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n-CLUSTER TILTING SUBCATEGORIES FOR RADICAL SQUARE ZERO

ALGEBRAS

LAERTIS VASO

Abstract. We give a characterization of radical square zero bound quiver algebras kQ/J 2 that

admit n-cluster tilting subcategories and nZ-cluster tilting subcategories in terms of Q. We also
show that if Q is not of cyclically oriented extended Dynkin type Ã, then the poset of n-cluster

tilting subcategories of kQ/J 2 with relation given by inclusion forms a lattice isomorphic to the

opposite of the lattice of divisors of an integer which depends on Q.

Introduction

Representation theory of algebras can be described as the study of the category mod Λ of finite-di-
mensional (right) modules over an algebra Λ. One of the most helpful tools in that study has been
Auslander–Reiten theory. In recent years a higher-dimensional analogue of Auslander–Reiten theory
has been introduced by Iyama [Iya07b, Iya07a]; see also [Iya08]. In this theory, instead of focusing on
mod Λ, one restricts to a suitable subcategory C of mod Λ called an n-cluster tilting subcategory for
some positive n, while if C has an additive generator M , then M is called an n-cluster tilting module.
In this setting one may describe C using an n-dimensional version of Auslander–Reiten theory.

Every algebra Λ admits a unique 1-cluster tilting subcategory, namely mod Λ itself. On the other
hand, if n ≥ 2, then an n-cluster tilting subcategory may not exist. Generally, it is not easy to find
algebras which admit n-cluster tilting subcategories. Recently there has been a lot of research in
trying to find or construct n-cluster tilting subcategories, see for example [IO11, HI11, IO13, CIM19,
JKPK19, CDIM20].

For simplicity, we assume that all quivers in this article are connected; the results of this paper
can be straightforwardly generalised for quivers which are not connected. For an integer m ∈ Z≥1 we

denote by Am the quiver 1 −→ 2 −→ · · · −→ m and by Ãm the quiver

1m

m− 1 2.

For a quiver Q we denote by J the ideal of the path algebra kQ generated by the arrows of Q. One
may then ask for which integers l ≥ 2 does the bound quiver algebra Λ = kQ/J l admit an n-cluster
tilting subcategory. Several results are known in that direction. The case Q = Am has been studied in
[Vas19], while the case Q = Ãm has been studied in [DI20]. The case where n is the global dimension
of Λ was studied in [ST21]. In this article we consider the case where l = 2. As a first result we have
the following theorem.
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Theorem A (Proposition 2.9 and Theorem 2.10). Let Λ = kQ/J 2 and n ≥ 2. If Λ admits an
n-cluster tilting subcategory, then Λ is a representation-finite string algebra. Moreover, if X is an
indecomposable Λ-module and X is not simple, then X is projective or injective.

Theorem A shows that a radical square zero bound quiver algebra Λ which admits an n-cluster tilting
subcategory is well-understood from the point of view of representation theory. In particular, since
Λ is representation-finite, every n-cluster tilting subcategory C of mod Λ is of the form C = add(M)
for an n-cluster tilting module M ∈ mod Λ. We then give the following characterization, which is the
main result of this paper.

Theorem B (Theorem 4.1). Let Λ = kQ/J2 and n ≥ 2. Then Λ admits an n-cluster tilting subcategory

C if and only if Q is an n-admissible quiver. If moreover Q 6= Ãm, then C is unique and C =

add
(⊕

j≥0 τ
−j
n (Λ)

)
where τ−n = τ−Ω−(n−1).

For the definition of n-admissible quivers we refer to Definition 2.6 and Definition 3.1; we refer to
Remark 4.4 for an easy way to construct n-admissible quivers. Given Theorem B, it is not hard to
classify radical square zero bound quiver algebras which admit nZ-cluster tilting subcategories in the
sense of [IJ17].

Theorem C (Theorem 4.7). Let Λ = kQ/J 2 and n ≥ 2. Then Λ admits an nZ-cluster tilting

subcategory if and only if Q = Am and n | (m− 1) or Q = Ãm and n | m.

Finally, we show that if Q 6= Ãm, then the set of n-cluster tilting subcategories of kQ/J 2 forms a
lattice isomorphic to the lattice of a certain integer which depends only on Q.

Theorem D (Theorem 4.12). Let Λ = kQ/J 2. Assume that Q 6= Ãm and that Q has admissible
degree N . Set

CT(Λ) := {C ⊆ mod Λ | there exists n ∈ Z≥1 such that C is n-cluster tilting}.
Then (CT(Λ),⊆) is a complete lattice isomorphic to the opposite of the lattice of divisors of N .

For the definition of the admissible degree of a quiver we refer to Definition 4.11.
This paper is organized as follows. In Section 1 we establish notation and include some general

results about n-cluster tilting subcategories and radical square zero algebras. In Section 2 we find
some necessary conditions for a radical square zero bound quiver algebra to admit an n-cluster tilting
subcategories. In Section 3 we show that these necessary conditions are also sufficient. In Section 4
we state our main result and a few applications.

1. Preliminaries and notation

Let k be a field. By an algebra we mean a finite-dimensional associative k-algebra with a unit and
by a module we mean a finite-dimensional right module.

Let Λ be an algebra. The (Jacobson) radical rad(Λ) of Λ is the intersection of all the maximal right
ideals of Λ. The algebra Λ is a radical square zero algebra if rad2(Λ) = 0. We denote by mod Λ the
category of Λ-modules. A Λ-module M ∈ mod Λ is called basic if all indecomposable direct summands
of M are pairwise non-isomorphic. For M ∈ mod Λ we denote by Ω(M) the syzygy of M , that is the
kernel of P (M) −� M , where P (M) is the projective cover of M and by Ω−(M) the cosyzygy of M ,
that is the cokernel of M ↪−→ I(M) where I(M) is the injective hull of M . Note that Ω(M) and
Ω−(M) are unique up to isomorphism.

We denote by D the duality Hom(−,K) between mod Λ and mod Λop. We denote by τ and τ− the
Auslander–Reiten translations and we recall the Auslander–Reiten duality

Ext1
Λ(M,N) ∼= DHomΛ(τ−(N),M),

for all M,N ∈ mod Λ, where HomΛ(−,−) denotes morphisms in the projectively stable category modΛ.
For more details about the representation theory of finite-dimensional algebras and Auslander–Reiten
theory we refer to [ARS95, ASS06].
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Throughout this article n denotes a positive integer. A subcategory C ⊆ mod Λ is called n-rigid if
ExtiΛ(C, C) = 0 for all i ∈ {1, . . . , n−1}. A functorially finite subcategory C ⊆ mod Λ is called n-cluster
tilting if

C = {X ∈ mod Λ | ExtiΛ (X, C) = 0 for all 0 < i < n}

= {X ∈ mod Λ | ExtiΛ (C, X) = 0 for all 0 < i < n}.
If moreover C = add(M) for a module M ∈ mod Λ, then M is called an n-cluster tilting module. Notice
that any category of the form add(M) for some M ∈ mod Λ is functorially finite. In particular, if Λ
is representation-finite, then any subcategory of mod Λ is functorially finite. Clearly if C ⊆ mod Λ
is n-cluster tilting, then Λ, D(Λ) ∈ C; we use this fact throughout. We denote by τn and τ−n the
n-Auslander–Reiten translations defined by τn = τΩn−1 and τ−n = τ−Ω−(n−1). For more details about
higher dimensional Auslander–Reiten theory we refer to [Iya08].

Notice that there exists a unique 1-cluster tilting subcategory of mod Λ, namely mod Λ itself. In
the rest of this paper we assume that n ≥ 2, unless otherwise stated. We also need the following
observations.

Proposition 1.1. Let Λ be a finite-dimensional algebra and let C ⊆ mod Λ be an n-cluster tilting
subcategory.

(a) The functors τn : CP → CI and τ−n : CI → CP induce mutually inverse bijections, between the
set CP of isomorphism classes of indecomposable nonprojective Λ-modules and the set CI of
isomorphism classes of indecomposable noninjective Λ-modules.

(b) If D ⊆ mod Λ is an n-cluster tilting subcategory such that D ⊆ C, then C = D.
(c) Let M =

⊕
j≥0 τ

−j
n (Λ). Then M ∈ C. If moreover M is an n-cluster tilting module, then

C = add(M).

Proof. (a) See [Iya08, Theorem 2.8].
(b) Follows directly from the definition of n-cluster tilting subcategories.
(c) Since Λ ∈ C, we have that M ∈ C by (a). In particular we have add(M) ⊆ C. Hence if M is

an n-cluster tilting module, then by (b) we conclude that C = add(M). �

Lemma 1.2. Let Λ be a finite-dimensional algebra and M,N ∈ mod Λ with M 6= 0. Assume that
τ−x (N) ∼= M for some x ≥ 1. Then ExtxΛ(M,N) 6= 0.

Proof. We first consider the case x = 1. By additivity of τ− and ExtxΛ(−,−) we may assume that M
and N are indecomposable. Since τ−(N) ∼= M and M is nonzero, it follows that N is noninjective.
Then there exists an almost split sequence 0 −→ N −→ F −→ τ−(N) −→ 0 in mod Λ and the result
follows. For x ≥ 2 we have using dimension shift that

ExtxΛ(M,N) ∼= Ext1
Λ(τ−x (N),Ω−(x−1)(N)) = Ext1

Λ(τ−(Ω−(x−1)(N)),Ω−(x−1)(N)) 6= 0,

where the last inequality follows from the case x = 1. �

Next we recall some background on bound quiver algebras. A quiver Q = (Q0, Q1, s, t) is a quadruple
consisting of a set Q0 of vertices, a set Q1 of arrows and two maps s, t : Q1 → Q0 called source map
and target map. All quivers in this article are finite, that is both Q0 and Q1 are finite sets. Moreover,
for simplicity, we assume that all quivers in this article are connected, that is the underlying unoriented
graph of Q is connected. For a vertex v ∈ Q0, the ingoing degree of v, denoted by δ−(v), is the number
of arrows ending at v and the outgoing degree of v, denoted by δ+(v), is the number of arrows starting
at v. The degree of v is the tuple (δ−(v), δ+(v)). For a quiver Q and k ≥ 1, a path p of length k in Q
is a sequence of k consecutive arrows

p = v1 v2 · · · vk vk+1,
α1 α2 αk

in Q. We also assign a trivial path εv of length 0 to each vertex v ∈ Q0.
Let Q be a quiver. We denote by kQ the path algebra of Q and we denote by J ⊆ kQ the arrow

ideal of Q, that is the ideal of kQ generated by the arrows of Q. An ideal I ⊆ kQ is called admissible
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if there exists k ≥ 2 such that J k ⊆ I ⊆ J 2. If I is an admissible ideal, then the bound quiver algebra
Λ = kQ/I is a finite-dimensional algebra. Throughout we identify Λ-modules and representations of
Q bound by I. For a vertex v ∈ Q0, we denote by P (v), I(v) and S(v) the indecomposable projective,
injective and simple Λ-modules corresponding to v. When clear from context, we use composition
series to denote Λ-modules. For more details on bound quiver algebras and their representation theory
we refer to [ARS95, ASS06].

For radical square zero algebras we have the following easy observations.

Lemma 1.3. Let Λ be a radical square zero algebra and let M be a nonprojective Λ-module. Then
Ω(M) is semisimple.

Proof. Since M is nonprojective, it follows that Ω(M) 6= 0. Let P (M) be the projective cover of M .
Then rad2(P (M)) = P (M) rad2(Λ) = 0 and so rad(P (M)) is semisimple. Since Ω(M) is a submodule
of rad(P (M)) and Ω(M) 6= 0, we conclude that Ω(M) is semisimple. �

Lemma 1.4. Let Λ be a radical square zero algebra and assume that C ⊆ mod Λ is an n-cluster tilting
subcategory. Let I be an indecomposable injective Λ-module. Then dim(Ω(I)) ≤ 1.

Proof. If I is projective, then dim(Ω(I)) = 0. Otherwise, assume that I is nonprojective. By Lemma
1.3 we have that Ω(I) is semisimple. By [Vas19, Corollary 3.3] and since I ∈ CP , we have that Ω(I) is
indecomposable. Since Ω(I) is semisimple and indecomposable, it follows that dim(Ω(I)) ≤ 1. �

In this paper we study radical square zero bound quiver algebras. These can be easily described as
in the following lemma.

Lemma 1.5. A bound quiver algebra kQ/I is a radical square zero algebra if and only if I = J 2.

Proof. Since I is admissible, we have that I = J 2 if and only if J 2 ⊆ I, which is equivalent to the
ideal (J /I)2 being equal to the zero ideal. Since (J /I)2 = rad2(kQ/I), the result follows. �

As a corollary, any radical square zero algebra over an algebraically closed field is Morita equivalent
to a bound quiver algebra of the form kQ/J 2.

Proposition 1.6. Let Λ be a basic and connected finite-dimensional k-algebra and assume that k is
algebraically closed. Then Λ is a radical square zero algebra if and only if Λ ∼= kQ/J 2 for some quiver
Q.

Proof. Since Λ is basic and k is algebraically closed, there exists a quiver Q and an admissible ideal
I ⊆ kQ such that Λ ∼= kQ/I. The result follows from Lemma 1.5. �

We also need to recall the following notion.

Definition 1.7. A bound quiver algebra kQ/I is a string algebra if the following conditions hold:

(S1) For every vertex v ∈ Q0 we have that δ−(v) ≤ 2 and δ+(v) ≤ 2.
(S2) For every arrow α ∈ Q1 there exists at most one arrow β ∈ Q1 such that βα 6∈ I and at most

one arrow γ ∈ Q1 such that αγ 6∈ I.
(S3) The ideal I can be generated by paths.

Indecomposable modules over string algebras are classified in [BR87] using the combinatorics of
strings and bands. We briefly recall these combinatorics.

Let kQ/I be a string algebra. For every arrow α ∈ Q1 we define a formal inverse α− such that
s(α−) = t(α) and t(α−) = s(α). We define Q−1 = {α− | α ∈ Q1} and we set (α−)− = α. We call
elements of Q1 direct arrows and elements of Q−1 inverse arrows. A formal path of length k ≥ 1 is
a sequence ` = `k . . . `1 such that `i ∈ Q1 ∪ Q−1 and such that for all i ∈ {1, . . . , k − 1} we have
t(`i) = s(`i+1) and `i 6= `−i+1. We also set `− = `−1 . . . `

−
k . We say that ` is a string of length k if no

formal path of the form `i+r . . . `i or `−i . . . `
−
i+r is in I for 1 ≤ i ≤ i+ r ≤ k. To each vertex v ∈ Q0 we

also associate a string ev of length 0. We say that a string ` is a band if s(`1) = t(`k) and `q is a string
for every q ≥ 1, and moreover there is no string `′ 6= ` such that `′ . . . `′ = `. For each string or band
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` we can define a corresponding string or band module M(`) which is indecomposable. Furthermore,
every indecomposable kQ/I-module is isomorphic to a string or band module. For more details on
the definition of M(`) and on other facts about the representation theory of string algebras we refer
to [BR87, Section 3].

2. Necessary conditions

In this section we investigate the existence of an n-cluster tilting subcategory C ⊆ mod Λ where
Λ = kQ/J 2 and n ≥ 2. Our aim is to show that these assumptions impose some important restrictions
on Q and Λ.

2.1. n-pre-admissible quivers. Recall that if C ⊆ mod Λ is an n-cluster tilting subcategory, then
Λ, D(Λ) ∈ C. We start with showing that the degree of a vertex in Q is bounded.

Lemma 2.1. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory. Let
v ∈ Q0 be a vertex. Then δ−(v) ≤ 2 and δ+(v) ≤ 2.

Proof. We only show that δ−(v) ≤ 2; the inequality δ+(v) ≤ 2 follows dually. Consider the short exact
sequence 0 −→ Ω(I(v)) −→ P (I(v)) −→ I(v) −→ 0. Then

dim(I(v)) = dim(P (I(v)))− dim(Ω(I(v))) ≥ dim(P (I(v)))− 1, (2.1)

where the last inequality follows from Lemma 1.4. Moreover, since Λ is a radical square zero bound
quiver algebra, it immediately follows that dim(I(v)) = δ−(v) + 1 and dim(P (I(v))) ≥ 2δ−(v). Hence
(2.1) gives

δ−(v) + 1 ≥ 2δ−(v)− 1,

or equivalently 2 ≥ δ−(v). �

We continue with showing that there are no multiple arrows between two vertices of Q.

Lemma 2.2. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory. Let
v, u ∈ Q0 be vertices. Then |{α ∈ Q1 | s(α) = v and t(α) = u}| ≤ 1.

Proof. By Lemma 2.1 we have that |{α ∈ Q1 | s(α) = v, t(α) = u}| ≤ 2. Assume towards a contra-
diction that there exist two arrows α1 : v −→ u and α2 : v −→ u. Then, by Lemma 2.1 we have that
the composition series of I(u) is v v

u while the composition series of P (v) is v
u u . Hence the projective

cover of I(u) is P (I(u)) ∼= P (v)⊕ P (v) and

dim(Ω(I(u))) = dim(P (I(u)))− dim(I(u)) = 2 dim(P (v))− dim(I(u)) = 2 · 3− 3 = 3,

which contradicts Lemma 1.4. �

Next we show that no vertex can have degree (0, 2) or (2, 0) and, moreover, that if n > 2, then no
vertex can have degree (2, 2) either.

Lemma 2.3. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory. Let
v ∈ Q0 be a vertex.

(a) If δ+(v) = 2, then δ−(v) ≥ 1.
(b) If δ−(v) = 2, then δ+(v) ≥ 1.
(c) If δ−(v) = δ+(v) = 2, then n = 2.

Proof. (a) Since Λ = kQ/J 2 and δ+(v) = 2, it follows that dim(P (v)) = 3. Assume towards a
contradiction that δ−(v) = 0. Then I(v) = S(v) and P (I(v)) = P (v). Hence

dim(Ω(I(v))) = dim(P (I(v)))− dim(I(v)) = 3− 1 = 2,

which contradicts Lemma 1.4.
(b) Dual to (a).



6 LAERTIS VASO

(c) Let α1 : v −→ u1, α2 : v −→ u2, β1 : w1 −→ v and β2 : w2 −→ v be the arrows starting and
ending at v. Then the composition series of P (v) is v

u1 u2
while the composition series of I(v)

is w1 w2
v . For i = 1, 2, let πi : P (v) −→ v

ui
be the projective cover of v

ui
and ιi : wi

v −→ I(v)
be the injective envelope of wi

v . Then it follows that

coker

([
π1

π2

]
: P (v) −→ v

u1
⊕ v

u2

)
∼= S(v) ∼= ker

([
ι1 ι2

]
: w1
v ⊕ w2

v −→ I(v)
)
.

Hence the sequence

0 P (v) v
u1
⊕ v

u2

w1
v ⊕ w2

v I(v) 0

S(v)

π1

π2

 [
ι1 ι2

]

gives a nonzero element of Ext2
Λ(I(v), P (v)). Since I(v), P (v) ∈ C and Ext2

Λ(I(v), P (v)) 6= 0,
it follows that n ≤ 2. Since by assumption we have that n ≥ 2, we conclude that n = 2. �

Finally we examine how an arrow between two vertices affects the degree of the two vertices.

Lemma 2.4. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory.

(a) Let w1 −→ v ←− w2 be a subquiver of Q. Then δ+(w1) = δ+(w2) = 1.
(b) Let u1 ←− v −→ u2 be a subquiver of Q. Then δ−(u1) = δ−(u2) = 1.

Proof. We only prove (a); (b) follows dually. By symmetry it is enough to show that δ+(w1) = 1.
Since by Lemma 2.1 we have that δ+(w1) ≤ 2 and since by assumption we have that δ+(w1) ≥ 1,
it is enough to show that δ+(w1) 6= 2. Assume towards a contradiction that δ+(w1) = 2. Since
Λ = kQ/J 2, it follows from Lemma 2.1 that dim(I(v)) = 3, dim(P (w1)) = 3, dim(P (w2)) ≥ 2 and
P (I(v)) ∼= P (w1)⊕ P (w2). Then

dim(Ω(I(v))) = dim(P (I(v)))− dim(I(v)) = dim(P (w1)) + dim(P (w2))− dim(I(v)) ≥ 3 + 2− 3 = 2,

which contradicts Lemma 1.4. �

Corollary 2.5. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory. Let
v −→ u be an arrow in Q. Then δ+(v) + δ−(u) ≤ 3.

Proof. Follows immediately by Lemma 2.1 and Lemma 2.4. �

The results of this section motivate the following definition.

Definition 2.6. A quiver Q is called n-pre-admissible if the following conditions are satisfied.

(i) For all vertices v ∈ Q0 we have δ(v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} ∪ E, where

E =

{
{(2, 2)}, if n = 2,

∅, otherwise.

(ii) There exist no multiple arrows between two vertices.
(iii) For all arrows v −→ u in Q we have δ+(v) + δ−(u) ≤ 3.

Remark 2.7. It follows immediately by the definition of n-pre-admissible quivers that an n-pre-
admissible quiver which has no vertex of degree (2, 2) is n-pre-admissible for any n ≥ 2.

Example 2.8. (a) The quivers Am and Ãm are n-pre-admissible for any n ≥ 2.
(b) The quiver

1 2 3

is not n-pre-admissible for any n ≥ 2 since there exists an arrow 2 −→ 2, but δ+(2)+δ−(2) = 4.
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(c) The quiver

1 2 3 4 5

8 6

7

is 2-pre-admissible but not n-pre-admissible for n ≥ 3 since δ(3) = (2, 2).
(d) The quiver

1 2 3 4

9 12

10 11

8 7 6 5

is n-pre-admissible for any n ≥ 2.

We have the following immediate result.

Proposition 2.9. Let Λ = kQ/J 2 and assume that C ⊆ mod Λ is an n-cluster tilting subcategory.
Then Q is n-pre-admissible.

Proof. Follows immediately by Lemma 2.1, Lemma 2.3, Lemma 2.2 and Corollary 2.5. �

Radical square zero bound quiver algebras with n-pre-admissible quivers are especially easy to study
from the point of view of representation theory. Indeed, we have the following result.

Theorem 2.10. Let Q be an n-pre-admissible quiver and let Λ = kQ/J 2.

(a) Λ is a string algebra.
(b) If `k . . . `1 is a string in Λ, then k ≤ 2. In particular, there are no bands in Λ.
(c) Λ is representation-finite.
(d) If M is an indecomposable Λ-module and M is not simple, then M is projective or injective.

Proof. (a) Since Q is n-pre-admissible, we have that δ+(v) ≤ 2 and δ−(v) ≤ 2 for every vertex
v ∈ Q0. Since J 2 is generated by all paths of length 2, it immediately follows that Λ is a string
algebra.

(b) Let `k . . . `1 be a string in Λ and assume towards a contradiction that k ≥ 3. Consider the
string `3`2`1. Since every path of length two is in J 2, it follows that `1 and `2 cannot be both
direct or both inverse letters. Similarly `3 and `2 cannot be both direct or both inverse letters.
Hence `3`2`1 is either of the form αβ−γ or of the form α−βγ− for some arrows α, β, γ ∈ Q1

with α 6= β and γ 6= β. If α = γ, then we readily get that s(α) = s(β) and t(α) = t(β), which
contradicts Definition 2.6(ii). Otherwise, if α 6= γ, then we readily get that

δ+(s(β)) + δ−(t(β)) ≥ 4,

which contradicts Definition 2.6(iii). Hence k ≤ 2. Since the length of a string is bounded by
2, it follows that there are no bands in Λ.

(c) Follows immediately from (b) since indecomposable Λ-modules are classified by string and
band modules, see [BR87, Section 3].

(d) Let M be an indecomposable Λ-module and assume that M is not simple. From (b) it follows
that M is isomorphic to a string module M(`) where ` has length at most 2 (for the definition
of M(`) we refer to [BR87, Section 3]). Since M is not simple, it follows that ` has length
different than 0 and so ` has length 1 or 2. If the length of ` is 1, then ` = α for some arrow
α ∈ Q1 (the modules M(α) and M(α−) are isomorphic). Let α : v −→ u. Then δ+(v) ∈ {1, 2}
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and using Definition 2.6(iii) and the fact that Λ is a radical square zero algebra it is easy to
see that

M(α) ∼=

{
P (v), if δ+(v) = 1,

I(u), if δ+(v) = 2.

If the length of ` is 2, and since Λ is a radical square zero algebra, then ` = αβ− or ` = α−β
for some arrows α, β ∈ Q1. Let α : v −→ u. Similarly to the case of length 1, it is easy to see
that

M(`) ∼=

{
P (v), if ` = αβ−,

I(u), if ` = α−β,

and so in both cases M is projective or injective. �

Example 2.11. (a) Let Q be as in Example 2.8(c). The Auslander–Reiten quiver of kQ/J 2 is

1 1
2

1
2 1 1

6 3
4

8
3 2 1

1

3
4 6 3 2 8

3

5
5 4 3

6
2
3 8 7 6.

5 4 5
5

7
8

6
7

4
5 5

(b) Let Q be as in Example 2.8(d). The Auslander–Reiten quiver of kQ/J 2 is

1

8
1

8

10
8

7
8

10 7
8

7

6
7

11

6

5
11 6

5
6

5
11

5

4
5

4

3
4

12
4

3 12
4

12

3

11
12

2
3

11

2.

10

9
10

9

2

1
9 2

1
2

1
9

1

2.2. Flow paths. We have seen that if Λ = kQ/J 2 and C ⊆ mod Λ is an n-cluster tilting subcategory,
then Q is n-pre-admissible. The opposite is not true in general. It turns out that there are additional
properties that Q must satisfy. To describe these properties we need to consider certain paths in Q.

Definition 2.12. Let Q be an n-pre-admissible quiver and let k ≥ 2. A (k-)flow path v in Q is a
path

v = v1 v2 · · · vk−1 vk, (2.2)

such that δ(vs) = (1, 1) if and only if 1 < s < k.

Notice that since Q is n-pre-admissible, there are no multiple arrows between two vertices. Hence
a flow path is defined uniquely by its vertices and we do not need to label arrows in a flow path. For
a flow path v in Q we use vi to denote its vertices as in (2.2). Moreover, in what follows we write
“k-flow path” when the length k of the flow path is important and “flow path” otherwise. Many of the
results presented in this section have a dual version which although we omit for brevity, we sometimes
use. We first study the case where there are no flow paths in Q.
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Lemma 2.13. Let Q be an n-pre-admissible quiver. Then there exists a flow path in Q if and only if
Q 6= A1 and Q 6= Ãm for some m ≥ 1.

Proof. It is clear by the definition of a flow path that if there exists a flow path in Q, then Q 6= A1

and Q 6= Ãm. For the other direction, assume that Q 6= A1 and Q 6= Ãm and we show that there
exists a flow path in Q. Since Q is connected and Q 6= Ãm, there exists a vertex v1 in Q with degree
δ(v1) 6= (1, 1). Since Q 6= A1, we have δ(v1) 6= (0, 0). Since Q is finite, any path starting or ending at
v1 eventually passes through a vertex vk with δ(vk) 6= (1, 1); let v be a minimal such path. Then v is
a flow path by definition. �

Proposition 2.14. Let Q be an n-pre-admissible quiver and let Λ = kQ/J 2.

(a) If Q = A1, then C is an n-cluster tilting subcategory of mod Λ if and only if C = mod Λ =
add(Λ).

(b) If Q = Ãm for some m ≥ 1, then C is an n-cluster tilting subcategory of mod Λ if and only if

n | m and C = add
(

Λ⊕
(⊕m

n −1
j=0 τ−jn (S)

))
for some simple module S ∈ mod Λ.

Proof. (a) In this case Λ = k and the result is clear.
(b) Follows from [DI20, Theorem 5.1]. �

By Lemma 2.13 we have that the only n-pre-admissible quivers that do not have flow paths are the
quivers A1 and Ãm for m ≥ 1. Proposition 2.14 classifies radical square zero bound quiver algebras with
such quivers that admit n-cluster tilting subcategories. Hence it remains to study n-pre-admissible
quivers that have flow paths. For the rest of this section we fix an n-pre-admissible quiver Q such that
Q 6= A1 and Q 6= Ãm for any m ≥ 1. It then follows that there exists a flow path in Q. We further set
Λ := kQ/J 2. We start with some simple but important observations about flow paths.

Lemma 2.15. Let v be a k-flow path in Q. Let 1 ≤ s ≤ t ≤ k.

(a) If 1 < s and t < k, then vs = vt if and only if s = t.
(b) If s < t and vs = vt, then s = 1 and t = k. In particular, in this case v1 = vk.

Proof. (a) If s = t, then clearly vs = vt. Assume towards a contradiction that vs = vt but s < t.
Without loss of generality, we may assume that s < t are minimal among {2, . . . , k − 1} with
these properties. By the definition of a k-flow path and since δ(vs) = δ(vt) = (1, 1), it follows
that vs−1 = vt−1. By minimality of s and t we conclude that s − 1 = 1. Moreover, we have
1 < s ≤ t− 1 < t < k and so δ(vt−1) = (1, 1). Then

(1, 1) 6= δ(v1) = δ(vs−1) = δ(vt−1) = (1, 1),

which is a contradiction.
(b) Since s < t and vs = vt, it follows from (a) that s = 1 or t = k. In both cases we get that

δ(vs) = δ(vt) 6= (1, 1). It follows from the definition of a k-flow path that s = 1 and t = k. �

Lemma 2.16. Let v be a k-flow path in Q and let u be a k′-flow path in Q.

(a) Let vs be a vertex in v with δ(vs) = (1, 1) and assume that vs = ut for some vertex ut in u.
Then v = u.

(b) Assume that vk = uk′ and that vk−1 = uk′−1. Then v = u.
(c) Assume that vk = uk′ and that δ−(vk) = 1. Then v = u.

Proof. (a) Since δ(vs) = (1, 1), it follows from the definition of a flow path that 1 < s < k. Since
vs = ut it follows that δ(ut) = (1, 1). Without loss of generality we may assume that s ≤ t. By
the definition of a k-flow path it follows that vs−1 = ut−1. Continuing inductively we see that
v2 = ut−(s−2) and this vertex has degree (1, 1). Hence the only arrow ending at v2 = ut−(s−2)

is the arrow coming from v1. Since δ(v1) 6= (1, 1) and δ(ut−(s−2)) = (1, 1), and since there
exists an arrow v1 −→ ut−(s−2), it follows that u1 = v1 and u2 = ut−(s−2). By Lemma 2.15(a)
it follows that 2 = t − (s − 2) and so s = t. A dual argument shows that vk = uk′ . Since
v1 = u1, vk = uk and vs = us for some s with 1 < s < k, it readily follows that v = u.
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(b) Since v and u are flow paths, there exist arrows α : vk−1 −→ vk and β : uk′−1 −→ uk′ . Since
vk−1 = uk′−1 and vk = uk′ , and since there exist no multiple arrows between two vertices of
Q, it follows that α = β. If δ(vk−1) 6= (1, 1), then v = vk−1 −→ vk = uk′−1 −→ uk′ = u, as
required. Otherwise, if δ(vk−1) = (1, 1), then the result follows from (a).

(c) Since δ−(vk) = δ−(uk′) = 1, there exists a unique arrow ending at vk = uk′ . Since there exist
arrows vk−1 −→ vk and uk′−1 −→ uk′ , we conclude that vk−1 = uk′−1. The result follows from
(b). �

Corollary 2.17. Let α : w −→ v be an arrow in Q.

(a) If δ(v) = (1, 1), then there exists a unique flow path v in Q through v.
(b) If δ(v) 6= (1, 1), then there exists a unique flow path v in Q ending at v such that α is the last

arrow of v.

In both cases we have that v = vj for some j > 1.

Proof. The existence of the flow path is clear since Q 6= A1 and Q 6= Ãm. The uniqueness follows from
Lemma 2.16. �

If v is a k-flow path in Q, then the arrows ending and starting at the vertices v1 and vk play an
important role in our investigation. Hence we also label the following vertices

v−2 v−1 v+1 v+2

v1 v2 · · · vk−1 vk

v−3 v+3,

(2.3)

where a dotted arrow means that such an arrow may or may not exist. When δ−(v1) = 1, we assume
that the arrow v−2 −→ v1 is the one that exists and when δ+(vk) = 1 we assume that the arrow
vk −→ v+2 is the one that exists. Notice that by Definition 2.6(ii) we have that v−1 6= v2 and
v+1 6= vk−1, if the vertices v−1 and v+1 exist.

We also set

I(v) :=

{
I(v1), if δ+(v1) = 1,

I(v−1), if δ+(v1) = 2,
and P (v) :=

{
P (vk), if δ−(vk) = 1,

P (v+1), if δ−(vk) = 2.

With this notation, we have the following technical results.

Lemma 2.18. Let v be a k-flow path in Q and let u be a k′-flow path in Q. Then P (v) is not injective
and P (v) ∼= P (u) if and only if v = u.

Proof. That P (v) is not injective follows immediately by the definition of P (v) and since δ(vk) ∈
{(1, 0), (1, 2), (2, 1), (2, 2)}. That v = u implies P (v) ∼= P (u) is clear. Now assume that P (v) ∼= P (u)
and we show that v = u. We first claim that δ−(vk) = δ−(uk′). Indeed, assume towards a contradiction
that δ−(vk) 6= δ−(uk′). Without loss of generality we may assume that δ−(vk) = 1 and δ−(uk′) = 2.
Then P (v) = P (vk) and P (u) = P (u+1). Hence vk = u+1. By Definition 2.6(iii), it follows that
δ+(u+1) = 1. Therefore δ(vk) = (δ−(vk), δ+(vk)) = (1, δ+(u+1)) = (1, 1), which contradicts the
definition of a k-flow path.

Hence we have shown that δ−(vk) = δ−(uk′). Next we consider the cases δ−(vk) = 1 and δ−(vk) = 2
separately.

Case δ−(vk) = 1. In this case δ−(uk′) = 1 and so P (vk) ∼= P (uk′). It follows that vk = uk′ .
Therefore we have that v = u by Lemma 2.16(c).

Case δ−(vk) = 2. In this case δ−(uk′) = 2 and so P (v+1) ∼= P (u+1). It follows that v+1 = u+1.
Since δ+(v+1) = 1 and there exist an arrow v+1 −→ vk and an arrow v+1 = u+1 −→ uk′ , it follows
that vk = uk′ . Since v+1 = u+1 6= uk′−1, it follows that uk′−1 = vk−1. Therefore we have that v = u
by Lemma 2.16(b). �
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Lemma 2.19. Let v ∈ Q0 be a vertex. Then exactly one of the following three conditions hold:

(i) P (v) is injective.
(ii) δ(v) = (2, 2).
(iii) P (v) = P (v) for some flow path v.

Proof. Notice that conditions (i) and (iii) cannot hold simultaneously since by Lemma 2.18 we have
that P (v) is not injective. Moreover, by the definition of P (v), conditions (ii) and (iii) also cannot
hold simultaneously. It is also clear that conditions (i) and (ii) cannot hold simultaneously, since if
δ(v) = (2, 2), then P (v) does not have simple socle. Hence it is enough to show that one of the
conditions (i),(ii) or (iii) holds. We consider the cases δ+(v) = 0, δ+(v) = 1 and δ+(v) = 2 separately.

Case δ+(v) = 0. In this case δ(v) = (1, 0) and by Corollary 2.17(b) there exists a unique flow path
v ending at v. It follows from the definition of P (v) that P (v) = P (v) and so condition (iii) holds.

Case δ+(v) = 1. Let α : v −→ u be the unique arrow starting at v. We consider the subcases
δ−(u) = 1 and δ−(u) = 2 separately.

• Subcase δ−(u) = 1. In this case P (v) = I(u) is injective and so condition (i) holds.
• Subcase δ−(u) = 2. Let β : w −→ u be the other arrow ending at u. By Corollary 2.17(b) and

since δ(u) 6= (1, 1), it follows that there exists a unique flow path v such that the last arrow of
v is β. It follows from the definition of P (v) that P (v) = P (v) and so condition (iii) holds.

Case δ+(v) = 2. We consider the subcases δ(v) = (1, 2) and δ(v) = (2, 2) separately.

• Subcase δ(v) = (1, 2). By Corollary 2.17(b) there exists a unique flow path v ending at v. It
follows from the definition of P (v) that P (v) = P (v) and so condition (iii) holds.

• Subcase δ(v) = (2, 2). In this case condition (ii) holds. �

Let v ∈ Q0 be a vertex. If there exists an n-cluster titling subcategory C ⊆ mod Λ, then we have
that P (v) ∈ C. By Proposition 1.1(a) we then have that τ−jn (P (v)) ∈ C for all j ≥ 0. By Lemma 2.19
there are three different cases for P (v). If P (v) belongs to the first case, that is if P (v) is injective,
then τ−jn (P (v)) = 0 for j ≥ 1. Our aim now is to compute τ−jn (P (v)) for the two remaining cases. To
this end we need the following lemma.

Lemma 2.20. Let v ∈ Q0 be a vertex.

(a) If δ−(v) = 0, then Ω−(S(v)) = τ−(S(v)) = 0.
(b) If δ−(v) = 1, let w −→ v be the unique arrow ending at v. Then Ω−(S(v)) ∼= S(w) and

τ−(S(v)) ∼= coker(S(v) ↪→ P (w)).
(c) If δ−(v) = 2, let w1 −→ v and w2 −→ v be the two arrows ending at v. Then Ω−(S(v)) ∼=

S(w1)⊕ S(w2) and τ−(S(v)) ∼= I(v).

Proof. By Theorem 2.10 the algebra Λ is a string algebra. The Auslander–Reiten translations for
modules over string algebras are computed in [BR87]. We include here a simple proof in this special
case.

(a) If δ−(v) = 0, then S(v) = I(v) is injective and so Ω−(S(v)) = τ−(S(v)) = 0.
(b) Since Λ is a radical square zero algebra and δ−(v) = 1, we have that I(v) = w

v . Hence there
exists a minimal injective presentation of S(v) of the form

0 S(v) I(v) I(w),

S(w)

i0 i1

from which it follows that Ω−(S(v)) ∼= S(w). Furthermore, by applying the inverse Nakayama
functor ν− to the above presentation we obtain an exact sequence

0 ν−(S(v)) P (v) P (w) τ−(S(v)),

S(v)

ν−(i0) ν−(i1)
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from which it follows that τ−(S(v)) ∼= coker(S(v) ↪→ P (w)).
(c) Since Λ is a radical square zero algebra and δ−(v) = 2, we have that I(v) = w1 w2

v . Hence
there exists a minimal injective presentation of S(v) of the form

0 S(v) I(v) I(w1)⊕ I(w2),

S(w1)⊕ S(w2)

i0 i1

from which it follows that Ω−(S(v)) ∼= S(w1) ⊕ S(w2). By applying the inverse Nakayama
functor ν− to the above presentation we obtain an exact sequence

0 ν−(S(v)) P (v) P (w1)⊕ P (w2) τ−(S(v)).

S(v)

ν−(i0) ν−(i1)

By Definition 2.6(iii) we have that P (w1) = w1
v and P (w2) = w2

v . Then coker(S(v) ↪→
P (w1)⊕ P (w2)) ∼= I(v) and the result follows. �

We can now compute τ−jn (P (v)) in the second case of Lemma 2.19, that is when δ(v) = (2, 2).
Notice that in this case we have n = 2 by Definition 2.6(i).

Corollary 2.21. Let v ∈ Q0 be a vertex with δ(v) = (2, 2). Then τ−2 (P (v)) ∼= I(v).

Proof. Let v −→ u1 and v −→ u2 be the arrows starting at v. By Definition 2.6(iii) we have that
δ−(u1) = δ−(u2) = 1. It follows that Ω−(P (v)) ∼= S(v). By Lemma 2.20(c) we have that τ−(S(v)) ∼=
I(v). Hence

τ−2 (P (v)) = τ−Ω−(P (v)) ∼= τ−(S(v)) ∼= I(v),

as required. �

Before continuing with the computation of τ−jn (P (v)) in the last case, that is when P (v) = P (v)
for a flow path v in Q, let us introduce one more piece of notation.

Definition 2.22. Let v = v1 −→ v2 −→ · · · −→ vk be a k-flow path. We define

q1 = q1(v) :=

{
1, if δ(v1) = (2, 1),

0, if δ(v1) 6= (2, 1),
and qk = qk(v) :=

{
1, if δ(vk) = (1, 2),

0, if δ(vk) 6= (1, 2).

We also define

q(v) := −1 + q1 + qk =


1, if δ(v1) = (2, 1) and δ(vk) = (1, 2),

0, if either δ(v1) = (2, 1) or δ(vk) = (1, 2),

−1, if δ(v1) 6= (2, 1) and δ(vk) 6= (1, 2).

With this definition we can write some of the next results in a more compact way. First we have
the following statement.

Lemma 2.23. Let v be a k-flow path in Q. Let s ∈ Z and assume that 2 ≤ s ≤ k − 1 + qk. Then
δ−(vs) = 1.

Proof. We have s ≤ k− 1 + qk ≤ k. We consider the cases s ≤ k− 1 and s = k separately. If s ≤ k− 1,
then δ(vs) = (1, 1) by the definition of flow paths and so the result holds. If s = k, then k− 1 + qk = k
and so qk = 1. Then by the definition of qk we have δ(vs) = δ(vk) = (1, 2), and so the result holds
again. �

With this we are ready to make the following computations.

Lemma 2.24. Let v be a k-flow path in Q. Let s, x ∈ Z≥0 and assume that 1 ≤ s ≤ k − 1 + qk.

(a) If s− x ≥ 1, then Ω−x(S(vs)) ∼= S(vs−x).
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(b) If 1 ≤ x ≤ s− 1 + q1, then τ−x (S(vs)) ∼=

{
S(vs−x), if 1 ≤ x < s− 1 + q1,

I(v), if x = s− 1 + q1.

Proof. (a) We use induction on x. If x = 0, then the result holds trivially. Assume now that the
result holds for x − 1 ≥ 0 and we show that it holds for x. Since s − x ≥ 1, we have that
s − (x − 1) ≥ 1. Hence by induction hypothesis we have that Ω−(x−1)(S(vs)) ∼= S(vs−(x−1)).
Then

2 = 1 + 1 ≤ (s− x) + 1 = s− (x− 1) ≤ s ≤ k − 1 + qk,

and so δ−(vs−(x−1)) = 1 by Lemma 2.23. Then by the definition of flow paths and Lemma
2.20(b) applied on vs−(x−1) it follows that

Ω−x(S(vs)) ∼= Ω−(S(vs−(x−1))) ∼= S(vs−x),

as required.
(b) Since x ≤ s− 1 + q1, we have that s− (x− 1) ≥ 2− q1 ≥ 1. Therefore, by (a) we have that

τ−x (S(vs)) = τ−Ω−(x−1)(S(vs)) ∼= τ−(S(vs−(x−1))).

Hence it is enough to show that

τ−(S(vs−(x−1))) ∼=

{
S(vs−x), if 1 ≤ x < s− 1 + q1,

I(v), if x = s− 1 + q1.

We consider the cases 1 ≤ x < s− 1 + q1 and x = s− 1 + q1 separately.
Case 1 ≤ x < s− 1 + q1. In this case we want to show that τ−(S(vs−(x−1))) ∼= S(vs−x). We

have
2− q1 < s− (x− 1) ≤ s ≤ k − 1 + qk ≤ k. (2.4)

Hence 2 ≤ s − (x − 1) ≤ k − 1 + qk and so by Lemma 2.23 we have that δ−(vs−(x−1)) = 1.

It follows from Lemma 2.20(b) that it is enough to show that δ+(vs−x) = 1. We consider the
subcases q1 = 0 and q1 = 1 separately.
• Subcase q1 = 0. Then by (2.4) we conclude that 2 ≤ s− x ≤ k − 1 and so δ+(vs−x) = 1.
• Subcase q1 = 1. Then by (2.4) we conclude that 1 ≤ s− x ≤ k − 1. Since in this case we

have δ(v1) = (2, 1), it follows that δ+(vs−x) = 1.
Case x = s − 1 + q1. In this case we have s − (x − 1) = 2 − q1 and we want to show that

τ−(S(v2−q1)) ∼= I(v). We consider the cases q1 = 0 and q1 = 1 separately.
• Subcase q1 = 0. Then the result follows immediately by Lemma 2.20(b) and by considering

the possibilities δ(v1) = (0, 1), δ(v1) = (1, 2) and δ(v1) = (2, 2) separately.
• Subcase q1 = 1. Then δ(v1) = (2, 1) and by Lemma 2.20(c) we have τ−(S(v1)) ∼= I(v1) =
I(v). �

Lemma 2.25. Let v be a k-flow path in Q. Let x ∈ Z≥1.

(a) If k − x+ qk ≥ 1, then Ω−x(P (v)) ∼= S(vk−x+qk).

(b) If 1 ≤ x ≤ k + q(v), then τ−x (P (v)) ∼=

{
S(vk−x+qk), if 1 ≤ x < k + q(v),

I(v), if x = k + q(v).

Proof. (a) If x = 1, then the result follows immediately by considering the cases δ(vk) = (1, 0),
δ(vk) = (1, 2), δ(vk) = (2, 1) and δ(vk) = (2, 2) separately (recall that if δ(vk) = (1, 2), then
δ−(v+2) = δ−(v+3) = 1 by Definition 2.6(iii)). For x ≥ 2 notice that 1 ≤ k − x + qk implies
that k − 1 + qk − (x− 1) ≥ 1. Hence we can apply Lemma 2.24(a) to obtain

Ω−x(P (v)) = Ω−(x−1)Ω−(P (v)) ∼= Ω−(x−1)(S(vk−1+qk)) ∼= S(vk−x+qk),

as required.
(b) We first show the result for x = 1. We consider the cases 1 = x < k+q(v) and 1 = x = k+q(v)

separately.
Case 1 = x < k + q(v). In this case we want to show that τ−(P (v)) ∼= S(vk−1+qk). We

consider the subcases δ(vk) = (1, 0), δ(vk) = (1, 2) and δ(vk) ∈ {(2, 1), (2, 2)} separately.
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• Subcase δ(vk) = (1, 0). In this case qk = 0 and P (v) = S(vk) and so we want to show
that τ−(S(vk)) ∼= S(vk−1). We claim that δ+(vk−1) = 1. Indeed, assume towards a
contradiction that δ+(vk−1) = 2. Then vk−1 = v1 and so k = 2 and q1 = 0. Hence
1 = x < 2 + q(v) = 2 − 1 = 1, which is a contradiction. Hence by Lemma 2.20(b) and
since δ+(vk−1) = 1, it follows that τ−(S(vk)) ∼= S(vk−1).

• Subcase δ(vk) = (1, 2). In this case qk = 1 and P (v) = P (vk) and so we want to show
that τ−(P (vk)) ∼= S(vk). By the dual of Lemma 2.20(c) we have that τ(S(vk)) ∼= P (vk).
By applying τ− we obtain τ−(P (vk)) ∼= τ−τ(S(vk)) ∼= S(vk).

• Subcase δ(vk) ∈ {(2, 1), (2, 2)}. In this case qk = 0 and P (v) = P (v+1) and so we want
to show that τ−(P (v+1)) ∼= S(vk−1). By Definition 2.6(iii) we have that δ+(vk−1) = 1.
By the dual of Lemma 2.20(b) we then have that τ(S(vk−1)) ∼= P (v+1). By applying τ−

we obtain τ−(P (v+1)) ∼= τ−τ(S(vk−1)) ∼= S(vk−1).
Case 1 = x = k + q(v). In this case we have that k = 2 and q(v) = −1 and we want to

show that τ−(P (v)) ∼= I(v). Since q(v) = −1, we have δ(v1) 6= (2, 1) and δ(v2) 6= (1, 2). We
consider the subcases δ(v2) = (1, 0) and δ(v2) ∈ {(2, 1), (2, 2)} separately.
• Subcase δ(v2) = (1, 0). In this case we have P (v) = S(v2) and so we want to show that
τ−(S(v2)) ∼= I(v). If δ+(v1) = 1, since δ(v1) 6= (2, 1) and since by the definition of a
flow path we have δ(v1) 6= (1, 1), we conclude that δ(v1) = (0, 1). Hence by Lemma
2.20(b) we have τ−(S(v2)) ∼= S(v1) = I(v), where the last equality follows from the
definition of I(v). If δ+(v1) = 2, then by Lemma 2.20(b) and Definition 2.6(iii) we have
τ−(S(v2)) ∼= I(v−1) = I(v), where the last equality again follows from the definition of
I(v).

• Subcase δ(v2) ∈ {(2, 1), (2, 2)}. In this case we have P (v) = P (v+1) and so we want to
show that τ−(P (v+1)) ∼= I(v). Since k = 2 and δ−(v2) = 2, by Definition 2.6(iii) we
have that δ+(v1) = 1. Since δ(v1) 6= (2, 1) and since by the definition of a flow path we
have δ(v1) 6= (1, 1), we conclude that δ(v1) = (0, 1). It follows that I(v) = S(v1). By the
dual of Lemma 2.20(b) we then have that τ(S(v1)) ∼= P (v+1). By applying τ− we obtain
τ−(P (v+1)) ∼= τ−τ(S(v1)) ∼= S(v1) = I(v).

Now let x ≥ 2. Then 2 ≤ k + q(v) gives k − 1 + qk ≥ 1. Hence by (a) we have that

τ−x (P (v)) = τ−x−1Ω−(P (v)) ∼= τ−x−1(S(vk−1+qk)).

Moreover, since 1 ≤ k − 1 + qk and

(k − 1 + qk)− 1 + q1 = k + q(v)− 1 ≥ x− 1 ≥ 1,

we can apply Lemma 2.24(b) to obtain

τ−x−1(S(vk−1+qk)) ∼=

{
S(vk−1+qk−(x−1)), if 1 ≤ x− 1 < (k − 1 + qk)− 1 + q1,

I(v), if x− 1 = (k − 1 + qk)− 1 + q1.

After simplifying the above expression, we get

τ−x (P (v)) ∼= τ−x−1(S(vk−1+qk)) ∼=

{
S(vk−x+qk), if 2 ≤ x < k + q(v),

I(v), if x = k + q(v),

which proves the case x ≥ 2. �

With the above computation we can show the following important results about flow paths in Q.

Proposition 2.26. Let v be a k-flow path in Q and assume that C ⊆ mod Λ is an n-cluster tilting
subcategory. Then n | (k + q(v)).

Proof. We write k + q(v) = pn + r where p ∈ Z≥0 and 0 ≤ r ≤ n − 1. We first claim that p ≥ 1.
Indeed, assume towards a contradiction that p = 0. Then 1 ≤ k + q(v) = r. Hence by Lemma 2.25(b)
we have that τ−r (P (v)) ∼= I(v). By Lemma 1.2 we obtain ExtrΛ(I(v), P (v)) 6= 0. But this contradicts
the fact that C is an n-cluster tilting subcategory, since I(v), P (v) ∈ C and 1 ≤ r ≤ n− 1.
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Hence p ≥ 1 and it remains to show that r = 0. Assume towards a contradiction that r ≥ 1. Then

1 ≤ n ≤ pn = k + q(v)− r < k + q(v).

Hence we can apply Lemma 2.25(b) to obtain that τ−n (P (v)) ∼= S(vk−n+qk). Then we can apply
Lemma 2.24(b) repeatedly p− 1 more times to obtain

τ−pn (P (v)) ∼= τ−(p−1)
n (S(vk−n+qk)) ∼= τ−(p−2)

n (S(vk−2n+qk)) ∼= · · · ∼= S(vk−pn+qk) = S(vr+1−q1).

By Proposition 1.1(a) and since P (v) ∈ C, it follows that S(vr+1−q1) ∈ C. By Lemma 2.24(b) we have
τ−r (S(vr+1−q1)) ∼= I(v). By Lemma 1.2 we obtain ExtrΛ(I(v), S(vr+1−q1)) 6= 0. But this contradicts
the fact that C is an n-cluster tilting subcategory, since I(v), S(vr+1−q1) ∈ C and 1 ≤ r ≤ n− 1. �

Corollary 2.27. Let v be a k-flow path in Q. Assume that k + q(v) = pn for some p ≥ 1 and let
j ∈ Z with 0 ≤ j ≤ p. Then

τ−jn (P (v)) ∼=


P (v), if j = 0,

S(vk−jn+qk), if 1 ≤ j ≤ p− 1,

I(v), if j = p.

(2.5)

Moreover, if 1 ≤ j ≤ p − 1, then δ(vk−jn+qk) = (1, 1). In particular, the module τ−jn (P (v)) is
indecomposable and not projective-injective.

Proof. We first prove (2.5). For j = 0 the result is clear. For 1 ≤ j ≤ p − 1 we use induction on j,
where the base case j = 1 follows from Lemma 2.25(b), while the induction step follows from Lemma
2.24(b).

Next, if 1 ≤ j ≤ p− 1, then

2 = 2 + 1− 1 ≤ n+ 1− q1 = k − (p− 1)n+ qk ≤ k − jn+ qk ≤ k − n+ qk ≤ k − 2 + 1 = k − 1,

from which it follows that δ(vk−jn+qk) = (1, 1) and so S(vk−jn+qk) is neither projective nor injective.
Finally, if j = 0, then τ−jn (P (v)) ∼= P (v) is not injective by Lemma 2.18, while if j = p, then

τ−jn (P (v)) ∼= I(v) is not projective by the dual of Lemma 2.18. �

3. Sufficient conditions

Motivated by Proposition 2.14 and Proposition 2.26 we give the following definition.

Definition 3.1. Let Q be an n-pre-admissible quiver. We say that Q is n-admissible if one of the
following conditions hold:

(a) Q = Ãm and n | m, or

(b) Q 6= Ãm and for every k-flow path v in Q we have that n | (k + q(v)).

Example 3.2. (a) The quiver Am is n-admissible if and only if n | (m − 1). In particular, the
quiver A1 is n-admissible for all n ≥ 2.

(b) The quiver of Example 2.8(c) is 2-admissible.
(c) The quiver of Example 2.8(d) is 3-admissible but not n-admissible for any n 6= 3.

Remark 3.3. (a) When studying n-admissible quivers, the cases Q = A1 and Q = Ãm for m ≥ 1
usually behave differently from the rest of the cases; the reason for this is that the quivers A1

and Ãm are the only n-pre-admissible quivers that do not have flow paths as Lemma 2.13 shows.
Hence many times in the rest of this paper we will exclude one or both of the cases Q = A1 and
Q = Ãm from our statements. We remind the reader that this does not present a problem in
our aim of classification of n-cluster tilting subcategories for radical square zero bound quiver
algebras since such a classification in these exceptional cases is given in Proposition 2.14.

(b) If Q is an n-admissible quiver and n′ is an integer such that n′ ≥ 2 and n′ | n, then it follows
directly from Remark 2.7 and Definition 3.1 that Q is also an n′-admissible quiver.
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By Proposition 2.14 and Proposition 2.26 it follows that if Q is a quiver and there exists an n-cluster
tilting subcategory C ⊆ mod(kQ/J 2), then Q is n-admissible. The aim of this section is to show that

the opposite is also true. We also want to show that if Q 6= Ãm, then C is unique and give a description
of C.

For the rest of this section we fix an n-admissible quiver Q with Q 6= A1 and Q 6= Ãm and we set
Λ := kQ/J 2. We denote by V the set of all flow paths in Q. Note that by Lemma 2.13 we have that

V 6= ∅. For a k-flow path v ∈ V we set p(v) = k+q(v)
n ; since Q is n-admissible, it follows that p(v) is

an integer. We define

M(v) :=

p(v)⊕
j=0

τ−jn (P (v)) ∼= P (v)⊕

p(v)−1⊕
j=1

S(vk−jn+qk)

⊕ I(v),

where the last isomorphism follows from Corollary 2.27. We also set M(V) :=
⊕

v∈VM(v). With this
notation we have the following lemmas.

Lemma 3.4. (a) The module M(v) is basic and has no projective-injective direct summand.
(b) The module M(V) is basic and has no projective-injective direct summand.

Proof. (a) Follows immediately by Corollary 2.27 and Lemma 2.15(a).
(b) By (a) we have that M(V) has no projective-injective direct summand. It remains to show

that M(V) is basic. Since the module M(v) for v ∈ V is basic by (a), it is enough to show
that if v and u are two flow paths in Q with v 6= u, then M(v) and M(u) have no isomorphic
direct summands. Assume towards a contradiction that there exist indecomposable direct
summands V of M(v) and U of M(u) such that V ∼= U but v 6= u. Then V ∼= τ−jvn (P (v))
and U ∼= τ−jun (P (u)) for some jv, ju ∈ Z≥0 with jv ≤ p(v) and ju ≤ p(u). Without loss of
generality we assume that ju ≥ jv. It follows that

τ−(p(v)−jv+ju)
n (P (u)) = τ−(p(v)−jv)

n τ−jun (P (u)) ∼= τ−(p(v)−jv)
n τ−jvn (P (v)) = τ−p(v)

n (P (v)) ∼= I(v),

where the last isomorphism follows from Corollary 2.27. In particular, we have that the module

τ
−(p(v)−jv+ju)
n (P (u)) is injective and nonzero. By Corollary 2.27 we have that τ−j

′

n (P (u)) = 0

for j′ > p(u) and τ−j
′

n (P (u)) is not injective for j′ < p(u). We conclude that p(v)− jv + ju =

p(u) and so I(u) ∼= τ
−p(u)
n (P (u)) = τ

−(p(v)−jv+ju)
n (P (u)) ∼= I(v). Then by the dual of Lemma

2.18 it follows that v = u, which contradicts our assumption v 6= u. �

Lemma 3.5. Let i ∈ {1, . . . , n− 1}. Then ExtiΛ(M(V),M(V)) = 0.

Proof. Let v be a k-flow path in Q and let u be a k′-flow path in Q. By the definition of M(V) and
additivity of ExtiΛ(−,−) it is enough to show that ExtiΛ(M(u),M(v)) = 0. By the definition of M(u)
and M(v) and additivity of ExtiΛ(−,−) it is enough to show that

ExtiΛ(τ−xn (P (u)), τ−yn (P (v))) = 0 (3.1)

for any x ∈ {0, 1, . . . , p(u)} and y ∈ {0, 1, . . . , p(v)}. If x = 0, then τ−xn (P (u)) = P (u) is projective

and so (3.1) holds. If y = p(v), then by Corollary 2.27 we have that τ
−p(v)
n (P (v)) ∼= I(v) is injective

and so (3.1) holds again. Hence we may assume that x > 0 and y < p(v).
Using dimension shift and the Auslander–Reiten duality we compute

ExtiΛ(τ−xn (P (u)), τ−yn (P (v))) ∼= Ext1
Λ(τ−xn (P (u)),Ω−(i−1)τ−yn (P (v)))

∼= DHomΛ(τ−Ω−(i−1)τ−yn (P (v)), τ−xn (P (u)))

∼= DHomΛ(τ−i τ
−y
n (P (v)), τ−xn (P (u)))

∼= DHomΛ(S(vk−yn−i+qk(v)), τ
−x
n (P (u))),

where the last isomorphism follows from Lemma 2.25(b) if y = 0 and by Corollary 2.27 and Lemma
2.24(b) if y > 0. Hence it is enough to show that

DHomΛ(S(vk−yn−i+qk(v)), τ
−x
n (P (u))) = 0. (3.2)
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Assume towards a contradiction that (3.2) does not hold. We consider the cases 0 < x < p(u) and
x = p(u) separately and reach a contradiction in each case.

Case 0 < x < p(u). In this case by Corollary 2.27 we have that τ−xn (P (u)) ∼= S(uk′−xn+qk′ (u)).
Then it follows that HomΛ(S(vk−yn−i+qk(v)), S(uk′−xn+qk′ (u))) 6= 0. Since both modules are simple,
we conclude that vk−yn−i+qk(v) = uk′−xn+qk′ (u). By Corollary 2.27 and since 0 < x < p(u), it follows
that δ(uk′−xn+qk′ (u)) = (1, 1). Thus by Lemma 2.16(a) we obtain v = u. In particular, we have
that k = k′ and qk(v) = qk′(u) and so vk−yn−i+qk(v) = vk−xn+qk(v). Hence by Lemma 2.15(a) it
follows that k − yn− i+ qk(v) = k − xn+ qk(v). Equivalently we get (x− y)n = i, which contradicts
1 ≤ i ≤ n− 1.

Case x = p(u). In this case by Corollary 2.27 we have that τ−xn (P (u)) ∼= I(u). Since we assume that
(3.2) does not hold, and since I(u) is indecomposable and injective, it follows that S(vk−yn−i+qk(v)) ∼=
soc(I(u)). We consider the subcases δ+(u1) = 1 and δ+(u1) = 2 separately.

• Subcase δ+(u1) = 1. In this case we have I(u) = I(u1) by definition. Hence vk−yn−i+qk(v) = u1

and so δ(vk−yn−i+qk(v)) 6= (1, 1). By the definition of a k-flow path we obtain that k−yn− i+
qk(v) ∈ {1, k}. We claim that k− yn− i+ qk(v) = 1. Indeed, assume towards a contradiction
that k − yn − i + qk(v) = k. Since 0 ≤ y ≤ p(v) − 1, 1 ≤ i ≤ n − 1 and 0 ≤ qk(v) ≤ 1, it
follows that y = 0, i = 1 and qk(v) = 1. But then (1, 2) = δ(vk) = δ(vk−yn−i+qk(v)) = δ(u1)

contradicts the fact that δ+(u1) = 1.
Hence we have k − yn− i+ qk(v) = 1. Using this equality together with k + q(v) = p(v)n,

we obtain that (p(v) − y)n = i + q1(v). Since y < p(v) and 1 ≤ i ≤ n − 1, it follows that
q1(v) = 1. Hence we have v1 = vk−yn−i+qk(v) = u1 and δ(v1) = (2, 1). Then any morphism

from S(vk−yn−i+qk(v)) = S(v1) = v1 to τ−xn (P (u)) ∼= I(u1) = I(v1) = v−2 v−3

v1
clearly factors

through P (v−2) = v−2

v1
. But this shows that (3.2) holds, which is a contradiction.

• Subcase δ+(u1) = 2. In this case we have I(u) = I(u−1) by definition. Hence vk−yn−i+qk(v) =

u−1. Then any morphism from S(vk−yn−i+qk(v)) = S(u−1) = u−1 to τ−xn (P (u)) ∼= I(u−1) =
u1

u−1 clearly factors through P (u1) =
u1

u−1 u2
. But this shows that (3.2) holds, which is a

contradiction. �

Lemma 3.6. Let v, u ∈ Q0 be such that δ(v) = δ(u) = (2, 2).

(a) We have Ext1
Λ(M(V), P (v)) = 0 and Ext1

Λ(I(v),M(V)) = 0.
(b) We have Ext1

Λ(I(u), P (v)) = 0.

Proof. (a) We only show that Ext1
Λ(M(V), P (v)) = 0; the other equality follows dually. Let w be

a k-flow path in Q. By additivity of Ext1
Λ(−,−) it is enough to show that

Ext1
Λ(τ−xn (P (w)), P (v)) = 0

for any x ∈ {0, 1, . . . , p(w)}. If x = 0, then τ−xn (P (w)) = P (w) is projective and so the result
follows. Otherwise, assume that 1 ≤ x ≤ p(w). By the dual of Lemma 2.20(c) we have that
τ−(P (v)) ∼= S(v). Then by the Auslander–Reiten duality, it is enough to show that

DHomΛ(S(v), τ−xn (P (w))) = 0. (3.3)

We consider the cases 1 ≤ x ≤ p(w)− 1 and x = p(w) separately.
Case 1 ≤ x ≤ p(w) − 1. In this case by Corollary 2.27 we have that τ−xn (P (w)) ∼=

S(wk−xn+qk). Assume towards a contradiction that (3.3) does not hold. Then S(v) ∼=
S(wk−xn+qk) from which it follows that v = wk−xn+qk . By Corollary 2.27 we have that
δ(wk−xn+qk) = (1, 1), which contradicts δ(v) = (2, 2).

Case x = p(w). In this case by Corollary 2.27 we have that τ−xn (P (w)) ∼= I(w). Assume
towards a contradiction that (3.3) does not hold. Then S(v) ∼= soc(I(w)) from which it follows
that I(v) ∼= I(w). But this contradicts the dual of Lemma 2.19 since δ(v) = (2, 2).

(b) By the dual of Lemma 2.20(c) we have that τ−(P (v)) ∼= S(v). Then by the Auslander–Reiten
duality it is enough to show that

DHomΛ(S(v), I(u)) = 0.
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If v 6= u, then HomΛ(S(v), I(u)) = 0 and the result follows. Otherwise, assume that v = u. Let
w1 −→ v and w2 −→ v be the arrows ending at v. Then any morphism from S(v) = v to I(u) =
I(v) = w1 w2

v clearly factors through P (w1) = w1
v , which shows that DHomΛ(S(v), I(u)) =

0. �

Next, let {Rt}ft=1 be a complete collection of representatives of pairwise non-isomorphic projective-
injective Λ-modules. Set

M := M(V)⊕

(
f⊕
t=1

Rt

)
⊕

 ⊕
v∈Q0

δ(v)=(2,2)

(P (v)⊕ I(v))

 . (3.4)

The main aim of this section is to show that M is the unique n-cluster tilting module of Λ. We start
by giving an alternate description of M .

Corollary 3.7. The moduleM is basic andM ∼=
⊕

j≥0 τ
−j
n (Λ). In particular, we have thatD(Λ) ∈M .

Proof. We set

R :=

f⊕
t=1

Rt, and M(2,2) :=
⊕
v∈Q0

δ(v)=(2,2)

(P (v)⊕ I(v)).

By Lemma 2.19 we have that

Λ ∼=

(⊕
v∈V

P (v)

)
⊕R⊕

 ⊕
v∈Q0

δ(v)=(2,2)

P (v)

 .

Then by (3.4) and Corollary 2.21 it follows that M ∼=
⊕

j≥0 τ
−j
n (Λ).

To see that M is basic, we have that M(V) is basic by Lemma 3.4(b), that R is basic by definition
and that M(2,2) is basic since P (v) is never injective if δ+(v) = 2. By Corollary 2.27 and by Lemma
2.19 and its dual and by comparing direct summands of M(V), R and M(2,2), it easily follows that M
is basic.

Finally, we show that D(Λ) ∈ add(M). It is enough to show that for every vertex v ∈ Q0, the
indecomposable injective Λ-module I(v) corresponding to the vertex v ∈ Q0 belongs to add(M). If
δ(v) = (2, 2) or I(v) is projective, then clearly I(v) ∈ add(M) by the definition of M . Otherwise, by
the dual of Lemma 2.19 it follows that I(v) ∼= I(v) for some flow path v in Q. Then by Corollary 2.21
and Proposition 1.1(a) we have

I(v) ∼= τ−p(v)
n (P (v)) ∈ add(M),

as required. �

Next we want to show that M is n-rigid.

Proposition 3.8. Let i ∈ {1, . . . , n− 1}. Then ExtiΛ(M,M) = 0.

Proof. By Lemma 3.5 and since Rt is projective-injective for every t ∈ {1, . . . , f}, it follows that the

module M(V)⊕
(⊕f

t=1Rt

)
is n-rigid. Hence if there exists no vertex v ∈ Q0 with degree δ(v) = (2, 2),

the result follows immediately, while if there exists a vertex v ∈ Q0 with degree δ(v) = (2, 2), the result
follows from Lemma 3.6. �

We are now ready to show that M is n-cluster tilting.

Proposition 3.9. The module M is an n-cluster tilting Λ-module and any basic n-cluster tilting
Λ-module is isomorphic to M .
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Proof. To show that M is an n-cluster tilting module we need to show that

add(M) = {X ∈ mod Λ | ExtiΛ(M,X) = 0 for all 0 < i < n}

= {X ∈ mod Λ | ExtiΛ(X,M) = 0 for all 0 < i < n}.
We only show the first equality; the other follows dually. Since by Proposition 3.8 the module M is
n-rigid, the inclusion

add(M) ⊆ {X ∈ mod Λ | ExtiΛ(M,X) = 0 for all 0 < i < n}
holds. It remains to show the opposite inclusion, that is that if ExtiΛ(M,X) = 0 for all 0 < i < n, then
X ∈ add(M). We show the contrapositive statement that if X 6∈ add(M), then ExtiΛ(M,X) 6= 0 for
some i ∈ {1, . . . , n− 1}. By additivity of ExtiΛ(−,−) we may assume that X is indecomposable. Since
by Corollary 3.7 we have that Λ ∈ add(M) and D(Λ) ∈ add(M), it follows that X is neither projective
nor injective. Since X is neither projective nor injective, it follows from Theorem 2.10(d) that X is
simple. Then X ∼= S(v) for some vertex v ∈ Q0. Clearly δ(v) 6= (0, 1) and δ(v) 6= (1, 0) because in the
first case we have that S(v) is injective while in the second case we have that S(v) is projective. We
consider the cases δ−(v) = 2 and δ−(v) = 1 separately.

Case δ−(v) = 2. In this case we have by Lemma 2.20(c) that τ−(S(v)) ∼= I(v). By Lemma 1.2 it
follows that Ext1

Λ(I(v), S(v)) 6= 0. Since by Corollary 3.7 we have that I(v) ∈ add(M), we conclude
that Ext1

Λ(M,S(v)) 6= 0, as required.
Case δ−(v) = 1. In this case we have that δ(v) = (1, 1) or δ(v) = (1, 2). By Corollary 2.17 there

exists a unique k-flow path v in Q such that v = vj for some j > 1. Notice that j < k+ qk also holds.
We first claim that n does not divide k − j + qk.

To show this, assume towards a contradiction that k − j + qk = mn for some m ∈ Z≥0. Then
j = k −mn+ qk. Since we have 1 < j < k + qk, we obtain

1 < k −mn+ qk < k + qk.

Using k + q(v) = p(v)n and q(v) = −1 + q1 + qk, we obtain that

0 < m < p(v)− q1

n
,

which implies 0 < m < p(v). But then by Corollary 2.27 we have

X ∼= S(v) = S(vj) = S(vk−mn+qk) ∼= τ−mn (P (v)) ∈ add(M),

which contradicts X 6∈ add(M).

Hence n does not divide k − j + qk. Let m be the unique integer such that m < k−j+qk
n < m + 1.

Using 1 < j < k + qk, we obtain that 0 ≤ m ≤ p(v) − 1. Then by Lemma 2.25, Corollary 2.27 and
Lemma 2.24 it follows that

Ω−(k−mn+qk−j)τ−mn (P (v)) ∼= S(vj). (3.5)

Set i := (m + 1)n − k − qk + j. Since m < k−j+qk
n < m + 1, we obtain that 0 < i < n. Then, using

(3.5), we compute

τ−i (S(vj)) ∼= τ−i Ω−(k−mn+qk−j)τ−mn (P (v))

= τ−Ω−(i−1+k−mn+qk−j)τ−mn (P (v))

= τ−Ω−((m+1)n−k−qk+j−1+k−mn+qk−j)τ−mn (P (v))

= τ−Ω−(n−1)τ−mn (P (v))

= τ−(m+1)
n (P (v)).

By Corollary 2.27 and since 0 ≤ m ≤ p(v) − 1, it follows that τ
−(m+1)
n (P (v)) 6= 0. Then by

Lemma 1.2 we have that ExtiΛ(τ
−(m+1)
n (P (v)), S(vj)) 6= 0, which shows that ExtiΛ(M,S(v)) 6= 0

since τ
−(m+1)
n (P (v)) ∈ add(M).

Finally, the fact that M is the unique basic n-cluster tilting module up to isomorphism follows from
Proposition 1.1(c). �
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4. Main result and applications

We are now ready to state our main result.

Theorem 4.1. Let Q be a quiver, let Λ = kQ/J 2 and let n ∈ Z≥2. Then the algebra Λ admits an

n-cluster tilting subcategory C ⊆ mod Λ if and only if Q is an n-admissible quiver. If moreover Q 6= Ãm

for any m ≥ 1, then C is unique and C = add
(⊕

j≥0 τ
−j
n (Λ)

)
.

Proof. The statement that if Λ admits an n-cluster tilting subcategory, then Q is an n-admissible
quiver follows from Proposition 2.9, Proposition 2.14 and Proposition 2.26. The statement that if Q is
an n-admissible quiver, then Λ admits an n-cluster tilting subcategory follows from Proposition 2.14
and Proposition 3.9. The description of C in the case Q 6= Ãm follows from Proposition 3.9. �

Remark 4.2. In Theorem 4.1 we classify n-cluster tilting subcategories for bound quiver algebras
of the form kQ/J 2 when n ≥ 2. We also find that all of them are of the form add(M) for an n-
cluster tilting module M . If n = 1, then the algebra Λ = kQ/J 2 admits a unique 1-cluster tilting
subcategory, namely the whole module category mod Λ. Moreover, the module category mod Λ is
of the form add(M) if and only if Λ is a representation-finite algebra. A result of Gabriel [Gab72]
classifies representation-finite algebras with radical square zero in terms of their separated quiver ; see
also [ARS95, Section X.2].

Using Theorem 4.1 we can construct many examples of algebras that admit n-cluster tilting modules
and have many interesting properties. As an example, an answer to a question of Erdmann and Holm
from [EH08] is given in [MV21] using radical square zero bound quiver algebras.

Example 4.3. (a) Let Q = Am, let Λ = kQ/J 2 and let n ≥ 2 be such that n | (m− 1). Then

Λ⊕

m−1
n⊕
j=1

S(m− jn)


is the unique basic n-cluster tilting Λ-module.

(b) Let Q be as in Example 2.8(c) and let Λ = kQ/J 2. Then the module

M = Λ⊕ τ−2 (Λ)⊕ τ−2
2 (Λ)

∼= Λ⊕ ( 1
2 ⊕ 7 ⊕ 2 8

3 ⊕ 4 5
5 ⊕ 3

6 ⊕ 1
1 )⊕ 3

4

is the unique basic 2-cluster tilting Λ-module.
(c) Let Q be as in Example 2.8(d) and let Λ = kQ/J 2. Then the module

M = Λ⊕ τ−3 (Λ)

∼= Λ⊕ ( 10 7
8 ⊕ 5

6 ⊕ 3 12
4 ⊕ 1

2 ⊕ 5
11 ⊕ 1

9 )

is the unique basic 3-cluster tilting Λ-module.

In the rest of this section we further investigate some properties of radical square zero bound quiver
algebras which admit n-cluster tilting subcategories. We start with describing a method to construct
n-admissible quivers.

Remark 4.4. Starting from any n-pre-admissible quiver Q, it is not difficult to construct an n-
admissible quiver by adjusting the lengths of flow paths in Q appropriately. For example, if Q is the
quiver

1 2,

then Q is n-pre-admissible for any n ≥ 2 and there are two flow paths in Q, namely

v : 1 −→ 1,

u : 1 −→ 2.
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In particular, we have q(v) = 0 and q(u) = −1. Now let us fix an n ≥ 2 and construct an n-admissible
quiver. We pick kv, ku ≥ 2 such that n | kv and n | (ku − 1). Then the quiver

· · ·

v2 vkv−1

1 u2 · · · uku−1 2

is n-admissible.

4.1. nZ-cluster tilting subcategories. We recall the definition of nZ-cluster tilting subcategories
from [IJ17].

Definition 4.5. [IJ17, Definition-Proposition 2.15] Let Λ be an algebra and let C ⊆ mod Λ be an
n-cluster tilting subcategory. We say that C is an nZ-cluster tilting subcategory if one of the two
equivalent conditions

(a) Ωn(C) ⊆ C, and
(b) Ω−n(C) ⊆ C

holds.

In this subsection we classify radical square zero bound quiver algebras which admit nZ-cluster
tilting subcategories. We start with the following proposition.

Proposition 4.6. Let Λ = kQ/J 2 and assume that there exists an nZ-cluster tilting subcategory
C ⊆ mod Λ. Let v ∈ Q0 be a vertex of Q. Then δ(v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Proof. Since C is an nZ-cluster tilting subcategory, it follows that Q is an n-admissible quiver. Hence
δ+(v) ≤ 2 and δ−(v) ≤ 2 and it is enough to show that δ+(v) 6= 2 and δ−(v) 6= 2. We show that
δ+(v) 6= 2; the fact that δ−(v) 6= 2 follows dually.

Assume towards a contradiction that δ+(v) = 2 and let v −→ u1 and v −→ u2 be the two arrows
starting at v. Then P (v) ∈ C and P (v) is not injective. It follows from Proposition 1.1(a) that
P (v) ∼= τn(X) for some nonprojective indecomposable module X ∈ C. In particular, the module
Ωn−1(X) is nonprojective and so we have

Ωn−1(X) ∼= τ−τΩn−1(X) = τ−τn(X) ∼= τ−(P (v)) ∼= S(v),

where the last isomorphism follows from the dual of Lemma 2.20(c). Since by the dual of Lemma
2.20(c) we have Ω(S(v)) ∼= S(u1)⊕ S(u2), we obtain that

Ωn(X) = ΩΩn−1(X) ∼= Ω(S(v)) ∼= S(u1)⊕ S(u2).

Since C is an nZ-cluster tilting subcategory, it follows that S(u1) ⊕ S(u2) ∈ C. But then a direct
computation shows that Ω(I(u2)) ∼= S(u1), from which we conclude that Ext1

Λ(I(u2), S(u1)⊕S(u2)) 6=
0. This contradicts the fact that C is an n-cluster tilting subcategory since I(u2), S(u1)⊕S(u2) ∈ C. �

We can now give the classification of nZ-cluster tilting subcategories for radical square zero bound
quiver algebras.

Theorem 4.7. Let Q be a quiver, let Λ = kQ/J 2 and let n ∈ Z≥2. Then the algebra Λ admits an

nZ-cluster tilting subcategory C ⊆ mod Λ if and only if Q = Am and n | (m−1) or Q = Ãm and n | m.

Proof. If Q = Am and n | (m − 1) or Q = Ãm and n | m, then Λ admits an n-cluster tilting
subcategory C ⊆ mod Λ by Theorem 4.1. Moreover, in this case, it is easy to see that τ(M) ∼= Ω(M)
for any M ∈ mod Λ and hence C is also an nZ-cluster tilting subcategory by Proposition 1.1(a).

For the other direction, assume that Λ admits an nZ-cluster tilting subcategory C. Then by Propo-
sition 4.6 we have that if v ∈ Q0, then δ(v) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. Since Q is connected, we

conclude that there exists some m ∈ Z≥1 such that Q = Am or Q = Ãm. Since C is n-cluster tilting, it
follows that Q is n-admissible from Theorem 4.1. Hence we conclude that if Q = Am, then n | (m−1),

while if Q = Ãm, then n | m, as required. �
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In particular we see that the only radical square zero bound quiver algebras which admit nZ-cluster
tilting subcategories are Nakayama algebras.

4.2. A lattice of n-cluster tilting subcategories. Before giving our next result, let us recall the
following classical definition.

Definition 4.8. A poset is a partially ordered set. A lattice is a partially ordered set in which every
two elements have a meet, that is a greatest lower bound and a join, that is a least upper bound. A
complete lattice is a lattice in which any subset has a greatest lower bound and a least upper bound.

Example 4.9. Let N be a positive integer. Then the set D(N) = {x ∈ Z | x ≥ 1 and x | N} forms a
complete lattice called the lattice of divisors of N under the relation x ≤ y if x | y. If x, y ∈ D(N),
then their meet corresponds to their greatest common divisor gcd(x, y) and their join corresponds to
their least common multiple lcm(x, y).

For the rest of this article, we drop our assumption that we consider n-cluster tilting subcategories
for n ≥ 2 and we assume that n ≥ 1 instead. Let Q 6= Ãm be a quiver and let Λ = kQ/J 2. Our aim
is to show that the collection of n-cluster tilting subcategories (for varying n) of mod Λ forms a lattice
with respect to inclusion of subcategories. We start with the following result.

Proposition 4.10. Let Λ = kQ/J 2 be a radical zero bound quiver algebra and assume that Q 6= A1

and Q 6= Ãm for any m ≥ 1. Let Cn ⊆ mod Λ be an n-cluster tilting subcategory and Cn′ ⊆ mod Λ be
an n′-cluster tilting subcategory. Then Cn ⊆ Cn′ if and only if n′ | n.

Proof. If n′ = 1, then the result is clear since Cn′ = C1 = mod Λ. If n = 1, then the result is also clear
since mod Λ is an n-cluster tilting subcategory if and only if n = 1 (since Q 6= A1).

Hence we may assume that n > 1 and n′ > 1. Then Q is n-admissible and n′-admissible by Theorem
4.1. Moreover, we have that Cn = add(Mn) and Cn′ = add(Mn′) where

Mn =
⊕
j≥0

τ−jn (Λ) and Mn′ =
⊕
j≥0

τ−jn′ (Λ).

Assume first that n′ | n. Then n = hn′ for some h ≥ 1. Let X ∈ Cn and we show that X ∈ Cn′ . Since
Cn and Cn′ are closed under direct sums and summands, we may assume that X is indecomposable.
If X is projective or injective, then X ∈ Cn′ since Cn′ is an n′-cluster tilting subcategory. Otherwise
we have by (3.4) and Corollary 3.7 that X ∼= τ−jn (P (v)) for some k-flow path v in Q and some j ≥ 1.
Since Q is n-admissible and n′-admissible, we have that k + q(v) = pn and k + q(v) = p′n′ for some

p, p′ ∈ Z≥1. In particular, we have p = p′n′

n . Moreover, by Corollary 2.27 and since X is not injective,
we have that 1 ≤ j ≤ p− 1. Hence we obtain

1 ≤ jh ≤ (p− 1)h = ph− h =
p′n′

n

n

n′
− h = p′ − h ≤ p′ − 1,

and so 1 ≤ jh ≤ p′ − 1. Hence by Corollary 2.27 we have

X ∼= τ−jn (P (v)) ∼= S(vk−jn+qk) = S(vk−jhn′+qk) ∼= τ−jhn′ (P (v)) ∈ add(Mn′) = Cn′ ,
as required.

Assume now that Cn ⊆ Cn′ . Then by Lemma 2.13 there exists a k-flow path v in Q. Since Q is
n-admissible and n′-admissible, we have that k + q(v) = pn and k + q(v) = p′n′ for some p, p′ ∈ Z≥1.
If p = 1, then n = p′n′ and n′ | n as required. Otherwise, assume that p > 1. Then by Corollary 2.27
and Proposition 1.1(a) we have that

τ−n (P (v)) ∼= S(vk−n+qk) ∈ Cn.
Since by assumption we have Cn ⊆ Cn′ , we conclude that S(vk−n+qk) ∈ Cn′ . Write n = hn′ + r with
h ∈ Z≥0 and 0 ≤ r ≤ n′ − 1. We first claim that 1 ≤ h ≤ p′ − 1.

First assume towards a contradiction that h = 0. Then n = r and

k − n+ qk = (p− 1)n+ 1− q1 ≥ (2− 1) · 1 + 1− 1 = 1.
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Hence by Lemma 2.25(a) we have that Ω−n(P (v)) ∼= S(vk−n+qk). Since 0 < n = r < n′, we have
0 < n′ − n < n′. Hence by Proposition 1.1(a) we obtain

τ−n′(P (v)) = τ−n′−nΩ−n(P (v)) ∼= τ−n′−n(S(vk−n+qk)) ∈ Cn′ .

It follows from Lemma 1.2 that Extn
′−n

Λ (τ−n′(P (v)), S(vk−n+qk)) 6= 0. This contradicts the fact that

Cn′ is n′-cluster tilting since τ−n′(P (v)), S(vk−n+qk) ∈ Cn′ .
Next assume towards a contradiction that h ≥ p′. Then we have

n < pn = k + q(v) = p′n′ ≤ hn′ ≤ hn′ + r = n,

which is a contradiction.
We conclude that n = hn′ + r with 1 ≤ h ≤ p′ − 1 and we now claim that r = 0. Assume towards a

contradiction that r > 0. By Corollary 2.27 and Proposition 1.1(a) we have that

τ−hn′ (P (v)) ∼= S(vk−hn′+qk) ∈ Cn′ .
Then 1 ≤ k − hn′ + qk ≤ k − 1 + qk and (k − hn′ + qk)− r = k − (hn′ + r) + qk = k − n+ qk ≥ 1, and
so by Lemma 2.24(a) we have that

Ω−r(S(vk−hn′+qk)) ∼= S(vk−hn′−r+qk) = S(vk−n+qk).

But then we have that

ExtrΛ(S(vk−n+qk), S(vk−hn′+qk)) ∼= ExtrΛ(Ω−r(S(vk−hn′+qk)), S(vk−hn′+qk)) 6= 0.

This contradicts the fact that Cn′ is n′-cluster tilting since S(vk−n+qk), S(vk−hn′+qk) ∈ Cn′ and 1 ≤
r ≤ n′ − 1. We conclude that r = 0 and so n = hn′, as required. �

We also need the following definition.

Definition 4.11. Let Q be a quiver. We define the admissible degree of Q to be

N(Q) :=

{
max ({n ∈ Z≥2 | Q is n-admissible} ∪ {1}) , if Q 6= A1,

1, if Q = A1.

Since Q is finite, it follows that N(Q) is well-defined. We now give the main result for this section.

Theorem 4.12. Let Q be a quiver with admissible degree N = N(Q) and let D(N) = {n ∈ Z | n ≥
1 and n | N}. Let Λ = kQ/J 2.

(a) If Q 6= A1, then there exists an n-cluster tilting subcategory Cn ⊆ mod Λ if and only if n ∈
D(N).

(b) If Q 6= Ãm, set

CT(Λ) := {C ⊆ mod Λ | there exists n ∈ Z≥1 such that C is n-cluster tilting}.
Then for every n ∈ D(N) there exists a unique n-cluster tilting subcategory Cn. Moreover,
the pair (CT(Λ),⊆) is a poset isomorphic to the opposite of the poset of divisors of N . In
particular, (CT(Λ),⊆) forms a complete lattice where the meet of Cn and Cn′ is given by
Clcm(n,n′) and the join of Cn and Cn′ is given by Cgcd(n,n′).

Proof. (a) For n = 1 the result is clear since mod Λ is a 1-cluster tilting subcategory. Assume now
that n > 1. If n ∈ D(N), then it follows from Remark 3.3(b) and Theorem 4.1 that Λ admits
an n-cluster tilting subcategory, which proves one direction.

For the other direction assume that there exists an n-cluster tilting subcategory Cn ⊆ mod Λ
and we show that n ∈ D(N). It follows from Theorem 4.1 that Q is n-admissible and so
1 < n ≤ N . Hence by Definition 4.11 it follows that Q is N -admissible too. We consider the
cases Q = Ãm and Q 6= Ãm separately.

If Q = Ãm for some m ≥ 1, then we have by Definition 3.1 that N | m and so N ≤ m.

Moreover, the quiver Ãm is always m-admissible and so m ≤ N . It follows that m = N . Since
Q is also n-admissible, we have that n | m = N and so n ∈ D(N).
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If Q 6= Ãm, then there exists a flow path v in Q by Lemma 2.13. Moreover, for every kv-flow
path v we have that n | (kv +q(v)) and N | (kv +q(v)). It follows that lcm(n,N) | (kv +q(v))
for every flow path v in Q. Hence Q is lcm(n,N)-admissible and so lcm(n,N) ≤ N . We
conclude that n | N and so n ∈ D(N).

(b) If N(Q) = 1, then CT(Λ) = {mod Λ} and the result is clear. If N(Q) > 1, then existence of
Cn follows from (a) and uniqueness by Theorem 4.1. Then (CT(Λ),⊆) is a poset isomorphic to
the opposite of the poset of divisors of N by Proposition 4.10. That CT(Λ) forms a complete
lattice with the given meet and join follows from Example 4.9. �

We finish with an example which illustrates Theorem 4.12.

Example 4.13. Let Q be the quiver

23 22 21 20 19

1 14 15 16 17 18

2 3 4 5 6 7 8 9 10 11 12 13.

Then N(Q) = 12. The Auslander–Reiten quiver of Λ = kQ/J 2 is

13

12
13

12

11
12

11

10
11

10

9
10

9

8
9

8

7
8

7

6
7

6

5
6

5

4
5

4

3
4

3

2
3

2

1

23
1

23

22
23

22

21
22

21

20
21

20

19
20

19

18
19

18

17
18

17

16
17

16

15
16

15

14
15

14

1
2 14

1
14

1
2

1.

The divisors of 12 are D(12) = {1, 2, 3, 4, 6, 12}. For n ∈ D(12) we set Mn =
⊕

j≥0 τ
−j
n (Λ) and

Cn = add(Mn). Then we have

C1 = mod Λ, C2 = add{Λ, 11 , 9 , 7 , 5 , 3 , 1
14 , 23 , 21 , 19 , 17 , 15 , 1

2 },
C3 = add{Λ, 10 , 7 , 4 , 1

14 , 22 , 19 , 16 , 1
2 }, C4 = add{Λ, 9 , 5 , 1

14 , 21 , 17 , 1
2 },

C6 = add{Λ, 7 , 1
14 , 19 , 1

2 }, C12 = add{Λ, 1
14 ,

1
2 },

and Cn is an n-cluster tilting subcategory of mod Λ by Theorem 4.1. Then the lattice

12

4 6

2 3

1

of divisors of 12 corresponds to the lattice

C12

C4 C6

C2 C3

C1

⊂⊃

⊂ ⊂⊃

⊂ ⊃

of inclusions of n-cluster tilting subcategories of mod Λ.
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[DI20] Erik Darpö and Osamu Iyama. d-Representation-finite self-injective algebras. Advances in Mathematics,
362:106932, 2020.

[EH08] Karin Erdmann and Thorsten Holm. Maximal n-orthogonal modules for selfinjective algebras. Proceedings of
the American Mathematical Society, 136(9):3069–3078, 2008.

[Gab72] Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, March 1972.

[HI11] Martin Herschend and Osamu Iyama. Selfinjective quivers with potential and 2-representation-finite algebras.
Compositio Mathematica, 147(6):1885–1920, 2011.

[IJ17] Osamu Iyama and Gustavo Jasso. Higher Auslander Correspondence for Dualizing R-Varieties. Algebras and

Representation Theory, 20(2):335–354, Apr 2017.
[IO11] Osamu Iyama and Steffen Oppermann. n-representation-finite algebras and n-APR tilting. Transactions of

the American Mathematical Society, 363(12):6575–6614, 2011.

[IO13] Osamu Iyama and Steffen Oppermann. Stable categories of higher preprojective algebras. Advances in Math-
ematics, 244:23–68, 2013.

[Iya07a] Osamu Iyama. Auslander correspondence. Advances in Mathematics, 210(1):51–82, 2007.

[Iya07b] Osamu Iyama. Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Advances
in Mathematics, 210(1):22–50, 2007.

[Iya08] Osamu Iyama. Auslander–Reiten theory revisited. In Trends in representation theory of algebras and related

topics, EMS Series of Congress Reports, pages 349–397. European Mathematical Society, Zürich, 2008.
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