (data points fitted by an exponential de-

cay). b) Spin-echo measurement. By applying a π pulse halfway through the sequence, the
dephasing due to static frequency shifts is corrected, and the resulting spin-echo coherence time
extended to T2 = 0.86(9) µs.

Spin-echo coherence time

Dephasing due to different transition frequencies in an ensemble of many ions does not reflect
the coherence of each individual spin and can be reverted. To this end, a spin-echo sequence
applies a π pulse halfway through the free-evolution period, which inverts the phases that
were acquired during the first half. After the second half of the free-evolution period all
superposition states in the ensemble refocus into the same state again, because the phases
acquired before and after the π pulse cancel out. Similarly to the Ramsey sequence, a final
π/2 pulse rotates the superposition back into one of the eigenstates again to prevent further
dephasing until readout.

In our measurements, we obtain a spin echo coherence time of T2 = 0.86(9) µs (see
figure 5.5b), which is still far from the fundamental limit T2 = 2T1 set by the ground state
spin lifetime T1 ≈ 50ms as measured in holeburning scans (cf. inset of figure 5.3b). The
reason is that the refocusing effect from the single π pulse in a spin-echo sequence can cancel
out only dephasing due to static disorder, i.e. frequency shifts which stay constant over the
entire sequence length. In contrast, the interaction among spins in the ensemble or with a
fluctuating environment can change over time and thus still induces decoherence.
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5.2 Dynamical decoupling theory
In the previous section, we found that the coherence time as obtained by spin-echo measure-
ments is orders of magnitude smaller than the fundamental limit set by the spin lifetime. This
excess dephasing originates from coupling to a fluctuating nuclear spin bath and from dipolar
interactions with other erbium spins in the ensemble, governed by the respective Hamiltonian.

A common technique to reduce excess dephasing is dynamical decoupling: by applying
quasi-instantaneous microwave pulses and rotating the spins, their effective time evolution
can be modified and shaped. Then, the interaction Hamiltonian for a free-evolution period
is replaced by an average Hamiltonian that describes the effective evolution of the prepared
superposition, and that can be designed to a great extent by the applied pulse sequence.
[Brinkmann2016]

In this section, we first present the formal framework of the Average Hamiltonian Theory
and apply it to the decoupling of erbium spins from the nuclear spin bath by π-pulse trains.
Then, we review the dipolar interaction Hamiltonian and discuss how it requires decoupling
techniques that differ from a simple π-pulse train. We derive that commonly used pulse
sequences that decouple isotropic interactions provide only a moderate coherence time exten-
sion in systems with highly anisotropic g-tensors, such as in Er:YSO. In the end, we study
modified decoupling sequences that are optimized for systems with anisotropic g-tensors and
investigate the theoretical coherence time limit set by dipolar interactions.

5.2.1 Constructing an Average Hamiltonian
A formal method to study the effect of a pulse sequence on the potential decoupling effects
is provided by the Average Hamiltonian Theory [Brinkmann2016, Choi2020]. Assuming instan-
taneous microwave pulses and an otherwise time-independent Hamiltonian, the sequence can
be split up into time intervals τk of free evolution, but each with a modified Hamiltonian Hk

that takes into account the current spin orientation due to the preceding rotations. Then,
the phase evolution of the whole sequence can be described by an average Hamiltonian H̄,
which reads to the zeroth order as

H̄ =

∑
k τkHk∑
k τk

(5.4)

To find the free-evolution Hamiltonians in between the pulses, it is common to write them
in the interaction frame of the microwave field, also referred to as ‘toggling frame’. The effect
of microwave pulses in this frame are rotations of the spins.

For example, a simple π pulse maps the spin z-component σ̂z onto −σ̂z so that the phase
evolution by any Zeeman-like perturbation of the form H0 = ϵ σ̂z will be reversed after the
pulse, H1 = ϵ (−σ̂z). As a consequence, in a spin-echo sequence, where the system spends
equal periods of time in either orientation, the Zeeman Hamiltonians before and after the
pulse cancel out, and the phase evolution is independent of static disorder as caused by
inhomogeneous magnetic fields. Thus, the system is – to first order – decoupled from Zeeman
interactions, and longer coherence times can be achieved.

In general, decoupling sequences aim to construct an average Hamiltonian that does not
contain certain interaction terms or even equals zero; the required sequence depends on the
type of interaction.
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Free-evolution Hamiltonians for rotated spins

For more complex pulse sequences, we need to understand how the free-evolution Hamiltonian
after some π/2 rotations around the x- and y-axis of the toggling frame depends on the initial
spin components. To this end, we need to find out which component of the initial spin state
is aligned with the coordinate axes of the toggling frame. In general, we can express every
spin component σ̂i by the projection of the spin vector ˆ⃗σ on the respective basis vector e⃗i of
the toggling frame, σ̂i = e⃗i · ˆ⃗σ.

To account for the effect of a π/2 pulse, the spin vector ˆ⃗σ in the subsequent Hamiltonian
needs to be replaced with the rotated vector R · ˆ⃗σ, where the matrices for π/2 rotations
around the x- and y-axis of the toggling frame are defined as follows (see figure 5.6):

Rx =

1 0 0
0 0 −1
0 1 0

 , Ry =

 0 0 1
0 1 0

−1 0 0

 (5.5)

yx

z

yz xz

y

x

(π/2)y (π/2)x

Figure 5.6: Example of average Hamiltonian contributions after rotation pulses. A
Zeeman-like Hamiltonian H0 = ϵ σ̂z will depend on the projection of the rotated spin vector
R · ˆ⃗σ on the z-axis basis vector e⃗z after the application of microwave pulses. Concatenated
pulses will appear as multiplication of their rotation matrices, here depicted for a sequence of
a π/2 rotation around the y-axis of the toggling frame, Ry, followed by a rotation around the
x-axis, Rx. The bottom row depicts the orientation of spin vector components σ̂x, σ̂y, σ̂z in
the toggling frame, in which microwave pulses are applied. The spin vector projection onto the
z-axis is highlighted as it determines the effective contribution to the Zeeman-like Hamiltonian.

Pulse imperfections, robustness of decoupling sequences, and higher-order correc-
tions

In real experiments, the average Hamiltonian alone can not explain all observations. For
example, a large variety of π-pulse trains shares the same average Hamiltonian but yield
different coherence decays [Gullion1990]. The reason are imperfections in the experimental
realization of the decoupling sequence, leading to different error sources: the finite pulse
length and possible deviations in the rotation angle and axis [Choi2020].

First, the finite length tp of a microwave pulse does not only modify the effective time
spent in each free-evolution interval. By breaking each π pulse into two finite-length π/2
pulses, one can see that the spins also spend some time in an intermediate orientation with
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its own energy shifts and interaction matrix elements. Furthermore, for each pair of spins, a
cross-interaction error can occur, which describes the interaction of one spin before the pulse
with the other spin after it.

Second, any imperfection in the pulses leads to rotation errors: a deviation in microwave
power results in an over- or under-rotation (i.e., a rotation angle not equal to π or π/2),
while a detuned microwave frequency causes a tilt of the rotation axis. To make decoupling
sequences robust against such imperfections, the relative phases and rotation axes in a train
of π pulses should follow certain order [Souza2012].

In [Choi2020], an algebraic set of robustness conditions was derived that takes all the above
imperfections into account. As a rule of thumb, a higher symmetry of the pulse pattern
increases its robustness [Mansfield1971, Souza2012], for example, because an error introduced by
one particular pulse can later be reversed by another pulse with opposite phase.

These symmetrization techniques can also reduce the impact of higher-order terms in the
designed decoupling sequence. The simple expression for the average Hamiltonian in eq. 5.4 is
only the first term of a series representation for the propagation operator. Higher-order terms
of this so-called Magnus expansion include commutators of the Hamiltonians for all free-
evolution intervals. The first-order correction, for example, reads [Choi2020, Brinkmann2016]

H̄(1) =
−i

2~T

n∑
k

k∑
l

[τlHl, τkHk] , (5.6)

where the sums iterate over a total number of n free-evolution intervals with Hamiltonians
Hk and lengths τk, and T =

∑n
k τk is again the total sequence length.

5.2.2 Decoupling interactions with off-resonant spin baths

One of the major sources of excess dephasing of erbium spins in YSO is their coupling to a
bath of yttrium nuclear spins, which produce fluctuating local magnetic fields at the erbium
sites. Since this coupling is a Zeeman-like perturbation, it can be canceled out by π pulses
that invert the erbium spins, as outlined in the beginning of section 5.2.1.

A single π pulse, however, can only decouple static disorder, i.e. frequency shifts that do
not change over the entire sequence length, but it can not correct for fluctuating frequency
shifts induced by dynamics in the nuclear spin bath. In a common approach towards a
higher decoupling bandwidth, multiple refocusing sequences are concatenated, and π pulses
are applied at a faster rate. [Biercuk2011, Bar-Gill2012]

Such a train of decoupling pulses also allows for varying the rotation axes in order to make
the sequence more robust against pulse imperfections. Instead of applying only (π)x-pulses,
for example, one could alternate between (π)x- and (π)y-pulses, so that the decoupling effect
does not depend on the initialization axis of the input state. Two such universal decoupling
sequences that consist only of π pulses are XY-4 and XY-8 (see figure 5.7) [Kawakami2016,
Souza2012, Gullion1990], which we will also use in our experiments in section 5.3.

For optimal decoupling, the spacing between the π pulses needs to be shorter than the
correlation time of the the magnetic environment, whose upper bound is the lifetime of the
nuclear spins. In addition, stronger correlation is expected on a much shorter time scale
determined by the nuclear spin precession frequencies [Childress2006]. For Er:YSO, the yttrium
gyromagnetic ratio of ≈ 2MHz/T and the magnetic field of several 100mT induced by the
erbium spins (cf. figure 4.5b) let us expect a characteristic time scale of the order of ∼ 1 µs
for the nuclear spin bath dynamics at low magnetic fields (in agreement with [Car2020]).

In general, such decoupling of a fluctuating spin bath is not restricted to nuclear spins
but also applies to dissimilar paramagnetic impurities, such as erbium spins on site 2 or
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Figure 5.7: Pulse sequences for decoupling from a fluctuating spin bath. While a simple
spin-echo sequence uses only a single refocusing π pulse (a), a higher decoupling bandwidth can
be achieved by a train of π pulses, as in XY-4 (b) and XY-8 (c). Because these two sequences
combine rotations around x- and y-axis, they are universal, i. e. they work equally well for any
input state. By concatenating XY-4 with its phase-shifted variant, the XY-8 sequence gains
more robustness against pulse imperfections.

site-1-dopants of magnetic class II, as well as other rare-earth impurities and charge traps
with g ≈ 2. All these electron spins that are not resonant with the microwave pulses have
fast precession frequencies in the interaction frame of the optically addressed erbium ions,
and their coupling averages out to a perturbation that is equivalent to an effective magnetic
field. Therefore, the interaction with any off-resonant spins can be expressed as Zeeman-like
perturbation ∼ ϵ σ̂z and decoupled by a train of π pulses.

For similar erbium spins, however, such treatment as effective magnetic field perturbation
is no longer possible in the context of decoupling, because both dopants of an interacting
spin-pair are affected by microwave pulses in the same way.

5.2.3 Dipolar interactions with resonant erbium spins
When we apply the refocusing π pulse in a spin-echo experiment, we do not only invert the
spin polarization of the optically addressed dopants but also flip all resonant erbium spins that
they are interacting with. Consequently, every microwave pulse alters the local spin configu-
ration and redistributes the transition frequencies in the ensemble, thus causing instantaneous
spectral diffusion (see figure 5.8). The inhomogeneous linewidth ∆νfwhm associated with this
effect limits the coherence time to T2 = (π∆νfwhm)

−1.
We can calculate the instantaneous diffusion linewidth with the formula for dipolar broad-

ening derived from integration over all interacting spin pairs (cf. section 4.2.3 and A.1):

∆νfwhm =
2π

9
√
3
µ0hγ

2
eff neff (5.7)

Here, the dopant concentration n is replaced by an effective concentration neff = n ⟨sin2 θ⟩,
because due to pulse imperfections and inhomogeneities only a fraction ⟨sin2 θ⟩ of all similar
erbium spins is inverted by the π pulse. Because the spin transitions of site-1-dopants of
class II, site-2-dopants, and 167Er isotopes are far detuned, the concentration of similar erbium
spins is reduced to n = 2ppm. Assuming that the inhomogeneous linewidth as derived from
the spin-echo coherence time of 0.86(9) µs (fig. 5.5b) is solely determined by instantaneous
spectral diffusion, we find that ⟨sin2 θ⟩ ≈ 0.73, in agreement with the value 0.78 independently
deduced from the Rabi frequency and the ensemble linewidth (section 5.1.5).

Clearly, a smaller rotation angle would lower the pulse fidelity and reduce the dipolar
broadening, thus enabling longer coherence times [Lim2018, Petersen2018]. For quantum mem-
ories or sensing, however, the entire ensemble of optically addressed spins needs to be decou-
pled.

In the following, we investigate to which extent the coherence limitation set by instanta-
neous diffusion can be alleviated by dynamical decoupling with tailored sequences. To this
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π

Figure 5.8: Effect of a microwave π pulse on resonant and off-resonant spins. The
effective magnetic field generated by nuclear spins and off-resonant paramagnetic impurities
remains unaffected when a π pulse is applied (top panel). Thus, the inversion of an optically
addressed spin decouples it efficiently from the off-resonant spin bath. In contrast, similar
erbium spins that are resonant with the microwave will be inverted, too (bottom panel). As a
result, the local magnetic environment of optically addressed spins is changed by each π pulse,
which precludes efficient decoupling.

end, we recall the dipolar Hamiltonian and discuss the effect of microwave pulses more for-
mally in the framework of the Average Hamiltonian Theory, before we analyze their potential
for dynamical decoupling.

Dipolar coupling Hamiltonian

The coupling between two erbium electron spins with magnetic moments m⃗1 and m⃗2 is gov-
erned by the magnetic dipole-dipole interaction Hamiltonian

Hdd =
µ0

4π r3
[m⃗1 · m⃗2 − 3(m⃗1 · r̂)(m⃗2 · r̂)] , (5.8)

where r̂ is the unit vector connecting the spins and r is the distance.
In section 2.4.1 we have derived an expression of this coupling Hamiltonian in the Zeeman

eigenbasis with
Hdd = JS (σ̂xσ̂x + σ̂yσ̂y) + JI σ̂zσ̂z, (5.9)

where JS and JI contain all dependencies on orientation and position of the dopants relative
to the external magnetic field.

By their action on the eigenstates, we identified JS as flip-flop coefficient and JI as spectral
diffusion coefficient that induces state-dependent frequency shifts, because

⟨↑↑|Hdd |↑↑⟩ = JI (5.10)
and ⟨↑↓|Hdd |↓↑⟩ = 2 JS. (5.11)

From these matrix elements, we can derive the dipolar transition linewidth ∆νfwhm and
the flip-flop rate ΓFF by summing over all interacting spin pairs and averaging over random
distributions, as done in sections 4.2.3 and 4.4.3. While the flip-flop rate sets a limit to the
spin lifetime, T1 ≤ Γ−1

FF, the inhomogeneous linewidth due to dipolar broadening limits the
maximum achievable coherence time, T2 ≤ (π∆νfwhm)

−1, because of instantaneous spectral
diffusion. Therfore, the task is to find a sequence that not only decouples a Zeeman term ϵ σ̂z

but also the spectral diffusion term JI σ̂zσ̂z.
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Dipolar interaction Hamiltonian under global rotations

In contrast to the Zeeman-like interaction with an off-resonant spin bath, the dipolar coupling
with similar erbium spins is not governed by a single-qubit operator σ̂z, but by the two-qubit
operator σ̂zσ̂z.

In a typical experiment, all spins at certain transition frequency will be addressed by the
microwave pulses, so we can apply only global rotations that affect both spins in the same way.
Therefore, while a π pulse maps σ̂z onto −σ̂z, it will leave σ̂zσ̂z unchanged. Still, rotations
by π/2 will map σ̂zσ̂z onto σ̂xσ̂x or σ̂yσ̂y and vice versa, but they can never invert the sign.
Formally, this can be derived by substituting both spin components with the projections
of the rotated spin vectors on the coordinate axes, as shown in section 5.2.1, for example
σ̂xσ̂x → (e⃗x ·R · ˆ⃗σ) ⊗ (e⃗x ·R · ˆ⃗σ).

As a consequence, it is not possible to eliminate an individual interaction term, like σ̂xσ̂x,
in the average Hamiltonian. More generally, it can be shown that the isotropic interaction
term ˆ⃗σ · ˆ⃗σ remains invariant under any global rotations [BenAttar2020, Choi2017]. In our case,
the isotropic Hamiltonian reads

Hdd,iso =
2JS + JI

3
(σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z) (5.12)

=
µ0

12π r3
µ2
B

4

∑
i∈{x,y,z }

g2i
(
1− 3 r2i

)
ˆ⃗σ · ˆ⃗σ, (5.13)

where gi and ri are the g-tensor eigenvalues and the components of the unit vector connecting
the spins, r̂, in the g-tensor eigenbasis.

Apparently, for systems with isotropic g-tensor (gx = gy = gz) this isotropic Hamiltonian
equals zero, because

∑
i (1− 3 r2i ) = 3 (1− |r̂|2) = 0, and full decoupling is possible. This

is not the case, however, for erbium dopants in YSO with their highly anisotropic g-tensor.
Here, full decoupling of dipolar interactions is not possible, because the isotropic part of the
coupling Hamiltonian will stay non-zero for any average Hamiltonian.

5.2.4 Decoupling dipolar interactions: symmetric sequences
There exist plenty of pulse sequences that were designed to decouple interactions in spin
ensembles with isotropic g-tensors [Haeberlen1968, Mansfield1981, Waeber2019]; the earliest of
which, known as WAHUHA sequence, however lacks of robustness against pulse errors and
does not achieve decoupling from static disorder. Recently, a more complex variant, ‘DROID-
60’ (‘Disorder-RObust Interaction-Decoupling’), was designed to meet both needs (figure 5.9):
a robust sequence that can decouple not only disorder from static shifts or slowly fluctuating
nuclear spin baths but also dipolar interactions [Choi2020].

Since global rotations by π do not induce any change in the interaction Hamiltonian,
DROID-60 and similar sequences also consist of several π/2 pulses. Their action on the spins
can be seen as a tilt of the effective precession axis, and in this sense it is similar to the
decoupling achieved by fast rotation of the entire sample, also known as magic-angle-spinning
[Laws2002, Hennel2005]. Interaction components perpendicular to the effective precession axis
will average out, and if the axis orientation relative to the external magnetic field is chosen
adequately, the dipolar frequency shift will be zero. According to the angle dependence of JI
(eq. 2.18), this would be the case if (1− 3 cos2 αeff) = 0, i. e. for the magic angle αeff = 54.74◦

between the effective precession axis and the magnetic field.
Unfortunately, full decoupling by magic-angle-spinning is not feasible in our work, because

the spinning frequency would need to exceed the interaction strength of ∼ 1MHz in our sam-
ple and a macroscopic rotation of the sample is hardly compatible with optical spectroscopy
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Figure 5.9: Symmetric pulse sequences for decoupling of interactions. WAHUHA (a)
is the simplest decoupling sequence that yields an isotropic average Hamiltonian and consists
only of π/2 pulses. The DROID-60 sequence (b) combines π/2 and π pulses for additional
decoupling from the spin bath, and because it concatenates all possible phase-shifted variants,
it is very robust against any pulse imperfections. Since all pulse spacings between its π/2 pulses
are symmetric, it produces an isotropic average Hamiltonian.

that requires a dedicated optical mode. Therefore, we investigate more closely the decoupling
potential of microwave pulse sequences.

DROID-60 in its original form, like many other pulse sequences designed to decouple
interactions, consists of symmetric pulse spacings between the π/2 rotations, so that the
average Hamiltonian reduces to the isotropic term of the interaction, Hdd,iso [Farfurnik2018,
Choi2020]. Although this is not sufficient for full decoupling in our system with an anisotropic
g-tensor, we first analyze its effect on dipolar broadening, before we discuss how it can be
tailored to our material.

Coherence time limit for an isotropic average Hamiltonian

In the isotropic Hamiltonian, the coefficient of the σ̂zσ̂z diffusion term is changed from JI to
(2JS + JI)/3. It is not clear, however, if or under which circumstances such change actually
reduces the dipolar linewidth. Such analysis requires knowledge about the relative magnitudes
of both coefficients JS and JI .

Because both coefficients depend on the relative orientation of the connecting vector r̂
to the directional vectors u⃗ i of the magnetic moments, an exact analytical comparison is
difficult. For a qualitative understanding, we neglect the angle dependencies for now and
only compare the magnitudes of the directional vectors (figure 5.10a).

Because of the high g-tensor anisotropy and the non-linear dependence of the gyromagnetic
ratio (see eq. 2.19), we find that for almost all orientations of the external magnetic field, the
magnetic moment is well aligned with its precession axis u⃗ z, which is mostly determined by
the g-tensor principal axis with the largest eigenvalue, gz. While such alignment close to the
precession axis protects effectively against spin-flips (indicated by a small JS coefficient), it
also means that by intermixing JS and JI , the dipolar broadening term can be reduced for
almost all magnetic field orientations.

For an exact comparison of the dipolar broadening for an isotropic Hamiltonian produced
by a DROID-60 sequence (fig. 5.10b), we again sum over the frequency shifts of all interacting
spin pairs, now governed by the new coefficient (2JS + JI)/3, and evaluate its solid angle
dependence numerically along the lines of the derivation in the appendix A.1.

5.2.5 Decoupling limit for dipolar interactions: asymmetric sequences

In the last section, we have shown why traditional decoupling sequences like WAHUHA or
DROID-60 work well for systems with isotropic g-tensors but fail to fully decouple interactions
between dopants with anisotropic g-tensors. Now we discuss how such symmetric decoupling
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Figure 5.10: a) Relative magnitude of dipolar coupling coefficients. The spectral
diffusion coefficient JI is related (via the effective gyromagnetic ratio) to the magnitude of the
magnetic moment along its precession axis, |u⃗ z|2, while the flip-flop coefficient JS scales with
the magnitude of the magnetic moment perpendicular to its precession axis, |u⃗x|2 + |u⃗ y|2. b)
Coherence time limit by instantaneous diffusion. Decoupling sequences like WAHUHA
or DROID-60 produce an isotropic average Hamiltonian by intermixing the coefficients JS and
JI . As a consequence, the impact of instantaneous diffusion is reduced where JS < JI . The
coherence times were calculated from the dipolar linewidth (eq. 5.7 and A.1) for an effective
concentration of resonant spins of 2 ppm.

sequences could be modified in order to maximize their efficiency to suppress instantaneous
diffusion in our system.

Since dipolar broadening, which leads to instantaneous diffusion, is only caused by σ̂zσ̂z

terms of the average Hamiltonian, these contributions should be reduced as much as possible,
which could be achieved by intermixing JI and JS contributions (cf. figure 5.10). Because
global rotations can not eliminate individual terms and leave the isotropic Hamiltonian in-
variant, a suppression of the σ̂zσ̂z terms comes at the price of increasing the weight of the
flip-flop terms σ̂xσ̂x + σ̂yσ̂y.

Redistributing interaction terms by modified pulse spacings

Engineering the average Hamiltonian in order to enhance or suppress certain interaction terms
can be achieved by modifying the pulse spacings of a sequence like WAHUHA or DROID-60
[Farfurnik2018, Mohammady2018, Choi2020]; the resulting pulse train will inherit most robustness
properties from the original decoupling sequence. For our purpose, we want to substitute the
large JI σ̂zσ̂z terms with smaller JS σ̂zσ̂z ones that appear for rotated spins. To this end, we
need to shorten the time intervals during which the σ̂z component is aligned with the z-axis
of the toggling frame.

[Choi2020] already suggest a modified WAHUHA+echo sequence in which the σ̂z component
spends only a fractional time c τ aligned with the z-axis, compared with a time interval
(1 − c)τ/2 spent along x and y, each. Similar modification can be made to the DROID-
60 sequence; the resulting average Hamiltonian has the same form as eq. 5.9 but with new
coefficients J̃S and J̃ I in place of JS and JI [Choi2020]:

Hdd = J̃S (σ̂xσ̂x + σ̂yσ̂y) + J̃ I σ̂zσ̂z, (5.14)

with
J̃S =

1 + c

2
JS +

1− c

2
JI , J̃ I = (1− c)JS + c JI . (5.15)
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Here, the parameter c determines how the dipolar interaction is distributed on the spectral
diffusion and the flip-flop term. For c = 1 we retrieve the original Hamiltonian without
decoupling, and for c = 1/3 we reproduce the conventional DROID-60 sequence and the
results for an isotropic Hamiltonian. Any other value of c will distort the original pulse
spacings and requires a more asymmetric pulse pattern (see figure 5.11b for a maximally
asymmetric sequence, c = 0).

Although the construction of such sequence might look arbitrary at first sight, it can be
shown that any decoupling sequence built from rotations of the Clifford group (π/2 rotations
around the x- or y-axis) will have this form [BenAttar2020, Choi2017, Frydrych2015]. Note,
though, that the effect of non-Clifford rotations in decoupling sequences is rarely studied,
but [BenAttar2020] suggest that the use of rotations of the icosahedral group (with pulse areas
of 2π/5) could introduce other terms, for example by interchanging (σ̂xσ̂x − σ̂zσ̂z) with
(σ̂xσ̂z + σ̂zσ̂x).

Optimum decoupling sequence for Er:YSO

As we have seen in figure 5.10, for most magnetic field orientations the dipolar broadening
could be reduced by substituting JI completely by JS , which can be realized for a value of
c = 0. The resulting sequence would be quite asymmetric as several pulse spacings would be
contracted to zero, resulting in an average Hamiltonian

Hdd,c=0 =
JS + JI

2
(σ̂xσ̂x + σ̂yσ̂y) + JS σ̂zσ̂z. (5.16)

For this average Hamiltonian, we again calculate the expected linewidth broadening and
the corresponding maximum coherence time, and also the respective flip-flop rate (see fig-
ure 5.11). Because now the large coefficient JI has been shifted to the flip-flop terms
(σ̂xσ̂x + σ̂yσ̂y), the spin lifetime has been decreased, and for an orientation of the exter-
nal magnetic field between φ = 90◦ and 160◦ the coherence time is no longer limited by
instantaneous diffusion but by the spin lifetime, which is set by flip-flops.

However, we will not observe a significant coherence time extension for asymmetric decou-
pling sequences in our experiments, because for realistic conditions the asymmetry parameter
is limited to c & 0.2. This lower bound can be calculated by taking into account the finite
pulse widths of 33 ns, which is not negligible compared with a typical pulse spacing of about
100 ns.

In addition, by calculating the commutators between the Hamiltonians for the individual
free-evolution periods, the first higher-order correction to the average Hamiltonian can be
estimated (see eq. 5.6). While the quantitative analysis is difficult because the coefficients of
the σ̂iσ̂i terms are now products of JS and JI and the correct order of averaging over time
and over pairs of interacting spins is not trivial, one finds that the higher-order correction
favors an isotropic Hamiltonian.

Unfortunately, the maximum coherence time extension by two orders of magnitude can
only be achieved for an optimal asymmetric decoupling sequence with c = 0, and the realistic
value of c = 0.2 limits the best possible coherence time already to a value only 1.5 times
longer than for an isotropic Hamiltonian. The reason for this extreme sensitivity is again
the high anisotropy of the g-tensor for erbium in YSO. While the interaction coefficients JS
and JI are orders of magnitude apart, their mixing in the average Hamiltonian occurs only
linearly, and the large JI term dominates for a wide range of parameters.
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Figure 5.11: Symmetric (a) and asymmetric (b) DROID-60 decoupling sequence.
For systems with highly anisotropic g-tensors like Er:YSO, the longest coherence times would
be excepted for a modified DROID-60 sequence with asymmetric pulse spacings, realizing c = 0
in the limit of infinitesimally short pulses, where c is the asymmetry parameter (see eq. 5.15). c)
Effect of decoupling sequences on lifetime and coherence time limits set by dipolar
interactions. By numerical integration over all interacting spin-pairs, we calculate the coher-
ence time from the dipolar linewidth broadening (solid curves) and the lifetime from the average
flip-flop rate (dashed curves), without decoupling (c = 1, black), for an isotropic Hamiltonian
as obtained for a DROID-60 sequence (c = 1/3, red), the maximum effect for a completely
asymmetric sequence (c = 0) and a realistic sequence with finite pulse widths (c = 0.2, yellow).

Decoupling limit for other host materials

The findings of our analysis can be extended to other host materials as well (see figure 5.12).
In general, in systems with a highly prolate g-tensor, gz ≫ gx, gy (like for Er:YSO or

Er:LiNbO3), for a large range of orientations a very asymmetric decoupling sequence (c = 0)
could extend the interaction-limited coherence time by up to two orders of magnitude, while
an isotropic Hamiltonian (c = 0.33) obtained for realistic sequence parameters only allows
for a moderate decoupling.

In material systems with a very oblate g-tensor, gx, gy ≫ gz (like for Er:CaWO4), sym-
metric decoupling sequences typically perform better than asymmetric ones. However, all
decoupling sequences lead only to a moderate increase of the coherence time by at most
a factor of 3. Intuitively, this is clear, because two of three magnetic moment directional
vectors u⃗ i have large magnitudes; consequently there is no huge difference between the inter-
action coefficients JS and JI , and intermixing them does not change the resulting dynamics
significantly.
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Figure 5.12: Effect of decoupling sequences on lifetime and coherence time limits set
by dipolar interactions in Er:LiNbO3 (a) and Er:CaWO4 (b). We calculate the coherence
time limit from the dipolar linewidth (solid curves) and the lifetime from the flip-flop rate (dashed
curves) for other host crystals with the same optical depth (2 ppm of resonant spins): (a) LiNbO3

as another material system with a highly prolate g-tensor [Thiel2012b], and (b) CaWO4 with a
very oblate g-tensor [Bertaina2007]. The results depend on the asymmetry parameter of the
decoupling sequence, c: starting from the original Hamiltonian without decoupling (c = 1,
black), an isotropic average Hamiltonian (c = 0.33, red) extends the coherence time for most
magnetic field orientations in all systems. With very asymmetric sequences (c = 0, blue), a
further reduction of instantaneous diffusion is possible only for prolate g-tensors (a) but not for
oblate ones (b).
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5.3 Dynamical decoupling experiments
In the spin-echo measurements on the ground-state spin transition we obtained a coherence
time of 0.86(9) µs. By comparing it with the expected instantaneous diffusion based on
the concentration of addressed dopants and the effective π-pulse fidelity, we found good
agreement, indicating a coherence time limit set by dipolar interactions. For coupling to the
fluctuating nuclear spin bath, however, we expect a characteristic time of a similar order of
magnitude.

In this section, we separate the impact of the fluctuating off-resonant spin bath and the
instantaneous diffusion from resonant spins by performing decoupling experiments not only
on the ground-state spin transition but also between excited states. Because optical excitation
selects only a small subset of erbium ions (∼ 1%), the concentration of resonant spins in the
excited state is greatly reduced and instantaneous diffusion is minimized (see figure 5.13).
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Figure 5.13: Comparison of dynamical decoupling in ground state (a) and excited
state (b). For ground-state experiments (a), optical pumping (purple arrow) is required to
prepare a non-equilibrium spin polarization (population depicted as yellow circles). Microwave
pulses (blue arrow) always address all dopants, which leads to strong instantaneous spectral
diffusion. To measure the coherence in the excited state (b), a burn pulse on the spin-preserving
transition is sufficient to prepare the initial state. Because only the optically selected subset is
resonant with microwave pulses, instantaneous spectral diffusion is orders of magnitude smaller
than in ground-state experiments.

5.3.1 Decoupling in the excited state

The experimental setup for decoupling measurements on the excited state is basically the same
as for studies on the ground state, and although we apply static and microwave magnetic field
along different orientations (B⃗0 ∥ b, B⃗mw ∥ D2), this particular choice does not restrict our
findings. Because no ground state spin polarization is required, we apply only a short pulse on
the spin-preserving transition for spin initialization in the excited state, and we also probe its
population after a shorter delay time before it spontaneously decays on a 11ms timescale. By
comparing the area of the spectral hole with the entire ensemble absorption line, we estimate
that the effective concentration of dopants in the excited state is only a few percent of all
ions in one magnetic class.

On the excited-state spin transition, we measure a spin-echo coherence time of 1.7(1) µs,
which is already longer than what we had observed previously in the ground state but is in
excellent agreement with predictions for coupling to the nuclear spin bath [Kornher2020]. In
addition, we can significantly extend the coherence time by applying a train of π pulses, which
indicates that it is no longer limited by instantaneous spectral diffusion (figure 5.14a). In fact,
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we find a power-law scaling of the coherence time with the number of π pulses, T2 ∼ (nπ)
2/3

(fig. 5.14b), as predicted for decoupling from a fluctuating spin bath with Lorentzian spectral
noise density [Sousa2009, Bar-Gill2012, Gong2017, Medford2012].

Intuitively, this can be understood by noting that the observed coherence decays for all
measured (XY-4)N sequences collapse into a single curve when plotted against the pulse
spacing τ (figure 5.14a inset). As long as the pulse spacing is shorter than the correlation
time of the environmental spin bath, τc, the sequence can revert all dephasing, but for pulse
spacings longer than τc the environment is randomized and the decoupling efficiency drops.

Initially, it is not clear whether the decoupled fluctuations originate from nuclear spins or
from other erbium electron spins; the measurable spin-echo coherence time depends not only
on the bath correlation time but also on its diffusion linewidth ∆ω. Depending on the exact
model, the order of magnitude is given by T2 ≈ (∆ω τc)

1/2 [Lim2018, Zhong2015a] or rather
T2 ≈ (∆ω)2/3 τ 1/3c [Sousa2009].

On the one hand, the contribution of neighboring yttrium ions to spectral diffusion
is strongly suppressed because of the frozen-core effect (cf. section 4.2.4) [Böttger2006b,
Arcangeli2014, Zhong2015a]. On the other hand, the reorientation of erbium magnetic mo-
ments upon optical excitation will significantly affect the yttrium spins, as their induced
fields dominate over the external field of about 22mT (cf. fig. 4.5b). In addition, we expect
a correlation of nuclear spin precession on a timescale set by γB, with the gyromagnetic
ratio of yttrium, γ ≈ 2MHz/T, which could explain the apparent correlation time of a few
microseconds (inset of figure 5.14a).
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Figure 5.14: a) XY-4 decoupling in the excited state. Because of their lower concentration,
the coherence of optically excited dopants is not limited by instantaneous diffusion but by a
fluctuating spin bath, which can be decoupled using multiple XY-4 sequence blocks. The read-
out hole depth decays as exp

[
−(t/T2)

3
]

(fits as solid curves), almost exclusively determined by
the pulse spacing (inset). b) Power-law for dynamical decoupling. Up to a value of 48(3) µs
for nπ = 64 pulses, we observe a scaling of the coherence time with the number of decoupling
pulses as T2 ∼ (nπ)

2/3 (green dashed line), as predicted for dephasing due to a fluctuating spin
bath with Lorentzian spectral noise density.
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5.3.2 Decoupling in the ground state
From the decoupling experiments on the excited state we know the coherence time limit set
by the fluctuating spin bath. In this section, we turn to the ground-state spin again and
attempt decoupling of resonant spins.

First, we apply XY-4 and XY-8 sequences, which have enabled effective decoupling of the
excited state from the spin bath but are known to have no effect on dipolar interactions. As
expected, we observe no significant improvement (fig. 5.15a), which supports our hypothesis of
a limit set by instantaneous spectral diffusion. In this case, the magnetic environment changes
with each π pulse, and the diffusion speeds up with increasing decoupling bandwidth.

In order to decouple dipolar interactions, we instead use the DROID-60 sequence [Choi2020].
On the one hand, it simultaneously achieves decoupling from the fluctuating spin bath, which
would otherwise limit the coherence time for long sequence lengths. On the other hand, it
is designed to be very robust against pulse imperfections, which is particularly important for
sequences that consist of many pulses. Using DROID-60 decoupling, we obtain a coherence
time of 2.5(4) µs, which is in perfect agreement with the theoretical prediction for an isotropic
average Hamiltonian (see figure 5.15b, predicted decay as dashed red line).

We did not observe a significant increase in coherence time by a modified DROID-60
sequence with more asymmetric pulse spacings (not shown). Because the finite pulse lengths of
33 ns in our experiments severely limit the achievable asymmetry parameter and the maximum
coherence time extension (as discussed in section 5.2.5), we leave a more systematic study for
future work.
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Figure 5.15: Decoupling in the ground state. (a) π-pulse trains like XY-4 and XY-8 do
not provide significant improvement compared with a spin-echo (exponential fits as solid lines),
because they can not decouple resonant spins. All three data sets were taken at a magnetic
field along φ = 130◦ in the D1-D2 plane, with the magnetic classes slightly detuned (2 ppm
similar spins). (b) In contrast to π-pulse trains, the DROID-60 sequence yields a coherence time
extension up to 2.5µs, in agreement with the theoretical prediction from section 5.2.3 (dashed
red line). Furthermore, we can demonstrate the scaling of instantaneous diffusion with the
concentration of resonant spins: by aligning both magnetic classes we double the concentration
of similar spins to 4 ppm, and observe a coherence time reduction by a factor of ∼ 2, as expected
for instantaneous diffusion. These curves were measured at a static magnetic field parallel to
the D2-axis.
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6 Cavity-enhanced spectroscopy

The size of quantum networks can be increased by quantum repeaters [Briegel1998], whose
implementation requires the ability to generate spin-photon entanglement with high efficiency
and at a fast repetition rate. In this respect, the weak interaction of single ions with light
in general and the long excited state lifetime of erbium in YSO in particular pose a serious
challenge.

Although it might be tempting to increase the number of interacting dopants by raising
the dopant concentration in the host crystal and creating strong ensemble absorption lines, we
have seen in the previous chapter that dipole-dipole interactions between dopants impact their
spin lifetime and coherence properties, and thus low dopant concentrations seem favorable.
Enlarging the crystal dimensions would be possible but only to some extent, because technical
constraints and inhomogeneities of crystal and control fields will limit the fidelity of operations.

Instead, the most promising approach to boost both the readout signal and the interaction
strength between light and ions makes use of an optical resonator. By embedding the crystal
in an optical cavity formed by two mirrors, light that is reflected back and forth will interact
with the dopants effectively a few thousand times (figure 6.1). In addition, the scattered light
will be emitted primarily into the well-defined cavity mode, which allows for high detection
efficiencies.

In this chapter, we first briefly review the important terms and parameters that lead to the
Purcell effect. Then, we describe the experimental details of the cavity design and assembly,
including mirror fabrication, crystal preparation, and tuning and stabilization capabilities,
before turning to the optical measurements. We perform fluorescence and photon echo ex-
periments and demonstrate outstanding optical coherence properties. A model of the cavity
geometry and the distribution of dopants at different coupling strengths to the light field
supports our findings and makes predictions about the properties of optimally coupled single
ions.

crystal air gap DBRDBR

tuning
with a piezo tube

Figure 6.1: Cross section of cavity and mode profile. Two distributed Bragg-reflectors
(DBR) form the mirrors of our cavity. The YSO crystal with erbium dopants is bonded to the
planar mirror, and the air gap to the concave mirror can be tuned with a piezo tube.
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6.1 Erbium-doped crystals in a cavity
Several attempts have been made to couple erbium dopants to optical resonators: the tightest
confinement of light and the highest coupling strengths can be achieved in photonic crystal
cavities. Such devices can be carved directly into the host crystal [Miyazono2016], but their
fabrication by focused ion beam milling likely creates lattice defects and charge traps that
potentially lower the coherence of erbium dopants. Alternatively, the nanophotonic cavity
can be fabricated from a separate chip and made of a different material, like silicon [Di-
bos2018]. By bringing the Er:YSO crystal into contact with the resonator, dopants couple to
its evanescent field. While this approach reduces the risk of fabrication-induced crystal dam-
age, the addressed dopants are still close to an interface with potential charge fluctuations.
Furthermore, the different thermal expansion coefficients of silicon and YSO induce strain at
cryogenic temperature, which increases the ensemble inhomogeneity.

In this work, we take a different route and embed the crystal in a Fabry-Perot resonator.
A similar approach has been studied in [Casabone2020], where erbium-doped Y2O3 nanocrys-
tals were coupled to a Fabry-Perot fiber cavity. However, emitters in nanocrystals suffer from
fluctuating electric fields induced by surface charges [Bartholomew2017], and also the stabi-
lization of a fiber cavity at cryogenic temperature has remained challenging [Bogdanović2017,
Salz2020, Ruf2020].

Here, we instead investigate erbium dopants in a YSO bulk crystal, without degrading its
great coherence properties [Böttger2003, Rančić2018]. While such a design has a larger mode
volume than nanophotonic structures, we achieve significantly higher quality factors, resulting
in comparable coupling strengths. In order to minimize dipolar interactions between erbium
ions, we use a nominally undoped crystal and probe the remaining erbium impurities.

6.1.1 Ion-cavity coupling
A Fabry-Perot cavity consisting of two mirrors facing each other is the simplest example of
an optical resonator. In such an arrangement, the light field can only occupy discrete modes,
as opposed to the continuous spectrum in free space, and in consequence, the decay of an
excited atom is modified. The exact behavior depends on the interplay of three processes: the
spontaneous decay of an atomic excitation at rate 2γ = 1/T1 (with lifetime T1), the decay
of the light field in the cavity at rate κ = π∆νcav (with cavity mode fwhm linewidth ∆νcav),
and the coupling rate between light field and atom, g: [Vuckovic2014]

g =
d

n

√
πν

~ε0V
(6.1)

Here, d is the electric dipole matrix element of a specific transition at frequency ν, n is the
refractive index of the material embedding the emitter, ε0 is the electric constant, and V is
the cavity mode volume, defined by the electric field amplitude E(r⃗) via

V =

∫
d3r⃗ n2(r⃗) |E(r⃗)|2

max
{
n2(r⃗) |E(r⃗)|2

} . (6.2)

Note that the above definition for the coupling rate assumes a perfect positioning of the
emitter at a field maximum. At arbitrary position, it scales with |E(r⃗)|/max{|E(r⃗)|}.
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Purcell-enhanced emission

In this work, we consider the ‘Purcell regime’, κ ≫ g ≫ γ, in which a photon, once emitted
from the atom, will quickly leave the cavity rather than interact with the same atom again
[Reiserer2015, Kuhn2010]. Still, the density of photonic modes is modified by the cavity, and
now the atomic polarization c(t) also decays into the cavity mode at rate g2/κ:

c(t) = e−γt− g2

κ
t (6.3)

Since our cavity covers only a small solid angle, the polarization decay rate γ remains
unchanged, and the additional emission into the cavity mode accelerates the decay. This is
called Purcell effect, and we can define the Purcell factor PTL for a two-level system by

c(t) = e−(1+PTL)γt , PTL =
g2

κγ
(6.4)

Erbium in YSO, however, is not a two-level system, and the excited state can decay
into many different crystal field levels. Because of the strong wavelength dependence of the
cavity-enhanced coupling rate g, in our system only the transition to the I15/2 ground state
experiences a Purcell boost, while other decay channels remain unaffected. Therefore, the
branching ratio (i.e. the fraction of decay to the I15/2 ground state with respect to all decay
channels) changes from its value β without cavity. We can write

c(t) = e−(1−β)γt−β(1+PTL)γt = e−(1+βPTL)γt (6.5)

Thus, the effective Purcell factor of Er:YSO, including the branching ratio for other decay
channels, can be written as PEr = βPTL.
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6.1.2 Cavity mirror fabrication
In this work, the cavity consists of one planar mirror that allows for bonding of the crystal
membrane, and one concave mirror to ensure lateral confinement of the light field (see fig-
ure 6.1). For a high coupling rate to the ions and strong Purcell enhancement, we need to
make the mode volume as small as possible (see eq. 6.1). Since the axial dimension is deter-
mined by the crystal thickness, the remaining tuning knob is the curvature of the concave
mirror. A small radius of curvature (ROC) is required for a small mode waist and small
mode volume. Since mirror fabrication by conventional, mechanical polishing only works
for macroscopic mirrors with large ROC & 5 cm, we apply a micro-fabrication technique by
laser-ablation [Hunger2012, Uphoff2015].

The process uses a train of laser pulses emitted by a CO2 laser at 9.3 µm to melt and
evaporate material at the surface of a silicon dioxide substrate (figure 6.2). The shape and
size of the resulting depression can be controlled by the diameter and power of the laser beam
as well as the number of length of the incident pulses, and it is possible to produce Gaussian
depressions with a ROC of less than 100 µm. Importantly, the creation of a liquid phase in
the absorption process helps to smooth the surface of the fabricated dimple, which reduces
scattering loss of the future mirror.

CO2 laser

DBR coating

mirror substrate

 -1.0

a) b)

c)
height (µm)

  0.0

 -0.5

Figure 6.2: a) Mirror fabrication by laser ablation. Short pulses with a high-power CO2

laser heat the mirror substrate locally and melt and evaporate some material. After cooling
down, a smooth depression with a small radius of curvature remains. In a final step, a distributed
Bragg-reflector is coated on top of the mirror substrate with the depression. b) Photograph
of depressions on a mirror substrate. On a single mirror substrate with 7mm in diameter
we can fabricate multiple depressions and later select one of them. c) Surface profile of a
single depression. Analyzing the depressions with a white-light interferometer reveals their
depth and radius of curvature.

After fabricating a dimple with suitable diameter and radius of curvature, the substrate
is then coated with a stack of dielectric layers that form a Bragg reflector. We use in total 35
quarter-wavelength layers optimized for a wavelength λ = 1536 nm, with Ta2O5 as material
with high refractive index (nTa2O5 = 2.045(2)) alternating with SiO2 as low-refractive-index
material (nSiO2 = 1.457(1)) [Rodríguez-deMarcos2016]. While the concave mirror on the air
side of our cavity is terminated by a low-refractive-index material, resulting in a designed
transmission of 7 ppm, we use a high-refractive-index termination for the planar mirror on
the crystal side, by leaving out the top-most SiO2 layer. Note that the refractive index of
the YSO membrane (n ≈ 1.77 [Sabooni2016, Beach1990]) lies between the values for Ta2O5 and
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SiO2 and lowers the transmittance to a theoretical value of 57.5 ppm for the mirror on the
crystal side. Later, we confirm the transmission values in measurements (see section 6.1.5).

While it would be possible to increase the mirror reflectivities by adding more layers to
the Bragg reflectors, this would lower the outcoupling efficiency of cavity photons through
the mirrors, and then the relative impact of scattering and absorption loss became more
significant.

6.1.3 Crystal processing and transfer
In order to minimize scattering losses, not only the mirror surfaces need to be smooth but
also the crystal membrane. At the same time, its thickness Lc needs to be small enough to
fulfill the stability condition La+Lc/nc . ROC for a given radius of curvature ROC, where
La is the width of the air gap and nc the crystal refractive index [vanDam2018].

While for some materials like silicon compounds or diamond there exist techniques for a
bottom-up fabrication of thin crystals [Aharonovich2012, McCann2001, Chambers2000], attempts
with yttrium silicates have resulted in poly-crystalline structures [Chambers2001]. Depending
on the grain size, those would not only lead to higher scattering loss, but also to inhomo-
geneities in level structures and an increased number of charged surface states or crystal
defects, which could degrade the coherence properties of incorporated erbium ions.

Instead, we take a top-down approach and start with a bulk crystal of YSO with optimum
coherence properties, and remove material until we reach the desired thickness. Unfortunately,
all attempts to adopt chemical etching processes to yttrium silicates have resulted either in
extremely slow etch rates or a high surface roughness, and also reactive ion etching did not
yield smooth surfaces. While focused-ion-beam milling does work in order to remove material,
it certainly creates lattice defects close to the surface. Therefore, we choose an optimized
mechanical polishing process as offered by Optec Munich.

First, one side of the crystal is polished down to the required smoothness. Then, this
side is glued to a flat glass substrate, which provides mechanical stability for the subsequent
polishing of the other side. After this procedure, we first clean the crystal surface with acetone
and isopropanol. For a safe handling of the sample we cover a glass substrate with teflon tape,
add a drop of acetone and flip the membrane onto it while it is glued to its substrate. The
glue dissolves, and once the acetone has evaporated, the membrane is loosely lying on the
teflon tape.

Now we can clean its top surface from glue residuals, using lens cleaning tissues soaked with
isopropanol or acetone. We keep the membrane in place by first adding a drop of acetone at its
edge, which creeps between the crystal and the teflon tape and makes it stick to it by surface
tension. Once the surface quality is satisfying, we let all acetone evaporate again, before we
press the flat mirror onto the membrane, which bonds to it via van-der-Waals forces. Now we
can flip the mirror with the crystal and clean its other surface. In a white-light interferometer
we measure the surface roughness of the crystal membrane after the cleaning procedure and
also confirm its thickness (figure 6.3).

In the following section we discuss the optical properties of the assembled cavity.
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Figure 6.3: Crystal surface roughness, measured with a white-light interferometer.
After polishing and cleaning, the crystal surface is flat except for few dust particles visible in
the height map (a). Line cuts along the x- and y-axis (black and red curves in panel b) show an
rms roughness of . 0.2 nm on a scale of the typical mode diameter, ≃ 10µm, likely limited by
the instrument noise.

6.1.4 Mode spectrum of a cavity with crystal membrane
In a simple picture, the eigenmodes of a Fabry-Perot cavity with two spherical mirrors are
standing waves along the cavity axis, with their lateral field distribution given by a Gaussian
envelope function modulated by Hermite polynomials. Our system, however, includes a crystal
membrane between the mirrors, whose thickness is of the same order as half the mirror
separation and can not be neglected. The additional interface between the crystal and the
air gap reflects some of the light and causes perturbations of the mode spectrum.

To qualitatively understand the effect, one can imagine a perfectly reflective crystal-air
interface. Then, the light fields in both parts of the cavity could be treated separately, and
their respective modes would each fulfill boundary conditions at the interface. The electric
field on the air side has a zero at the interface, whereas on the crystal side it would take its
maximum. The boundary conditions are different because there is a phase shift of π when
light on the air side is reflected from the interface, which is zero when light is reflected inside
the crystal. In this oversimplification the mode spectrum would therefore decompose into the
‘air-modes’ and the ‘crystal-modes’. [Janitz2015]

In reality, the crystal-air interface is partly transmissive and the modes couple. Still, it
might be possible to assign the labels ‘air-like’ or ‘crystal-like’ to the modes, but in general
they hybridize (see figure 6.4). For coupled Gaussian modes, it is possible to derive a set
of equations analytically that define the eigenmodes [vanDam2018], but numerical calculations
provide more flexibility.

The effect of the crystal membrane on the transverse mode spectrum is typically negligible
and can be treated perturbatively as coupling between transverse modes due to refraction of
the curved wavefront at the crystal-air interface [Benedikter2015, Janitz2015]. Therefore, the
problem reduces to a one-dimensional calculation of the correct longitudinal modes, and from
there we can reconstruct the full spectrum.
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Figure 6.4: a) Electric field profile of the axial cavity modes. Depending on the width
of the air gap, the resonant mode varies between crystal-like (top), with an anti-node at the
crystal surface, or air-like (bottom), with a node. In crystal-like modes, a larger fraction of the
energy density is in the crystal. b) Axial mode spectrum. Considering uncoupled modes
on air- and crystal-side (dashed curves), the air-side mode (green dashed line) strongly depends
on the air-gap width, while the crystal-side mode (blue dotted line) stays constant. Due to
coupling of both sides through the crystal-air interface, the modes hybridize (orange line), and
their wavelengths tuning with air-gap width becomes non-linear. The measured resonances for
two differently tuned air gaps are marked by blue and red circles.

Transfer-matrix algorithm

One approach to derive the correct longitudinal modes is the construction of a transfer-matrix
for the entire cavity, based on the transfer-matrices of its individual layers. A transfer-matrix
S describes how the electric field components E+ and E− of a forward and a backward
propagating plane wave are connected with their values E ′

+, E ′
− at a later point along the

propagation axis: (
E+

E−

)
= S ·

(
E ′

+

E ′
−

)
(6.6)

In a non-absorbing medium of thickness L with homogeneous refractive index n, for exam-
ple, the forward-propagating wave with wavelength λ0 acquires a phase shift of φ = 2πnL/λ0,
while the backward-propagating wave acquires a phase shift of −φ. Since no scattering cou-
ples both waves, the transfer-matrix P for propagation is diagonal:

P =

(
eiφ 0
0 e−iφ

)
(6.7)

On the other hand, an interface between two media causes reflection, which couples
forward- and backward propagating waves, according to the Fresnel coefficients r1,2 and t1,2,
and r2,1 and t2,1, respectively. Then, the resulting transfer-matrix, I1→2, is [Katsidis2002,
vanDam2018]

I1→2 =
1

t1,2

(
1 −r2,1
r1,2 t1,2t2,1 − r1,2r2,1

)
(6.8)
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If the interface has non-negligible roughness with rms value σ, we can use modified Fresnel
coefficients r̃1,2 and t̃1,2 to account for that [Szczyrbowski1977]:

r̃1,2 = r1,2 exp

(
−2

(
2πσn1

λ0

)2
)

(6.9)

t̃1,2 = t1,2 exp

(
−1

2

(
2πσ(n2 − n1)

λ0

)2
)

(6.10)

Note that now the sum of reflection R = |r1,2|2 and transmission T = |t1,2|2 is lower than
one because of scattering losses L = 1−R− T .

By multiplying all transfer matrices, one can calculate the transfer matrix S for the total
system. For example, the matrix for propagation in medium 1, partial reflection at an interface
and propagation in medium 2 reads:

S = P1 · I1→2 ·P2 =

(
S11 S12

S21 S22

)
. (6.11)

The resulting matrix components are related to the reflection and transmission coefficients
of the total system, r and t [Acquaroli2018]:

r =
S21

S11

, t =
1

S22

(6.12)

The reflection R = |r|2 and transmission T = |t|2 calculated for the entire cavity show
resonances for all longitudinal modes, where transmission is maximal and reflection minimal.
Furthermore, the coefficients also contain information about the phase of the reflected and
transmitted beam, arg(r) and arg(t).

Fitting the longitudinal mode spectrum

For our cavity, the total transfer-matrix does not only consist of the crystal slab, the air gap
and the rough interface in between; we also include the complete layer stacks of the distributed
Bragg reflectors in each mirror (see section 6.1.2), which allows us to reproduce the correct
wavelength dependence of the mirror transmissions.

We can numerically calculate the total transfer-matrix and all its longitudinal resonance
wavelengths for different combinations of crystal thicknesses and air-gap widths and compare
them with our measurements. Because a single longitudinal mode spectrum can not distin-
guish between a thin crystal with large air gap and a thick crystal with small air gap, we
tune the air-gap width by applying voltages to the piezo tube that clasps around the mirrors.
All mode spectra measured in different settings have to agree on the crystal thickness, which
then reveals the individual air-gap widths as well.

The resulting mode spectrum is shown in figure 6.4b; the experimentally achievable tuning
range at cryogenic temperature is limited to 10− 100 nm in air-gap width, see section 6.2.1.
Note that because of the hybridization of crystal- and air-like modes, the free spectral range
is not a constant.

Transverse mode spectrum

In order to calculate the beam waist and the total mode volume, we have to consider also the
transverse mode spectrum, which – for a given crystal thickness and air-gap width – depends
only on the mirror radius of curvature.
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While the beam cross-section of higher transverse modes looks very different from the
fundamental Gaussian mode, they acquire similar phases while propagating along the cavity
axis. The only difference is the increasing impact of a Gouy phase shift, φG, for higher
transverse mode numbers (n,m), which accounts for the curved wavefront.

For a Gaussian beam propagating through medium with refractive index nc, the Gouy
phase at distance z from its waist is simply φG = − arctan (zλ0/πw

2
0nc), with the beam

waist w0. In a planar-concave cavity with homogeneous medium, the fundamental mode
has its waist at the planar mirror. While this is still true for the mode inside the crystal
slab, the beam diverges quicker on the air-side of the cavity due to a lower refractive index.
Consequently, the beam on the air-side has a different apparent waist, which is also shifted
inside the crystals and closer to the crystal-air interface [vanDam2018].

The resulting Gouy phase shifts φG,c and φG,a for propagation through the crystal and
the air gap with widths Lc and La, respectively, are

φG,c = −(n+m+ 1) arctan

(
Lc

πw2
0

λ0

nc

)
(6.13)

φG,a = −(n+m+ 1) arctan

(
La + Lc(1− 1/nc)

πw2
0

λ0

)
. (6.14)

By adding these Gouy shifts to the respective propagation transfer-matrices for crystal and air
gap, we can incorporate them into the one-dimensional model and calculate the corresponding
transverse mode spectra for different mode numbers (n,m). The mode waist w0 is left as a
free parameter, and from a fit to the measured transverse mode spectra, we can extract the
mirror radius of curvature (ROC) by an analytical expression derived for a coupled Gaussian
beam model [vanDam2018]:

w2
0 =

λ0

π

√(
La +

Lc

nc

)[
ROC −

(
La +

Lc

nc

)]
(6.15)

Fitting the full mode spectrum

Using the transfer-matrix approach with the Gouy phase correction, we can calculate all
cavity resonances over a large range of wavelengths for various crystal thicknesses, mirror
curvatures and differently tuned air gaps. A least-square fit to the measured mode spectra
converges – within some uncertainty range – to a single set of geometry parameters.

There is, however, still one degree of freedom left: the relative orientation of crystal axes
and electric field polarization determines the effective refractive index of the crystal, which
enters the model in many places. While we can measure and control the polarization of the
incident laser beam, the orientation of the crystal is unknown. To resolve this ambiguity, we
make measurements for both polarizations (E⃗ ∥ D1 and E⃗ ∥ D2) and compare the results.
Since crystal thickness and air-gap width are independent of the polarization, the fits for both
polarizations should agree on these parameters. As a result, we get to know the orientation
of the crystal membrane inside the cavity.

Implementation of a complete fitting routine was part of a master’s thesis in our group
[Ulanowski2020].

For our cavity, the fit converges to a set of cavity parameters that match well with the
measured data: a mirror radius of curvature of 155(3) µm, a crystal thickness of 18.2(1) µm,
and an air gap of 29.8(1) µm when tuned to 1536 nm. At that wavelength, the fundamental
mode has a waist of w0 = 5.7 µm and a mode volume of V = 750(10) µm3 (see eq. 6.2), and
its polarization is restricted to E⃗ ∥ D1 because the limited tuning range is smaller than the
splitting between orthogonal polarization modes.
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6.1.5 Cavity linewidth and losses
The dynamics of excited erbium dopants in the cavity does not only depend on the coupling
rate g and thus the mode volume, but also on the cavity field decay rate κ. For a simple cavity
with a homogeneous medium between two mirrors, the intensity decay rate 2κ is given by the
photon losses L per round trip time tround-trip, with contributions from mirror transmission
on the crystal- and air-side, Tc and Ta, respectively, as well as additional scattering and
absorption losses, Lloss:

2κ =
L

tround-trip
=

1

tround-trip
(Tc + Ta + Lloss) (6.16)

Because of the partially reflective crystal-air interface, the round-trip time is not well-
defined in our cavity. Instead, we introduce an effective cavity length Leff, which is defined
by normalizing the energy of the total light field to the average energy density in the crystal:
[vanDam2018]

Leff =

∫
dz n(r⃗)2|E⃗(r⃗)|2

n2
c |E⃗max,c|2/2

(6.17)

Here, the integration of the intensity |E⃗(r⃗)|2 extends along the entire cavity axis, while the
normalization is done with respect to the maximum intensity in the crystal, |E⃗max,c|2.

This effective cavity length allows us to treat the cavity as if there was a homogeneous
medium with the crystal refractive index nc between two mirrors at distance Leff. Conse-
quently, the round-trip time can be written as tround-trip = 2ncLeff/c. Similar to the normal-
ization in the effective length definition, we now have to weight the loss term on the air-side
with the intensity ratio relative to the crystal-side: [vanDam2018]

κ =
c

4ncLeff

(
Tc +

|E⃗max,a|2

nc|E⃗max,c|2
Ta + Lloss,eff

)
(6.18a)

= κc + κa + κl (6.18b)

Here, E⃗max,a is the maximum electric field amplitude on the air-side, and κc, κa and κl are
the fractional cavity field decay rates due to outcoupling through the mirrors on crystal- and
air-side as well as scattering and absorption loss, respectively.

In general, the “true” scattering and absorption losses can be separated into contributions
weighted by the electric field on the air- and crystal-side of the cavity, in addition to their de-
pendence on the surface roughness of crystal and mirrors. Therefore, the total losses strongly
change with the resonance wavelength of the cavity.

Linewidth measurements

In the following we present experiments in which we measure the cavity linewidth and its
dependence on the wavelength due to the changing energy distribution between air- and
crystal-side. To this end, we monitor the transmission or reflection of a laser beam through
the cavity while sweeping its frequency across the resonance by applying a ramp to the laser
controller. To calibrate the frequency axis, we modulate the input laser at 100MHz with an
electro-optical modulator and use the observed sideband splitting as reference (see figure 6.5a).
At 1536 nm, we measure a linewidth of ∆νfwhm = 22(2)MHz, corresponding to a total field
decay rate of κ = 2π · 11(1)MHz.
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Figure 6.5: a) Cavity transmission scan. When the laser frequency is scanned across the
resonance, a Lorentzian resonance is obtained. The side-peaks at ±100MHz result from sideband
modulation of the laser and are used to calibrate the frequency axis. b) Wavelength depen-
dence of the cavity linewidth. Because the electric field distribution in crystal and mirror
coatings changes with wavelength, the total loss and thus the cavity linewidth is wavelength-
dependent as well.

Over a large range of wavelengths, the linewidth varies by a factor of up to 3 (figure 6.5b).
The strong increase for longer wavelengths can be explained by the reduced mirror reflectivity,
since the distributed Bragg reflectors were optimized for 1536 nm. The additional modulation
is a result of the different electric field distributions of air-like and crystal-like mode.

While for a cavity with a homogeneous medium inside we can calculate the finesse F =
∆νFSR/∆νfwhm via the free spectral range ∆νFSR, the latter is not well defined in our cavity
because of the hybridization into crystal- and air-like modes (cf. figure 6.4b). Instead, we can
calculate the effective cavity length Leff from the axial mode profile using eq. 6.17, and then
the finesse via

F =
π

κ tround-trip
=

π

κ

c

2nc Leff
. (6.19)

For our cavity, we find a finesse of 1.2(2) · 105.

Outcoupling efficiency

In the following, we show how contributions from outcoupling through the mirrors, κa and κc,
can be separated and extracted from measurements of the cavity reflection and transmission.

As can be derived from the complete transfer-matrix (cf. eq. 6.12), reflection and trans-
mission coefficients r and t of the entire cavity take the following form, for a small detuning
δν from a resonance [Reiserer2015]:

r = 1− 2κa

κ+ i 2πδν
, t =

2
√
κaκc

κ+ i 2πδν
(6.20)

On resonance, the reflection R(c) and transmission T (c) of a laser beam impinging on the
crystal side are therefore

R(c) = 1− η
4κc(κ− κc)

κ2
, T (c) = η

4κaκc

κ2
, (6.21)

where η is the mode-matching efficiency between laser beam and cavity mode.
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Note that the ratio αc = T (c)/(1−R(c)) does not depend on the mode matching efficiency
anymore. Together with the measured values for a laser beam impinging on the air-side mirror
(αa), we can calculate the field decay rate for outcoupling through the crystal-side mirror, κc

(and the air-side mirror κa, congruently):

κc = αa κ
1− αc

1− αaαc

(6.22)

From our measurements, we derive κa = 2π · 1.5(3)MHz, κc = 2π · 5(1)MHz, and the
resulting outcoupling efficiency ηout = (κa + κc)/κ = 60%.

6.1.6 Cavity parameters and expected Purcell factor
The dynamics of light-matter interaction in the cavity is determined by the coupling rate g,
the polarization decay rate γ and the field decay rate κ. In the previous sections, we have
extracted the mode volume and the cavity field decay rate from measurements of the mode
spectrum and the cavity linewidth. Now we calculate the photon-dopant coupling rate from
the mode volume and the transition dipole moment, and estimate the expected Purcell factor.

Optical transition dipole moment

The dipole moment d of an optical transition is related to its oscillator strength f and the
absorption coefficient α by [McAuslan2009, Thiel1999, Moncorgé2005]

d2 =
3~e20nc

4πmeνχ
f , f =

4mecε0nc

Ne20χ

∫
dνα(ν), (6.23)

where e0 is the elementary charge, me is the mass of the electron, ε0 the electric constant and
c the vacuum speed of light. ν is the transition frequency, N the dopant concentration (per
volume), nc the crystal refractive index, and χ = [(n2

c + 2)/3]2 ≈ 3 a local field correction
factor accounting for the polarizability of the medium.

In the same way as a local field correction is necessary in bulk crystal absorption measure-
ments, it is also required for cavity experiments as well, since the polarizability of the crystal
was not yet considered in the previous sections. Because the dimensions of our crystal mem-
brane are larger than the wavelength, the polarizability is the same as in a bulk crystal, and
we can use the same local field correction factor as in bulk absorption measurements. This
is in contrast to experiments on nano-structured materials, which require different treatment
[Miyazono2016, Zhong2018].

Therefore, we include the polarizability correction factor in the definition for the coupling
rate (eq. 6.1) as follows:

g =

√
χd

n

√
πν

~ε0V
(6.24)

Notably, when using the correct definition, g2 ∼ χd2 ∼ f is independent of the correction
factor and only depends on the oscillator strength. This is in agreement with the observation
that also the spontaneous emission rate only depends on the product χd2 [McAuslan2009,
Moncorgé2005].

Since the absorption of erbium in YSO is strongly anisotropic and depends on the light
polarization [Petit2020], we calculate the expected dipole moment for E⃗ ∥ D1 from absorption
measurements in the same configuration [Böttger2006a]. The resulting oscillator strength of
f = 1.02 · 10−7 is consistent with the reported value in [Miyazono2016] and gives a dipole
moment of d = 1.4 · 10−32 Cm and a coupling rate of g = 440 kHz.
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All the above analysis only considers the enhancement of the electric-dipole optical tran-
sition, but neglects that for Er:YSO magnetic-dipole transitions contribute significantly to
the absorption [Li1992, Dodson2012, Petit2020]. Thus, it could be argued that the light-atom
coupling rate in the cavity needs to be modified to account for magnetic-dipole transitions
[Dibos2018, Raha2020, Baranov2017]. In this work, however, we observe good agreement of the
measured fluorescence curves with the predictions as calculated from the electric-dipole Pur-
cell enhancement alone, which indicates that the magnetic-dipole transition is enhanced by
the same factor as the electric-dipole transition. One reason is that the homogeneous crystal
is penetrated by electric and magnetic field equally, as opposed to photonic crystal cavities
with distinct transverse electric and transverse magnetic modes. Furthermore, we derived
the dipole moment and the oscillator strength from the total absorption coefficient, without
distinguishing contributions from electric and magnetic dipole transitions.

Cavity parameters and Purcell factor

Now we have calculated the coupling rate from the oscillator strength, and we already know
the cavity field decay rate from linewidth measurements (see section 6.1.5). To fully describe
the dynamics of atomic excitations in the cavity, we need to know the polarization decay
rate γ. Here, we take the value γ = 1/(2T1) corresponding to the excited state lifetime of
T1 = 11.4ms [Böttger2006b]. Because this lifetime already includes possible decay into other
crystal field levels, which are not cavity-enhanced, no additional correction of the obtained
Purcell factor is required.

The full set of cavity parameters and the corresponding Purcell factor for maximally
coupled erbium dopants is:

gmax = 2π · 67(7) kHz (6.25a)
κ = 2π · 11(1)MHz (6.25b)
γ = 2π · 7Hz (6.25c)

PEr,max =
g2max
κγ

= 58(6) (6.25d)

Branching ratio

Alternatively, we can also first derive the Purcell factor for an ideal two-level system resonant
with the cavity, PTL, and then correct for potential other decay channels by multiplication
with a branching ratio β (see eq. 6.5).

The maximum Purcell factor for a two-level system is defined by the geometrical cavity
properties:

PTL,max =
3

4π2

Q

n3
cV

(6.26)

Here, V is the mode volume, nc the refractive index of the crystal, and Q = ν/∆νfwhm is
the quality factor of the resonance. At a frequency ν = 195THz, we measured a linewidth
∆νfwhm = 22MHz, resulting in a Q-factor of Q = 9 · 106 and a geometrical Purcell factor of
PTL,max = 530(50).
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The branching ratio β is the fraction of excitations that decays into the cavity mode.
Because the cavity modes are linearly polarized but the absorption of erbium dopants can not
be described by a vector dipole moment aligned with one of the crystal axes, the branching
ratio depends on the polarization. It can be calculated as ratio of the spontaneous emission
rate of photons with matching polarization, T−1

spon, to the total decay rate T−1
1 : [McAuslan2009,

Moncorgé2005]

β =
T−1

spon

T−1
1

=
1

T−1
1

3ε0~ c3

8π2 nc
χd2 ν3

(6.27)

With the values for χd2 as calculated above from absorption measurements using eq. 6.23,
we find that β = 0.11 for E⃗ ∥ D1. This is lower than the values reported for E⃗ ∥ D2 by a
factor of 2, corresponding to the difference in absorption strengths [McAuslan2009, Böttger2006a,
Petit2020].

The resulting Purcell factor for maximally coupled erbium dopants, including the branch-
ing ratio, is PEr,max = βPTL,max = 58(6), which is the same as obtained in eq. 6.25.

For comparison, the two-level Purcell factor achieved with our Fabry-Perot resonator is by
a factor 3− 10 higher than that of cryogenic fiber cavities [Casabone2020, Ruf2020, Jensen2020]
and comparable to that reported for a nanophotonic resonator fabricated into erbium-doped
YSO [Miyazono2016]. However, a 10 times higher Purcell factor has been demonstrated by
coupling an YSO bulk crystal to the evanescent field of a silicon nanophotonic cavity, but
came at the price of 100 times larger emitter linewidths [Dibos2018, Raha2020].
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6.2 Cavity tuning and stabilization

Maximum Purcell enhancement will be experienced only by ions whose transition frequencies
are close to the cavity resonance. Therefore, experiments with cavity-enhanced ion-photon
coupling not only require the capability of tuning the cavity into resonance with the emitters,
but also of keeping it there over the duration of each experiment.

Since the cavity resonance frequency scales as the inverse of the effective cavity length
Leff, any fluctuations in the mirror spacing caused by mechanical vibrations will be seen as
fluctuations of the resonance frequency. This effect is even more serious because of the short
absolute cavity length of about 50 µm. Stabilizing the cavity frequency within one linewidth
therefore requires suppression of vibrations below Leff∆νfwhm/ν ≈ 5 pm.

In this section, we explain the tuning mechanism and discuss different techniques that
allow us to achieve the required stability.

6.2.1 Cavity tuning

In our cavity, the two mirrors are held by frames that are mounted at opposite ends of a piezo
tube (figure 6.6). By applying a voltage to the piezo, we can expand the tube and increase
the distance between the cavity mirrors. At the same time, the mirror frames are pushed back
against the piezo by springs that apply restoring forces, so that the mirror spacing can be
reduced again when the piezo voltage is lowered. The system comes at rest in a steady-state
with an effective cavity length controlled by the piezo voltage, and the sign of the length
change depends on the poling of the voltage applied to the piezo tube.

springs

piezo tube

a) b)

Figure 6.6: a) Schematics of the cavity mount cross section. By expansion and compres-
sion of the piezo tube, the effective cavity length can be tuned, while springs provide restoring
forces and decouple common-mode vibrations. Lenses are included to optimize mode matching
of a laser beam coupled into the cavity. b) Photograph of the cavity mount. Visible in
brown is the spring suspension for damping of common-mode vibrations, a wire connecting to
the piezo tube, and a lens in the center for optical coupling.

At cryogenic temperature, we observe an upward shift of the resonance frequencies by
60 − 100GHz per 100V piezo voltage, corresponding to an air-gap reduction by 20 nm.
After the initial cooldown, however, the fundamental mode closest to the erbium transition
at 1536 nm was found at 1539 nm. Assuming a linear response of the piezo tube, a voltage of
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more than 600V would have been required to reach the transition wavelength, which exceeded
the maximum output of our instruments.

Instead, we exploit the hysteresis effect commonly observed in piezo electric materials: a
repeated charging at high voltage and subsequent grounding of the piezo tube leads to a long-
term change in its dimensions that is not reverted when a low voltage is applied afterwards.
In our case, about 10 iterations were necessary in order to tune the cavity resonance to about
1536.5 nm, where we expect the emission of erbium ions.

In later experiments, we notice that the step-wise hysteresis tuning stops working when
the mode reaches 1535.25 nm, which corresponds to a maximum tuning range of 3.75 nm
in wavelength. This could possibly be increased by a factor of two by applying negative
tuning voltages, which would increase the tube length and shift the cavity resonance to longer
wavelengths.

Unfortunately, the maximum tuning range is smaller than the ∼ 10 nm splitting between
two modes of orthogonal polarization, which restricts our experiments to the configuration
E⃗ ∥ D1. Although a polarization E⃗ ∥ D2 would be desirable because of the larger optical
dipole moment, it was not possible in the given cavity geometry to tune the corresponding
cavity mode close to the erbium transition frequency. After completing the measurements
presented in sections 6.3 and 6.4, however, we observe that reassembling the cavity changes its
mode spectrum sufficiently to enable tuning of the E⃗ ∥ D2 polarization mode into resonance
with the erbium transitions.

6.2.2 Passive cavity stability
For cavity experiments at cryogenic temperature, we use the same cryostat and similar laser
beam geometry as described in section 3.1.2 for holeburning in bulk crystals. For better
mechanical decoupling of the cavity from the lab environment and the cryostat enclosure, we
modify the sample stick suspension by adding compressed-air dampers that suppress high-
frequency vibrations (see figure 6.7a). In addition, the new setup allows for optimization of
position and tilt of the sample stick with the goal of avoiding contact with the walls of the
surrounding vacuum tube insert (VTI) and keeping a safe distance from vibrating parts.

To characterize the cavity stability, we tune a laser into resonance with a cavity mode,
lock it there to the frequency comb, and monitor its transmission through the cavity over
time. Any mechanical vibration will lead to fluctuations in the resonance frequency and thus
appear as a drop in transmission signal. Therefore, we can extract the achieved stability by
analyzing the transmission time trace (fig. 6.7, panels b and c).

With just the passive vibration isolation, we observed reasonable mechanical stability,
with rms length fluctuations as low as 3 pm. This value is already more than one order of
magnitude smaller than typical residual vibrations of actively stabilized cryogenic fiber cav-
ities [Casabone2020, Ruf2020]. Unfortunately, however, such a passive stability is not easily
reproducible. In many configurations, the sample stick touches the walls of the VTI, and vi-
brations from the cryostat pulse tube and the lab environment can bypass all passive vibration
damping elements.

While we do see some dependence of the cavity vibrations on the sample stick position
and tilt, we do not always achieve full decoupling from the VTI vibrations. A possible reason
is a bending of the sample stick when it is cooled down. This hypothesis is supported by the
observation that the cavity transmission passes through the cryostat window at a different
position and angle after cooldown, as compared to room temperature.
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Figure 6.7: a) Modified sample stick suspension. Similar to holeburning experiments,
the cavity is mounted at the bottom of the sample stick (yellow rods) hanging inside a vacuum
tube insert (VTI, light grey), which itself is suspended at the cryostat enclosure (dark grey).
In order to decouple the cavity from vibrations originating from the cryostat pulse tube or the
lab environment, it is essential that the sample stick does not touch the walls of the vacuum
tube insert. For optimum control, the sample space is extended to the top by a semi-flexible
bellow, and the sample stick suspension is supported by compressed-air dampers (green). That
way, tilting and shifting of the sample stick inside the VTI is possible for optimum positioning.
b) Passive cavity stability. Without active stabilization, the transmission signal fluctuates
because of cavity vibrations (about 3 pm rms length fluctuations). c) Vibration spectrum. A
Fourier transform of (b) reveals the vibration spectrum of the cavity, here plotted as root-mean-
square spectral density of the resonance frequency fluctuations. Overall, the vibration noise
spectral density decays only as ∼ 1/f0.5, which means that high-frequency vibrations contribute
as much to the rms stability as low-frequency ones.

6.2.3 Active feedback to the piezo tube

In an attempt to reduce cavity vibrations that are still omnipresent at low temperature, we
implement an active feedback system that measures fluctuations in cavity length and applies
appropriate voltages to the piezo tube to compensate those vibrations and keep the mirror
spacing constant.

To measure fast fluctuations in the cavity resonance frequency, we adopt the Pound-
Drever-Hall technique to generate an error signal based on the optical reflection from the
cavity [Black2001], as shown in figure 6.8. Close to resonance, the error signal is almost linear,
and its sign reflects the sign of the detuning up to a maximum detuning of the modulation
frequency, 100MHz.

Using the Pound-Drever-Hall signal as input, we generate a feedback signal with an
OpalKelly FPGA (‘lockbox’) as first developed by [Leibrandt2015]. This programmable digital
circuit can apply various filters and amplification to the input. In a typical setting, we choose
a combination of proportional and integral gain, similar to the output of a lowpass-filtered
amplifier circuit. In theory, the achievable bandwidth of the lockbox FPGA is 1MHz. In
reality, it is lowered for two reasons: first, because we need another circuit to add a constant
high voltage offset that is required to coarse-tune the piezo tube. And second, because a
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Figure 6.8: a) Generation of a Pound-Drever-Hall (PDH) signal. By passing the
laser through an electro-optical phase modulator (EOM) we create sidebands at a splitting
of ±100MHz from the carrier frequency. Because the sidebands have opposite phases, their
interference with the carrier cancels out in a power measurement. In a beam reflected from the
cavity, however, the frequency components are phase-shifted, depending on their detuning from
the resonance (see eq. 6.20). As a consequence, the interference terms of carrier and sidebands
do not cancel out, and the power measured with an avalanche photodiode (APD) oscillates at
the modulation frequency of 100MHz. By mixing the APD output down with the local oscillator
used to drive the EOM, one can retrieve the relative phase between sidebands and carrier, and
thus generate an error signal that reflects the detuning between laser and cavity resonance
(bottom panel). b) Piezo feedback loop and transfer functions. For small detunings, the
PDH signal is proportional to changes in cavity length, which can be caused both by vibrations
and tuning via the piezo voltage. In an open-loop measurement, the lockbox outputs a constant
voltage that is amplified and applied to the piezo tube; the resulting effect on the PDH signal
is described by the transferfunction H(f) (blue). By dynamically updating the lockbox output
as a function G(f) of the error signal, the feedback loop is closed (red), and vibrations are
counteracted.

piezoelectric material does not behave like an ohmic load with high resistance but has signifi-
cant capacitive reactance, and its expansion due to charge transfer occurs at finite bandwidth
[Richter2009, Fleming2008].

Adding the fast, low-voltage feedback signal from the lockbox to a quasi-constant high-
voltage offset is done by a circuit for an ultra-low noise, high-voltage amplifier that drives the
piezo [Pisenti2016]. This device uses a flyback converter to create a high-voltage output of up
to 250V that can be tuned by a low-voltage control signal and is low-pass-filtered at ∼ 10Hz
bandwidth. To this offset, a second low-voltage signal is added with ∼ 100 kHz bandwidth
and DC-coupling, which will be the feedback output from the lockbox.
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Transfer function and mechanical resonances

A formal analysis and optimization of the feedback loop is provided by control theory and
considers the transfer functions of all components, which describe how signals and fluctuations
propagate through the system.

Excluding the filter implemented on the lockbox FPGA, we can measure the system trans-
fer function H(f) by modulating the output of the FPGA at frequency f and detecting the
corresponding Fourier component of the error signal. This transfer function is the combined
response of the high-voltage amplifier, the reactance load of the piezo, the mechanical response
of the cavity to a modulated piezo voltage, and the PDH signal generation (see figure 6.8b).

Together with the transfer function G(f) implemented by the filter on the FPGA, we can
construct the total open-loop transfer function G(f)H(f). By closing the feedback loop, any
noise at the cavity can be suppressed by a factor 1/|1+G(f)H(f)|. [Åström2010, Gallego2016]
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Figure 6.9: Cavity transfer function H(f). By modulating the piezo voltage, the PDH
signal oscillates with frequency dependent gain and phase. At 10 kHz, the cavity has mechanical
resonance that inverts the phase, which leads to increased oscillations if feedback is applied
without phase correction.

At first glance, it seems sufficient just to apply high gain with the correct sign in order
to compensate mechanical vibrations. A crucial element, however, is the phase of the total
transfer function, in particular the phase response of the cavity: close to each mechanical
eigenfrequency, H(f) has a pole with a corresponding phase shift of π. In general, this inhibits
the suppression of noise above the lowest mechanical eigenfrequency, because feedback would
be applied with the wrong phase. In our cavity, we observe the limiting eigenfrequency at
about 10 kHz (see figure 6.9).

Therefore, the cavity mount has to be designed with the aim of shifting its resonance
to frequencies as high as possible, which requires stiff and light-weight material (Marcor for
our cavity). In addition, one could try and gauge the exact phase response of the cavity
resonances and implement a custom filter on the FPGA, which adjusts the output phases for
all frequencies accordingly. This method could allow us to counteract vibrations above the
lowest eigenfrequency, but the finite sampling bandwidth compared to the Q-factor of these
resonances limits the achievable performance improvement.
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6.2.4 Active stabilization by photo-thermal feedback
Despite applying a feedback voltage to the piezo tube, it is not always possible to keep the
cavity on resonance with the laser during each experiment duration of several 100 µs. If
the cavity mount touches the VTI wall and vibrations from the pulse tube reach the cavity
without attenuation, oscillations at the mechanical eigenfrequencies can be observed with
amplitude greater than the cavity linewidth, which could not be canceled out by feedback
to the piezo tube. Therefore, we have to fall back to stabilization by thermo-optic feedback
[Brachmann2016, Gallego2016], which we describe in the following.

Losses inside the cavity can be either due to scattering or due to absorption. Any ab-
sorption of light will lead to a small increase in temperature and to a distortion of the local
cavity geometry, e.g. to an expansion of the crystal membrane or the Bragg reflectors. Their
expansion into the air gap reduces the effective cavity length and shifts its resonance to higher
frequencies, which at the same time also lowers the laser power coupled into the cavity and
thus reduces the heating. Therefore, a steady-state will be reached in which the resonance
shifts just far enough to keep the intra-cavity power and the heating at a value that can
sustain the shift.

The resulting feedback leads to a self-stabilization of the cavity resonance if the laser is
red-detuned with respect to the shifted cavity, but has the opposite effect for blue-detuned
excitation. In reasonably slow scans across the resonance, this can be seen as hysteresis and
asymmetric lineshape (see figure 6.10). This effect is known as photo-thermal stabilization or
thermo-optic shift [Brachmann2016, Navarro-Urrios2014].

In general, the photo-thermal shift due to thermal expansion competes with an opposite
shift due to changing refractive indices [Konthasinghe2017]. In contrast to experiments on
silicon cavities, we do not expect a large contribution from free-carrier generation due to
multi-photon absorption processes, because the band gaps of materials like YSO, SiO2 and
TaO2 are more than five times larger than the photon energy [Navarro-Urrios2014].
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Figure 6.10: Cavity transmission and reflection scans with photo-thermal feedback.
Absorption losses in the mirror coatings cause heating of the cavity, which shifts its resonance to
a higher frequency. When the laser approaches the cavity resonance from lower frequencies, the
photo-thermal feedback is self-stabilizing and the resonance is dragged along (left column). If
the cavity resonance is approached with a blue-detuned laser, the thermo-optic shift is opposite
to the tuning direction, and the resonance appears narrower (right column). The scan speed
was about 40MHz/ms, and the laser power a few µW.
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In this work we are only interested in the self-sustaining property of the photo-thermal shift
for a red-detuned excitation laser. Fluctuations of the cavity resonance frequency increase
or lower the absorbed laser power, and the resulting local temperature change shifts the
resonance back to its initial frequency.

Because of the high finesse of our cavity, the resonance frequency is sensitive to small
variations in the geometry. As consequence, the photo-thermal effect can provide feedback
at a bandwidth of up to 1MHz and thus stabilize the cavity even above its mechanical
eigenfrequencies [Brachmann2016]. In our experiments, we observe resonance frequency rms
fluctuations of 8(2)MHz with piezo-feedback only, and can reduce it to . 2MHz by applying
photo-thermal feedback (see figure 6.11).

Unfortunately, the temperature increase associated with the heating also applies to the
crystal and the erbium dopants, as we will discuss in section 6.4.1. Therefore, the laser power
should be kept at a minimum.
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Figure 6.11: Cavity stabilization with photo-thermal feedback. For low laser power (left
panel), the cavity reflection on resonance shows large fluctuations despite active piezo-tuning
(blue); the off-resonant curve (black) is used for normalization. Simultaneous irradiation with
an 8µW laser beam resonant with a different cavity mode (right panel) allows for photo-thermal
stabilization of the reflection on resonance (red) as well as detuned by half a linewidth (orange).
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6.2.5 Laser setup
Similar to the holeburning experiments on bulk crystals, we use the NKT Photonics BASIK
X15 laser ‘Koheras’ for resonant excitation of the erbium dopants at 1536 nm. In order to
stabilize the cavity by feedback to the piezo-tube and by the photo-thermal effect, we use a
second laser at 1564 nm, resonant with a different longitudinal mode and allowing for cavity
stabilization independent of the erbium excitation (see figure 6.12).

Overall, we can detect about 5% of all photons emitted from the cavity, considering
the outcoupling probability on the crystal-side, the mode-matching with the fiber mode,
transmission losses of optical elements and fibers, and the detector efficiency of about 50%,
when operated in regime with a low dark count rate of ∼ 25Hz. Unfortunately, the cavity
transmission was partly clipped inside the sample stick and could not be used for experiments,
which lowered the maximum detectable fluorescence signal by about 1/3.
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Figure 6.12: Combined laser setups for resonant spectroscopy and cavity locking.
A laser resonant with the optical transition at 1536 nm is coupled into the cavity via a beam
splitter cube, and 90% of the reflected and emitted photons are routed to the detection setup.
We use superconducting nanowire single photon detectors (SNSPD, PhotonSpot) that are pro-
tected from reflected, strong excitation pulses by an additional gating AOM (LightComm, not
shown). For stabilization of the cavity independent of the resonant excitation, a second laser
resonant with a cavity mode at 1564 nm is used to generate a Pound-Drever-Hall signal and
apply photo-thermal feedback. A tilted bandpass (BP, Thorlabs) separates the reflected lock
laser from the erbium signal at 1536 nm, which is further spectrally filtered (BP, Semrock). In
addition, longpass filters (LP, Semrock) with a cut-off wavelength at 1550 nm suppress any con-
tribution of amplified spontaneous emission at 1536 nm in the lock laser spectrum. Both lasers
are independently locked to a frequency comb (Menlo Systems, not shown) and can be gated
using acousto-optical modulators (Gooch & Housgeo, not shown).
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6.3 Fluorescence measurements
In the following, we study the properties of cavity-coupled erbium dopants in experiments. In
this section, we first measure the fluorescence decay of resonantly excited ions and compare the
observed lifetime reduction with the predicted Purcell factor based on the cavity properties
(cf. section 6.1.6). Since the emitters are distributed homogeneously in the crystal, however,
most of them are not maximally coupled to the cavity field. We model the distribution
of Purcell factors in the measured ensemble based on the mode profile and the excitation
and detection probabilities. We find very good agreement and can reproduce different signal
shapes when cavity vibrations are included. In the end, we measure the spectral distribution
of emitters and estimate the total number of ions coupled to the cavity.

6.3.1 Decay time analysis of Purcell-enhanced fluorescence
Each fluorescence measurement consists of a short laser pulse on the spin-preserving transition
and the detection of the subsequent photon emission into the cavity mode, which is tuned
into resonance with the ion transition. For a single ion coupled to the cavity, the averaged
fluorescence signal follows an exponential decay, according to eq. 6.5.

In our system, however, many dopants in the crystal are coupled to the cavity mode at
different rates, depending on the local electric field amplitude. Consequently, the observed
fluorescence signal is the sum of exponential curves with different time constants, weighted
by the number of ions that experience the same Purcell factor.

In figure 6.13a we show the measured fluorescence curves after exciting the ions with a
pulse of 0.5 µs length and 54 nW power. Without suppressing cavity vibrations by photo-
thermal feedback, most ions spend only a fraction of the experiment time on resonance with
the cavity, and the lower average Purcell factor results in a slower fluorescence decay (blue
curve). By increasing the lock laser power to 8 µW, we can reduce the cavity resonance
instability and boost the Purcell enhancement (red curve).

Remarkably, both curves agree very well with the prediction of a full model without
free parameters, that calculates the ensemble-averaged fluorescence for the inhomogeneous
distribution of Purcell factors for our cavity parameters (see the following section 6.3.2 for
details). Such a model starts with the maximum Purcell factor for an optimum ion position as
derived in equation 6.25, but then includes the dopant distribution at different field amplitudes
of the cavity mode as well as excitation and photon collection efficiencies depending on the
individual Purcell factors. The model accounts for cavity vibrations by averaging over decay
curves obtained for a slightly detuned cavity.

As our model confirms, the fast fluorescence decay expected for ions with optimum cou-
pling and maximum Purcell factor, PEr,max = 58, is not directly visible in the ensemble-
averaged measurements, because the number of maximally coupled dopants is comparably
low.

We attribute the faster decay observed with photo-thermal feedback to a reduced cavity
resonance instability (see figure 6.13b). To confirm this hypothesis and exclude any effect from
an increased crystal temperature or multi-photon scattering, we also make measurements at
higher temperature and for different power levels of the resonant excitation, but see no change
in the decay time (see figure 6.14).
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Figure 6.13: a) Fluorescence curves. Measurements of the ensemble fluorescence with (red)
and without (blue) photo-thermal cavity stabilization show an accelerated decay compared to the
situation without cavity-enhancement (purple dashes). Because of the inhomogeneous cavity-
coupling, the curves deviate from mono-exponential decay and rather look bi-exponential (fits as
black dashes). A complete model with no free parameters can describe both curves excellently
(solid lines) and indicates that maximally coupled ions decay faster (orange dashes) than visible
in ensemble measurements. b) Decay time dependence on lock laser power. When the
lock laser power increases, thermo-optic feedback stabilizes the cavity and can be observed as
faster decay of the fluorescence, e.g. in the fast time constant of bi-exponential fits (green crosses,
right axis). By fitting the measured curves with our model, the remaining rms fluctuations of
the cavity resonance can be extracted in units of the cavity linewidth (circles, left axis). The
two data points marked in red and blue correspond to the curves in panel (a).
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Figure 6.14: Dependence of the fluorescence decay time on temperature (a) and
excitation power (b). When the crystal temperature is increased up to 4K, the fluorescence
decay does not change its time scale, here represented by the fast time constant of bi-exponential
fits (a). Similarly, the fluorescence decay shows no dependence on the resonant excitation power
(b). The dashed lines show the respective average value. The excitation pulse length in the
temperature scan was 0.5µs, but 500µs in the power scan, resulting in slightly different absolute
fit parameters. Both data sets were taken without photo-thermal feedback.
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6.3.2 Modeling the ensemble-averaged fluorescence
In this section, we discuss in detail how we can model the non-exponential fluorescence de-
cay curves that result from an inhomogeneous Purcell-factor distribution in the ensemble
measurements.

While the Purcell factor for a single ion positioned at the maximum of the electric field
inside the cavity can be calculated from the independently characterized mode volume and
dipole moment (see section 6.1.6), the dopants in our crystal are distributed randomly across
the cavity mode, at different electric field amplitudes. First, we make a Monte Carlo simu-
lation and derive an analytical formula for the distribution of Purcell factors in our sample,
then we discuss how differently coupled ions contribute to the observed fluorescence decay
curve due to Purcell-factor-dependent excitation and photon collection efficiencies, and in the
end we explain how the effect of cavity vibrations can be included in the model.

Distribution of Purcell factors

We start with the electric field envelope of the fundamental mode, which is approximately a
standing wave along the cavity axis, z, with a Gaussian profile along the radial direction ρ:

E(ρ, z) = Emax sin

(
2πnz

λ

)
exp

(
− ρ2

w2

)
(6.28)

Here, n is the refractive index of the crystal, λ the wavelength, w the beam waist, and we
neglect that the beam radius increases slightly over the crystal membrane. This is a valid
approximation because in our cavity the crystal thickness (19 µm) is much smaller than the
Rayleigh length, πw2n/λ (∼ 120 µm).

The Purcell factor PEr of a single emitter scales with the square modulus of the electric
field amplitude, and we can write it as fraction of the Purcell factor at a field maximum,
PEr,max:

PEr = PEr,max sin2

(
2πnz

λ

)
︸ ︷︷ ︸

uz(z)

exp

(
−2ρ2

w2

)
︸ ︷︷ ︸

uρ(ρ)

, (6.29)

where the product form of PEr allows us to separate the axial and radial dependencies, uz(z)
and uρ(ρ).

By randomly placing N = 50 000 dopants in the modeled cavity mode and calculating
their respective Purcell factors with eq. 6.29, we make a Monte Carlo simulation of the
probability distribution p(PEr) to find a dopant with Purcell factor PEr (see figure 6.15, grey
curve).

In order to derive an analytical expression for p(PEr), we restrict the calculation to ions
with PEr > 1, which make up about 36% of all dopants in the simulation. This restriction
is necessary for convergence reasons, because the radial mode field has no strict bound, and
ions with Purcell factors close to zero could as well sit outside the considered volume.

We first need to calculate the probability densities p(uz) and p(uρ) separately. To this end,
we start with the probability density p(x, y, z) to find an emitter at Cartesian coordinates
x, y, z, which is constant for a homogeneous distribution of dopants in the crystal. Then, we
change coordinate systems and transform the probability density function accordingly.
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While the probability density p(x, y, z) in Cartesian coordinates is constant, this changes
when we switch to cylindrical coordinates ρ, ϕ, z, and after separating axial and radial com-
ponents again, we have

p(ρ) =
ρ

aρ
, p(z) =

1

az
, (6.30)

where the normalization constants aρ = 2w2 and az = π/2 are chosen so that∫ 2w

0

dρ p(ρ) = 1 ,

∫ λ/4n

0

dz p(z) = 1. (6.31)

The upper limit of integration over ρ is necessary for convergence reasons. Its value of
twice the waist seems reasonable because dopants outside of the cavity mode experience no
Purcell enhancement and thus radiate predominantly into free space, such that they do not
contribute to the measured signal. The validity of this assumption was confirmed by numerical
Monte Carlo simulations. In the integral over the axial component we only need to consider
the first quarter-wavelength layer of the membrane, as p(z) is constant and values of the light
intensity at other positions are related by periodicity and symmetry.

Now we change the coordinates again, from ρ to uρ, and from z to uz. The corresponding
transformations of the probability densities are given by the Jacobi determinants

p(uρ) = p(ρ)

∣∣∣∣ dρduρ

∣∣∣∣ , p(uz) = p(z)

∣∣∣∣ dzduz

∣∣∣∣ , (6.32)

and we arrive at

p(uρ) =
1

8 uρ

, p(uz) =
1

π
√
uz(1− uz)

. (6.33)

In the next and final step, we need to find the probability density for any Purcell factor
PEr ≤ PEr,max that depends on the combined probability density, p(uρuz). To this end, we
integrate over the whole parameter space and filter values that match eq. 6.29 using a delta
distribution:

p(PEr) =

∫
duρ p(uρ)

∫
duz p(uz) δ (PEr − PEr,max uρuz) (6.34)

By applying the scaling law for the delta distribution, δ(ax) = δ(x)/|a|, and evaluating
first the integral over uz, we can then solve the integral over uρ as well and arrive at

p(PEr) =
arccos

(√
PEr

PEr,max

)
4π PEr

. (6.35)

This result is in agreement with the numerical Monte Carlo simulation for Purcell factors
(see figure 6.15, solid grey and dotted blue curves). The divergence of eq. 6.35 at PEr ≈ 0
explains, why we needed to assume that PEr > 1 in order to derive this simple expression.

Coupling-dependent excitation and collection efficiency

Not only the decay rate from the excited state depends on the Purcell factor of each individual
ion. Also the probability to emit a photon into the cavity mode depends on the Purcell factor,
as well as the excitation probability by a laser pulse of certain length and power. Therefore,
strongly coupled dopants contribute disproportionately more to the detectable fluorescence
signal than weakly coupled ones.
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Figure 6.15: a) Distribution of Purcell factors for cavity-coupled ions. Because of the
Gaussian standing-wave cavity mode profile, most dopants experience reduced Purcell factors,
following a distribution p(PEr) that can be calculated analytically (blue dotted curve) or in a
Monte Carlo simulation of 50000 ions (grey curve). Weakly coupled ions, however, contribute
less to the fluorescence signal, because the probabilities of exciting the ion, ηexc, (black dashed
curve, assuming a π pulse for maximally coupled dopants) and emitting the photon into the
cavity mode, ηcoll, (black dotted curve) scale with the Purcell factor. The effective weight of each
individual Purcell factor in fluorescence measurements, p(PEr) ηcoll ηexc, (solid blue curve) gives
an average Purcell factor of ∼ 20 (red dashed line). b) Cumulative density function. By
integrating over the weighted probability density p(PEr) ηcoll ηexc in (a), we calculate the relative
contribution of dopants with Purcell factors greater than some threshold PEr,min, either with
respect to all ions in the cavity (dotted blue curve) or only to the ones detected in fluorescence
measurements (solid blue curve). For example, ions with Purcell factors PEr > 40 make up 50%
of the fluorescence signal, but have only a relative density of 1% in the cavity mode.

To calculate the collection efficiency via the cavity mode, ηcoll, we take the ratio of the
emission rate into the cavity mode, g2/κ, to the total decay rate (cf. eq. 6.5):

ηcoll =
g2

κ

γ + g2

κ

=
PEr

1 + PEr
(6.36)

The excitation probability ηexc, on the other hand, can be modeled by the coherent pop-
ulation transfer at a Rabi frequency √

ncavg after time τ . In this context, the scaling of
the Rabi frequency with the electric field amplitude is represented by the square root of the
intra-cavity photon number, ncav, and with PEr = g2/κγ we can write [Kuhn2010]

ηexc = sin2

(√
ncavPErκγ

2
τ

)
. (6.37)

This assumes that the number of photons in the laser pulse is not strongly changed by the
ions, i.e., that only a small ensemble is resonant with the laser.

The average intra-cavity photon number for optical driving can be calculated from the
photon flux Φin entering the cavity and the intensity decay rate 2κ:

ncav =
Φin

2κ
(6.38)
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Here, the photon flux entering the cavity is given by the laser power at the cavity crystal-
side mirror, P (c)

in , the mode matching efficiency ηmode and the transmission of the cavity on
resonance (see eq. 6.21):

ncav = ηmode

(
1−R(c)

) P
(c)
in

2κhν
(6.39)

Ensemble fluorescence curve

So far, our model considers a cavity with a given maximum Purcell factor, Pmax, and the
different decay rates of dopants homogeneously distributed in the crystal. Then, the observed
fluorescence signal f(t) is the sum of all individual decay curves (eq. 6.5) weighted with the
probability of the respective Purcell factor and the corresponding collection and excitation
efficiencies:

f(t) =

∫
dPEr p(PEr) ηcoll ηexc e

−(PEr+1)t/T1 (6.40)

Because the Purcell-factor dependence of excitation and collection efficiency strongly sup-
press the detection of weakly coupled ions, only a total fraction of

∫
dPEr p(PEr) ηcoll ηexc =

25% of all dopants with PEr > 1 contribute to the fluorescence at all (see figure 6.15).

Effect of cavity vibrations

For low lock laser power, the cavity stabilization by photo-thermal feedback is not perfect
and the resonance frequency fluctuates around its target value. Over a large fraction of the
measurement sequence, the cavity is therefore detuned from the dopants, even if – on average
– the excitation pulse is applied on resonance. The effect of a cavity detuning ∆ν from the
ion transition is a reduction in electric field amplitude, thus a lowering of the Purcell factor
from its original value PEr to its detuning-corrected value PEr,∆ν : [Ruf2020]

PEr,∆ν = PEr
1

1 +
(

2∆ν
∆νfwhm

)2 , (6.41)

with the cavity resonance fwhm linewidth ∆νfwhm.
Unfortunately, the cavity detuning due to vibrations does not follow a deterministic func-

tion but is a stochastic process. Still, for a qualitative understanding of the effect, we can
model it as a periodic oscillation around zero, with a root-mean-square detuning of ∆νrms
and a frequency ω. From there, we derive the probability density p(∆ν) to find the cavity
detuned by ∆ν:

∆ν(t) =
√
2∆νrms sin(ωt) , p(∆ν) =

2

π

1√
2∆ν2

rms −∆ν2
(6.42)

Consequently, the fluorescence curve in presence of vibrations is the average of the fluores-
cence curves for all possible cavity detunings, weighted by the respective probability densities:

f(t) =

∫
d∆ν p(∆ν) f(t|PEr,max,∆ν) (6.43)

Here, f(t|PEr,max,∆ν) is the fluorescence curve as described in eq. 6.40, where the fixed maxi-
mum Purcell factor is replaced by its detuning-corrected value, PEr,max,∆ν .

Although the assumption of a periodically oscillating detuning is not valid in case of
random vibrations, we find good agreement between the simulated fluorescence curves and
the measured data. A possible reason is the strong signature of mechanical resonances in the
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vibration spectrum (cf. fig. 6.7). Even if oscillations at the cavity’s eigenfrequencies are not
phase-stable because of stochastic noise, the distribution of resonance detunings is expected
to roughly follow eq. 6.42.

6.3.3 Determining the number of dopants
In addition to the relative distribution of ions with different Purcell factors, we are also
interested in the absolute number of emitters in the cavity. This helps us to estimate the
feasibility of resolving and controlling single dopants in the current setup.

To this end, we are going to analyze the area of the detected fluorescence curves, which is
a measure of the number of excitations in the cavity. First, we gauge the number of excited
dopants per measurement, then we inspect their spectral distribution and confirm the findings
in additional autocorrelation measurements.

Number of excitations per measurement

To estimate the number of excitations inside the cavity, nexc, we start with the number of
detected photons in each fluorescence measurement, ndet, and divide it by the independently
characterized setup detection efficiency, ηdet, (cf. section 6.2.5):

nexc =
ndet

ηdet
(6.44)

By scanning the excitation power and analyzing how the number of excitations scales
with the number of intra-cavity photons generated by each laser pulse, ncav, (see eq. 6.39),
we measure the saturation behavior of the optical transition (see figure 6.16).

At low excitation power, the number of excited ions increases linearly with the average
photon number up to a maximum value of about nsat ≈ 50 excited dopants, at which the
transition saturates. Thus, the number of dopants at a given frequency is on the order of
100. Because of power broadening, higher laser power will still increase the number of excited
ions but with a sub-linear scaling law ∼ (ncav)

r, with r < 1. In a phenomenological model,
we can fit the data by a modified saturation curve, and find a broadening exponent of about
r ≈ 0.3:

nexc(ncav) =
ncav
nsat

1 +
(

ncav
nsat

)1−r (6.45)
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Figure 6.16: Saturation curve. The number of excited dopants in the cavity – as calculated
from the detected fluorescence signal – increases with the number of intra-cavity photons. The
scaling is linear at low excitation power and sub-linear for high power, and by fitting eq. 6.45 to
the measured data, we extract a saturation photon number of nsat ≈ 50 (red dashed line).
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Because of the 500 µs long laser pulses used in these measurements, the excitation band-
width at saturation was likely not dominated by the Fourier bandwidth but rather by the
average Rabi frequency. At saturation level, the Rabi frequency is again calculated by the
coupling rate g =

√
PErκγ, scaled with the electric field amplitude ∼ √

ncav (cf. section 6.3.2):

Ωavg = ⟨
√
nsat g⟩ =

∫
dPEr p(PEr) ηcoll ηexc

√
nsatPErκγ∫

dPEr p(PEr) ηcoll ηexc
≈ 2π · 180 kHz (6.46)

Note that in general, also spectral diffusion processes would add to the effective excitation
bandwidth during long laser pulses. In these experiments with low dopant concentrations and
the excitation laser locked to the frequency comb, only the interaction of erbium ions with
yttrium spins is relevant, but the spectral diffusion due to superhyperfine coupling is smaller
than Ωavg and happens on a timescale much longer than the excitation pulse (see section 4.2).

Spectral distribution of dopants

Now we measure the spectral shape and width of the ensemble absorption line by scanning
excitation laser and cavity resonance frequency simultaneously and detecting the fluorescence.

At a magnetic field of 3.5T, we observe separate transition lines of the two magnetic
classes and focus on a single class of site 1. We measure a Lorentzian distribution with
414(7)MHz fwhm linewidth (figure 6.17), which is comparable to that of bulk crystals with
10 ppm erbium concentration. Apparently we observe no additional broadening, in contrast
to experiments on nano-structured crystals that are prone to increased crystal defects [Di-
bos2018, Zhong2015b]. At zero magnetic field, however, our measured absorption line peaks at
1536.49 nm, corresponding to a frequency shift by ∼ 1.5GHz compared to large bulk crystals,
which could be the result of homogeneous strain in our sample or variations in the crystal
purity.
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Figure 6.17: Ensemble absorption line. In fluorescence measurements at 3.5T, the ensemble
absorption line for a single magnetic class of site-1-dopants has a Lorentzian line shape with a
fwhm of 414(7)MHz (grey data and blue fit).
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Total number of ions

From the saturation curve measurement, we extracted a number of about 50 excited ions in
180 kHz excitation bandwidth, corresponding to a spectral dopant density of 50/(Ωavg/(2π))
= 0.2kHz. To calculate the total number of cavity-coupled ions, we multiply this spectral
density with the area of the ensemble absorption line, (π/2) · 414MHz, and correct for a
non-zero population in the high-energy ground state by the Boltzmann factor of about 6%.
We arrive at a number of ∼ 2 · 105 ions of a single magnetic class, or twice that value for all
site-1-dopants.

This number does not yet take into account that only 36% of all dopants in the mode
have a Purcell factor PEr > 1 and were considered in the model, and only 25% of those
dopants effectively contribute to the fluorescence measurements because of low excitation and
collection efficiencies (see section 6.3.2). Including this correction and all dopants on site 2
as well, we arrive at a total number of ∼ 1 · 107 erbium dopants in the cavity, distributed
over the mode volume in the crystal of about 2000 µm3, calculated for a crystal thickness of
19 µm and a beam waist of 5.7 µm (cf. section 6.1.4). Comparing this value with the density
of all yttrium sites in the crystal (16 per unit cell volume of 852.658Å3), we find a dopant
concentration of ∼ 0.2 ppm.

A similar residual erbium dopant concentration of ∼ 0.3 ppm for nominally undoped YSO
crystals has been reported before [Dibos2018]. Contamination of the yttrium precursor with
erbium and other rare-earths is common and technically difficult to avoid, which sets a limit
to the lowest possible dopant concentration achievable when growing crystals from the melt
[Tao1983, Zhang2014].

Autocorrelation measurements

To confirm the spectral density of about 0.2 ions per kHz that we deduced from the satu-
ration curve and our model distribution of coupling strengths, we also make autocorrelation
measurements. This time, we choose short pulses of 1 µs length, so that the excitation band-
width of about 500 kHz now does not depend on the individual Rabi frequencies but on the
Fourier-limited time-bandwidth product of about 0.5 for square pulses.

Our experiments consist of a train of excitation pulses with subsequent detection windows.
Because of the low photon detection rate of ∼ 1 kHz compared with the detector dead-time
of about 1 µs, we can use a single detector to measure the autocorrelation function g(2)(τ).
This function tells the normalized probability to detect two photons at arrival time difference
τ and is defined by [Walls1979, Teich1988]

g(2)(τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
. (6.47)

Here, I(t) is the number of detection events in time bin t, and ⟨·⟩ denotes the average over
the entire pulse train.

Because of the quantum nature of excitations, the maximum number of detected photons
per window is given by the number of excited dopants in the cavity, if the probability of a
dark count event is low enough. Therefore, the probability of photons being detected in the
same time bin, g(2)(τ = 0), is reduced with respect to the probability of being detected in
neighboring bins, g(2)(τ ̸= 0). This antibunching dip is directly related to the number N of
emitters: [Walls1979, Kuhn2010]

g(2)(0) = 1− 1

N
(6.48)
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For a more precise analysis, we have to correct for accidental coincidence counts due to
detector noise. With a dark count rate D and a total photon detection rate T (including dark
counts), the observed autocorrelation g̃(2)(τ) has reduced contrast: [Becher2001, Verberk2003]

g̃(2)(τ) = 1 +
(T −D)2

T 2

[
g(2)(τ)− 1

]
(6.49)

Although our autocorrelation measurements were not yet optimized for a low dark count rate,
we measured D ≈ 60Hz, which is less than 2% of the total detection rate T ≈ 3.3 kHz. In the
raw data, these accidental coincidences reduce the antibunching dip by 1−(T−D)2/T 2 ≈ 4%
and let us underestimate the number of emitters.

After correcting for dark counts, we observe an antibunching dip of g(2)(0) = 0.9907(7),
corresponding to a number of about N = 110 emitters (see figure 6.18). The resulting
spectral density of about 0.22kHz is comparable to the value extracted from the saturation
measurements.
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Figure 6.18: Fluorescence autocorrelation. In the fluorescence of a train of excitation
pulses, the autocorrelation shows an antibunching dip of g(2)(0) = 0.9907(7), corresponding to
a number of N ≈ 110 excited dopants per pulse. Because the detection windows were chosen to
be 1ms long for fast data acquisition, weakly-coupled dopants could show antibunching in the
neighboring bin, at τ = 1ms. The data points were taken at a magnetic field of 6T and are
already corrected for accidental coincidences from dark counts (eq. 6.49).

102



6.4 Photon echo measurements
After measuring the excited state lifetime of emitters and their coupling to the cavity, we
now study their optical coherence. In this section, we first perform two-pulse photon echo
experiments to measure the coherence time. While for maximally-coupled ions the coherence
time exceeds the lifetime and three-pulse echo measurements show no significant spectral
diffusion, we observe significantly accelerated dephasing at higher crystal temperature as well
as for increased lock laser power. Finally, we show the modulation of a photon echo signal by
superhyperfine coupling to yttrium spins at lower magnetic field.

6.4.1 Optical coherence time in two-pulse echo measurements
In a two-pulse echo measurement, the first laser pulse with an area of approximately π/2
prepares the emitters in a superposition between ground and excited state. In the following
free-evolution period of length t/2 they dephase because of the different transition frequencies
in the ensemble. The second pulse of area π inverts the accumulated phases, and after another
free-evolution period of length t/2, a refocusing of the phases stimulates the collective emission
of photons: the echo.

With increasing sequence length t, the echo area A(t) decays exponentially on a timescale
set by the coherence time T2 [Böttger2006b]:

A(t) = A0 exp

(
− 2t

T2

)
(6.50)

First, we determine a pulse length of 0.5 µs and power levels of 100 nW and 25 nW for π
and π/2 pulses, respectively, to maximize the echo area at constant sequence length. Then,
we scan the interpulse delay and derive a coherence time of 0.54(1)ms from fitting eq. 6.50
to the echo decay that we measured while the lock laser was turned off (figure 6.19). This
value constitutes an improvement by one order of magnitude compared to the coherence time
reported recently for bulk crystals without cavity coupling [Car2020], and it is enabled by a
strong suppression of ion-ion interactions due to the lower dopant concentration in our crystal.

Apparently, the coherence time obtained for the ensemble of emitters is significantly longer
than the expected lifetime of 0.19ms for maximally coupled dopants. Assuming they are
not subject to stronger dephasing processes than moderately coupled ions, the coherence of
dopants with maximum Purcell factor would be lifetime-limited, T2 = 2T1. But even when
we compare the ensemble-averaged coherence time with the observable fast decay time of the
ensemble-averaged fluorescence in a fully stabilized cavity (∼ 0.45ms, see figure 6.13b), most
dopants fulfill T2 > T1, which is a key requirement for having high efficiency in quantum
protocols that rely on two-photon interference [Reiserer2015].

We do, however, measure a reduced coherence time of only 0.14(1)ms when we turn on
the lock laser to about 8 µW, which we attribute to an increased crystal temperature. In the
following, we will investigate more systematically how the coherence time changes with lock
laser power and crystal temperature.
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Figure 6.19: Two-pulse photon echo. From the decay of the photon echo area over time, we
derive a coherence time of T2 = 0.54(1)ms when the lock laser is turned off (blue curve), which
is reduced to 0.14(1)ms when photo-thermal feedback is applied (red). All data were taken at
a magnetic field of 0.8T and a cryostat temperature of 1.8K, and solid curves are exponential
fits (see eq. 6.50).

Temperature and power dependence

When we scan the laser power for photo-thermal feedback, we measure a linear increase of
the coherence decay rate T−1

2 with higher power (see figure 6.20a). While we had also seen
a faster population decay in fluorescence measurements with photo-thermal stabilization, the
dependence on lock laser power was not as strong, and we could explain it with suppression
of cavity vibrations (cf. figure 6.13b). Therefore, we suspect a different mechanism causing
the drop in coherence.

Since we know that the absorption of intra-cavity laser light leads to a local temperature
increase and thus the photo-thermal effect, we speculate that such temperature increase,
induced by the lock laser, induces decoherence. To test this hypothesis, we first confirm that
heating by lock laser irradiation increases not only the temperature of the mirrors, but also
of the crystal.

To this end, we scan the ensemble absorption lines of both spin-preserving transitions,
similar to figure 6.17. The relative height of the two absorption lines reflects their difference
in ground state population and is given by the Boltzmann factor exp(−∆E/kBT ) = 6%,
where the ground state splitting ∆E = µBggB ≈ h · 112GHz can be calculated from the
magnetic field B = 0.8T and the effective ground state g-factor gg = 10. Without lock laser
irradiation, we measure a Boltzmann factor of 6%, corresponding to 1.91K and in agreement
with the cryostat temperature monitor. When we repeat the scan with a lock laser power of
3 µW, however, the Boltzmann factor increases to 10%, corresponding to a temperature of
2.33K.

We have thus confirmed that the crystal temperature increases with lock laser power. In
the second step, we turn the lock laser off again and measure the coherence time while we scan
the cryostat temperature (see figure 6.20b). Again we observe a linear increase of the coher-
ence decay rate with higher temperature, similar to the lock laser power scan. Importantly, we
find about the same coherence decay rate at a temperature of 2.33K without photo-thermal
feedback as for 1.8K with a lock laser power of 3 µW, matching our measurements of the
Boltzmann factors.

It becomes clear that a low crystal temperature is key to long coherence times. Even
without photo-thermal feedback, our experiments were still limited by the temperature control
and stability of our cryostat, with a lowest possible temperature of 1.7K. By extrapolating
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Figure 6.20: Dependence of the coherence decay rate on lock laser power (a) and
temperature (b). In measurements at 1.8K, the coherence decay rate (black circles) increases
with lock laser power (a). Similarly, the coherence decay rate increases linearly with crystal
temperature when no photo-thermal feedback is applied (b). Linear fits are shown as green
curves, and the dashed lines indicate the population decay rate of maximally coupled ions
in orange, as well as the ensemble-averaged fast fluorescence decay times at 1.8K with and
without photo-thermal stabilization in red and blue, respectively, corresponding to the curves
in figure 6.13a.

the linear trend of the decoherence rate, we estimate that a temperature of about 1.5K would
be required in order to achieve coherence time of about 1ms, which would be the lifetime
limit T2 = 2T1 for the ensemble-averaged fast fluorescence decay time of about T1 = 0.5ms
(blue dashed curve in fig. 6.20b).

The exact origin of the decoherence process is not clear: a strong temperature depen-
dence typically indicates spin-lattice relaxation processes (see section 4.4). However, we did
not observe a significant change in fluorescence decay rate, and the expected ground-state
spin-lattice relaxation rate is only ∼ 20Hz. Therefore, it is likely not the resonant erbium
dopants interacting with phonons but rather other crystal constituents or defects in their local
environments. For example, a linear increase in homogeneous linewidth with temperature is
common in disordered systems like glassy host materials, in which defect states modeled as
two-level systems couple to phonons [Schmidt1993] and linewidth and temperature dependence
can differ between differently grown samples [Flinn1994, Macfarlane2004].

Usually, such processes cause spectral diffusion (see section 4.2), which would be seen as de-
viation from an exponential photon echo decay closer to a Gaussian decay curve [Böttger2006b,
Mims1968]. In the above two-pulse photon echo measurements, we did not observe any signa-
ture of spectral diffusion. A possible explanation could be that the diffusion process induces
only very small shifts in frequency but happens on a very fast time scale, so that photon echo
measurements only see the time-averaged spectral linewidth.

105



6.4.2 Three-pulse photon echo measurements
To further testify the negligible impact of spectral diffusion on the measured coherence times,
we employ stimulated photon echo experiments, consisting of three π/2 pulses. The first one
prepares a superposition state that quickly dephases, similar to the two-pulse echo experi-
ments. After a time t/2, the second π/2 pulse maps the superposition onto the population
in ground and excited state, where it is not subject to decoherence anymore. After a waiting
time Tw, the third pulse restores the superposition and leads to rephasing and subsequent
echo emission after a last free-evolution period of length t/2.

Perfect refocusing requires the transition frequencies of all individual ions in the first
and last free-evolution period to be equal, which requires that the inhomogeneous linewidth
has not changed. The additional waiting time in the qubit eigenstates makes it possible to
compare the inhomogeneous linewidths before and after, separated by a time interval not
limited by the coherence time. Consequently, any spectral diffusion during the waiting period
would increase the apparent decay rate measured over the time t spent in the superposition
state.

In general, the echo area for a waiting time Tw spent in the qubit eigenstates and a time
t spent in the superposition state decays as follows: [Böttger2006b]

A(t, Tw) = A0 exp

(
−2Tw

T1

)
exp (−2t πΓeff(t, Tw)) (6.51)

Here, T1 is the lifetime of the excited state, and Γeff the effective linewidth. In absence of
spectral diffusion, it approaches the homogeneous linewidth, Γeff → Γhom = 1/(πT2), with
the coherence time T2, and in the limit Tw = 0 we retrieve the single-exponential decay
behavior of a two-pulse echo (eq. 6.50).

Spectral diffusion, however, will lead to an increase of the effective linewidth over time,
typically modeled as [Böttger2006b, Thiel2010]

Γeff(t, Tw) =
1

πT2

+
ΓSD

2

[
Rt

2
+
(
1− exp(−RTw)

)]
(6.52)

Here, ΓSD is the spectral width of the diffusion process, and R is the characteristic rate at
which it takes place.

In our experiments the shapes of the decay curves do not change with the waiting time and
can be fit with exponential functions. Their characteristic decay time, and thus the effective
linewidth, stays constant for waiting times up to 200 µs (see figure 6.21), which means we
observe no spectral diffusion within the lifetime of the strongest-coupled ions.

Coherence time at high magnetic field

In order to learn more about the microscopic origin of the process that limits the ensemble-
averaged coherence time, we also made measurements at higher magnetic fields. Unfortu-
nately, with increasing magnetic field we also observed a worsening of the cavity vibrations
and the cryostat temperature stability, which required the heavy use of photo-thermal feed-
back for active stabilization of the cavity resonance.

In this configuration, we measured a coherence time of about 150 µs, which stayed roughly
constant over the whole range of magnetic fields up to 6T. There, we performed another
three-pulse echo experiment and again observed no change of the effective linewidth with the
waiting time Tw (red circles in figure 6.21b).
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Figure 6.21: a) Photon echo decay. In two-pulse photon echo measurements, the echo area
decays exponentially (grey data and fit), indicating no spectral diffusion. This is confirmed
by three-pulse echo measurements with waiting periods of Tw = 4 µs (green) and Tw = 128
(orange) that follow the same envelope curve (exponential fits as solid lines), independent of
the waiting period. The apparent modulation in the three-pulse echo is rather indication of
coherent interference than presence of diffusive spectral wandering. It was not present in two-
pulse echo measurements and could not be reproduced at 6T, its likely origin could have been
light-shift modulation due to insufficiently stabilized laser frequency fluctuations [Chanelière2015].
b) Effective linewidth. From the coherence decay rate in three-pulse echo experiments, we
can extract the effective linewidth according to eq. 6.51 for measurements at 0.8T and no lock
laser irradiation (blue data and average value) as well as at 6T and photo-thermal feedback (red
data and average value). It stays constant up to waiting times of 0.2ms, indicating the absence
of spectral diffusion during the lifetime of maximally coupled ions.
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6.4.3 Photon echo modulation by yttrium spins
In chapter 4.3.3 we had seen that optical excitation can drive not only the spin-preserving
transition of erbium but also nuclear spin-flip transitions of superhyperfine-coupled yttrium
ions. If the splitting between the superhyperfine states is smaller than the excitation pulse
bandwidth and the branching contrast between both optical transitions is high enough, a
beating between the two frequencies can be observed as modulation of the photon echo decay.

The measurements at 800mT were not affected because the magnetic field at each yttrium
site was dominated by the external field, and the change caused by excitation of the erbium
spins was too small to stimulate nuclear spin-flips. In this section, we apply a field of 350mT
along the D2-axis and see a clear signature of superhyperfine coupling in the photon echo
decay. We show by numerical calculations that in fact a single yttrium site coupled to each
erbium ion causes the observed echo modulation.

Photon echo measurements at 350 mT

Figure 6.22 presents the photon echo area as function of the sequence length (from the first
π/2 pulse until the echo detection) for both initial electron spin states, |↑⟩g and |↓⟩g. While
the echo decay for the low-energy spin state |↓⟩g is exponential with a time constant of
134(2) µs, we observe a modulated decay for the high-energy spin state |↑⟩g, with a complete
suppression of the echo emission for certain sequence lengths, e.g. at 15 µs and 69 µs.

For given superhyperfine frequency splittings ∆νg and ∆νe in ground and excited state,
respectively, the decay function of the echo area A(t) can be calculated as follows: [Car2020,
Guillot-Noël2007]

A(t) = exp

(
− 2t

T2

) [
1− ϱ

2

(
1− cos(2π∆νgt/2)

)(
1− cos(2π∆νet/2)

)]2
(6.53)

Here, ϱ is the branching contrast of the yttrium superhyperfine transitions, as defined in
chapter 4.3.3. If multiple yttrium spins couple to the same erbium ion, the modulation term
in square brackets is replaced by a product over the modulation terms for individual coupling
partners [Mims1972].
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Figure 6.22: Photon echo modulation by superhyperfine coupling to yttrium nuclear
spins. At a magnetic field of 350mT along D2, the photon echo on the high-frequency spin-
preserving transition, starting from |↓⟩g, decays exponentially (blue data and fit), while the echo
on the low-frequency transition, starting from |↑⟩g, is strongly modulated due to interaction
with yttrium spins (red data points, connected for better visibility). Moderate photo-thermal
feedback was applied to stabilize the cavity resonance.
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Predicted superhyperfine coupling

In figure 6.23a, we plot the branching contrast for the 15 nearest neighbors of an erbium
site-1-dopant in the current magnetic field orientation (B⃗ ∥ D2). Remarkably, we find that
only a single yttrium site contributes to superhyperfine branching of the optical transition,
which is the nearest neighbor yttrium ion. With eq. 6.53, we can calculate the predicted
echo modulation for this yttrium site. By fine-tuning of the assumed magnetic field orien-
tation to φ = 89.5◦ and ϑ = 90.7◦, we find good agreement between the prediction and
the measurements (fig. 6.23b). In particular, we can reproduce the total suppression of echo
emission at 15 µs and 69 µs and the partial suppression at 38 µs and 47 µs. At this magnetic
field orientation (ϑ ̸= 90◦), the crystallographic classes I and II are no longer equivalent and
have different superhyperfine coupling, which is accounted for by taking the average of both
individual modulation curves.

Still, there are a few differences between theory curve and experiment: at sequence lengths
of 24 µs and 54 µs, for example, the observed reduction in echo area does not match quan-
titatively with the model. While the inclusion of other yttrium sites does not improve the
fit quality because their branching contrasts are too low, there is the possibility that strain
in the crystal modifies the relative positions of yttrium sites from the erbium ion and thus
changes the photon echo modulation. We can exclude inhomogeneities in strain or magnetic
field, as the resulting broadband distribution of modulation frequencies would result in a
faster envelope decay but not in a distinct modulation pattern. This is in agreement with the
observation of a rather narrow ensemble absorption line but a frequency shift with respect to
bulk crystal emission (cf. section 6.3.3).
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Figure 6.23: a) Superhyperfine branching contrast. From the erbium magetic moment
and the relative position of an yttrium spin in the crystal, we calculate the superhyperfine
branching contrast for each of the 15 closest Y-neighbors (light color). For the high-frequency
transition (blue), starting from the |↓⟩g ground state, no significant superhyperfine branching
occurs at fields > 200mT, but when we excite the |↑⟩g ground state (red), the nearest neighbor
couples strongly (highlighted in full color). b) Echo area modulation. At a field of 350mT,
the photon echo modulation as calculated from eq. 6.53 for superhyperfine coupling of the |↑⟩g
spin-preserving transition to a single yttrium site (red line) can explain most features of the
measured data (black data points, connected by a dashed line).
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Potential for quantum information processing

The high modulation depth of the measured photon echo decay can only be explained by
fully coherent interactions. As such, they are not an artifact of ensemble spectroscopy but
would also be present in single interacting spin pairs of erbium and yttrium. In this case, an
excited dopant could decay via two paths with equal probability into its ground state: either
accompanied by a superhyperfine spin flip or not. The emission of a photon is thus entangled
with a particular yttrium nuclear spin state. Combined with the expected long coherence
times of nuclear spins, single yttrium atoms interfaced optically via erbium dopants have the
potential for generation of spin-photon entanglement and long-term storage of quantum bits.
[Kornher2020, Zhong2019a, Gao2015].

While addressing yttrium spins optically by their coupling to erbium ions is an attractive
prospect, the inhomogeneous broadening of optical transitions precludes its implementation
in ensembles of erbium dopants or renders it inefficient.
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6.5 Towards spectroscopy and control of single dopants
In the previous sections we demonstrated the coherent and Purcell-enhanced emission of
photons from an ensemble of erbium dopants. For applications in quantum information
processing, however, the coherent control of single emitters is highly desired [Reiserer2015].

Here, we show the full potential of cavity-enhanced spectroscopy by resolving spectral
lines of single or few emitters. To this end, we detune the cavity and the excitation laser
by about 6.5GHz from the absorption line center, where the spectral density of dopants is
reduced by several orders of magnitude. In each measurement, we excite the dopants by a
narrow-band laser pulse and collect their emission within a 0.3ms time window to maximize
the signal-to-noise ratio.

When we scan the excitation frequency, we observe several lines, which we attribute to
single or few emitters (figure 6.24a). Their widths of a few 100 kHz are increased due to
spectral diffusion over the total experiment duration of about 1 hour per scan. In these first
measurements, the exact line positions differ slightly from scan to scan, and they seem to
follow a very slow drift of roughly 1MHz/hour. Later we find out that air slowly diffuses out
of the compressed-air dampers, which slightly shifts the cavity position inside the cryostat
and thus the magnetic field at the sample.

In order to confirm that these spectral lines belong to single or few emitters, we analyze
the autocorrelation of the detected photons (fig. 6.24b). For these measurements, we sweep
the laser frequency in each pulse by 0.5MHz to ensure excitation of the spectral line despite
its slow drift. We suppress the dark count rate to 2Hz at the price of a reduced detection
efficiency, leading to a total detection rate of 22Hz. After correcting for the resulting reduction
in contrast due to accidental coincidences (eq. 6.49), we find g(2)(0) = 0.40(7). This value is
lower than the theoretical minimum value of 0.5 for the fluorescence from two emitters, but
still far from the absolute minimum value of 0 for the signal from a single emitter. A possible
reason could be the contribution of a second dopant or several others with weaker coupling
to the cavity.

For the next experiments, we deflate the compressed-air dampers and optimize the cavity
stability as well as the detection efficiency again. By increasing the magnetic field to 2T
and the detuning from the ensemble center to ∼ 16GHz, we reduce the spectral density of
dopants further in order to achieve better separation of different emitters.

In a fluorescence scan, we find a pair of two narrow lines with widths of 0.20(2)MHz and
0.43(5)MHz (figure 6.25a). These linewidth already approach the inhomogeneous linewidth
set by the superhyperfine coupling to the bath of yttrium nuclear spins of about 0.20(1)MHz
(cf. section 4.2.4 and figure A.2b). The emission frequencies now stay stable over several hours
(fig. 6.25b), confirming the mechanical drift as origin for the previously observed spectral
wandering. Both emission lines decay with a lifetime of 0.25(4)ms (fig. 6.25c), corresponding
to a Purcell factor of 45(7).

Our measurements demonstrate that cavity-enhanced spectroscopy of dilute rare-earth
ensembles can resolve narrow spectral lines of few dopants and that single-emitter experiments
are within reach. The observed optical linewidths can be as narrow as 0.20(2)MHz, only
limited by the nuclear spin bath. This is in stark contrast to experiments with nano-photonic
cavities, in which an inhomogeneous broadening of the emission lines up to ∼ 10MHz was
observed [Dibos2018]. Even narrower lines could possibly be observed in host materials with
no nuclear spins, like silicon [Weiss2021] or TiO2 [Phenicie2019].
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Figure 6.24: a) Fluorescence measurement (bottom panel) and Monte Carlo simu-
lation (top) of few dopants. At a detuning of ∼ 6.5GHz from the center of the ensemble
absorption line, we observe narrow fluorescence lines, which are reproducible in repeated scans
over several hours (differently colored rows). We also observe a slow drift of the emission lines,
which was later identified as shift of the sample position in the magnetic field of the cryostat
due to diffusion of air out of the compressed-air dampers. These experiments were made after
a re-assembly of the cavity, with a different polarization E⃗ ∥ D2 but a similar Purcell factor of
∼ 60, and with a magnetic field of 0.95T applied along the b-axis. The observed fluorescence
pattern is consistent with a Monte Carlo simulation for our cavity parameters (top row). b) Au-
tocorrelation measurement. To measure the fluorescence autocorrelation despite the drift,
we sweep the excitation pulse over 0.5MHz and obtain an antibunching dip of g(2)(0) = 0.40(7)
after correcting for dark counts (cf. eq. 6.49). A value < 0.5 indicates that most detected pho-
tons originate from a single quantum emitter.
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Figure 6.25: a) Fluorescence scan. After stabilizing the cavity at 2T and increasing the
detuning from the ensemble center to 16GHz, we observe narrow fluorescence lines on a vanishing
background, here fitted with two Lorentzians. Their widths can be as narrow as 0.20(2)MHz
(left peak), which precisely matches the expected diffusion width due to coupling to the nuclear
spin bath of 0.20(1)MHz (cf. section 4.2.4). b) Long-term stability. With improved position
stability of the cavity inside the cryostat, we can suppress the slow drift of the emission frequency
that we had seen in fig. 6.24. Each row is a fluorescence scan as in panel (a). c) Fluorescence
decay. By measuring the fluorescence decay over time, we find an emitter lifetime of 0.25(4)ms
(exponential fit), corresponding to a Purcell factor of 45(7).
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7 Summary and outlook

In this work, we have investigated erbium dopants in YSO as a promising platform for
future applications in distributed quantum information processing. In particular, we discussed
the role of dipolar interactions among erbium dopants and their superhyperfine coupling to
yttrium nuclear spins in the context of holeburning spectroscopy as well as their implication
for the coherent control of erbium spins.

After presenting two schemes for optical spin initialization and readout, we studied the
spin coherence in the densely populated ground level and the selectively initialized excited
level, which allowed us to distinguish interactions with resonant spins from coupling to an
off-resonant spin bath. Supported by theoretical modeling, we demonstrated that effective
dynamical decoupling from off-resonant spins in the excited state is possible, while the ground-
state spin coherence is limited by instantaneous spectral diffusion.

Although dipolar coupling in ensembles of interacting spins is a common phenomenon,
previous studies have focused on isotropic systems. In contrast, in this work we presented
a comprehensive analytical approach to describe magnetic interactions in the Zeeman eigen-
basis, which enabled us to construct the average Hamiltonian for an optimum decoupling
sequence. As important result, we derived that in systems with highly prolate g-tensors (like
Er:YSO) conventional decoupling sequences are not effective, and even optimized, asymmet-
ric sequences can not completely counteract instantaneous diffusion. This limitation is even
more severe in systems with highly oblate g-tensors (like Er:CaWO4), where asymmetric se-
quences provide no improvement as compared to conventional decoupling sequences. While
our analysis was based on the effective spin-1/2 level structure as found in Er:YSO, it is not
restricted to this particular material system and can be applied to many other combinations
of dopants and hosts [Venet2019, Tiranov2018, Bertaina2007, Thiel2012b] and even to quantum
dots [vanBree2016].

Since interactions in dense ensembles of erbium dopants set an ultimate limit to the
achievable electron spin coherence time, alternative systems need to be advanced: either
nuclear spins that are effectively not susceptible to instantaneous diffusion, or extremely
dilute ensembles that require optical resonators for efficient readout and control.

In this work, we built a Fabry-Perot cavity to study a nominally undoped YSO crystal.
By combining good passive vibration isolation with active feedback, we achieved a relative
stability of ∼ 1 · 10−8 at cryogenic temperature, which is about two orders of magnitude
better than previously reported for cryogenic Fabry-Perot fiber cavities [Salz2020].

In ensemble measurements we observed a lifetime reduction from a bulk value of 11.4ms
[Böttger2006a] to 0.45ms, while maintaining a good optical coherence time of up to 0.54ms.
The observed multi-exponential fluorescence curve shape and time constant is in excellent
agreement with a theoretical modeling based on independently measured parameters. For
optimally coupled emitters, this model predicts a 530(50)-fold enhancement of the telecom
transition at 1536 nm, resulting in a lifetime reduction factor of 59(6). This value is com-
parable to the Purcell factor realized in nanophotonic resonators, despite the vastly different
mode volumes [Miyazono2016].

In the end, we demonstrate the capability to resolve single ions in the tail of the ensemble
distribution, where the spectral density is lower. So far, the number of resolvable ions is
small because only a small fraction of all dopants is located at an antinode of the cavity
mode and exhibits sufficiently strong Purcell enhancement. At the same time, a large number
of those strongly coupled dopants can not be addressed individually because their emission
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frequencies are too close, within the inhomogeneous linewidth. In future experiments, the
inhomogeneity and thus the number of individually addressable ions could potentially be
increased by strain engineering. For example, other rare-earth impurities like europium or
scandium are known to induce strain that shifts the optical transition frequencies of erbium
dopants [Welinski2017, Thiel2012a]. Small amounts of these and other rare earths are expected to
be found in undoped YSO, similar to erbium, but deliberate co-doping would also be possible.
Such co-doping with other rare-earths also increases the inhomogeneous linewidth of the
erbium spin transition [Welinski2017] and effectively lowers the concentration of resonant spins,
which reduces the impact of instantaneous diffusion. Since the trivalent ions Sc3+ and Eu3+

have no electron magnetic moment, their proximity would cause only little perturbation to the
erbium spins. At best, their nuclear spins could even be used as a resource, like a quantum
register [KimiaeeAsadi2018]. Similarly, the nuclear spins of yttrium can provide a long-term
quantum memory that can be interfaced via the optical transition of erbium. In particular,
we observed coherent interaction with yttrium spins both in spectral holeburning experiments
and as photon echo envelope modulation. Modeling such superhyperfine coupling showed good
agreement with measurements and suggests that in certain magnetic field configurations only
single yttrium sites couple efficiently to the optical transition of erbium spins.

As an alternative to the mentioned use of nuclear spins, crystals without rare-earth con-
tamination could be employed, such as TiO2 [Phenicie2019], CaWO4 [Bertaina2007], or silicon
[Weiss2021]. The latter has the additional advantage of established fabrication of thin mem-
branes [McCann2001, Shchepetov2013], as well as ultrapure growth of even-isotopically purified
and thus nuclear-spin free material [Chartrand2018, Itoh2014].

Our cryogenic Fabry-Perot cavity design will also work for other hosts of erbium dopants,
such as silicon, but can also be adopted to study different emitters, like color centers in dia-
mond or silicon carbide [Awschalom2018] or the recently discovered silicon defects at telecom
wavelengths [Bergeron2020]. While the presented cavity design allows for frequency multiplex-
ing and therefore is already useful for quantum information processing, there is still room for
improvement: by using a thinner crystal membrane and reducing the width of the air gap, a
smaller mode volume could be achieved, resulting in higher coupling strengths. Alternatively,
this would allow for an increase in the cavity linewidth while maintaining the high Purcell
factor, so that a larger bandwidth is available for frequency multiplexing. Furthermore, the
effort of stabilizing the cavity is still quite high, and resonator designs with a better passive
stability should be considered. For example, a fiber cavity aligned and stabilized in a glass
ferrule has shown great intrinsic stability but has not yet been adapted to cryogenic environ-
ment [Saavedra2021, Gallego2016]. Such a design would not only allow for miniaturization of
the setup but also greatly improve the scalability due to a completely fiber-coupled setup.

In the context of scalability and mass production, also silicon as host for erbium dopants
and material with highly optimized fabrication techniques for nanophotonic structures should
be considered [Yin2013]. Although the integration of erbium ions in silicon is not trivial because
of the large size mismatch and the required charge compensation, we could measure narrow
spectral lines in first experiments with resonant excitation [Weiss2021], which is promising for
the integration into nanophotonic resonators.
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A Appendix

A.1 Dipolar broadening

As can be seen in eq. 2.17, the dipole-dipole interaction shifts the energies of interacting spin
pairs. To calculate the total energy shift for a single ion in an ensemble of many, we have
to integrate over the entire crystal. The result will depend on the exact positions of dopants
and their respective spin orientations, and averaging over all possible configurations leads to
spectral broadening of the level energy.

In this section, we derive an analytical expression for the dipolar broadening. In contrast
to derivations in [Mims1968, Baibekov2014, Maryasov1982] we use SI units where relevant and
start with the most general form of the dipole-dipole interaction (cf. section 2.4.1):

⟨↑↑|Hdd |↑↑⟩ =
Aξ(Ω)

r3
(A.1)

Here, we separated the scaling with the distance between the interacting spins, r, and the
dependence on the solid angle, Ω. A is the remaining prefactor.

For the coupling between two similar erbium dopants, for example, we find (see eq. 2.18)

A =
µ0

4π

h2γ2
eff

4
, ξ(Ω) = 1− 3 cos2 α, (A.2)

where α is the angle between the precession axis of the magnetic moment and the vector that
connects the spins. We note that the most general form in eq. A.1 also applies to the effective
dipolar coupling Hamiltonian under the influence of dynamical decoupling, as discussed in
section 5.2.3.

In the following, we consider an ensemble of N interaction partners at positions r⃗j relative
to a central spin, whose transition broadening we analyze. To derive the distribution of the
energy shifts, I(ϵ), we follow the approach in [Mims1968] and start by summing over all
configurations (r⃗1, . . . , r⃗j, . . . , r⃗N), weighted with their probabilities P (j)

config:

I(ϵ) =
∑

configurations (r⃗j)
P

(j)
config δ

(
ϵ−

∑N
j

Aξ(Ω)

r3j

)
(A.3)

For low dopant concentrations, we can assume a continuous, uniform distribution of spin
positions in the crystal, and the probability of an interaction partner to occupy the volume
element dVj is simply P

(j)
config = dVj/V . We also express the delta function by its Fourier

transform and then recognize that the integrals over individual dopants are all the same:

I(ϵ) =

∫
· · ·
∫ N∏

j

(
dVj

V

)
1

2π

∫ +∞

−∞
dρ exp

(
−iρϵ+

N∑
j

iρ
Aξ(Ω)

r3j

)
(A.4)

=
1

2π

∫ +∞

−∞
dρ e−iρϵ

 1

V

∫
dV exp

(
ρ
Aξ(Ω)

r3

)
︸ ︷︷ ︸

V ′


N

(A.5)
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To study the limit N → ∞ while keeping the dopant concentration n = N/V constant,
we rewrite [

V ′

V

]N
=

[
1−

(
Ṽ

V

)]N
=

[
1−

(
nṼ

N

)]N
→ exp(−nṼ ) (A.6)

with

Ṽ = V − V ′ =

∫ ∞

0

dr r2
∫

dΩ
(
1− eiρAξ(Ω)/r3

)
=

π

6
|ρ|A

∫
dΩ |ξ(Ω)|. (A.7)

After inserting eq. A.7 into eq. A.5, we recognize that the expression for I(ϵ) is the Fourier
transform of a Lorentzian with a fwhm linewidth ∆ϵ:

I(ϵ) =
1

2π

∫ +∞

−∞
dρ e−iρϵ e−∆ϵ|ρ|/2, (A.8)

with

∆ϵ =
2nṼ

|ρ|
=

π

3
nA

∫
dΩ |ξ(Ω)| (A.9)

After inserting the expression from eq. A.2, we can solve the integral over the solid angle
and find the linewidth

∆ϵ =
π

3
nA

∫
dΩ |1− 3 cos2 α| = 16π2

9
√
3
An (A.10)

=
π

9
√
3
µ0h

2γ2
eff n (A.11)

In our derivation, ∆ϵ is the linewidth of the energy distribution of a single state and
related to the fwhm linewidth of the ground level spin transition, ∆ν, by h∆ν = 2∆ϵ.
The resulting dipolar transition linewidth is in agreement with derivations in [Mims1968,
Baibekov2014, Maryasov1982] which were using cgs units and therefore differ by a factor µ0/4π:

h∆ν =
2π

9
√
3
µ0h

2γ2
eff n (A.12)
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A.2 Plots for a magnetic field orientation in the b-D2 plane
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Figure A.1: a) Effective g-values for ground and excited state. When the external
magnetic field is varied in the b-D2 plane, the effective g-values for ground and excited state are
different for magnetic class I (solid lines) and II (dashed), except for ϑ = 0◦ (along the b-axis)
and ϑ = 90◦ (along the D2-axis). [cf. figure 2.2b] b) Ground state microwave g-factors.
The effective g-factor for microwave fields,

√
g2mw,x + g2mw,y as calculated with eq. 5.2, does not

only depend on the orientation of the static magnetic field in the b-D2 plane, but also on the
orientation of the microwave field, here shown for along b (blue), along D2 (green) and along D1

(yellow). Again, the values differ between magnetic class I (solid) and II (dashed). [cf. figure 5.1]
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Figure A.2: Spectral diffusion linewidth of the spin (a) and optical (b) transition.
Dipolar interactions with similar (red) and dissimilar (blue) spins as well as with yttrium nuclear
spins (yellow) lead to a broadening of the erbium transitions (here shown for site 1, class I-
dopants). The dipolar linewidth of the spin transition due to interaction erbium spins can be
calculated analytically with eq. 4.3 and 4.4. All other curves are calculated in 2000 runs of a
Monte Carlo simulation for 100 interacting erbium ions and the 550 closest yttrium sites. All
calculations were performed for a total erbium concentration of 10 ppm, distributed equally on
sites 1 and 2 and on magnetic classes I and II. [cf. figures 4.4 and 4.5]
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Figure A.3: Branching contrast for the optical spin-flip transition. At a magnetic field
oriented along ϑ = 45◦ in the b-D2 plane, the optical spin-flip transition is favored for magnetic
class I (solid) but not for class II (dashed). The branching contrast is calculated with eq. 4.6
and 4.7. [cf. figure 4.8]
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Figure A.4: Number of yttrium sites with significant branching contrast of their
optical superhyperfine transitions. For a given external magnetic field orientation and
amplitude, we calculate the superhyperfine branching contrast via eq. 4.14 for the 36 nearest
yttrium neighbors. The plot assumes a class I erbium dopant; the results for the magnetic
class II are related by mirror symmetry around ϑ = 90◦. [cf. figure 4.12a]
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