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Abstract

We put forward a definition for spectral triples and algebraic backgrounds based on Jordan

coordinate algebras. We also propose natural and gauge-invariant bosonic configuration spaces of

fluctuated Dirac operators and compute them for general, almost-associative, Jordan, coordinate

algebras. We emphasize that the theory so obtained is not equivalent with usual associative

noncommutative geometry, even when the coordinate algebra is the self-adjoint part of a C∗-

algebra. In particular, in the Jordan case, the gauge fields are always unimodular, thus curing

a long-standing problem in noncommutative geometry.

1 Introduction

One of the major achievements of 20th century fundamental physics was the discovery that elemen-
tary particles are subject to internal symmetries, i.e. symmetries which are not associated with the
four dimensions of spacetime. These symmetries are described by gauge theory, which successfully
incorporates the non-gravitational fundamental forces among the elementary particles, with mass
generation accounted for by the presence of scalar fields (also known as Higgs fields). While this
description is highly successful from a phenomenological perspective, the situation remains some-
what unsatisfactory, as already at the classical level gravitational and non-gravitational forces are
described by different kinds of theories. A common theme has been the development of a quan-
tum theory that unifies gravity with the other fundamental forces associated with internal gauge
symmetries.

In the 1990’s noncommutative geometry (NCG) emerged as an intriguing unifying framework1.
NCG provides an approach very similar to Kaluza-Klein theory, but in which the extra-dimensions
are noncommutative, which means they are described by a (finite-dimensional) noncommutative C∗-
algebra. In short, noncommutative geometry allows one to replace the usual internal Riemannian
space of a Kaluza-Klein theory with a more general kind of geometry that avoids all of the stability

∗fabien.besnard@epf.fr
†shane.farnsworth@aei.mpg.de
1See [20] for a historical survey.
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issues that would otherwise arise through compactification. Within the NCG framework all of the
fundamental forces are unified, with the internal forces corresponding to ‘gravity’ in the internal
geometry, with the Dirac operator taken to be the dynamical variable. Moreover, Higgs fields do
not have to be put in by hand, and have a natural interpretation as the finite components of the
Dirac operator. It must be added that NCG is not only a reformulation, but is more restrictive
than gauge theory and is predictive [9, 18, 29].

Despite the many successful features of the NCG approach to unification, it has suffered from
some technical problems (see the introduction of [5] for a list). By now most of these problems have
admitted at least partial solutions. For instance, only a Euclidean version of NCG was available
at first, but some aspects have now been extended to general signature. However, the only action
principle which is known to work for those extensions does not include gravity2. Hence the signature

problem may be said to be partially resolved. On the other hand, the so called unimodularity problem

remains a puzzle within the NCG framework. In brief, this problem is that one has to remove a U(1)-
factor by hand through a ad hoc ‘unimodularity condition’ in order to recover the correct gauge
group for the Standard Model in NCG [17]. As was argued in [35], the unimodularity problem
is automatically resolved by replacing associative noncommutative coordinate algebras by Jordan
algebras, hence moving from noncommutative to nonassociative geometry of Jordan type3. One of
the key motivations for the present work is to back this claim with a more formal proof.

This paper focuses on the description of gauge theories as nonassociative geometries of Jordan
type. Several works have already been devoted to non-associative geometry and in particular Jordan
geometry ( [34], [13], [12]), with one of the original motivations being a resolution to the so called
‘fermion doubling’ problem, that arises in the associative NCG construction of the standard model
of particle physics [44], but which is neatly circumvented in the Jordan setting [13] (see also Barrett’s
related solution [2], and that proposed by Connes [23]). Further motivation arises from the geometric
construction of E6 grand unified theories, where a related approach based on the exceptional Jordan
algebra has emerged ( [30], [31], see also [14,42]) and drawn legitimate attention 4. However, despite
this attention, the detailed framework of NCG, including the axioms of spectral triples, the definition
of the fields, and so on, have not yet been completely formalized in the Jordan setting. The main
goal of this paper is to propose a complete translation from the NCG framework. In doing so, we
will observe that the Jordan formalism admits a more natural representation of the symmetries of
the algebra inside the triple. Moreover, we will show in more explicit detail that the unimodularity
problem disappears. Our primary focus will be on special Jordan coordinate algebras, although we
will also briefly discuss the more general case at the end of the paper. It is important to observe
that Jordan geometry is not equivalent to associative NCG even in the special (i.e. non-exceptional)
case, as the resolution of the unimodularity and fermion doubling problems show.

Let us summarize more precisely the content of this paper. In section 2 we briefly recall the
axioms of (associative) spectral triples, and how particle models such as the Standard Model can
be defined using them. In particular we recall that unitary elements of the algebra give rise to
symmetries of the model thanks to a map Υ. Hence a factor M3(C) in the algebra generates a
U(3) group of symmetries while we would need a SU(3) for the Standard Model, thus creating the

2Some progress on this front may be close, see [27].
3This fact was first noted, although not published, by Latham Boyle.
4See also [38] for an unrelated but interesting approach to finding standard model representation spaces using

nonassociative algebras.
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unimodularity problem. In section 3 we recall the notion of algebraic background, which one of the
authors has proposed as an analogue of the background manifold for a noncommutative Kaluza-
Klein theory. Algebraic backgrounds permit one to define a configuration space in which the Dirac
operator (i.e. the dynamic variable capturing all Bosonic degrees of freedom), lives. In section 4 we
recall the definition of this space and explain how fluctuated Dirac operators form a subspace which
is invariant under non-gravitational symmetries. Hence, the space of fluctuated Dirac operators can
be used as the bosonic configuration space for a particle model in which gravity is ignored. This
will end the reminders about associative noncommutative geometry.

In order to deal with Jordan geometry, we first recall a few facts on Jordan algebras, Jordan-
Banach algebras and their derivations in section 5. In particular we recall the notions of associative
and multiplicative representations. The first kind of representation only exists for special algebras,
while the latter is a generalization which is available for all Jordan algebras. In section 6, we propose
a definition of Jordan spectral triples and Jordan algebraic backgrounds in the non-exceptional case.
In particular we observe that a real special Jordan triple or background is always equipped not
only with an associative representation π and an opposite action πo (i.e. a bi-representation), but,
thanks to the order 0 condition, also with a multiplicative representation S = 1

2(π+πo), which turns
out to play a key role. It should also to be noted that the module of Jordan 1-forms (replacing
noncommutative 1-forms), is both a Lie module and a Jordan module.

Section 7 is devoted to fluctuations and symmetries, a key part of the present paper. In particular
we show that, at least for almost-associative algebras, i.e. algebras A = C(M,AF ) of continuous
functions with values in a finite-dimensional Jordan algebra AF

5, the Lie algebra of inner derivations
is isomorphic through the derivative of Υ to [S(A), S(A)]. This means that inner derivations, and
by exponentiation inner automorphisms, are directly represented on the Hilbert space of the Jordan
triple, while in the associative case one had to use unitary elements. This is the reason why Jordan
triples naturally implement unimodularity: the elements of [S(A), S(A)] are traceless. In section
8 we give an interpretation of the order 1 condition which is peculiar to the Jordan setting and
allows us to define a generalized form of fluctuations. Section 9 is a specialization to the case of
‘almost-associative’ Jordan algebras. We give a motivated definition for the module of Jordan 1-
forms in this case, and most importantly we compute the space of fluctuated Dirac operators of
an almost-associative triple and put forward a condition (weaker that the order 1 condition) under
which it is automorphism invariant. Sections 10 and 11 are applications to the B-L extension of the
standard model studied in [13] and the Pati-Salam model respectively. In section 12 we discuss
the extension of the results of this paper to the general setting (i.e. including exceptional Jordan
coordinate algebras) by directly using a multiplicative representation ρ, without assuming that it
has the form S = 1

2π, where π is an associative representation. This generalization applies in
particular to the exceptional case where no associative representation exists. We show that inner
derivations are still directly implemented on the Hilbert space, and we discuss the representation of
1-forms and the fluctuation of Dirac operators in this more general setting.

In the whole paper, the “Standard Model” we discuss includes 3 generations of right-handed
neutrinos and the see-saw mechanism. We will use the symbol † to denote the involution in a
∗-algebra. In particular, if T is an operator we will write T † for its adjoint. The symbol ∗ will be
used for complex conjugates. We will generally use the symbol A for a Jordan algebra and A for

5Defined in analogy with ‘almost-commutative’ coordinate algebras of noncommutative geometry.
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an associative one.

2 Associative spectral triples and the Standard Model

In this section we recall some basics on spectral triples in the usual setting involving C∗-algebras,
as well as the less familiar notion of algebraic backgrounds and what they are good for. We will talk
about associative spectral triples in order to distinguish them from the Jordan spectral triples to
be defined below. A real, even, associative, spectral triple6 is a multiplet T = (A,H, π,D, χ, J),
where A is a unital ∗-algebra, H is a Hilbert space, π a ∗-representation of A on H which we
suppose to be faithful, D a formally selfadjoint operator on H, χ a bounded selfadjoint operator,
and J an anti-unitary operator such that:

• the norm closure of π(A) is a C∗-algebra,

• for each a ∈ A, π(a) is in the domain of the derivation [D, .],

• χ commutes with π(A) and anticommutes with D, while J commutes with D,

• χ2 = 1,

• for each a, b ∈ A, [π(a), π(b)o] = 0 (C0),

• ∀a, b ∈ A, [π(a)o, [D,π(b)]] = 0, (C1),

• Jχ = ǫ′′χJ , J2 = ǫ, where ǫ, ǫ′′ = ±1,

where we have used the very handy notation T o := JT †J−1. Note, that since we are dealing with
the even case we can, without loss of generality, choose the real structure such that JD = DJ [37].

The idea behind these axioms is that the elements of A represent virtual differentiable functions
on a noncommutative manifold. We will often refer to the “manifold case”, which is the paradigmatic
example where A is really the algebra of differentiable functions and D the canonical Dirac operator
on a spin manifold7. In order to state a reconstruction theorem [24], additional conditions having
to do with the topology of the manifold under consideration would be required, but we will not
need them in this paper. Note that the order 1 condition (C1), plays an essential role in the
manifold case since it ensures that D is a first-order differential operator. One gains access to
more general geometries, however, by dropping C1. As many of these more general geometries are
physically interesting, including the B-L extension given in [8]8 or the Pati-Salam model [19], our
discussion will focus primarily on the more general setting. We also need to recall the definition
of noncommutative 1-forms, since they will soon turn out to play a key role. A noncommutative
1-form ω is a finite sum

ω =
∑

i

π(ai)[D,π(bi)] (1)

6We give the definition of a real and even spectral triple. This is the only case we consider in this paper.
7For the precise role of each object, consult [39] or [46].
8See also the B-L extension given in [13], which maintains C1 but relies on outer automorphisms to obtain an

extended standard model gauge group.
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with ai, bi ∈ A. The space of all such 1-forms is an associative A-bimodule denoted Ω1
DA. In

the manifold case a noncommutive 1-form is a field with values in the space generated by gamma-
matrices. It can be understood as a vector field seen as an operator on spinors.

Let us now briefly explain how particle models are defined using spectral triples. There are three
fundamental insights :

a. The Dirac operator is a replacement for the manifold metric.

b. The symmetry group of a gauge theory coupled to gravity, which is the semi-direct product of
the diffeomorphism group with the gauge symmetry group, can be interpreted (roughly) as
the automorphism group of the ∗-algebra A = C∞(M)⊗AF , where AF is a finite-dimensional
algebra.

c. The bosonic part of the Standard Model coupled to gravity can thus be rewritten as a unified
theory with the Dirac operator as the variable, defined on an almost-commutative manifold,
i.e. the tensor product of the canonical triple over a manifold with a finite-dimensional non-
commutative triple. As a bonus, we shall recover the Higgs fields as the finite component of
the Dirac operator.

Let us now look at the technical implementation of these beautiful ideas. A first difficulty arises
with the second one. The gauge group of the Standard Model is U(1)× SU(2)× SU(3)/(Z2 ×Z3).
Now SU(2)× SU(3)/(Z2 × Z3) is the automorphism group of the algebra M2(C)⊕M3(C), but we
cannot make U(1) appear in this way. This problem can be solved by considering unitary elements
of the algebra instead of automorphisms (this will be justified below). Then we can consider the
algebra ASM = C⊕H⊕M3(C) which has unitary group U(1)×SU(2)×U(3). We see that we still
need to reduce U(3) to SU(3), which is dealt with by the unimodularity condition to be explained
below.

Remark Let us observe that the algebra ASM deviates a little bit from the C∗-paradigm since it is not

a complex but a real algebra. There is a theory of real C∗-algebras [43], but it has some subtleties, in

particular concerning the Gelfand-Naimark duality which is at the root of the noncommutative geometry

program. This difficulty, which is seldom emphasized, might be an additional clue hinting towards Jordan

algebras, which are better behaved than real C∗-algebras in many respects.

Let us now turn to the gauge fields. Gauge fields appear when we “fluctuate” the manifold Dirac
operator DM with an inner automorphism u of the algebra, i.e. we replace DM with π(u)DMπ(u)−1

where

u : x 7→ u(x) (2)

is a smooth map from M to the unitary group of the finite algebra. Rewriting π(u)DMπ(u)−1 as
DM+π(u)[DM , π(u)−1], we see the term π(u)[DM , π(u)−1] appear, which is a ‘pure gauge’ field with
values in the Lie algebra of the gauge group. The idea with the replacement DM 7→ π(u)DMπ(u)−1

is that π(u) acts as an automorphism of the spectral triple, and that π(u)DMπ(u)−1 is just as good
a Dirac operator as DM is. The problem is that we haven’t yet specified what a spectral triple
automorphism is exactly and what a Dirac operator is, as opposed to the Dirac operator we start
with. Clearly, we need a structure in which the Dirac operator is allowed to vary, which is not the
case with a spectral triple. Let us use the following definitions.
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Definition 1. A pre-spectral triple B = (A,H, π, χ, J) is the same thing as a spectral triple with

the Dirac operator removed. A pre-spectral triple automorphism is a unitary operator U such that:

1. Uπ(A)U−1 = π(A),

2. U commutes with J and χ.

A spectral triple automorphism is a pre-spectral triple automorphism which also commutes with the

Dirac operator.

Note that pre-spectral triple are called fermion spaces in [3].
Let Aut(A) be the group of ∗-automorphisms of A and Aut(B) the group of pre-spectral triple

automorphisms of B. There is a natural homomorphism Aut(B) → Aut(A) which sends U to the
restriction of AdU on π(A), and thus defines an automorphism of A since π is faithful. What we
would need in order to fully implement insight b above is a section of this homomorphism. This does
not exist in general, however we can always lift the unitary elements of A thanks to the following
map: for any a ∈ A define

Υ(a) = π(a)Jπ(a)J−1 (3)

Thanks to C0, the map Υ satisfies for all a, b ∈ A

1. [J,Υ(a)] = 0,

2. Υ(ab) = Υ(a)Υ(b),

3. Υ(a†) = Υ(a)†.

In particular Υ defines a group homomorphism from U(A), the unitary group of A, to U(H),
the group of unitary operators on H. Moreover, we immediately see using C0 that for u ∈ U(A),
Υ(u) is a pre-spectral triple automorphism such that AdΥ(u) = Adu. We thus have the following
commutative diagram:

U(A)
Υ //

Id
��

Aut(B)

Ad
��

U(A)
Ad

// AutInn(A)

(4)

where AutInn(A) is the group of inner ∗-automorphisms of A.

Remark As explained by one of the authors in [12], a beautiful and compact way of understanding pre-

spectral triples and their automorphisms is in terms of ‘Eilenberg’ algebras. That is, a pre-spectral triple

can be thought of as a graded, involutive algebra B9 with vector space A⊕H . The algebra product between

elements in A is provided by the usual product on A, while the product between elements in A and H is

provided by the representation of A on H , and the product between elements in H is always equal to zero.

The involution on elements in A is simply inherited from A itself, while the involution on elements in H is

provided by J . The operator χ provides a grading on H . As indicated in the above diagram, the unitary

9We will use the same notation ‘B’ when describing a pre-spectral triple as an Eilenberg algebra, as the two
descriptions are equivalent.
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elements Υ(u) for u ∈ A, then satisfy the defining properties of automorphisms on the ‘Eilenberg’ algebra

B, and in particular:

Υ(u)(π(a)h) = π(Adua)Υ(u)(h) (5)

for all a ∈ A and h ∈ H . The observation that Upsilon should be viewed as an automorphism on B is key to

generalizing to the non-special Jordan setting, as well as to the non-associative setting more generally [34].

Let us see how Υ works in the example of the Standard Model. Since a unitary element of
C(M,ASM) is a function with values in U(ASM), we only need to examine the finite part of the
model. The finite Hilbert space is then

HF = C
2
weak ⊗ C

4
colour ⊗ C

4
χ ⊗ C

N (6)

where C
2
weak is the weak isospin space, the colour space C

4
color is C

4 = Cℓ ⊕ C
3
rgb, where “lep-

tonicity” is seen as a fourth colour, and the chirality space Cχ is generated by the letters R,L, R̄, L̄.
The last factor CN is the generation space, where N is usually equals to 3. The finite representation
πF : ASM → End(HF ) is

πF (λ, q,m) = [

(

λ 0

0 λ∗

)

⊗ 14, q ⊗ 14, λ12 ⊕ 12 ⊗m,λ12 ⊕ 12 ⊗m]⊗ 1N (7)

where [A,B,C,D] denotes a matrix which is block-diagonal with respect to the chirality space.
The real structure JF acts trivially on C

2
weak and C

4
colour, and it acts as (R,L, R̄, L̄) 7→ (R̄, L̄, R, L)

on the basis of C4
χ. Hence JF [A,B,C,D]J−1

F = [C∗,D∗, A∗, B∗]. Now if u = (eiθ, q,m) is a unitary
element of ASM, with q ∈ SU(2) and m ∈ U(3), we have

Υ(u) = [

(

1 0

0 e−2iθ

)

⊕

(

eiθ 0

0 e−iθ

)

⊗m∗, qe−iθ ⊕ q ⊗m∗, c.c., c.c.] ⊗ 1N (8)

where c.c. means that the last two blocks are the complex conjugate of the first two. To get
rid of the extra U(1) we impose the unimodularity condition det(πF (u)) = 1. This is equivalent
(up to a finite abelian group, which we neglect here) to ask m to be of the form m = e−iθ/3g, with
g ∈ SU(3), and (8) becomes

Υ(u) = [

(

1 0

0 e−2iθ

)

⊕

(

e4iθ/3 0

0 e−2iθ/3

)

⊗ g∗, qe−iθ ⊕ qeiθ/3 ⊗ g∗, c.c., c.c.] ⊗ 1N (9)

where g∗ is a generic element of SU(3). We see that this yields the correct representation of
the gauge group, which is remarkable. Nonetheless, we would prefer to obtain the unimodularity
condition in a natural way rather than by simply imposing it by hand. This would be possible
if the finite algebra AF was complex and πF a complex representation. Indeed, we would have
Υ(eiθu) = eiθπ(u)Jeiθπ(u)J−1 = Υ(u), so that Υ would yield a representation of U(AF )/U(1),
which can be identified up to a finite center with SU(AF ). However, even ignoring the problem of
the algebra H, we could not have C act differently on up and down right-handed leptons in (7), and
thus we would not end up with the correct hypercharges. It thus seem that, as far as this problem
is concerned, we have come to a dead end10.

10In the case of the Standard Model, the unimodularity condition is equivalent to the cancellation of quantum
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3 Algebraic backgrounds

Pre-spectral triples have been in use implicitly in noncommutative geometry since the first particle
models were defined, but have been investigated explicitly only recently [5]. A number of problems
have been found. To understand them, let us consider the case of pure gravity on a manifold. Since
we have a Hilbert space of spinors, we will consider tetradic gravity on a spin manifold. Pre-spectral
triple automorphisms should correspond to the symmetries of this theory, i.e. to diffeomorphisms
coupled with lifts of the spin group (sometimes called local Lorentz transformations in physics).
However, they do not: as soon as dim(M) ≥ 6 there are extra local automorphisms [5]. It means
that we are missing a background structure, left invariant by the true automorphisms. We can
understand what it is by considering the algebraic definition of the spin group. Let g be a metric (of
possibly indefinite signature) on R

n, with n even. Let us embed R
n in the complex Clifford algebra

Cl(Rn, g). The latter is equipped with a natural bilinear form g̃ extending g, a real structure J and
a chirality χ (see [4] for details). Moreover the spin group Spin(g) precisely contains the elements
u of Cl(Rn, g) such that :

1. u is unitary,

2. u commutes with J and χ,

3. Adu leaves R
n invariant.

If we translate these conditions in the case of the canonical spectral triple over a spin manifold,
we obtain a pre-spectral triple automorphism with an additional property: it leaves the bimodule
of 1-forms Ω1

DA invariant. Despite the notation and equation (1), the latter does not really depend
on D, but rather on the differential and spin structures11. This motivates us to define a new
structure, falling in between a pre-spectral triple and a spectral triple, and which we call an algebraic

background.

Definition 2. An algebraic background (or background for short) is a pre-spectral triple equipped

with an A-bimodule Ω1 which is odd12 ( i.e. it anticommutes with χ). A background automorphism
is a pre-spectral triple automorphism U such that UΩ1U−1 = Ω1.

With this definition, automorphisms of the canonical background over a manifold bijectively cor-
respond to products of diffeomorphisms with local Lorentz transformations, as expected. Moreover,
in the case of the Standard Model background, we find in addition to the latter the gauge transfor-
mations as well as gauged B-L symmetries [6] [36, §4.2]. There are many more pre-spectral triple
automorphisms in this case, notably flavour changing symmetries. Note that Υ(u) is a background
automorphism provided

π(u)oΩ1π(u−1)o = Ω1 (10)

anomalies. We could thus argue that the extra U(1) is an artefact of the classical theory. Unfortunately this
equivalence does not hold for all particle models.

11On a Riemannian manifold it is possible to define spin structures independently of the metric [26]. An even more
straightforward solution is available (in any signature) if the manifold is parallelizable [5].

12It must also have a non-trivial configuration space, see definition 3 below.
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which is a weaker condition than C1, so we call it weak C1. An example of a model in which
C1 fails while weak C1 continues to hold can be found in [10], in which a B − L extension of the
standard model was obtained by enlarging the standard model coordinate algebra. We will discuss
the relationship between C1 and symmetries in more detail in section 7.

Let us summarize this section so far with the following analogy: just as GR is not defined on a
Riemannian manifold, but on the configuration space of all metrics compatible with the differential
structure of the background manifold, a generalized gravity model in NCG cannot be defined on
a spectral triple, but instead on the configuration space of all Dirac operators compatible with a
more primitive structure not including the Dirac operator. There are two options (as of yet): pre-
spectral triples and algebraic backgrounds. We prefer the latter since it gives better results as far as
automorphisms are concerned. Hence we will view algebraic backgrounds as the noncommutative
equivalent of the background manifold with its differential (and spin) structure. It should be noted
that no reconstruction theorem in the spirit of [24] has been proven to date for this structure13.

4 Configuration space and fluctuations

Algebraic backgrounds, or, for that matter, pre-spectral triples, permit one to define a configuration
space for a generalized gravity theory in a natural way.

Definition 3. The configuration space of an algebraic background is the space of all operators D

satisfying the conditions in the definition of a spectral triple and such that Ω1
DA ⊂ Ω1. If D is such

that Ω1
DA = Ω1, we say that D is regular. If there exists a regular D on a background, we say that

the background is regular.

The configuration space of a pre-spectral triple can be similarly defined, except that the condition
Ω1
DA ⊂ Ω1 is replaced with C1. It is worthy of note that the two definitions give the same result in

the case of a manifold (compare [39], chapter 11 and [5]).
The configuration space of a background or pre-sprectral triple is immediately checked to be

invariant under the relevant automorphisms. In particular, if D is a Dirac operator and u is a
unitary element of the algebra, then Υ(u)DΥ(u)−1 is a Dirac operator. Let us write it in the form
D + Fu where

Fu := Υ(u)DΥ(u)−1 −D (11)

is called an inner fluctuation of D, since it is associated to an inner automorphism of the algebra,
while a Dirac operator like D + Fu is called a fluctuated Dirac. It is from such fluctuations that
non-gravitational bosonic fields arise in noncommutative geometry. Physically, fluctuations like (11)
only yield pure gauge fields, so we need a larger space. The standard choice is D + FD, where

FD = {ω + ωo|ω ∈ Ω1, ω† = ω}. (12)

An element of FD is a called a (general) fluctuation. If we neglect gravity, it is enough to define the
physical theory on a subspace of the configuration space containing all fluctuated Dirac operators

13However, in the commutative and finite case, an algebraic background encodes a finite graph [7] while a pre-
spectral triple only encodes a set of points, and it is known that giving a differential structure to a finite set is
equivalent to turning it into a graph [28].
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D + F , where F ∈ FD, and with a fixed D (corresponding for instance to the Minkowski metric).
We can justify the choice given in Eq. (12), by observing that fluctuations given in (11) are indeed
of the form ω + ωo, with ω = π(u)[D,π(u)−1], and that D + FD is an affine space invariant under
the relevant symmetries, namely the background automorphisms fixing D. Also observe that if
u = exp(a), with a† = −a, then FD contains [D,π(a)]+ [D,π(a)]o which is the infinitesimal version
of (11). Note that ada is an inner derivation of A which commutes with the ∗-operation, and
that such derivations exponentiate to ∗-automorphisms. There is thus the following commutative
diagram:

AutInn(A) U(A)
Adoo Υ // U(A)

DerInn(A)

exp

OO

Skew(A)
adoo

exp

OO

deΥ // G(A)

exp

OO
(13)

where have used the following notations: Skew(A) is the space of anti-selfadjoint elements
of A, U(A) is Υ(U(A)) (and is a subgroup of Aut(S) which we can call the subgroup of gauge
transformations), deΥ(a) = a−ao is the differential of Υ at the identity, and G(A) := deΥ(Skew(A))

is the space of infinitesimal gauge transformations. Note that both U(A) and G(A) act on FD thanks
to the bimodule structure of Ω1

D. However, since the arrows on the left cannot be inversed (because
of central elements), we cannot make the AutInn(A) or DerInn(A) directly act on fluctuations.

5 Preliminaries on Jordan algebras

5.1 Generalities

A (real) Jordan algebra14 is a real vector space A equipped with a bilinear, commutative product ◦

satisfying the Jordan identity [1]:

∀a, b ∈ A, (a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) (14)

Note that while Jordan algebras are in general not associative, every Jordan algebra is power
associative, i.e. an has an unambiguous meaning for all n ∈ N. All the Jordan algebras considered
in this paper will be unital.

Let A be an associative algebra equipped with the product

a ◦ b =
1

2
(ab+ ba) (15)

and let A be a real subspace of A stable under ◦ (an important example is when A is a ∗-algebra and
A is the space of selfadjoint elements). Then (A, ◦) is a Jordan algebra. A Jordan algebra isomorphic
to one of this kind is called special, otherwise it is called exceptional. We will be primarily interested
in the special case in this paper.

Let us now introduce some notations and examples. For K = R,C,H and n ∈ N
∗, we denote by

Hn(K) the Jordan algebra of selfadjoint elements of Mn(K). We similarly define H3(O) where O is
the non-associative algebra of octonions. It turns out that H3(O) is a Jordan algebra (called the

14In this paper we will only consider real Jordan algebras.
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Albert algebra), which is exceptional. Let us also introduce the spin factor JSpin(n), which is the
sub-Jordan algebra generated by R

n in the Clifford algebra Cl(Rn, g), where g is the canonical scalar
product, equipped with (15). It is thus generated by vectors of Rn with the product u ◦ v = g(u, v).

Let us now introduce Jordan-Banach algebras (or JB-algebras).

Definition 4. A JB algebra is a normed Jordan algebra A which is complete in the norm and

satisfies, for all a, b ∈ A,

1. ‖a ◦ b‖ ≤ ‖a‖‖b‖,

2. ‖a2‖ = ‖a‖2,

3. ‖a2‖ ≤ ‖a2 + b2‖.

The main example of a JB alebra is the selfadjoint part of a C∗-algebra equipped with the
symmetrized product given in Eq. (15). Just as with C∗-algebras, JB algebras admit a continuous
functional calculus. Moreover, just as commutative C∗-algebras correspond to algebras of complex
functions on compact Hausdorff spaces by the Gelfand transform, the same is true of associative
JB algebras. More precisely, a JB algebra is associative iff it is isomorphic to the algebra of real
functions on a compact Hausdorff space (see [35] and references therein for a more in depth discussion
of the relationship between JB algebras and C∗-algebras). Finite-dimensional JB algebras can be
completely classified.

Theorem 1. Every finite-dimensional JB-algebra is a direct sum of ones on this list:

1. Hn(K) for K = R,C or H,

2. JSpin(n),

3. H3(O).

Remark Note that the same theorem holds for finite-dimensional formally real Jordan algebra, i.e. Jordan

algebras such that a2
1
+ . . .+ a2

k
= 0 ⇒ a1 = . . . = ak = 0 for a any sum of squares.

The following definitions can be found15 in [41], chap. 2.

Definition 5. Let A be a Jordan algebra and A be an associative algebra. A linear map σ : A → A

is called

1. an associative specialization of A in A if for all a, b ∈ A,

σ(a ◦ b) = σ(a) ◦ σ(b) (16)

2. a multiplicative specialization of A in A if for all a, b ∈ A,

[σ(a), σ(a2)] = 0,

2σ(a)σ(b)σ(a) + σ(a2 ◦ b) = 2σ(a ◦ b)σ(a) + σ(a2)σ(b) (17)
15Except for a reversal in the products due to a different convention for map composition.
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Theorem 2. Let σ1 and σ2 be two associative specializations of A in A such that [σ1(A), σ2(A)] = 0.

Then ρ = 1
2 (σ1 + σ2) is a multiplicative specialization of A in A.

An immediate corollary is that 1
2 times an associative specialization is automatically a multiplica-

tive specialization, so that the latter are more or less a generalization of the former. A specialization
in End(H), will be called a representation. The reason for such a terminology is the relationship
between multiplicative representations and Jordan modules. There is a general theory for modules
over non-associative algebras [32]. In the Jordan case this boils down to the following definition.

Definition 6. Let A be a Jordan algebra, H be a vector space and S : A → End(H) be a linear

map. Let ◦ be the bilinear product on A ⊕H extending ◦ on A and such that a ◦ h = h ◦ a = Sah,

h◦h′ = 0, for all a ∈ A, h, h′ ∈ H. We say that (H,S) is a Jordan module if (A⊕H, ◦) is a Jordan

algebra.

Theorem 3. With the notations of definition 6, (H,S) is a Jordan module iff S is a multiplicative

representation.

An equivalent requirement is [16]:

[Sa, Sb◦c] + [Sc, Sa◦b] + [Sb, Sc◦a] = 0,

SaSbSc + ScSbSa + S(ac)b = SaSbc + SbSac + ScSab, (18)

which is obtained by linearization of (17). Summing all the cyclic permutations of the second
equation in (18) and using Jacobi’s identity also entails

[[Sx, Sy], Sz] = S[y,z,x], (19)

where the associator is defined to be [x, y, z] := (xy)z − x(yz). We will make extensive use of (19)
in what follows. Note also the following natural properties.

Proposition 1. Let A be a Jordan algebra and A′ be a subalgebra. Then A is an A′-module for the

action Lab = a ◦ b.

A Jordan algebra is thus a Jordan module over itself.

Proposition 2. Let A,A′ be Jordan algebras and (H,S) be a A′-module. Let φ : A → A′ be a

homomorphism. Then (H,S ◦ φ) is an A-module.

It follows from this that if σ is an associative representation of A on H, then B(H) is an A-
module for the action SaT = σ(a) ◦ T , with T ∈ B(H). The reason is that (B(H), ◦) is a Jordan
algebra, hence a Jordan module over itself.

Let (H,S) and (H ′, S′) be two modules over A and f : H → H ′ be a linear map. Then f is
defined to be a module homomorphism, or module map, iff f(Sah) = S′

af(h) for all (a, h) ∈ A×H.
This is equivalent to requiring Id⊕ f to be a homomorphism from A⊕H to A⊕H ′ seen as Jordan
algebras. The image and kernel of module maps are submodules, the quotient of a module by
a submodule is a module: all of these results extend without change from the associative to the
Jordan case. However care must be taken with the tensor product in the non-associative setting.
For instance, let M be a vector space. We want to define the free A-module generated by M

12



to be an A-module 〈M〉A with a linear inclusion map ι : M → 〈M〉A satisfying the following
universal property: for all A-modules H and linear maps f : M → H, there exists a module map
f̃ : 〈M〉A → H extending f , i.e. such that the following diagram commutes:

M

ι
��

f

""❊
❊
❊
❊
❊
❊
❊
❊
❊

〈M〉A
f̃ // H

(20)

For an associative algebra A, such an object exists and can be taken to be A ⊗R M , with
inclusion map m 7→ 1 ⊗ m. The extension of f is defined by f̃(a ⊗ m) = af(m). However, when
A is not associative this fails to be a module map. We do not know if there exists an object with
the universal property (20) in all generality in the Jordan category, however we provide below a
solution in the special case, which will be useful in section 6 when defining universal 1-forms. Let
A be special Jordan algebra embedded in an associative algebra A. If there is no natural choice
for A in the context at hand, one can always consider the universal associative enveloppe of A [41].
A special Jordan module for A will be an A-module (H,S) which is also an A-bimodule with
Sah = 1

2(a · h + h · a) for all (a, h) ∈ A × H (see also [41], p 100). Now for any vector space M ,
let 〈M〉A := A⊗Aopp ⊗M , where the superscript opp denotes the opposite algebra. We have the
inclusion map m 7→ 1⊗ 1⊗m, and it is easy to see that 〈M〉A is canonically an A-bimodule with
the following universal property: for any linear map f : M → H, with H an A-bimodule, there
exists a bimodule map f̃ such that

M

ι
��

f

""❊
❊
❊
❊
❊
❊
❊
❊
❊

〈M〉A
f̃ // H

(21)

commute. Being an A-bimodule, 〈M〉A is also an A-module containing M . We define 〈M〉A to be
the sub-A-module of 〈M〉A generated by M . We call it the special free A-module generated by M .
Since f̃ satisfies, for all a ∈ A and m ∈ M :

f̃(Sam) =
1

2
f̃(a ·m+m · a)

=
1

2
(f̃(a)m+mf̃(a))

= Saf̃(m) (22)

it is an A-module map. Hence 〈M〉A satisfies the universal property (20) for all special Jordan
module H and linear map f . Its universal property then makes it unique up to isomorphism, as is
usual.

5.2 Derivations and automorphisms of JB algebras

We start by recalling some facts about order-derivations. The following definition was introduced
in [22] (see also [1]).

Definition 7. A bounded linear operator δ on a JB-algebra A is called an order derivation if for

all t ∈ R, etδ(A+) ⊂ A+, where A+ is the subset of positive elements of A.
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Note that in that case, etδ will be an order automorphism, i.e. a bijective linear map φ such that
φ and φ−1 preserve order. From proposition 1, every Jordan algebra acts as a module over itself.
For every x in a Jordan algebra A, we write Lx for the Jordan multiplication by x, i.e. Lxy = x ◦ y

for x, y ∈ A. In this case, Lx is an order-derivation.

Definition 8. An order-derivation on a unital JB-algebra A is called self-adjoint iff it is of the form

La, for some a ∈ A, and it is called skew, if δ(1) = 0.

Proposition 3. The set Der(A) of order-derivations of a JB-algebra A is norm closed and closed

under the Lie bracket. Moreover, it is the direct sum Der(A)sa ⊕Der(A)skew of the real subpaces of

selfadjoint and skew order-derivations.

Proof. See [1] prop. 1.59 and 1.60.

Using the fact that unital order automorphisms are Jordan automorphisms (see [1], Th. 2.80),
it is possible to give the following characterization of skew derivations:

Proposition 4. Let A be JB-algebra and δ an order derivation on A. The following are equivalent:

1. δ is skew,

2. ∀t ∈ R, etδ is a Jordan automorphism,

3. δ is a Jordan derivation,

where a Jordan automorphism on a Jordan algebra A is an invertible linear map α : A → A, which

respects the product on A:

α(ab) = α(a)α(b), (23)

and a Jordan derivation is a linear map δ : A → A, which satisfies the Leibniz rule:

δ(ab) = δ(a)b+ aδ(b). (24)

Definition 9. An inner derivation of A is a Jordan derivation of the form

δ =
∑

i

[Lai , Lbi ].

The Lie algebra of inner derivation will be denoted by DerInn(A).

The above definition for inner derivations is standard, and generalizes to all Jordan algebras.
Similarly, we have the following definition.

Definition 10. The group AutInn(A) of inner automorphisms of A is by definition the subgroup of

order automorphisms of A generated by exponentionals of inner derivations.

The next definition can be found in [45].

Definition 11. The Lie multiplication algebra M(A) is the sub-Lie algebra of End(A) generated

by the operators La, a ∈ A.
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The Lie multiplication is equal to the direct sum Der(A)sa⊕DerInn(A). If A is finite-dimensional
(or more generally if it is a JBW algebra, see [1] for the definition), then M(A) = Der(A).

We will now apply the previous concepts to the case where A has an associative representation
in a Hilbert space.

Definition 12. Let π : A → B(H) be an associative representation of the Jordan algebra A. Then

we define Lieπ(A) to be the Lie algebra generated by π(A) in B(H).

To prove the next proposition we need to recall that for x, y ∈ π(A),

[Lx, Ly] =
1

4
ad[x,y] (25)

Proposition 5. Lieπ(A) = π(A)⊕[π(A), π(A)]. Moreover [π(A), [π(A), π(A)]] ⊂ π(A) and [π(A), π(A)]

is a Lie subalgebra.

Proof. Let x, y, z, t ∈ π(A). Then [x, [y, z]] = −4[Sy, Sz]x by (25). Hence [x, [y, z]] = −4y ◦ (z ◦x)+

4z◦(y◦x) ∈ π(A) since π(A) is a Jordan algebra. Moreover [[x, y], [z, t]] = [[[x, y], z], t]+[z, [[x, y], t]]

by Jacobi’s identity. Now [[x, y], z] and [[x, y], t] are both in π(A) by the above, hence [[x, y], [z, t]] ∈

[π(A), π(A)]. This proves the result by linearity.

For all a, g, x ∈ B(H) let us define ad∗a(x) and Ad∗g(x) respectively by

ad∗a(x) = ax+ xa†, Ad∗g(x) = gxg† (26)

Note that Ad∗g is the natural action of g on B(H) if elements of B(H) are interpreted as
sesquilinear forms through x 7→ 〈., x.〉, rather than operators on H.

Proposition 6. ad∗a defines a Lie homomorphism from Lieπ(A) onto M(π(A)) ⊂ Der(π(A)).

Proof. Note that if a = a†, ad∗a = 2La and if a = −a†, ad∗a = ada, so that ad∗a is always an order
derivation of π(A). A direct computation shows that ad∗[a,b]x = [a, b]x+ x[a, b]† = [ad∗a, ad

∗
b ]x.

Note that by definition, the image of π(A) is Der(π(A))sa and the image of [π(A), π(A)] is
Derinn(π(A)). In the cases of interest, π will be faithful so that ad∗ can be thought of as a surjective
morphism from Lieπ(A) to M(A), sending an operator on H to an operator on A. In the case that
interests us the most, it is 1-1.

Proposition 7. Let A be finite-dimensional or of the form C(M,AF ) where AF is finite-dimensional

and M is a Hausdorff space. Then ad∗ : Lieπ(A) → M(π(A)) is an isomorphism. In particular,

ad : [π(A), π(A)] → DerInn(π(A)) is an isomorphism, whose inverse will be denoted by a.

Proof. First let us observe than an element z ∈ ker ad∗ is skew, since ad∗z(1) = z+z† = 0. Now if A is
finite-dimensional, and z =

∑

i[xi, yi] ∈ ker(ad), then z will commute with the C∗-algebra generated
by π(A) and hence θ(z) will be a multiple of the identity for every irreducible representation θ of
A. Since Tr(θ(z)) = 0, we have θ(z) = 0 for all θ irreducible, hence z = 0.

In the second case, if g ∈ ker ad∗, then g is skew for the same reason as above. Hence g ∈

C(M, [π(AF ), π(AF )]) such that for every f ∈ A and every x ∈ M , [g(x), f(x)] = 0. In particular if f
is constant, we see that g(x) commutes with π(AF ), so that the above argument yields g(x) = 0.
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Remark In the general infinite-dimensional case we can say the following : if [x, y] ∈ ker ad then [[x, y], x] =

0 which implies that [x, y] is quasi-nilpotent (Kleinecke-Shirokov theorem), hence [x, y] = 0 since i[x, y] is

selfadjoint. We do not know however if this result extends to sums of commutators.

Now let us define the group Lieπ(A), which is generated by exp(Lieπ(A)), and its subgroup
U(A) which is also a subgroup of U(H) and is generated by exp([π(A), π(A)]). Then the following
diagram commutes:

Autorder(π(A)) Lieπ(A)
Ad∗oo

M(π(A))

exp

OO

Lieπ(A)
ad∗

oo

exp

OO
(27)

Over the subalgebra [π(A), π(A)], (27) reduces to:

AutInn(π(A)) U(A)
Adoo

DerInn(π(A))

exp

OO

[π(A), π(A)]
adoo

exp

OO
(28)

When ad is 1− 1, since exp also is near the identity, we can infer that Ad will be invertible near
1. In this case we obtain the following commutative diagram, where the wriggling arrow is defined
near the identity.

AutInn(π(A)) ///o/o/o/o/o U(A)

DerInn(π(A))

exp

OO

a // [π(A), π(A)]

exp

OO
(29)

6 Jordan background and triples

After these preliminaries we come to the main course. We begin in this section with special Jordan
triples, leaving the discussion of the generalization to the exceptional case for section 12.

Definition 13. A (real, even) special Jordan triple is gadget T = (A,H, π,D, χ, J) such that

1. A is a special Jordan algebra,

2. H is a Hilbert space,

3. π is a faithful associative representation of A,

4. π(A) is a JB algebra,

5. D,J and χ are the usual things, with the usual conditions (in particular C0, but not C1 yet),

6. For all a ∈ A, [D,π(a)] is well-defined and bounded.

Remark We need to be careful here as A (whose elements plays the role of differentiable functions) is not

a JB-algebra as in section 5. However, it can readily be checked that the main result of this section, namely

proposition 7, still holds with an algebra of the form C∞(M,AF ), with an unchanged proof.
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We now turn to 1-forms. There is a standard way to construct a graded algebra of differential
forms ΩdA from an algebra A, which continues to make sense in the Jordan setting [16]. In this
paper we will not consider forms of degree higher than one. We obviously have Ω0

dA = A. We want
the space Ω1

dA of one-forms to be generated, as a Jordan A-module, by symbols d[a], a ∈ A, with
relations

d[a ◦ b] = d[a] ◦ b+ a ◦ d[b], ∀a, b ∈ A, (30)

d[αa+ βb] = αd[a] + βd[b], ∀a, b ∈ A, α, β ∈ R, (31)

where the product ‘◦’ is symmetric and satisfies the Jordan identity. That is, we want d : Ω0
dA →

Ω1
dA to be a derivation. A generic element ω ∈ Ω1

dA is a finite sum of the form

ω =
∑

a1 ◦ (a2 ◦ (...(an−1 ◦ d[an]))) (32)

with ai ∈ Ω0
dA. Here is an explicit construction of Ω1

dA. We first consider the vector space dA :=

A/R.1A and call d the quotient map. We now make use of the fact that A is a special Jordan
algebra embedded in End(H) and consider the special free module 〈dA〉A defined in section 5. We
let R be the sub-module of 〈dA〉A generated by d(a ◦ b) − d(a) ◦ b − a ◦ d(b) for all a, b ∈ A, and
finally we set Ω1

dA := 〈dA〉A/R. By construction it is an A-module and d has been extended to a
derivation of A into it. Moreover, it satisfies the following universal property.

Theorem 4. Let M be any special A-module and δ : A → M be a derivation. Then there exists an

A-module map p : Ω1
dA → M such that the following diagram commute:

A

d
��

δ

!!❉
❉
❉
❉
❉
❉
❉
❉
❉

Ω1
dA

p // M

(33)

Proof. For all a ∈ A we set p(da) := δ(a). This is well-defined because d annihilates constants.
Since δ and d are linear, p also is, and we thus have a well-defined linear map p : dA → M. By the
universal property (20) of 〈dA〉A, we obtain a module map which we still call p from 〈dA〉A to M.
Since δ is a derivation, R is in the kernel of p which thus goes to the quotient, ending the proof.

For this reason, elements of Ω1
dA will be called (special) universal 1-forms. Note that a module

of universal forms in the above sense has been constructed in [16] for the Albert algebra (using a
different approach), so that this work is complementary to ours in this respect. Now, we can make
use of the previous theorem to define two natural representations of 1-forms on H. First, we observe
that since π is an associative representation, the map

δ(a) := [D,π(a)] (34)

is a derivation of A into End(H), so that by the universal property of Ω1
dA there exists a well-defined

module map p such that
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p(da) = [D,π(a)], a ∈ A. (35)

We will write π(da) instead of p(da) since no confusion should arise. We let Ω1
DA be the image of

this map π. In other words, Ω1
DA is given by the Jordan A-submodule of End(H) generated by

{[D,π(a)], a ∈ A}. Following the definition of an associative representation given in Eq. (16), a
general element in Ω1

DA is then given by

π(a1 ◦ (a2 ◦ (...(an−1 ◦ d[an])))) =
∑

π(a1) ◦ (π(a2) ◦ (...(π(an−1) ◦ [D,π(an)]))) (36)

For the case in which Ω0A = A is a special Jordan algebra, we will continue to refer to the
corresponding differential, graded, Jordan algebras Ω = Ω0A ⊕ Ω1A ⊕ ... as ‘special’. Notice that
the above definition collapses to the standard and familiar form when dealing with associative,
Jordan algebras (e.g. in the canonical setting of a Riemannian manifold). Note, furthermore, that
because Ω1

DA acts as a Jordan module over A, it will also act naturally as a Lie module over
DerInn(A) for the exact same reasons that H acts as a Lie module over DerInn(A).

Furthermore, there is another perfectly natural representation of universal 1-forms on H based
on changing the embedding of A in End(H) from π to πo. This will yield a module map p such
that p(da) = [D,πo(a)]. We will also write it πo instead of p, but this time we need to be careful
since πo(da) = [Do, π(a)o] = −[D,π(a)]o = −π(da)o, so that πo is not the composition of π with o

on 1-forms.

Definition 14. A (real, even) special Jordan background is a gadget B = (A,H, π,Ω1, χ, J) such

that

1. A is a special Jordan algebra,

2. H is a Hilbert space,

3. π is a faithful associative representation of A,

4. π(A) is a JB algebra,

5. J and χ are the usual things, with the usual conditions (in particular C0),

6. Ω1 is a π(A)-module for the Jordan multiplication, whose elements anticommute with χ.

Just as in section 2, a Dirac operator for B is an operator D such that (A,H, π,D, χ, J) is a
Jordan triple and Ω1

DA ⊂ Ω1. The configuration space and automorphisms are also defined exactly
as in the associative case.

Condition C0 has a very important interpretation in the Jordan setting.

Proposition 8. The ‘symmetrized’ action S = 1
2 (π+π◦) is a multiplicative representation of A on

H.

Proof. We already know that π is an associative representation. Let us prove that πo also is: for
all a, b ∈ A we have πo(a ◦ b) = π(a ◦ b)o = (π(a) ◦ π(b))o = πo(b) ◦ πo(a) = πo(a) ◦ πo(b) since
◦ is commutative. Now π and πo satisfy the hypotheses of Theorem 2 by C0, and the proposition
follows.
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Condition C1 is generalized without change, it reads [π(a), π(ω)o] = 0 or equivalently [π(a)o, π(ω)] =

0 for all a ∈ A and ω ∈ Ω1. Unless specified otherwise, we will generally prefer to use the infinites-
imal version of condition weak C1:

[[π(A), π(A)]o,Ω1] ⊂ Ω1, (weak C1)

We will see in proposition 10 below that weak C1 keeps the same meaning as in the associative
case.

We will have more to say about the manifestations of the order 0 and 1 conditions in the Jordan
setting in section 8, but for now let us take a closer look at the manifold case. We suppose M to
be parallelizable and we define the canonical Jordan background over M to be the same as in the
associative setting, which makes sense since the algebra A = C∞(M) is associative. Let us quickly
recall the construction. We pick a moving frame (ea). It defines a metric g0 and a spin structure at
the same time. In particular it defines the Clifford mapping γ. Note that g0 is not a background
structure since it is not fixed by the automorphisms. The definition of JM , χM and Ω1

M are the
same as usual [5]. In particular

Ω1
M = {iγ(α)|α is a real smooth 1-form on M}. (37)

and D0, the canonical Dirac operator associated with e0 is a regular Dirac operator. Note that,
since JM anticommutes with i and with Clifford elements of odd degree, it commutes with the
elements of Ω1

M , and since those are anti-selfadjoint, they are self-opposite, a fact which will be
useful in section 9.

7 Lifted inner automorphisms and minimal fluctuations

In this section we seek to define a fluctuation space FD for Jordan spectral triples. In order to do
this, we first guess the correct algebraic structure of this fluctuation space, basing ourselves on 3 first
principles. As we have recalled in section 2, in the associative case the fluctuation space is a certain
affine space containing pure gauge flucutations (11) and which is stable under automorphisms. Pure
gauge fluctuations are associated to inner automorphisms of the algebra, though not in a 1-1 way:
this is the reason why the left arrows in diagram (13) go in the wrong direction. In the Jordan case,
we can actually do better thanks to diagram (29) and obtain the following:

AutInn(π(A)) ///o/o/o/o/o U(A)
Υ // U(A)

DerInn(π(A))

exp

OO

a // [π(A), π(A)]

exp

OO

deΥ // G(A)

exp

OO
(38)

The notations are the same as in section 2, namely U(A) := Υ(U(A)) and G(A) := deΥ([π(A), π(A)]).
For the sake of clarity, let us follow the bottom line in detail. We start with δ ∈ DerInn(π(A)). It
is of the form δ = ad(aδ) where

aδ =
1

4

∑

i

[π(ai), π(bi)] (39)
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is a uniquely defined element of [π(A), π(A)] thanks to proposition 7. Then deΥ(aδ) = aδ +

JaδJ
−1 = aδ − aoδ. Now observe that aδ − aoδ =

∑

i[S(ai), S(bi)] by C0. Hence we obtain:

Proposition 9. One has G(A) = [S(A), S(A)].

Proposition 10. Under weak C1, U(A) is a subgroup of the automorphism group of B.

Proof. Let Υ(u) ∈ U(A). It is clear that it is unitary and commutes with χ and J . More-
over, AdΥ(u)(π(A)) = Ad(u)(π(A)) = π(A) by C0. Finally, let us write u = exp(xk) . . . exp(x1),
x1, . . . , xk ∈ [π(A), π(A)], and let ω ∈ Ω1. Then AdΥ(u)(ω) = Ad(u−1)o(Adu(ω)) by C0. Now

Adu(ω) = Adexp(xk)(. . . (Adexp(x1)(ω) . . .)

= exp(adxk
(. . . (exp(adx1

(ω) . . .) (40)

Since Ω1 is stable under the adjoint action of [π(A), π(A)] ⊂ Lieπ(A) by definition, we have Adu(ω) ∈
Ω1. By weak C1, Ω1 is also a [π(A), π(A)]o-module, and we can repeat the same proof to show that
Ad(u−1)o(Adu(ω)) ∈ Ω1.

As can be seen from proposition 10, diagram (38) can be completed as the commutative cube:

AutInn(π(A)) U(A)
Ad

oo

AutInn(π(A))

Id
66♠♠♠♠♠♠♠♠♠♠♠♠♠

///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o U(A)

Υ

66♥♥♥♥♥♥♥♥♥♥♥♥♥

DerInn(π(A))

exp

OO✤
✤

✤

✤

✤

✤

✤

[S(A), S(A)]
adoo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

exp

OO

DerInn(π(A))

exp

OO

a //

Id
66♠

♠
♠

♠
♠

♠
♠

[π(A), π(A)]

exp

OO

deΥ
66♥♥♥♥♥♥♥♥♥♥♥♥

(41)

For instance, the path followed by the inner derivation [Lπ(a), Lπ(b)] is:

[Lπ(a), Lπ(b)] 7→
1

4
[π(a), π(b)] 7→

1

4
[π(a), π(b)]−

1

4
[π(a), π(b)]o 7→ ad 1

4
[π(a),π(b)]− 1

4
[π(a),π(b)]o = [Lπ(a), Lπ(b)]

(42)
Note that Ad and ad could as well be replaced with Ad∗ and ad∗.

Remark When proposition 7 holds, all the arrows in the bottom face of the cube (41) are isomorphisms, in

particular deΥ. It means that there cannot be non-trivial self-opposite elements in [π(A), π(A)]. Note that

the situation for associative backgrounds is much more involved (see [6]).

Now let us come to the fluctuation space FD. We want to guess what this space is basing
ourselves on the following postulates:

1. It is a real vector space.

2. It contains the pure gauge fluctuations UDU−1 −D for all U ∈ U(A).

3. For all F ∈ FD, FD+F ⊂ FD.
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The third postulate says that “a fluctuation of a fluctuated Dirac is a fluctuation of the original
Dirac”. This property holds in the associative case and seems desirable to maintain. However we
could think of requiring instead a minimality property like the following one:

3’. FD is generated as a vector space by 2.

Later on we will see that the system 1, 2, 3′ is actually stronger than 1, 2, 3. But first we prove
the following result:

Proposition 11. If FD satisfies either 1, 2, 3 or 1, 2, 3′, then it satisfies

4. for all F ∈ FD and U ∈ U(A), AdU (F ) ∈ FD.

Proof. By 2, AdUV (D)−D and AdU (D)−D are both in FD, hence their difference AdU (AdV (D)−

D) ∈ FD by 1. By linearity this shows that 1, 2, 3′ implies 4.
Now let F ∈ FD. Then AdU (D+F )− (D+F ) ∈ FD+F by 2. If 3 holds, it is also in FD. Thus

(AdU (D) − D) + AdU (F ) − F ∈ FD. But AdU (D) − D ∈ FD by 2 and F ∈ FD by hypothesis.
Hence AdU (F ) ∈ FD by 1.

Proposition 12. 1, 2, 3′ ⇒ 3.

Proof. Let F ∈ FD. By 3′ a general element of FD+F is a linear combination of AdUi
(D + F ) −

(D + F ) = (AdUi
(D) − D) + AdUi

(F ) − F . The first summand is in FD by 2, the third one by
hypothesis, and the middle one by the previous proposition. Hence by 1, FD+F ⊂ FD.

In this section we will investigate a minimal fluctuation space consistent with the stronger set of
axioms 1, 2, 3′. In the next section we will consider more general fluctuations consistent with 1, 2, 3

for the case in which C1 holds. Proposition 11 tells us that FD is an invariant space for the adjoint
representation of U(A) on B(H). If FD is closed we obtain by differentiation that FD is a module
over the Lie algebra G(A) = [S(A), S(A)] for the action ad. Moreover it contains adh(D) for all
h ∈ [S(A), S(A)]. All of this suggest the following possible definition:

Definition 15. The minimal fluctuation space FD is the Lie module over G(A) generated by ele-

ments of the form [δ,D], for δ ∈ G(A).

Remark Since π is faithful, the fluctuation space FD is also a Lie module over inner derivations of A.

Conversely, it is easy to see that with definition 15, 1, 2, 3 hold. First, property 1 holds by
definition. Let us prove 2. If U = exp(h) with h ∈ G(A), then UDU−1−D =

∑∞
k=1

1
k!ad

k
h(D) ∈ FD.

Suppose we have proved the result for any U which is a product of n − 1 exponentials and let
V = exp(h)U . Then

V DV −1 −D = Adexp(h)(UDU−1 −D) +Adexp(h)(D)−D

=

∞
∑

k=1

1

k!
adkh(UDU−1 −D) + UDU−1 −D +Adexp(h)(D)−D ∈ FD (43)

Property 2 follows by induction. Now let us prove 3. We let F ∈ FD. Then adh(D + F ) =

adh(D) + adh(F ) ∈ FD. It follows that the submodule generated by D + F is a subset of FD.
Now that we have a well-motivated definition for the minimal fluctuation space, let us take a

closer look at the form they take. It will be a linear combination of terms δk · . . . · δ1 ·D, for k ≥ 1,
where · means the adjoint action and δj = Tj − T o

j with Tj ∈ [π(A), π(A)].
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Proposition 13. If weak C1 holds, D + FD is a subspace of the configuration space.

Proof. We must prove that each D+F with F ∈ FD is a Dirac operator. All the required properties
are obviously satisfied except {[D+F, π(a)], a ∈ A} ⊂ Ω1. To see that it also holds under weak C1,
it suffices to show that for all a ∈ A, [F, π(a)] ∈ Ω1. We can suppose without loss of generality that
F is of the form F = δk · . . . · δ1 ·D, with δj = Tj − T o

j for k ≥ 1, and Tj ∈ [π(A), π(A)], as above.
By linearity we only need to consider the case F = Rk · . . . ·R1 ·D with Rj ∈ [π(A), π(A)] or Rj ∈

[π(A), π(A)]o, with j = 1, . . . , k. If k = 1 then [π(a), F ] = π(a)·R1 ·D = (π(a)·R1)·D+R1 ·(π(a)·D)

by Jacobi’s identity. Now π(a) · R1 is an element of π(A) if R1 ∈ [π(A), π(A)] since adR1
is a

derivation of π(A), and it vanishes by C0 if R1 ∈ [π(A), π(A)]o. On the other hand π(a) ·D ∈ Ω1,
so that R1 · (π(a) · D) also belongs to Ω1 using the fact that Ω1 is a both a [π(A), π(A)] and a
[π(A), π(A)]o-module. Now suppose the property is proved for some k. By Jacobi again we have
a · Rk+1 · . . . · R1 · D =

∑k+1
j=1 Rk+1 · . . . (a · Rj) . . . · R1 · D. If Rj ∈ [π(A), π(A)]o , the summand

vanishes by C0. If Rj ∈ [π(A), π(A)] then a ·Rj ∈ π(A), and (a ·Rj) . . . ·R1 ·D ∈ Ω1 by induction.
Then the summand belongs to Ω1 since Ω1 is a [π(A), π(A)] and a [π(A), π(A)]o-module.

Remark It is remarkable that proposition 13 holds under weak C1 alone in the Jordan case, whereas an

additional condition called weak C′

1
is needed in the associative case [10].

We have seen that definition 16 entails properties 1, 2, 3, and from proposition 11 it follows that
FD is always automorphism invariant. Now the same will be true for D+FD since U(D+F )U−1 =

D+(UDU−1−D)+UFU−1. Thus, under weak C1, D+FD is an automorphism invariant subspace
of the configuration space. This means that a particle model can consistently be defined on this
space.

The fluctuation space given by definition 16 is the smallest one which respects the principles
we have set forth, among them gauge-invariance. Let us observe that our approach here differs
somewhat from what is usually done in the associative setting. The definition of the fluctuation space
given by Connes is not only guided by the physically well-motivated principle of gauge-invariance,
but by a deep generalization, namely Morita self-equivalence of spectral triples. Furthermore,
Connes’ fluctuation space is usually defined in the presence of C1, with the story becoming somewhat
more complicated in the absence of C1 [25]. As we are dealing with special Jordan triples satisfying
weak C1, and it is not clear what the analogue of Morita self-equivalence might be in the Jordan
setting, we opt for gauge-invariance and minimality. An obvious question is what this same approach
would yield in the associative setting. In the next section we consider the construction of more
general fluctuations for special Jordan triples that satisfy C1.

8 Order conditions and general fluctuations

In previous sections we limited our discussion of the order conditions C0 and C1. In general we
will not restrict attention to geometries satisfying C1, however it is important to understand the
implications that these conditions have, as many physically relevant and interesting geometries will
satisfy both conditions. In this section we take a closer look at special Jordan representations in
the presence of both C0 and C1, focusing in particular on their symmetries.

We begin with C0. Consider a (real, even) special, Jordan, pre-spectral triple B = (A,H, π, χ, J).
The representations π and π0 both individually satisfy the properties of an associative specialization.
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We have already seen (proposition 8) that it is possible to form a new ‘symmetrized’ action S =
1
2(π+π◦) which satisfies all of the properties of a multiplicative representation. Following definition
6, we therefore see that (H,S) is a Jordan module, or equivalently the pre-spectral triple can be
viewed as a Jordan algebra B = A ⊕ H, where the bilinear product extends ◦ on A such that
a ◦ h = h ◦ a = Sah, h ◦ h′ = 0, for all a ∈ A, h, h′ ∈ H. Note, that both J and χ will
commute with the ‘symmetrized’ representation S = 1

2 (π + π◦), a fact which has deep implications
for the construction of physical theories with Majorana fermions. In particular, notice that only
representations that commute with J are compatible with the Majorana condition JH = H. This
is a key motivation that underlies the construction of the standard model as a Jordan geometry
[13].

The meaning of C0 is clear. Following theorem 2, its imposition ensures that the symmetrized
action of A on H satisfies all of the properties of a Jordan action. The upshot is that for a ‘symmetric’
representation satisfying C0, B = A ⊕ H will be a Jordan algebra, and following definition 9, its
inner derivations will be of the form

δ =
∑

[La, Lb], (44)

where a, b ∈ B and La is the Jordan multiplication by a when acting on A and is equal to Sa when
acting on H. Notice, however, that when either a or b is drawn from H, we have δa,bh = 0 for all
h ∈ H. Following definition 10, the inner automorphisms of B acting on H will therefore be of the
form α = eδ ∈ U(A), where δ is constructed from elements from A, and not from B = A+H more
generally, i.e. ∈ δ ∈ G(A)16. Inner automorphisms of B acting on H will therefore automatically
commute with both J and χ (because the symmetric action on H commutes with both J and χ).
In other words, C0 ensures that S is multiplicative, and as such that the symmetries of A can be
‘lifted’ in a consistent way to the symmetrized representation of A on H.

Next, let’s consider the meaning of C1. We restrict attention to expressions of degree one and
lower, meaning we will not consider the representation of products of forms on H. The representation
of higher order forms is an involved discussion even in the associative setting, and deserves a paper
in its own right. As a representation of higher order forms will not be necessary for deriving any of
the results in this paper, we will return to the discussion in a follow-up paper where we will show
that Jordan geometries are somewhat better behaved than associative geometries at higher order
(see, however, [12, 15] for a more involved discussion of Junk forms and the second order condition
in the associative setting).

We begin by equipping the pre-spectral triple B with a Dirac operator D, to form a special
Jordan triple T = (A,H, π,D, χ, J), that satisfies all of the usual properties. We observe that we
have a map π : A⊕Ω1

dA → End(H) such that π is an associative representation on A and a module
map on Ω1

dA. This means that π is an associative representation of the split null extension A⊕Ω1
dA

up to degree 1. Similarly πo is an associative representation of A⊕Ω1
dA up to degree 1, and thanks

to C0 and C1, these two “representations” commute. Thus, by theorem 2, S = 1
2(π + π◦), will be a

multiplicative representation up to degree 1. Since one might feel uncomfortable using this theorem
“up to degree one”, we provide a formal proof below.

16The physical meaning of the derivation of the form δab, in which either a or b are elements in H , is an interesting
question, which is outside the scope of this paper.
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Proposition 14. The ‘symmetrized’ action of forms S = 1
2(π+π◦) defined on A⊕Ω1

dA satifies the

properties of a multiplicative specialization for all expressions up to degree 1.

Proof. We need to show that the linearization of equations (17) given in equations (18) hold for
the case in which a single element a, b, c ∈ ΩA is of degree 1, and the remaining elements are of
degree 0. We begin with the first equation:

[Sa, Sb◦ω] + [Sb, Sa◦ω] + [Sω, Sb◦a] = −
1

4
[π(a), π(b ◦ ω)◦] +

1

4
[π(a)◦, π(b ◦ ω)]

−
1

4
[π(b), π(a ◦ ω)◦] +

1

4
[π(b)◦, π(a ◦ ω)]

+
1

4
[π(ω), π(a ◦ b)◦]−

1

4
[π(ω)◦, π(a ◦ b)]

= 0, (45)

for a, b ∈ A, ω ∈ Ω1A, where the first equality holds because as π and π◦ are associative specializa-
tions, 1

2π and 1
2π

◦ satisfy the equation separately. The second equality holds due to C1. For the
second equation we find

SaSbSω + SωSbSa + S(aω)b − SaSbω − SbSaω − SωSab =
1

8
[π(a), π(b)◦]π(ω) +

1

8
[π(ω), π(b)◦]π(a)

+
1

8
[π(b), π(ω)◦]π(a)◦ +

1

8
[π(b), π(a)◦]π(ω)◦

+
1

8
[π(ω)◦, π(a)π(b)] +

1

8
[π(ω)π(b), π(a)◦ ]

+
1

8
[π(a)◦π(b)◦, π(ω)] +

1

8
[π(a), π(ω)◦π(b)◦]

= 0, (46)

for a, b ∈ A, and ω ∈ Ω1A, where the first equality holds because 1
2π and 1

2π
◦ satisfy the equation

separately, and the second equality holds due to C1. Similarly

SaSωSc + ScSωSa + S(ac)ω − SaSωc − SωSac − ScSaω =
1

8
[π(ω)◦, π(a)]π(c) +

1

8
[π(ω)◦, π(c)]π(a)

+
1

8
[π(a)◦, π(ω)]π(c)◦ +

1

8
[π(c)◦, π(ω)]π(a)◦

+
1

8
[π(a), π(c)◦π(ω)◦] +

1

8
[π(c), π(a)◦π(ω)◦]

+
1

8
[π(a)π(ω), π(c)◦ ] +

1

8
[π(c)π(ω), π(a)◦]

= 0, (47)

for a, c ∈ A, ω ∈ Ω1A.

For special Jordan triples that satisfy C1, the symmetrized action of A on H therefore satisfies
the properties of a multiplicative specialization for all expressions of degree 1 and lower. In effect,
just as C0 extends the Jordan product ◦ on A to all of B = A ⊕H as a Jordan product, the first
order condition C1 extends the product further as a Jordan product to T = A⊕Ω1

DA⊕H, so long
as one restricts attention to expression of degree 1 or lower. The upshot is that for special Jordan
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triples satisfying C1, we are able to extend the ‘degree zero’ inner derivations on B = A ⊕ H to
include ‘degree one’ elements δ : A⊕H → Ω1

d ⊕H, of the form

∑

[La, Lω], (48)

for a ∈ A, ω ∈ Ω1
dA

17. Following the same route as in (42) yields the operator:

F =
∑

[Sa, Sω]. (49)

Let it be clear that a rigorous justification of this step would require to define the full algebra
of forms, the extension of A by this algebra (in the spirit of [12]) and the upgrading of (41) to this
new setting, which is beyond the scope of this paper. Here we will be happy to observe that things
are working at first order, and take it as a motivation to consider operators of the form (49). It is
easy to show that they satisfy the Leibniz rule and in particular, following Eq. (19):

[[Sa, Sω], Sb] = S[ω,b,a] (50)

for all a, b ∈ A, and ω ∈ Ω1
dA. We denote the space of degree one derivation elements of the form

given in (49) by Fω. Notice, that unlike at degree zero, these derivations are self-adjoint, commute
with J , and anti-commute with χ.

We now turn to the discussion of Fluctuated Dirac operators in the presence of C1.

Definition 16. Given a special Jordan Triple T = (A,H, π,D, χ, J), we define the general fluctu-

ation space to be given by Fω.

In addition to having Hermitian elements that commute with J , anti-commute with χ, and map
zero forms to one forms through commutation, the fluctuation space Fω satisfies the three postulates
that we set out in the preceding section. In particular Fω is a real vector space that contains FD,
and for all F ∈ Fω, FD+F ⊂ FD.

Proof. Fω is a real vector space by definition, so we focus on the other two postulates. For the
second postulate, we have only to show that elements of the form δk · . . . · δ1 ·D, for k ≥ 1, are in
Fω. To begin with, for k = 1 we have

[D, [Sa, Sb]] = [Sd[a], Sb] + [Sa, Sd[b]] ∈ Fω, (51)

for a, b ∈ A, which follows directly from Eq. (35) and the definition of the symmetrized action.
Moreover, for all F ∈ Fω, one has [[Sa, Sb], F ] ∈ Fω by Jacobi’s identity and Eq. (50). It then
follows that Fω is a Lie module over G(A), and as a result all elements of the form δk · . . . · δ1 ·D

are in Fω, proving the second postulate. Similarly, postulate 3 follows directly from Eq. (50).

Remark Finally, before closing this section, we make a brief comparison between Fω, and the general

associative fluctuations given in Eq. (12). The analogue of equation (44) in the associative setting is given

17In this paper we will not consider derivations of the form δωh = [Lω, Lh] for h ∈ H as they act trivially on H .

25



by:

δ =
∑

La −Ra (52)

where a ∈ B, and where for a ∈ A the ‘left action’ is given by Laa
′ = aa′ and Lah = π(a)h, while the

‘right action’ is given by Raa
′ = a′a and Rah = π◦(a)h, for a′ ∈ A and h ∈ H . For associative geometries

satisfying C1, the ‘degree zero’ inner derivations on B = A⊕H can then be extended to include ‘degree one’

elements δ : A⊕H → Ω1

d
⊕H , of the form

∑

Lω −Rω, (53)

for ω ∈ Ω1

d
A. The analogue of Eq (49) is then given by:

∑

ω + ω◦. (54)

Restricting to Hermitian elements of this form, we obtain Connes’ fluctuations Eq. (12). Notice that in the

Jordan setting we obtain Hermiticity for free, it is not put in by hand.

Further, comparison is able to be made between the associative and Jordan settings, by expressing

Eq. (49) more explicitly in terms of the associative representations π and π◦.

[Sa, Sω] = [π(a) + π(a)◦, π(ω)− π(ω)◦]

= [π(a), π(ω)] + J [π(a), π(ω)]J−1. (55)

We see that the general fluctuation space of a Jordan geometry is slightly more restrictive than the cor-

responding fluctuation space for an associative geometry, since [π(a), π(ω)] is a traceless 1-form. Hence

unimodularity is an automatic feature of the general fluctuation space. A curious question, is what phe-

nomenological restrictions on the scalar sector of particle theories these additional restrictions will bring.

9 Jordan 1-forms and fluctuations for almost-associative special

Jordan triples

The tensor product of two Jordan algebras with product (a⊗ b) ◦ (c⊗ d) = a ◦ b⊗ c ◦ d is generally
not a Jordan algebra. However, this works if at least one of the algebras is associative. Here we will
consider algebras of the form

A = C∞(M)⊗AF = C(M,AF ) (56)

where M is a manifold and AF is a finite-dimensional Jordan algebra. We call these algebras
almost-associative by analogy with almost-commutative ones.

Let BM be the canonical Jordan background over M and BF be a finite Jordan background.
The definition of the almost-associative Jordan background BM⊗̂BF is the same as in the almost-
commutative case. The algebra, real structure, and chirality operators are graded tensor prod-
ucts and follow the same rules as given in [11] and [37]. In particular one has (T1⊗̂T2)

o =

(−1)|T1||T2|T o
1 ⊗̂T o

2 , where |T1,2| is the grading of the corresponding operator, defined by its commu-
tation property with χ1,2. All the necessary checks are exactly the same for the almost-associative
and almost-commutative cases, except for the module of 1-forms, which is given by

Ω1
M×F = Ω1

M ⊗ π(AF )⊕ C∞(M)⊗ Ω1
F (57)
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It is immediate to check that equation (57) defines an odd Jordan π(A)-module. Moreover, let
D be a product Dirac

D = DM ⊗̂1 + 1⊗̂DF (58)

where DM is in the configuration space of BM and DF is in the configuration space of BF . Then
Ω1
DA ⊂ Ω1

M×F , with equality whenever DF is regular.
Let us turn to fluctuations. We know that FD is the Lie module generated by the orbit of

D under the action of [S(A), S(A)]. Let A = C∞(M,AF ), and D be a product Dirac as in (58).
We will need the following lemma. We recall that a Lie algebra G is called perfect if G = [G,G].
Semisimple Lie algebras are perfect.

Lemma 1. Consider a finite Jordan triple over AF and its fluctutation space FDF
. Suppose

[S(AF ), S(AF )] is a perfect Lie algebra and let F ′
DF

be the derived fluctuation space F ′
DF

:=

[S(AF ), S(AF )] · FDF
. Then F ′

DF
= FDF

.

Proof. Since the inclusion ⊂ is obvious, we only need to prove the converse. Every finite fluctutation
is a sum of terms like Tk · · ·T1 · DF with Ti ∈ [S(AF ), S(AF )]. We only need to prove that
a fluctuation of the form T · DF with T ∈ [S(AF ), S(AF )] can be written as a sum of terms
Tk · · ·T1 · DF with k ≥ 2. Since [S(AF ), S(AF )] is perfect, we can write T =

∑

i[αi, βi], with
αi, βi ∈ [S(AF ), S(AF )]. Now we have

T ·DF =
∑

i

[αi, βi] ·DF

=
∑

i

αi · βi ·DF − βi · αi ·DF , by Jacobi’s identity

∈ F ′
DF

(59)

Theorem 5. Let D = DM ⊗̂1+1⊗̂DF be the product Dirac operator of an almost-associative Jordan

triple. Then

FD ⊂ Ω1
M ⊗ [S(AF ), S(AF )]⊕ C∞(M,FDF

) (60)

with equality if [S(AF ), S(AF )] is a perfect Lie algebra.

Proof. Let us call M RHS of (60). To prove that FD ⊂ M it suffices to prove that M is a
[S(A), S(A)]-module which contains [S(A), S(A)]·D. Let f⊗α ∈ [S(A), S(A)] = C∞(M, [S(AF ), S(AF )]).
Then

(f ⊗ α) ·D = f ·DM ⊗ α+ f ⊗ α ·DF (61)

which belongs to the RHS of (60). Now let ω ∈ Ω1
M , β ∈ [S(AF ), S(AF )], g ∈ C∞(M), and

φ ∈ FDF
. Then f ⊗ α · (ω ⊗ β + g ⊗ φ) = fω ⊗ [α, β] + fg ⊗ α · φ which also belongs in the right

space since [S(AF ), S(AF )] is a Lie algebra and FDF
an [S(AF ), S(AF )]-module.

Let us now prove the converse inclusion when [S(AF ), S(AF )] is a perfect Lie algebra. First,
using (1⊗ α) ·D = 1⊗ (α ·DF ), we see that 1⊗FDF

⊂ FD. Acting with f ⊗ β ∈ [S(A), S(A)] on
1⊗φ ∈ 1⊗FDF

we obtain f⊗β ·φ ∈ FD, and we conclude that C∞(M,F ′
DF

) ⊂ FD. Using the lemma
this shows that C∞(M,FDF

) ⊂ FD. There just remains to prove that Ω1
M ⊗ [S(AF ), S(AF )] ⊂ FD.
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From (61) we see that f · DM ⊗ α is the difference of two elements of FD and it thus also in FD.
Hence any tensor of the form ω ⊗ α with ω exact and α ∈ [S(AF ), S(AF )] belongs to FD. Now
if we act on such a tensor with g ⊗ β ∈ C∞(M) ⊗ [S(AF ), S(AF )], we obtain (g ⊗ β) · (ω ⊗ α) =

gω ⊗ [β, α]. Using sums of terms like this and the fact that [S(AF ), S(AF )] is perfect, we see that
Ω1
M ⊗ [S(AF ), S(AF )] ⊂ FD, and the theorem is proved.

Let us apply theorem 5 to find the nature of gauge fields in the case where AF =
⊕k

i=1 Ji with
Ji = Hni

(K) or JSpin(ni) (see theorem 1). Using the cube (41) and ker π = 0, we obtain that

[S(AF ), S(AF )] =

k
⊕

i=1

DerInn(Ji) (62)

If Ji = Hni
(R),Hni

(C),Hni
(H) or JSpin(ni), then DerInn(Ji) = so(ni), su(ni), sp(ni) or spin(ni) =

so(ni) respectively. This directly gives the nature of the gauge fields from the algebra AF . In
particular we see that unimodularity is a natural feature of the Jordan setting.

We now turn our attention to the general fluctuation space.

Theorem 6. Let FM×F
ω be the general fluctuation space of the almost-associative background

BM ⊗̂BF . Then

FM×F
ω = Ω1

M ⊗ [S(AF ), S(AF )]⊕ C∞(M,FF
ω ) (63)

where FF
ω is the general fluctuation space of BF .

Proof. With the same notations as above, we let a = f⊗aF ∈ A and ω = ωM⊗bF +g⊗ωF ∈ Ω1
M×F .

Then, using f = f o and ωo
M = −ωM and suppressing π for simplicity, we have

[Sa, Sω] =
1

4
[a+ ao, ω − ωo]

=
1

4
[f ⊗ (aF + aoF ), ωM ⊗ bF + g ⊗ ωF − (−ωM ⊗ boF + g ⊗ ωo

F ]

=
1

4
fωM ⊗ [aF + aoF , bF + boF ] + fg ⊗ [aF + aoF , ωF − ωo

F ]

= fωM ⊗ [SaF , SaF ] + fg ⊗ [SaF , SωF
] (64)

The result follows.

Notice in particular that both the minimal and general gauge fluctuations will be the same.
Differences may arise in the Higgs sector of a model however.

10 Boyle-Farnsworth Model

10.1 Definition of the model

Let us consider the model with finite algebra AF = JSpin(2)⊕H2(C)⊕H3(C)⊕R which has been
proposed by Boyle and Farnsworth [13]. We will identify the elements of JSpin(2) with matrices of

the form

(

x z∗

z x

)

, with x ∈ R and z ∈ C. The Hilbert space HF is the same as for the SM, cf (6).

The associative representation is
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π(λ, h,m, r) = [λ⊗ 14, h⊗ 14, r ⊕ 12 ⊗m, r ⊕ 12 ⊗m] (65)

where [A,B,C,D] denotes a matrix which is block-diagonal with respect to the chirality space.
More generally we will write aXY with X,Y = R,L, R̄, L̄ for a matrix decomposed into chiral blocks.

10.2 Gauge fields

From section 9 we know that gauge fields will take values in some representation of u(1)⊕ su(2)⊕

su(3) (since u(1) ≃ so(2)). To work out the precise representations, we first express the symmetrized
action S(AF ), which contains general elements that are sums of the form:

2S(λ) = [λ⊗ 14, 0, λ⊗ 14, 0]

2S(h) = [0, h ⊗ 14, 0, h ⊗ 14]

2S(m) = [0⊕ 12 ⊗m, 0⊕ 12 ⊗m, 0⊕ 12 ⊗m, 0⊕ 12 ⊗m]

2S(r) = [r ⊕ 0, r ⊕ 0, r ⊕ 0, r ⊕ 0] (66)

Because elements of different kinds commute with one another, and S(r) commutes with everything,
we therefore find that [S(AF ), S(AF )] is generated as a vector space by elements of the form

T (λ′) := [λ′ ⊗ 14, 0, λ
′ ⊗ 14, 0]

T (h′) := [0, h′ ⊗ 14, 0, h
′ ⊗ 14]

T (m′) := [0⊕ 12 ⊗m′, 0⊕ 12 ⊗m′, 0⊕ 12 ⊗m′, 0⊕ 12 ⊗m′] (67)

where edit λ′ ∈ R

(

i 0

0 −i

)

= u(1), h′ ∈ [H2(C),H2(C)] = su(2), and m′ ∈ [H3(C),H3(C)] = su(3).

As noted by the authors in [13], even though the Lie algebra is the correct one, the u(1) charges
corresponds to a linear combination of hypercharge and B-L. In order to obtain the correct hyper-
charges, the gauge symmetries would need to be extended to include the anomaly-free outer auto-
morphisms of the representation. In this case one obtains the correct hypercharges, but the model
is extended by an additional gauged B − L symmetry. We will not consider such an extension in
this paper.

10.3 Higgs sector

We recall that for the noncommutative standard model the Dirac operator takes the form:

DF =











0 Y † M † 0

Y 0 0 0

M 0 0 Y T

0 0 Y ∗ 0











(68)

where Y = Yℓ ⊕ Yq, Yℓ =

(

Yν 0

0 Ye

)

, Yq =

(

Yu 0

0 Yd

)

, and M =

(

mν 0

0 0

)

⊕ 0.

We will take this DF as our starting point. To check that C1 (resp. weak C1) holds, we need
only consider commutators of the form [(a′)o, [D, a]] with a, a′ ∈ π(AF ) (resp. a′ ∈ [π(AF ), π(AF )]).
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Consider first the case where a′ ∈ π(AF ). Using the same notations as in (65) for a (and the same
with primes for a′), we easily find that [(a′)o, [D, a]] is a selfadjoint matrix with all blocks vanishing
except the (R, R̄) and (R̄,R) ones, the latter being given by (λ′ − r′)M(λ − r). Thus C1 is not
satisfied unless M = 0, in which case both blocks vanish. On the other hand, if a′ ∈ [π(AF ), π(AF )],

then r′ = 0 and λ′ = t

(

i 0

0 −i

)

, t ∈ R. Such an element is easily seen to be in Ω1
DF

. In other

words, DF is seen to satisfy weak C1, while C1 is only satisfied for M = 0. We therefore see that
stronger restrictions arise on the Higgs sector under C1, than occur in the associative NCG SM.

Satisfied that this Dirac operator is compatible with weak C1, let us next determine the minimal
finite fluctuations. These are obtained by taking iterated commutators of elements (67) with DF .
As the matrix DF commutes with T (m′), however, we have only to focus on iterated commutators
of DF with elements of the form T (h′) and T (λ′). Beginning with T (h′) yields:

Φ(q) :=











0 Y (q)† 0 0

Y (q) 0 0 0

0 0 0 Y (q)T

0 0 Y (q)∗ 0











(69)

where Y (q) = qY , q ∈ su(2) (a pure quaternion). Commuting with T (λ′) boils down to multiplying

q with

(

i 0

0 −i

)

which is another quaternion, which gives nothing new. The Higgs sector is thus

the same as in the Standard Model when we consider the minimal fluctuation space.
Let us next look at the general fluctuation space. We begin by enforcing C1, which sets M = 0.

We then need to determine the form of the Jordan module of finite 1-forms. Using hermiticity, we
only need to consider the (L,R)-block. Now, if a = [aR, aL, aL̄, aL̄] and b = [bR, bL, . . . , . . .], then
the (L,R)-block of a ◦ [D, b] is

(a ◦ [DF , b])L,R = aLY bR − aLbLY + Y bRaR − bLY aR (70)

It is then easy to see that a general 1-form ω will have a block ωLR =
∑

i,j aiY bj where ai is in
the associative R-algebra generated by JSpin(2) and bj is in the associative R-algebra generated by

H2(C), that is M2(C). Now let us introduce the notation Ỹ := Y

(

0 1

1 0

)

. Using Y

(

a b

c d

)

=

(

a 0

0 d

)

Y +

(

b 0

0 c

)

Ỹ , we can rewrite ωLR in the form
∑

xiY + x̃iỸ where xi, x̃i belong to the

algebra generated by JSpin(2) and diagonal matrices, which is M2(C). Thus, Ω1
F is the set of

matrices of the form

ωg =











0 Z†g† 0 0

gZ 0 0 0

0 0 0 0

0 0 0 0











(71)

where g ∈ M2(C) and Z is either equal to Y or to Ỹ . From (55), the general fluctuations are
thus of the form [π(a), ωg] + JF [π(a), ωg ]J

−1
F . Using the fact that M2(C) = H ⊕ iH, this yields
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four SU(2)-doublets Φ(q),Φ(iq′), Φ̃(p), Φ̃(ip′), where q, q′, p, p′ are quaternions, Φ is defined by (69)
and Φ̃ is the same as Φ with Ỹ replacing Y . These fields will be independent iff the up and down
components of Y are. This example provides a proof that the general fluctuation space and the
minimal one are in general different.

11 The Pati-Salam model

11.1 Definition of the model

The finite Hilbert space HF is still the SM one, and DF still has the form (68). We take AF =

APS := H2(C)⊕H2(C)⊕H4(C) represented as

π(p, q,m) = [p⊗ 14, q ⊗ 14, 12 ⊗m, 12 ⊗m]⊗ 1N (72)

We have

π(p, q,m)o = [12 ⊗m∗, 12 ⊗m∗, p∗ ⊗ 14, q
∗ ⊗ 14]⊗ 1N (73)

hence

2S(p, q,m) = [p⊗ 14 + 12 ⊗m∗, q ⊗ 14 + 12 ⊗m∗, c.c., c.c.] ⊗ 1N (74)

11.2 Gauge fields

Taking the commutator of two elements like (74) we obtain that

[S(AF ), S(AF )] = su(2)R ⊕ su(2)L ⊕ su(4) (75)

represented as

T (gR, gL, g) = [gR ⊗ 14 + 12 ⊗ g, gL ⊗ 14 + 12 ⊗ g, c.c, c.c] ⊗ 1N (76)

11.3 Higgs sector

The finite fluctuations are iterated commutators of elements of the form (76) with DF . More
precisely, since the summands of (75) commute among one another, a finite fluctuation has the
form T1 · . . . · Ti · · ·S1 · . . . · Sj ·R1 · . . . ·Rk ·DF , with T1, . . . , Ti in su(4), S1, . . . , Sj ∈ su(2)L, and
R1 · · ·Rk ∈ su(2)R (with the now usual convention that Rk operates first and T1 last). The action
of R1 to Rk on the L−R sector of (68) replaces Y with Y g1R . . . gkR ⊗ 14 (up to an irrelevant sign).
Then we act with S1, . . . , Sj and get gjL . . . g1L ⊗ 14Y g1R . . . gkR ⊗ 14. Finally we act with T1, . . . , Ti,
which in the (L,R)-sector amounts to taking the commutators with g1, . . . , gi. Hence the L − R

sector of a finite fluctuation contains a linear combination of elements of the form

12 ⊗ g1 · . . . gi · (p ⊗ 14)Y (q ⊗ 14) (77)

where p and q are products of elements of su(2). Such products are just generic elements of
M2(C). Now let us write Yα,i for the elements of the tensor Y , where α runs through uu, ud, du, dd,
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and i through {ℓ, r, g, b}2. Hence, for each i, Y.,i is a 2 × 2 matrix acting on C
2
weak. If there are

N generations, Yα,i will be a N × N -matrix). For each i, if Y.,i 6= 0, the products pY.,iq generate
M2(C). Moreover, M4(C) decomposes as C ⊕ su(4) ⊕ isu(4) under the adjoint action of su(4).
Hence (77) will be a completely generic traceless element of M2(C)⊗M4(C) unless Yα,. belongs to
one of the submodules C, su(4), isu(4),C⊕ su(4), . . . for every α. Given that pY.,iq generate M2(C)

unless Y.,i vanishes, this is impossible for Y 6= 0. In conclusion a Higgs field takes values in general
traceless elements M2(C)⊗M4(C). The action of su(2)R is by multiplication on the right of M2(C),
the action of su(2)L is by multiplication on the left of M2(C) and the action of su(4) is the adjoint
action on M4(C). This coincides with the results in [19].

12 Beyond the special case

Our discussion has focussed on special Jordan coordinate algebras with associative specializations.
We have looked specifically at real, even, special Jordan spectral triples (i.e. special Jordan triples
equipped with real structure and grading operators), as these are the geometries that are of most
interest when constructing physical theories. In this section we discuss the generalization to the
exceptional setting, in which it is no longer possible to construct associative specializations. Our
goal is not to give a complete and rigorous account, but rather to outline the most natural path
forward that we see for constructing exceptional Jordan geometries. For this purpose we will focus
on geometries without real structure, which will allow us to highlight the primary distinctions
between the special and exceptional cases without becoming tied down by interesting but tangential
discussions concerning real structure, and the (weak) order conditions.

Consider a special, Jordan, spectral triple without real structure T = (A,H, π,D, χ). A key
feature of our construction is the extension of the associative specialization π of A on H to all
expressions of degree 1 or less, such that

π(a ◦ b) = π(a) ◦ π(b) (78)

π(a ◦ ω) = π(a) ◦ π(ω) (79)

for all a, b ∈ A, and ω ∈ Ω1A. Associative specializations readily allow for the representation of
general 1-forms once the representation of exact one forms is defined. Notice, however, that all other
features of our construction actually derived from the properties of multiplicative specializations.
Stated explicitly, an immediate consequence of theorem 2 is that ρ = 1

2π satisfies all of the properties
of a multiplicative specialization for expressions of degree 1 or less. The relationship between
multiplicative specializations and Jordan modules then ensures that (H, ρ) satisfies all the properties
of a Jordan module over A ⊕ Ω1A or equivalently that T can be viewed as a Jordan algebra (i.e.
equations (18) and (19) are satisfied up to degree 1). It is the Jordan module structure that ensures
the form of the inner derivations of T restricted to H, the form that inner fluctuations of D take,
and the Lie module structure of Ω1

DA.
The question of this section is how to extend the construction to accommodate exceptional

Jordan coordinate algebras. Exceptional Jordan algebras do not have associative specializations,
but they do have multiplicative specializations, and as such it is natural to consider Jordan spectral
triples of the form T = (A,H, ρ,D, χ), where
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1. A is a Jordan algebra with a JB algebra completion A,

2. H is a Hilbert space,

3. ρ is a faithful multiplicative representation of A,

4. D and χ satisfy all the usual properties,

5. For all a ∈ A, [D, ρ(a)] is well-defined and bounded.

Let us unpack this construction, beginning with the coordinate algebra and its representation
on the Hilbert space (A,H, ρ). It should be stressed that in the general Jordan setting we have in
general that

ρa◦b 6= ρa ◦ ρb, (80)

for a, b ∈ A. Equation (16) only holds for the special case in which one has an associative specializa-
tion, which is the key assumption that we are dropping in this section. In other words, the algebra
generated by elements of the form ρa for a ∈ A, equipped with the symmetrized product ◦, will be
a special Jordan algebra that will not in general be isomorphic to A. Nonetheless, the properties
of ρ ensure that B = A⊕H is a Jordan algebra, and as such the form of its inner derivations are
known. In particular, following equation (44), when restricted to H the inner derivations of B are
given by δab = [ρa, ρb], for a, b ∈ A. Furthermore, following Equation (19), we have

[δab, ρc] = ρ[b,c,a] (81)

for c ∈ A. The ‘lift’ of the inner derivations of A therefore remain exactly as in the special Jordan
setting with no alteration. At order zero our construction therefore ports readily to the exceptional
setting. The same observation applies to the minimal space FD defined in section 7: it continues
to make sense as the Lie module over G(A) generated by elements of the form [δ,D], for δ ∈ G(A).
Hence, a spectral triple over a non-special Jordan algebra together with its minimal fluctuation
space could in principle be constructed.

In order to define an algebraic background and/or a general fluctuation space, one would need
a general theory for the representation of Jordan 1-forms. Let us say a few words about why such
a construction is difficult. Assuming one is able to obtain a module of universal 1-forms with the
universal property (33)18, it would then be natural to consider the action of exact one forms on H

following equation (35):

ρd[a] = [D, ρa], (82)

where a ∈ A. Unfortunately, the degree 1 extension of a multiplicative representation will have in
general ρa◦ω 6= ρa ◦ ρω, for a ∈ A, ω ∈ Ω1

dA. It is therefore not possible to use our approach for
special Jordan algebras to define the representation of general 1-forms, or to prove in general that
the map a 7→ [D, ρ(a)] is a derivation into ρ(A). This is the primary obstruction to developing a
completely general framework for Jordan coordinate algebras. Fortunately, while a general theory

18See [30] for an explicit construction of differential calculi over exceptional Jordan algebras.
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of Jordan 1-forms seems to be difficult to reach, an approach tailored to the particular properties
of the Albert algebra appears easier to obtain. Work in this direction is currently in progress, and
is planned for an upcoming paper.

13 Conclusion

In this paper we have proposed a definition for spectral triples and backgrounds based on Jordan
coordinate algebras. Our treatment focuses primarily on special Jordan algebras with associative
representations. We have also outlined what we view to be the most natural path towards a
generalization from the special Jordan case to the exceptional setting. The key elements outlined
in the extension of the spectral triple formalism to nonassociative geometries of Jordan type are:

1. The definition of coordinate algebra representations, and the generalization of order conditions.

2. The definition of internal symmetries, and their lifts to the representation space.

3. The construction of differential forms and their representations.

4. Inner fluctuations of the Dirac operator.

Regarding the fluctuation space, we have shown that under the assumption of weak C1 the min-
imal space of fluctuated Dirac operators provides a subspace of the configuration space which is
automorphism invariant and thus can be used to define a consistent particle model. We have also
explained the relationship of the general fluctuation space to the fluctuation space given by Connes
in the associative setting. An insight we have used is the construction of fluctuations as general
derivation elements of degree 1. This was also seen when constructing nonassociative geometries of
alternative type [33] (see equation 3.23 in that paper). This observation should allow one to extend
the spectral formalism to general non-associative geometries, of which Jordan geometries are just
one example.

We highlight a number of points in which Jordan geometries appear to do a better job of
describing gauge theories than in the associative noncommutative setting:

1. As outlined in [13], the Jordan setting appears to provide a more natural setting for describing
Majorana fermions (and by extension provides a natural solution to the fermion doubling
problem).

2. The infinitesimal automorphisms of the coordinate algebra (inner derivations) are faithfully
represented as operators on the Hilbert space.

3. Because the infinitesimal automorphisms of the coordinate algebra are represented by com-
mutators, unimodularity is naturally implemented.

4. Jordan Banach are more natural candidates for coordinatizing geometric spaces than real C∗

algebras.

Despite these benefits there does appear to be one (potential) downside. In particular, the
representation of U(1) factors appears to be far more restrictive in the Jordan setting. This, however,
might also be seen as a benefit from the perspective of construing realistic gauge theories, as it limits
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the allowable models that are able to be built (which is one of the key reasons for the interest in
spectral geometry in the first place).
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