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Abstract

Automated decision support systems promise to help human experts solve tasks more efficiently and
accurately. However, existing systems typically require experts to understand when to cede agency to
the system or when to exercise their own agency. Moreover, if the experts develop a misplaced trust
in the system, their performance may worsen. In this work, we lift the above requirement and develop
automated decision support systems that, by design, do not require experts to understand when to trust
them to provably improve their performance. To this end, we focus on multiclass classification tasks and
consider an automated decision support system that, for each data sample, uses a classifier to recommend
a subset of labels to a human expert. We first show that, by looking at the design of such a system from
the perspective of conformal prediction, we can ensure that the probability that the recommended subset
of labels contains the true label matches almost exactly a target probability value. Then, we develop
an efficient and near-optimal search method to find the target probability value under which the expert
benefits the most from using our system. Experiments on synthetic and real data demonstrate that our
system can help the experts make more accurate predictions and is robust to the accuracy of the classifier
it relies on.

1 Introduction

In recent years, there has been an increasing interest in developing automated decision support systems to
help human experts solve tasks in a wide range of critical domains, from medicine [1] and drug discovery [2]
to criminal justice processes [3], to name a few. Among them, one of the main focus has been classification
tasks, where a decision support system uses a classifier to make label predictions and the experts decide when
to follow or not follow the predictions made by the classifier [4, 5, 6].

However, these systems typically require the human experts to understand when to trust a prediction made
by the classifier. Otherwise, the experts may be better off solving the classification tasks on their own [7]. This
follows from the fact that, in general, the accuracy of a classifier differs across data samples [8]. Unfortunately,
it is not yet clear how to make sure that the experts do not develop a misplaced trust that decreases their
performance [9, 10, 11]. In this work, our goal is to develop decision support systems that, by design, do not
require experts to understand when to trust the system and provably improve their performance.

Our contributions. We consider multiclass classification tasks and decision support systems that, for each
data sample, use a classifier to recommend a subset of labels to a human expert. We view this type of decision
support systems as more natural since, given a set of alternatives, human experts tend to narrow down their
options to a subset of them before making their final decision [12, 13, 14]. In a way, our support systems
help the experts by automatically narrowing down their options for them. In this context, a recent empirical
study has also concluded that, in terms of the overall accuracy, it may be more beneficial to recommend a
subset of options than a single option [15].

Here, one could still argue that the expert needs to understand when to trust the system—when to predict
one of the labels in the subset recommended by the system—as noted by Levi et al. [15]. This is largely due
to the fact that the accuracy of the classifier differs across different data samples. To circumvent this, we
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use the theory of conformal prediction [16, 17] to construct trustworthy subsets where the probability that
the true label belongs to a recommended subset always matches almost exactly a given target probability
value, without making any distributional assumptions about the data or the classifier. In addition, given an
estimator of the expert’s success probability for any of the recommended subsets, we develop an efficient
and near-optimal search method to find the target probability value under which the expert is guaranteed
to achieve the greatest accuracy. In this context, we also propose a practical method to obtain such an
estimator using the confusion matrix of the expert predictions in the original classification task as well as a
given discrete choice model.

Finally, we experiment with synthetic and real data comprising of 511,400 expert predictions over 10,000
natural images. The results demonstrate that our decision support system is robust to the performance of
the classifier it relies on—the competitive advantage it provides improves with the accuracy of the classifier,
and the human experts do not decrease their performance by using the system even if the classifier is very
inaccurate. Additionally, the results also show that, even if the classifiers that our system relies on have high
accuracy, an expert using our system may achieve significantly higher accuracy than the classifiers on their
own—in our experiments with real data, the relative reduction in misclassification probability is over 61%.
Finally, by using our system, our results suggest that the (average) expert would reduce their misclassification
probability by ∼70%.1

Further related work. Our work builds upon further related work on distribution-free uncertainty
quantification and learning under algorithmic triage.

There exist three fundamental notions of distribution-free uncertainty quantification in the literature:
calibration, confidence intervals, and prediction sets [17, 18, 19, 16]. Our work is most closely related to
the rapidly increasing literature on prediction sets [20, 21, 22, 23], however, to the best of our knowledge,
prediction sets have not been optimized to serve automated decision support systems such as ours. In this
context, we would like to acknowledge that Babbar et al. [24] have also proposed using prediction sets in
decision support systems, however, this work is contemporary to ours and has been carried out independently.
Moreover, in contrast to our work, for each data sample, they allow the expert to predict label values outside
the recommended subset and do not optimize the probability that the true label belongs to the subset (to
provably improve expert predictions).

Learning under algorithmic triage seeks the development of machine learning models that operate under
different automation levels—models that take decisions for a given fraction of instances and leave the remaining
ones to human experts [8, 25, 26, 27, 28]. This line of work has predominantly focused on supervised learning
settings with a few very recent notable exceptions [29, 30]. However, in this line of work, each sample is
either predicted by the model or by the human expert. In contrast, in our work, the model helps the human
predict each sample.

2 Problem Formulation

We consider a multiclass classification task where a human expert observes a feature vector2 x ∈ X , with
x ∼ P (X), and needs to predict a label y ∈ Y = {1, . . . , n}, with y ∼ P (Y |X). Then, our goal is to design
an automated decision support system C : X → 2Y that, given a feature vector x ∈ X , helps the expert
by automatically narrowing down the set of potential labels to a subset of them C(x) ⊆ Y using a trained

classifier f̂(x) ∈ [0, 1]n that outputs scores for each class (e.g., softmax scores)3. The higher the score f̂y(x),
the more the classifier believes the true label Y = y. Here, we assume that, for each x ∼ P (X), the expert
predicts a label Ŷ among those in the subset C(x) according to an unknown policy π(x, C(x)). More formally,
Ŷ ∼ π(x, C(x)), where π : X × 2Y → ∆(Y) and ∆(Y) denotes the probability simplex over the set of labels
Y, and πy(x, C(x)) = 0 if y /∈ C(x). Refer to Figure 1 for an illustration of the automated decision support
system we consider.

1To facilitate research in this area, we will release an open-source implementation of our system with the final version of the
paper.

2We denote random variables with capital letters and realizations of random variables with lower case letters.
3The assumption that f̂(x) ∈ [0, 1]n is without loss of generality.
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Figure 1: Our automated decision support system C. Given a sample with a feature vector x, our system C
narrows down the set of potential labels y ∈ Y to a subset of them C(x) using the scores f̂y(x) provided by a

classifier f̂ for each class y. The human expert receives the recommended subset C(x), together with the
sample, and predicts a label ŷ from C(x) according to a policy π(x, C(x)).

In our work, we would like that, by design, the expert can only benefit from using the automated decision
support system C, i.e.,

P[Ŷ = Y ; C] ≥ P[Ŷ = Y ; Y], (1)

where P[Ŷ = Y ; C] denotes the expert’s success probability if, for each x ∼ P (X), the human expert predicts
a label Ŷ among those in the subset C(x).

However, not all automated decision support systems fulfilling the above requirement will be equally
useful—some will help experts increase their success probability more than others. For example, a system that
always recommends C(x) = Y for all x ∈ X satisfies Eq. 1. However, it is useless to the experts. Therefore,
among those systems satisfying Eq. 1, we would ideally like to find the system C∗ that helps the experts
achieve the highest success probability4, i.e.,

C∗ = argmax
C

P[Ŷ = Y ; C]. (2)

To address the design of such a system, we will look at the problem from the perspective of conformal
prediction [17, 16].

3 Subset Selection using Conformal Prediction

In general, if the trained classifier f̂ we use to build C(X) is not perfect, the true label Y may or may not
be included in C(X). In what follows, we will construct the subsets C(X) using the theory of conformal

prediction. This will allow our system to be robust to the accuracy of the classifier f̂ it uses—the probability
P [Y ∈ C(X)] that the true label Y belongs to the subset C(X) = Cα(X) will match almost exactly a given
target probability value 1− α, without making any distributional assumptions about the data distribution
P (X)P (Y |X) nor the classifier f̂ .

Let Dcal = {(xi, yi)}mi=1 be a calibration set, where (xi, yi) ∼ P (X)P (Y |X), s(xi, yi) = 1 − f̂yi(xi) be
the conformal score5 (i.e., if the classifier is catastrophically wrong, the conformal score will be close to one),

and q̂α be the d(m+1)(1−α)e
m empirical quantile of the conformal scores s(x1, y1), . . . , s(xm, ym). Then, if we

4Note that maximizing the expert’s success probability P[Ŷ = Y ; C] is equivalent to minimizing the expected 0-1 loss

E[I(Ŷ 6= Y ) ; C]. Considering other types of losses is left as an interesting venue for future work.
5In general, the conformal score s(x, y) can be any function of x and y measuring the similarity between samples.
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use the quantile q̂α to construct the subsets Cα(X) for new data samples as follows:

Cα(X) = {y | s(X, y) ≤ q̂}, (3)

then it holds that the probability that the true label Y belongs to the subset Cα(X) is almost exactly 1− α.
More formally, we have the following well-established conformal calibration coverage guarantee (refer to
Appendix A in Angelopoulos and Bates [16] for a proof):

Theorem 1 For an automated decision support system Cα that constructs the subsets Cα(X) using Eq. 3, it
holds that

1− α ≤ P[Y ∈ Cα(X)] ≤ 1− α+
1

m+ 1
,

where the probability is over the randomness in the sample it helps predicting and the calibration set used to
compute the empirical quantile q̂α.

However, we would like to emphasize that, given a fixed calibration set Dcal, there may be some α values
that will lead to larger gains in terms of success probability P[Ŷ = Y ; Cα] than others. In this context, note
that the success probability is only over the randomness in the samples the system helps predicting—the
calibration set Dcal is fixed. This is in contrast with the coverage guarantee given by Theorem 1, where the
probability is both over the randomness in the samples the system helps predicting and the calibration set.
In what follows, our goal is to find the optimal value α∗ that maximizes the expert’s success probability given
a fixed calibration set Dcal.

4 Optimizing Across Conformal Predictors

We start by realizing that, given a fixed calibration set Dcal = {(xi, yi)}mi=1, there only exist m different
conformal predictors. This is because the empirical quantile q̂α, which the subsets Cα(xi) depend on, can
only take m different values. As a result, to find the optimal conformal predictor that maximizes the expert’s
success probability, we need to solve the following maximization problem:

α∗ = argmax
α∈A

P[Ŷ = Y ; Cα], (4)

where A = {αi}i∈[m], with αi = 1− i/(m+ 1), and the probability is only over the randomness in the samples
the system helps predicting.

However, to find a near optimal solution α̂ to the above problem, we need to estimate the expert’s success
probability P[Ŷ = Y ; Cα]. Assume for now that, for each α ∈ A, we have access to an estimator µ̂α of
the expert’s success probability such that, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that
|µ̂α − P[Ŷ = Y ; Cα]| ≤ εα,δ. Then, we can use the following proposition to find a near optimal solution α̂ to
Eq. 4 with high probability:

Proposition 1 For any δ ∈ (0, 1), consider an automated decision support system Cα̂ with

α̂ = argmax
α∈A

µ̂α − εα,δ/m. (5)

With probability at least 1− δ, it holds that P[Ŷ = Y ; Cα̂] ≥ P[Ŷ = Y ; Cα]− 2εα,δ/m ∀α ∈ A simultaneously.

More specifically, the above result directly implies that for any δ ∈ (0, 1), with probability at least 1− δ, it
holds that:

P[Ŷ = Y ; Cα∗ ]− P[Ŷ = Y ; Cα̂] ≤ 2εα∗,δ/m. (6)

In what follows, we propose a practical method to estimate the expert’s success probability P[Ŷ = y ; Cα]
that builds upon the multinomial logit model (MNL), one of the most popular models in the vast literature
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Algorithm 1 Finding a near-optimal α̂

1: Input: f̂ , Dest, Dcal, δ
2: Initialize: A = {}, α̂← 0, t← 0

3: for i ∈ 1, ..,m do
4: α← 1− i

m+1
5: A ← A∪ {α}
6: end for

7: for α ∈ A do
8: µ̂α, εα,δ/m ← Estimate(α, δ,Dest) {It uses Eqs. 8 and 9}
9: if t ≤ µ̂α − εα,δ/m then

10: t← µ̂α − εα,δ/m
11: α̂← α
12: end if
13: end for

14: return α̂

on discrete choice models [31]. More specifically, we assume that we have access to (an estimation of) the
confusion matrix C for the expert predictions in the (original) multiclass classification task, similarly as in
Kerrigan et al. [32], i.e.,

C = [Cyy′ ]y,y′∈Y , whereCyy′ = P[Ŷ = y′ | Y, Y = y].

Moreover, given a sample (x, y), we also assume that the expert’s conditional success probability for the
subset Cα(x) follows a multinomial logit model (MNL) [31], i.e.,

P[Ŷ = y ; Cα | y ∈ Cα(x)] =
euyy∑

y′∈C(x) e
uyy′

, (7)

where uyy′ = logCyy′ . Then, building on the above expression, we compute a Monte-Carlo estimator µ̂α of
the conditional success probability using an estimation set Dest = {(xi, yi)}i∈[m]

6, i.e.,

µ̂α =
1

m

∑
i∈[m] | yi∈Cα(xi)

P[Ŷ = yi | Cα(xi), yi ∈ Cα(xi)]. (8)

Here, for each α ∈ A, using Hoeffding’s inequality7, we can conclude that, with probability at least 1− δ, it
holds that (refer to Appendix B):

|µ̂α − P[Ŷ = Y ; Cα]| ≤

√
log 1

δ

2m
:= εα,δ. (9)

As a consequence, as m→∞, εα,δ converges to zero.
Algorithm 1 summarizes the overall search method, which first builds A and then finds the near optimal

α̂ in A. To build A, it needs O(m) steps. To find the near-optimal α̂, for each value α ∈ A and each sample
(xi, yi) ∈ Dest, it needs to compute a prediction set Cα(x). This is achieved by sorting the conformal scores
and reusing computations across α values, which takes O(m logm+mn log n) steps. Therefore, the overall
time complexity is O(m logm+mn log n).

5 Beyond Standard Conformal Prediction

Until now, we have used standard conformal prediction [16] to construct the recommended subsets C(X)—we
have constructed the subsets C(X) by comparing the conformal scores s(X, y) to a single threshold q̂, as

6The number of samples in Dcal and Dest can differ. However, for simplicity, we assume both sets contain m samples.
7We use Hoeffding’s inequality for ease of exposition, however, one could use tighter concentration inequalities.
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P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.41 0.57 0.74 0.91
0.5 0.55 0.68 0.81 0.93
0.7 0.72 0.79 0.88 0.96
0.9 0.90 0.92 0.95 0.98

Table 1: Average success probability P[Ŷ = Y ; Cα̂1,α̂2
] during test for four different experts using our system,

each with a different success probability P[Ŷ = Y ; Y ], on four prediction tasks where the classifier achieves a
different success probability P[Y ′ = Y ]. Each column corresponds to a different prediction task and each
row corresponds to a different expert. In each task, the number of label values n = 10 and the size of the
calibration and estimation sets is m = 1,200. Each cell shows only the average since the standard errors are
all below 10−2.

shown in Eq. 3. Here, we will show that we can sometimes improve the performance of our system by
constructing C(X) using two thresholds q̂α1

and q̂α2
. By doing so, the recommended subsets will include

label values whose corresponding conformal scores are neither unreasonably large, as in standard conformal
prediction, nor unreasonably low, in comparison with the conformal scores of the samples in the calibration
set Dcal. This will be particularly useful whenever the classifier our system relies on has low accuracy.

More specifically, given a calibration set Dcal = {(xi, si)}mi=1, let α1, α2 ∈ [0, 1], with α1 < α2, and q̂α1 and

q̂α2
be the d(m+1)(1−α1)e

m and d(m+1)(1−α2)e
m empirical quantiles of the conformal scores s(x1, y1), . . . , s(xm, ym).

Then, if we use the quantiles q̂α1 and q̂α2 to construct the subsets Cα1,α2(X) for new data samples as follows:

Cα1,α2
(X) = {y | q̂α2

< s(X, y) ≤ q̂α1
}, (10)

it holds that the probability that the true label Y belongs to the subset Cα1,α2
(X) is almost exactly α2 − α1.

More formally, we have the following conformal calibration coverage guarantee, which is the counterpart of
Theorem 1:

Theorem 2 Consider an automated decision support system Cα1,α2 that constructs Cα1,α2(X) using Eq. 10.
Then, it holds that:

α2 − α1 −
1

m+ 1
≤ P[Y ∈ Cα1,α2(X)] ≤ α2 − α1 +

1

m+ 1
.

Moreover, given an estimator of the expert’s success probability µ̂α1,α2 such that for each α1 < α2 and

δ ∈ (0, 1), with probability at least 1− δ, it holds that |µ̂α1,α2
− P[Ŷ = Y ; Cα1,α2

]| ≤ εα1,α2,δ, we can proceed
similarly as in standard conformal prediction to find the near optimal α̂1, α̂2 ∈ A that maximizes the expert’s
success probability with high probability, by using µ̂α1,α2

and εα1,α2,2δ/(m(m−1)). Here, it is worth pointing
out that, in contrast with the case of standard conformal prediction, the time complexity of finding the near
optimal α̂1 and α̂2 is O(m logm+mn log n+mn2). Moreover, we can still rely on the practical method to
estimate the expert’s conditional success probability introduced in Section 4.

Remarks. Conformal prediction is one of many possible ways to construct set-valued predictors [33], i.e.,
predictors that, for each sample x ∈ X , output a set of label candidates C(x). In our work, we favor
conformal predictors over alternatives because they provably output trustworthy sets Cα(x) without making
any assumption about the data distribution nor the classifier they rely upon. However, we would like to
emphasize that our efficient search method (Algorithm 1) is rather generic and, together with an estimator of
the expert’s success probability, may be used to find a near-optimal set-valued predictor within a discrete set
of set-valued predictors that maximizes the expert’s success probability. We hope our work will encourage
others to develop set-valued predictors specifically designed to serve decision support systems.
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Figure 2: Expert’s success probability P[Ŷ = Y ; Cα] and average size of the recommended sets E[|Cα(X)|]
during test for each α ∈ A on four synthetic prediction tasks where the expert and the classifier achieve
different success probabilities P[Ŷ = Y ; Y] and P[Y ′ = Y ], respectively. Here, note that E[|Cα(X)|] only
depends on the classifier’s success probability P[Y ′ = Y ] and thus we only need two lines for the four prediction
tasks. In all tasks, the number of label values n = 10 and the size of the calibration and estimation sets is
m = 1,200. Each marker corresponds to a different α value and the darker points correspond to α̂. The
coloring of the darker points for each prediction task is the same in both panels.

6 Experiments on Synthetic Data

In this section, we quantify the influence that the accuracy of the expert and the classifier, the size of the
calibration and estimation sets, as well as the number of label values have on the performance of our system
using synthetic data8.

Experimental setup. We create a variety of synthetic prediction tasks, each with 20 features per sample
and a varying number of label values n and difficulty. Refer to Appendix D for more details about the
prediction tasks. For each prediction task, we generate 10,000 samples, pick 20% of these samples at random
as test set and split also at random the remaining 80% into three disjoint subsets for training, calibration and
estimation, whose sizes we vary across experiments. In each experiment, we specify the number of samples in
the calibration and estimation sets—the remaining samples are used for training.

For each prediction task, we train a logistic regression model Pθ(Y
′ |X), which depending on the difficulty of

the prediction task, achieves different success probability values P[Y ′ = Y ]. Moreover, we sample the expert’s

predictions Ŷ from the multinomial logit model defined by Eq. 7, with Cyy = π
n ± γεc and Cyy′ =

1−Cyy
n ± β,

where π is a parameter that controls the expert’s success probability P[Ŷ = Y ; Y ], εc ∼ U(0,min(1− π
n ,

π
n )),

β ∼ N(0, ((1−Cyy)/(6n))2) for all y 6= y′, and γ is a normalization term. Finally, we repeat each experiment
five times and, each time, we sample different train, estimation, calibration and test sets following the
procedure described above.

Experts always benefit from our system even if the classifier has low accuracy. We estimate the
expert’s success probability P[Ŷ = Y ; Cα̂1,α̂2

] during test for four different experts, each with a different

success probability P[Ŷ = Y ; Y], on four prediction tasks where the classifier achieves a different success
probability P[Y ′ = Y ]. Table 1 summarizes the results, where each column corresponds to a different
prediction task and each row corresponds to a different expert. We find that, using our system, the expert
solves the prediction task significantly more accurately than the expert or the classifier on their own. Moreover,
it is rather remarkable that, even if the classifier has low accuracy, the expert always benefits from using
our system—in other words, our system is robust to the performance of the classifier it relies on. We found

8All algorithms ran on a Debian machine equipped with Intel Xeon E5-2667 v4 @ 3.2 GHz, 32GB memory and two M40
Nvidia Tesla GPU cards. See Appendix D for further details.
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Classifiers P[Y ′ = Y ] P[Ŷ = Y ; Cα̂]

ResNet-110 0.928 0.981
PreResNet-110 0.944 0.983
DenseNet 0.964 0.986

Table 2: Average success probabilities P[Y ′ = Y ] and P[Ŷ = Y ; Cα̂] achieved by three popular deep neural
network classifiers and by an expert using our system with each of the classifiers on the CIFAR-10H dataset.
The size of the calibration and estimation set is m = 1,500 and the expert’s average success probability at
solving the (original) multiclass task is P[Ŷ = Y ; Y] = 0.947. Each cell shows only the average over 10
random data splits since the standard errors are all below 10−2.

qualitatively similar results for prediction tasks with other values of n and m, which we report in Appendix E.
Since, except for prediction tasks where the classifier has the lowest accuracy (e.g., P[Y ′ = Y ] = 0.3), we
found that typically α̂2 = 1, in what follows, we only experiment with systems Cα̂ = Cα̂,1 that construct
Cα̂(X) using Eq. 3.

The performance of our system under α̂ found by Algorithm 1 and under α∗ is very similar.
Given three prediction tasks where the expert and the classifier achieve different success probabilities
P[Ŷ = Y ; Y] and P[Y ′ = Y ], we compare the performance of our system under the near optimal α̂ found by
Algorithm 1 and under all other possible α ∈ A values. Figure 2 summarizes the results, which suggest that:
(i) the performance under α̂ is very close to that under α∗, as suggested by Proposition 1; and, (ii) as long as
α ≤ α∗, the performance of our system increases monotonically with respect to α, however, once α > α∗, the
performance deteriorates as we increase α. (iii) the higher the expert’s success probability P[Ŷ = Y ; Y], the
smaller the optimal α∗ and thus the greater the average size of the subsets Cα∗(X). We found qualitatively
similar results using other expert-classifier pairs with different success probabilities.

Our system needs a relatively small amount of calibration and estimation data. We vary the
amount of calibration and estimation data m we feed into Algorithm 1 and, each time, estimate the expert’s
success probability P[Ŷ = Y ; Cα̂]. Across prediction tasks, we consistently find that our system needs a
relatively small amount of calibration and estimation data to perform well. For example, for all prediction
tasks with n = 10 label values and varying level of difficulty, if we increase the amount of calibration and
estimation data from m = 160 to m = 1,200, the relative gain in success probability P[Ŷ = Y ; Cα̂] with respect
to P[Ŷ = Y ; Y], averaged across experts with P[Ŷ = Y ; Y] ∈ {0.3, 0.5, 0.7, 0.9}, goes from 47.29± 6.37% to
48.81± 6.65%.

The greater the number of label values, the more an expert benefits from using our system.
We consider prediction tasks with a varying number of label values, from n = 10 to n = 100, and estimate
the expert’s success probability P[Ŷ = Y ; Cα̂] for each task. Our results suggest that the relative gain
in success probability P[Ŷ = Y ; Cα̂] with respect to P[Ŷ = Y ; Y], averaged across experts with P[Ŷ =
Y ; Y ] ∈ {0.3, 0.5, 0.7, 0.9}, increases with the number of label values. For example, for m = 400, it goes from
48.04± 6.69% for n = 10 to 71.32± 9.30% for n = 100. For other m values, we found a similar trend.

7 Experiments on Real Data

In this section, we evaluate the performance of our system using a dataset with real expert predictions over
natural images and several popular and highly accurate deep neural network classifiers. Here, we focus on
systems Cα = Cα,1 that construct Cα(X) using Eq. 3 because, whenever the classifiers are highly accurate,
systems Cα1,α2 with α2 6= 1 do not offer a competitive advantage.

Data description and experimental setup. We experiment with the dataset CIFAR-10H [34], which
contains 10,000 natural images taken from the test set of the standard CIFAR-10 [35]. Each of these images

8



10−3 10−2 10−1 100

α

0.75

0.80

0.85

0.90

0.95

1.00

P[
Ŷ
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Figure 3: Expert’s success probability P[Ŷ = Y ; Cα] and average size of the recommended sets E[|Cα(X)|]
during test for each α ∈ A for three popular deep neural network classifiers on the CIFAR-10H dataset. The
size of the calibration and estimation sets is m = 1,500. Each marker corresponds to a different α value and
the darker points correspond to α̂ for each task.

belongs to one of n = 10 classes and contains approximately 50 expert predictions Ŷ 9. Here, we randomly
split the dataset into three disjoint subsets for calibration, estimation and test, whose sizes we vary across
experiments. In each experiment, we specify the number of samples in the calibration and estimation sets—the
remaining samples are used for testing.

Rather than training a classifier, we use three popular and highly accurate deep neural network classifiers
trained on CIFAR-10, namely ResNet-110 [36], PreResNet-110 [37] and DenseNet [38]. Moreover, we use
the human predictions Ŷ to estimate the confusion matrix C for the expert predictions in the (original)
multiclass classification task [32] and then sample the expert’s prediction Ŷ from the multinomial logit model
defined by Eq. 7 to both estimate the expert’s conditional success probabilities in Eq. 8 in Algorithm 1 and
estimate the expert’s success probability during test.

Results. We start by estimating the success probability P[Ŷ = Y ; Cα̂] during test for an expert using our
system with each of the above mentioned classifiers. Table 2 summarizes the results, where we compare the
success probability achieved by our system and by the corresponding classifier on its own and we report the
expert’s success probability at solving the (original) multiclass task in the caption. We find it very encouraging
that, despite the classifiers are highly accurate, our results suggest that an expert using our system can solve
the prediction task significantly more accurately than the classifiers. More specifically, the relative reduction
in misclassification probability goes from 61.1% (DenseNet) to a striking 73.6% (ResNet-110). Moreover, by
using our system, our results suggest that the (average) expert would reduce their misclassification probability
by ∼70%.

Next, for each choice of classifier, we compare the performance of our system under the near optimal α̂
found by Algorithm 1 and under all other possible α values, including the optimal α∗. Figure 3 summarizes
the results, which suggest that, similarly as in the experiments on synthetic data, the performance of our
system under α̂ and α∗ is very similar. However, since the classifiers are all highly accurate, the average size
of the recommended subsets under α̂ and α∗ is quite close to one even though α̂ is much smaller than in the
experiments in synthetic data.

Finally, we also investigate to what extent the amount of calibration and estimation data m we feed into
Algorithm 1 influences the expert’s success probability P[Ŷ = Y ; Cα̂] under our system. In contrast with the
experiments on synthetic data, we do find that our system needs larger amounts of calibration and estimation

9The dataset CIFAR-10H is among the only publicly available datasets that we found containing multiple expert predictions
per sample, necessary to estimate the confusion matrix C, a relatively large number of samples, and more than two classes. The
dataset is released under Creative Commons BY-NC-SA 4.0 license. However, since our methodology is rather general, our
system may help improving expert predictions in other applications.
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data to realize its full potential. For example, while the relative gain in success probability P[Ŷ = Y ; Cα̂]
with respect to P[Ŷ = Y ; Y] is just 1.51± 0.3% under m = 200, it raises to 2.99± 0.15% under m = 1,500.
However, this is not surprising since the classifiers are very accurate and thus the optimal α∗ is very small.
Therefore, we need larger calibration sets to have enough granularity to distinguish among small α values.

8 Conclusions

We have initiated the development of automated decision support systems that, by design, do not require
human experts to understand when to trust them to provably improve their performance. In particular, we
have focused on multiclass classification tasks and designed a system that, for each data sample, recommends
a subset of labels to the experts using a classifier. Moreover, we have shown that our system can help experts
make predictions more accurately and is robust to the performance of the classifier it relies on.

Our work opens up many interesting avenues for future work. For example, we have considered a simple
conformal score function from the literature. It would be interesting to develop score functions especially
designed to improve the performance of our system. Moreover, to estimate the expert’s success probability,
we have introduced a simple procedure that builds upon the multinomial logit model (MNL), a classical
model from the discrete choice model literature. However, more research is needed to accurately estimate the
expert’s success probability, e.g., using more sophisticated discrete choice models. In this context, it would
be also interesting to develop systems that perform online estimation of the expert’s conditional success
probability. In addition, it would be important to investigate the ethical impact of our decision support
system, including human trust and bias. In this context, we hypothesize that our system may sometimes
help reduce human bias, e.g., in cases in which the provided sets exclude a label that a human systematically
mistakes as another. However, one can also think of counterexamples where our system may introduce new
sources of bias. Finally, it would be important to deploy and evaluate our system on a real-world application
with human experts.
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A Proof of Proposition 1

Given the estimators µ̂α of P[Ŷ = Y ; Cα], we have that, for each α ∈ A, it holds that∣∣∣µ̂α − P[Ŷ = Y ; Cα]
∣∣∣ ≤ εα,δ/m (11)

with probability at least 1 − δ/m. By applying the union bound, we know that the above events hold
simultaneously for all α ∈ A with probability at least 1− δ. Moreover, by rearranging, the above expression
can be rewritten as

µ̂α − εα,δ/m ≤ P[Ŷ = Y ; Cα] ≤ µ̂α + εα,δ/m. (12)

Let α̂ = argmaxα∈A{(µ̂α − εα,δ/m)}. For α̂, with probability 1− δ, it holds that for all α ∈ A,

P[Ŷ = Y ; Cα̂] ≥ µ̂α̂ − εα̂,δ/m ≥ µ̂α − εα,δ/m = µ̂α − εα,δ/m + 2εα,δ/m − 2εα,δ/m

= µ̂α + εα,δ/m − 2εα,δ/m,

≥ P
[
Ŷ = Y ; Cα

]
− 2εα,δ/m,

where the last inequality follows from Eq. 12.

B Derivation of error expression for Hoeffding’s inequality

From Hoeffding’s inequality we have that:

Theorem 3 Let Z1, ..., Zk be i.i.d., with Zi ∈ [a, b], i = 1, ..., k, a < b and µ̂ be the empirical estimate

µ̂ =
∑k
i=1 Zi
k of E[Z] = E[Zi]. Then:

P [µ̂− E[Z] ≥ ε] ≤ exp

(
− 2kε2

(b− a)2

)
(13)

and

P [µ̂− E[Z] ≤ −ε] ≤ exp

(
− 2kε2

(b− a)2

)
(14)

hold for all ε ≥ 0.

In our case we have k = m, Zi = P
[
Ŷ = Yi | Cα(Xi), Yi

]
∈ (0, 1). Hence, for the empirical estimate µ̂ = µ̂α

of P[Ŷ = Y ; Cα] and its error ε = εα,δ:

P
[
µ̂α − P[Ŷ = Y ; Cα] ≥ εα,δ

]
≤ exp

(
−

2mε2α,δ
(1− 0)2

)
(15)

and

P
[
µ̂α − P[Ŷ = Y ; Cα] ≤ −εα,δ

]
≤ exp

(
−

2mε2α,δ
(1− 0)2

)
(16)

hold. Further, if we set

δ = exp
(
−2mε2α,δ

)
, (17)
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then

1− P
[
µ̂α − P[Ŷ = Y ; Cα] ≤ εα,δ

]
≤ δ ⇒ P

[
µ̂α − P[Ŷ = Y ; Cα] ≤ εα,δ

]
≥ 1− δ (18)

and

1− P
[
µ̂α − P[Ŷ = Y ; Cα] ≥ −εα,δ

]
≤ δ ⇒ P

[
µ̂α − P[Ŷ = Y ; Cα] ≥ −εα,δ

]
≥ 1− δ (19)

hold for any εα,δ ≥ 0. As follows, based on Eq. 17:

δ = exp
(
−2mε2α,δ

)
⇒ log

1

δ
= 2mε2α,δ ⇒ ε2α,δ =

log 1
δ

2m
⇒ εα,δ =

√
log 1

δ

2m
.

C Proof of Theorem 2

Let Cα1 , Cα2 be two set-valued predictors constructed with standard conformal prediction with coverage 1−α1

and 1− α2 respectively. Note that they depend on the calibration data Dcal and thus are random variables.
Based on Theorem 1, it holds that:

1− α1 ≤ P[Y ∈ Cα1
(X)] ≤ 1− α1 +

1

m+ 1
(20)

and

1− α2 ≤ P[Y ∈ Cα2
(X)] ≤ 1− α2 +

1

m+ 1
, (21)

where the randomness is in the calibration data Dcal and the new sample they help predict.

Since α1 < α2, we have that q̂α2
= d(m+1)(1−α2)e

m < d(m+1)(1−α1)e
m = q̂α1

. We know that Cα2
(X) = {y :

s(X, y) < q̂α2
} and Cα1

(X) = {y : s(X, y) < q̂α1
}. So for any x, it holds that Cα2

(x) ⊆ Cα1
(x). By the

definition of Cα1,α2(X) in Eq. 10, we have that:

Cα1,α2
(X) = {y : q̂α2

< s(X, y) ≤ q̂α1
} = Cα1

(X) \ Cα2
(X),

and therefore
P[Y ∈ Cα1,α2

(X)] = P[Y ∈ Cα1
(X)]− P[Y ∈ Cα2

(X)]. (22)

Combining the upper-bound in Eq. 20 and the lower-bound in Eq. 21, we have10

P[Y ∈ Cα1
(X)]− P[Y ∈ Cα2

(X)] ≤ α2 − α1 +
1

m+ 1
. (23)

Similarly, combining the lower-bound in Eq. 20 and the upper-bound in Eq. 21, we have

α2 − α1 −
1

m+ 1
≤ P[Y ∈ Cα1

(X)]− P[Y ∈ Cα2
(X)]. (24)

From Eqs. 22, 23 and 24, we have that:

α2 − α1 −
1

m+ 1
≤ P[Y ∈ Cα1,α2

(X)] ≤ α2 − α1 +
1

m+ 1
.

10We use the equality in Eq.22 instead of applying a union bound to derive the results in Eq. 23 and Eq. 24 when combining
the bounds.
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D Implementation Details

To implement our algorithms and run all the experiments on synthetic and real data, we used PyTorch 1.8.1,
NumPy 1.20.1 and Scikit-learn 1.0.2 on Python 3.7.3. For reproducibility, we use a fixed random seed in all
random procedures. Moreover, we set δ = 0.1 everywhere.

Synthetic prediction tasks. We create 4× 3 = 12 different prediction tasks, where we vary the number of
labels n ∈ {10, 50, 100} and the level of difficulty of the task. More specifically, for each value of n, we create
four different tasks of increasing difficulty where the success probability of the logistic regression classifier is
P[Y ′ = Y ] = 0.9, 0.7, 0.5 and 0.3, respectively.

To create each task, we use the function make classification of the Scikit-learn library. This function
allows the creation of data for synthetic prediction tasks with very particular user-defined characteristics,
through the generation of clusters of normally distributed points on the vertices of a multidimensional
hypercube. The number of the dimensions of the hypercube indicates the number of informative features of
each sample, which in our case we set at 15 for all prediction tasks. Linear combinations of points, i.e., the
informative features, are used to create redundant features, the number of which we set at 5. The difficulty
of the prediction task is controlled through the size of the hypercube, with a multiplicative factor, namely
clas sep, which we tuned accordingly for each value n so that the success probability of the logistic regression
classifier above spans a wide range of values across tasks. All the selected values of this parameter can be
found in the configuration file config.py in the code. Finally, we set the proportion of the samples assigned
to each label, i.e., the function parameter weights, using a Dirichlet distribution of order n with parameters
α1 = ... = αn = 1.
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E Additional Experiments on Synthetic Data

To complement the results in Table 1 in the main paper, we experiment with additional prediction tasks with
different number of labels n and amount of calibration and estimation data m. For each value of n and m,
we estimate the average success probability P[Ŷ = Y ; Cα̂1,α̂2

] during test for four different experts using our

system, each with a different success probability P[Ŷ = Y ; Y], on four prediction tasks where the classifier
achieves a different success probability P[Y ′ = Y ]. Figure 4 summarizes the results.

P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.56 0.72 0.85 0.94
0.5 0.67 0.80 0.89 0.96
0.7 0.79 0.87 0.93 0.98
0.9 0.92 0.95 0.97 0.99

(a) n = 50, m = 1,200

P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.63 0.76 0.87 0.95
0.5 0.73 0.83 0.91 0.96
0.7 0.82 0.90 0.95 0.98
0.9 0.93 0.95 0.98 0.99

(b) n = 100, m = 1,200

P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.40 0.57 0.74 0.91
0.5 0.55 0.67 0.80 0.93
0.7 0.72 0.79 0.88 0.96
0.9 0.91 0.92 0.94 0.98

(c) n = 10, m = 400

P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.56 0.71 0.84 0.94
0.5 0.67 0.80 0.89 0.96
0.7 0.80 0.88 0.94 0.98
0.9 0.91 0.94 0.97 0.99

(d) n = 50, m = 400

P[Ŷ = Y ; Y]
P[Y ′ = Y ]

0.3 0.5 0.7 0.9

0.3 0.63 0.76 0.88 0.95
0.5 0.73 0.84 0.92 0.96
0.7 0.83 0.89 0.95 0.98
0.9 0.92 0.96 0.98 0.99

(e) n = 100, m = 400

Figure 4: Average success probability P[Ŷ = Y ; Cα̂1,α̂2 ] during test for four different experts using our system,

each with a different success probability P[Ŷ = Y ; Y ], on four prediction tasks where the classifier achieves a
different success probability P[Y ′ = Y ]. Each table corresponds to a different number of label values n and
calibration and estimation set size m. For readability, each cell shows only the average since the standard
errors are all below 10−2.
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