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The quantum electrodynamic (QED) description of light-and-matter interaction is one of the most
fundamental theories of physics and has been shown to be in excellent agreement with experimental
results [1–6]. Specifically, measurements of the electronic magnetic moment (or g factor) of highly
charged ions (HCI) in Penning traps can provide a stringent probe for QED, testing the Standard
model in the strongest electromagnetic fields [7]. When studying the difference of isotopes, even the
intricate effects stemming from the nucleus can be resolved and tested as, due to the identical electron
configuration, many common QED contributions do not have to be considered. Experimentally
however, this becomes quickly limited, particularly by the precision of the ion masses or the achievable
magnetic field stability [8].
Here we report on a novel measurement technique that overcomes both of these limitations by co-
trapping two HCIs in a Penning trap and measuring the difference of their g factors directly. The
resulting correlation of magnetic field fluctuations leads to drastically higher precision. We use a dual
Ramsey-type measurement scheme with the ions locked on a common magnetron orbit [9], separated
by only a few hundred micrometres, to extract the coherent spin precession frequency difference.
We have measured the isotopic shift of the bound electron g factor of the neon isotopes of 20Ne9+

and 22Ne9+ to 0.56 parts-per-trillion (5.6× 10−13) precision relative to their g factors, which is an
improvement of more than two orders of magnitude compared to state-of-the-art techniques [8]. This
resolves the QED contribution to the nuclear recoil for the very first time and accurately validates
the corresponding theory. Furthermore, the agreement with theory allows setting constraints for a
fifth-force, resulting from Higgs-portal-type dark-matter interactions [10].
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The theory of QED describes the interaction
of charged particles with other fields and the va-
cuum surrounding them. State-of-the-art calcu-
lations of these effects allow for stringent tests of
fundamental physics, the search of physics bey-
ond the Standard Model or the determination of
fundamental constants [2–6]. One quantity which
can be used to perform such tests, is the mag-
netic moment of an electron bound to a nucleus,
expressed by the Landé or g factor in terms of the
Bohr magneton. It can be accessed experiment-
ally and is also predicted very precisely by theory.
Especially hydrogen-like ions, with only a single
electron left, provide a simple bound-state sys-
tem which allows for testing the Standard Model
in the extremely strong electric field of the nuc-
leus. In this case, the g factor of a free electron
is modified by the properties of the nucleus, fore-
most the additional electric field, but also para-
meters such as mass, susceptibility and the charge
radius have to be considered. However, studying
these effects explicitly proves to be difficult, since
the QED contributions and their uncertainties are
significantly larger than many of the nuclear ef-
fects, resulting in limited visibility (see Methods
2).
One idea to overcome this limitation is to com-
pare the g factors of similar ions, studying the
isotopic shift for example. Here, the common
identical contributions and their uncertainties do
not have to be considered, emphasizing the dif-
ferences due to the nucleus. In Table 1, the the-
oretical contributions and uncertainties to the in-
dividual g factors of 20Ne9+ and 22Ne9+ and their
differences are summarized.

For the calculated difference ∆g = g(20Ne9+)−
g(22Ne9+), the absolute uncertainty is decreased
by two orders of magnitude compared to the ab-
solute values, which allows resolving and testing
the QED contribution to the nuclear recoil. This
term takes the quantized size of the momentum
exchange between electron and nucleus into con-
sideration and requires a fully relativistic evalu-
ation which goes beyond the Furry picture [11]
and the usual external-field approximation [12].
Understanding and confirming this contribution

g factor (theory)
20Ne9+ 1.998 767 277 114(117)
22Ne9+ 1.998 767 263 640(117)
Difference (×10−9)

FNS 0.166(11)
Recoil, non-QED 13.283
Recoil, QED 0.043
Recoil, α(m/M) −0.010
Recoil, (m/M)2 −0.008

∆g Total theory 13.474(11)FNS

∆g Experiment 13.475 24(53)stat(99)sys

Table 1: Contributions to the g factor difference
of 20Ne9+ and 22Ne9+ and the final exper-
imental result. For the individual contri-
butions see Methods 1.8.

is essential for future g factor measurements of
heavier ions or when trying to improve upon the
precision of the fine-structure constant α [13].
Furthermore, a precise measurement of the iso-
tope shift allows searching for physics beyond the
Standard Model, by means of looking for a devi-
ation from the calculated effect. The Higgs portal
scenario in particular postulates a new scalar bo-
son, the relaxion, of unknown mass mΦ as a dark
matter candidate which would mediate an inter-
action between nucleons and electrons. The mix-
ing of such a boson with the Higgs boson, with
different coupling strengths ye and yn for electrons
and nucleons respectively, could potentially be
directly observed in the isotopic shift due to the
different number of neutrons. Specifically, such a
measurement would exhibit a strong sensitivity of
the g factor difference [10] for heavy bosons, with
a specific energy range of 20 MeV to 1 GeV due
to the close proximity of the electron to the nuc-
leus in a HCI (see Methods 1.9). This relaxion, if
found, would also provide a solution to the long-
standing electroweak hierarchy problem [14]. To
explicitly study the isotopic shift with formerly
unavailable resolution, we report on the applica-
tion of a newly developed technique to measure
the difference of g factors directly. This method
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depends on coupling two ions as a well controlled
ion crystal within the magnetic field of a Pen-
ning trap. This way, the ions are close enough
to be subject to the identical fluctuations of this
magnetic field, which otherwise are a strong lim-
iting factor for the achievable precision. We per-
formed such a measurement in the Alphatrap
setup [7]. This apparatus consists of a Penning
trap [15] in a superconducting 4-T magnet, where
the trap and all detection electronics are cooled
by liquid helium to a temperature of about 4.2 K.
By combining the magnetic field B and a suit-
able electrostatic potential, ions can be stored
almost indefinitely, limited only by the vacuum
quality. A trapped ion’s motion can be paramet-
rized by splitting the trajectory into three inde-
pendent harmonic oscillations that are related to
the free cyclotron frequency νc = qion

2πmion
B, with

the ion charge and mass qion and mion respect-
ively, via [15]:

ν2
c = ν2

+ + ν2
z + ν2

−. (1)

For this measurement on 20Ne9+ and 22Ne9+,
the modified cyclotron frequencies ν+ amount to
roughly 27 MHz and 25 MHz, the axial frequen-
cies (parallel to the magnetic field) νz to about
650 kHz and 620 kHz and both magnetron fre-
quencies ν− to 8 kHz, respectively. These frequen-
cies can be measured non-destructively via the
image currents induced by the oscillating charged
particle [16, 17]. Additionally, the presence of
the magnetic field results in an energy splitting
∆E = hνL of the ms = ±1/2 electronic spin states
with the Larmor frequency νL = geB

4πme amounting
to about 112 GHz, with the electron mass and
charge me and e, respectively. The orientation
ms of the spin with respect to the magnetic field
can be determined by means of the continuous
Stern-Gerlach effect [18] in the dedicated ana-
lysis trap (AT) (see Fig. 1). Here, in addition
to the homogeneous magnetic field B0, a quad-
ratic magnetic field gradient or magnetic bottle
B(z) = B0 +B1z +B2z

2 with B2 ≈ 45 kT m−2 is
produced by a ferromagnetic ring electrode. This
exerts an additional spin-dependent force on the

ion which results in an instantaneous shift of the
axial frequency when a millimetre-wave (MW)
photon around νL is absorbed. As this magnetic
bottle hinders precise frequency measurements,
the spectroscopy is performed in the homogen-
eous magnetic field [7] of the precision trap (PT),
where also the cyclotron frequency can be meas-
ured simultaneously to the MW excitation. The
AT is then solely used for the detection of the
spin-state and the separation of the ions. The g
factor can be extracted from the frequencies [4, 8,
19]

g = 2νL
νc

me

mion

qion

e
. (2)

Consequently, the independently measured ion
masses, as well as the electron mass, pose direct
limits on the achievable precision of absolute g
factor measurements. Additionally, the inherent
magnetic field fluctuations render it impossible
to determine the Larmor frequency coherently on
the time-scales required to accurately measure the
cyclotron frequency. This limits such measure-
ments statistically to low 10−11 relative precision
even with several months of measurement time
and renders an investigation of the small nuclear
effects unpractical.

Coupled ions
To overcome these limitations, we have developed
a novel measurement technique, based on the
principle of the Two-Ion-Balance [9, 20]. Here,
the ions are first prepared separately in the AT
to a known electron spin orientation and sub-
sequently merged by placing them in the same
potential well of the PT (about 10 min). After
cooling the axial motion of the ions individually,
they become coupled on a common magnetron
orbit due to almost identical frequencies of this
mode (∆ν− ≈ 200 mHz), while the axial and mod-
ified cyclotron motions remain uncoupled due to
their large frequency discrepancy (∆νz ≈ 20 kHz,
∆ν+ ≈ 2.5 MHz). The combined motion, as
shown in Fig. 1, can be parametrized as a super-
position of a rotation of both ions with a quasi-
static separation distance dsep around a common
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Figure 1: (A) shows the Penning-trap setup, with the coupled ions in the centre of the precision
trap. The ions are prepared on a common magnetron orbit, with a separation distance
of dsep ≈ 400 µm and a common mode rcom < 100 µm. (B) The cyclotron radius of each
ion is cooled to about rp = 3 µm and the axial amplitude to rz = 18 µm when in thermal
equilibrium with the resonator circuit at T = 4.2 K. (C) shows the pulse scheme of MW
irradiation. (D) shows the change of axial frequency after each attempt to induce a spin
transition. Here, 20Ne9+ was found to be in the ”up” state, 22Ne9+ in the ”down” state
after the measurement sequence, as can be deduced by the observed change. After several
repetitions of such cycles, the coincidental behaviour of the spin-transition rate modulation
P (t) is fitted as shown in (E).

guiding centre on a radius rcom and a rotation of
this guiding centre around the trap centre. The
coupling interactions have been mathematically
described and used for mass comparison measure-
ments by [9]. Now, we determine the initial values
of dsep and rcom by measuring the axial frequency
shift resulting from the Coulomb interaction of
the ions, as well as the individual absolute mag-
netron radii (merging and determining the initial
configuration takes about 10 min). Subsequently,
we are able to convert common mode into separa-
tion mode radius, ([21] see Methods 1.6) as well as
directly cool the separation mode by coupling it
to the axial mode. This way, we have full control
over all modes as the axial and cyclotron modes of
both ions can still be addressed individually. We
apply these tools to prepare the ions with a mag-

netron separation distance dsep ≈ 400 µm and a
comparably small common mode radius rcom (see
Methods 1.6, about 20 min). Now, we perform
simultaneous Ramsey-type measurements on the
electron spins by irradiating a single millimetre-
wave π/2 - pulse (see Methods 1.7) for both ions
simultaneously. We then wait for the evolution
time τevol, during which both magnetic moments
are freely precessing with their individual Larmor
frequencies and finally irradiate the second π/2 -
pulse (this takes about 5 min, including a determ-
ination of νc). Subsequently, the ions are separ-
ated again (see Methods 1.7, duration 10 min).
Finally, the cycle is completed by determining
and comparing the spin orientation to the initial
state for each ion individually in the AT again.
This whole process has been fully automatized,
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requiring about one hour to complete a cycle. In
total, we have performed 479 cycles for the main
measurement as well as 174 for the systematic er-
ror analysis. Due to the fast Larmor precession of
112 GHz, the inherent magnetic field fluctuations
lead to decoherence of the applied MW drive fre-
quency with respect to each of the individual spin
precessions already after some 10 ms as also ob-
served in Ref. [22]. However, as the ions are
spatially close together, the spins stay coherent
with respect to each other as they both experience
identical fluctuations. For each evolution time
τevol of the Ramsey scheme, the individual meas-
urement points are distributed over roughly one
period of the difference frequency ∆νL ≈ 758 Hz.
The coherent difference of the precession frequen-
cies can now be extracted by performing a max-
imum likelihood fit to the correlated spin trans-
ition probability P . Here, the ions behave identic-
ally when their individual spins are in phase, or
opposite to each other when the spins are out of
phase after the evolution time. We can therefore
define

P = p1,SF · p2,SF + p1,noSF · p2,noSF, (3)

where pn,SF and pn,noSF are the probabilities for
ion n to undergo or not undergo a spin-transition,
respectively (see Methods 1.1). This relation en-
codes the relative phases of the spins to each other
but, due to the loss of coherence with respect to
the applied microwave drive, the expected modu-
lation amplitude is only ±25%. This joint trans-
ition probability is therefore directly modulated
by the differential phase of the spins and follows
the form

P (t) = A cos(2π(νL1 − νL2) t+ φτ,0) + 1
2 , (4)

encoding the difference of the Larmor frequencies
∆νL = νL1 − νL2.

Results
We have performed measurements for five differ-
ent sets of evolution times and three different sep-

aration distances. Fig. 2 shows the modulated
probability of a coincidental spin transition oc-
curring for all of these measurements. To extract
the Larmor frequency difference, first the total
accumulated phase has to be unwrapped. We
perform a maximum likelihood fit with a fixed
frequency difference, fitting only the phase φτ,0
and amplitude A separately for each evolution
time. For all six measurements, the observed
amplitude is compatible with a modulation amp-
litude A = 25%, which confirms the coherent be-
haviour of the two quantum states for at least up
to τevol = 2.2 s, which is more than a factor 20
longer than the coherence time of the individual
spins with respect to an external drive. After un-
wrapping, a linear fit to those phases measured
with the separation distance dsep = 411(11) µm
as well as the calculated initial phase difference
(see Methods 1.2) is used to determine the fre-
quency difference and the statistical uncertainty.
This excludes the two sets with different separa-
tion radii, which are used for systematic analysis.
Systematic shifts are expected to arise due to the
small imbalance of the coupled magnetron motion
which is a consequence of the different ion masses.
This causes the ions to experience slightly differ-
ent magnetic fields and alters their individual Lar-
mor frequencies. The two main contributions are
firstly this radial imbalance in combination with
a residual B2 and secondly a slight shift of the
axial equilibrium position caused by a residual de-
viation from the perfect symmetry of the electro-
static trapping potential, that leads to an unequal
change of the Larmor frequencies in the presence
of a linear axial B1 field gradient. The combined
systematic shift has been evaluated (see Methods
1.3) to 6(5)× 10−13 relative to the mean Larmor
frequency. We specifically stress that our method,
while currently experimentally limited by mag-
netic field inhomogeneities, could be significantly
improved by implementing active compensation
coils for B1 and B2 [23], possibly extending the
precision to the 10−15 regime. The bottom plot
of Fig. 2 shows the residual deviation of each
extracted phase with respect to the final fre-
quency difference and uncertainty, corrected for
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Figure 2: The top six figures show the individual measurements. The measurements highlighted in
grey do not contribute to the statistical uncertainty of the final result and are only used
to confirm and correct for systematic effects. The bottom part shows the residuals with
respect to the final frequency, with the 1σ statistical uncertainty being illustrated in the
shaded confidence interval. The initial phase (green) stems from numerical calculation.

this systematic shift. The grey highlighted data
points are for the two measurements performed
at a different separation distance, corrected for
their expected systematic shift. The agreement
of these measurements clearly confirms the sys-
tematic correction independently from the calcu-
lated correction derived from independent single
ion measurements. The frequency difference of
∆νL = 758.752(30)stat(56)sys Hz, which corres-
ponds to ∆g = 13.475 24(53)exp(99)sys × 10−9 is
in perfect agreement with the theoretical calcu-
lation of ∆g = 13.474(11)FNS, limited in preci-
sion solely by the uncertainty of the charge ra-
dius difference (finite nuclear size) of the isotopes
δ〈r〉 = 0.0530(43) fm [24]. Taking theory as an

input instead, our result can thus be applied to
improve upon the precision of the charge radius
difference by about one order of magnitude δ〈r〉 =
0.0533(4) fm.
With the agreement between theory and our res-
ult, we are also able set constraints on the scale of
the yeyn coupling constants which are applied in
the new physics (NP) search in the Higgs portal
scenario. The main difference of our technique
compared to the King approach, as for example
applied in Ref. [25], can be seen in the range of
50 me < mφ . 2000 me. There, the new physics
contribution is cancelled in the large boson mass
regime but not in this present approach. Without
having to rely upon King plot linearity [26, 27],
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this offers a much more direct approach for the
search of new physics. The complete range of ap-
plied bounds is shown in Fig. 3.

Conclusions & Outlook
We have demonstrated and applied our novel
method to directly measure a g factor difference
coherently to unprecedented precision. This is a
direct test and validation of the hitherto untested
QED contribution to the nuclear recoil and paves
the way towards further high-precision measure-
ments on heavier ions where this contribution be-
comes even larger. Alternatively, we are able to
improve upon the precision of the charge radius
difference by about one order of magnitude using
this method, which could be similarly applied to
other systems. Additionally, we have applied the
result of this single isotopic shift measurement to
verify and impose limits on the parameters for the
new physics search via the Higgs portal mechan-
ism.

Furthermore, this method provides a crucial
step towards accessing the weighted difference
of g factors [13, 28], which has the potential to
significantly improve upon the precision of the
fine-structure constant α. Here, the difference

between two ions of different nuclear charge Z
will have to be measured for both their hydrogen-
like (1s) and lithium-like (2s) states using this
method. Furthermore, a single absolute g factor
of low 10−11 precision is required when choosing
ions of the medium Z range, which has already
been shown to be experimentally feasible [4].
However, the theoretical calculation of this g-
factor has to achieve similar precision which will
still require significant work and time.

Finally, the possibility to directly compare
matter versus antimatter with highly suppressed
systematics should be investigated. This method
could possibly be applied to directly compare
the anti-proton and H− g factors. In this case,
the Larmor frequency difference would be mostly
defined by the electronic shielding of the H− ion,
which would have to be calculated to similar
precision as shown for 3He [29]. Similar to the
mass comparison that was already performed
[30], this could enable a direct g factor compar-
ison with significantly reduced systematic effects.
If a further comparison of proton and positive
anti-hydrogen H+ becomes experimentally feas-
ible in the future [31], even the uncertainty of the
shielding could be dramatically reduced as well.
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1 Methods

1.1 Fitting of Larmor frequency difference
To derive the fitting function of the correlated spin behaviour of the two ions, we first assume that
both ions have been prepared initially in the spin-down state, indicated as ↓. The probability to find
each ion individually in the spin-up state (↑), then follows the probability of a Rabi oscillation with
the frequency of the difference between the ion’s Larmor frequency ωL1 or ωL2, respectively, and the
common microwave drive frequency ωD. The probability to find both ions after the measurement
sequence in the spin-up state follows as

P (↑, ↑) = cos
(1

2(ωL1 − ωD)τevol

)2
· cos

(1
2(ωL2 − ωD)τevol

)2
(5)

=
[1
2

(
cos

(1
2(ωL1 − ωL2)τevol

)
+ cos

(1
2(ωL1 + ωL2 − 2ωD)τevol

))]2
. (6)

Similarly, the probability to find both ions in the spin-down state can be written as

P (↓, ↓) = sin
(1

2(ωL1 − ωD)τevol

)2
· sin

(1
2(ωL2 − ωD)τevol

)2
(7)

=
[1
2

(
cos

(1
2(ωL1 − ωL2)τevol

)
− cos

(1
2(ωL1 + ωL2 − 2ωD)τevol

))]2
. (8)

Both cases have to be considered, as we cannot perform a coherent measurement of the individual
Larmor frequencies with respect to the microwave drive, the information about the individual spins
is only encoded in the common behaviour. Therefore, we have to look at the combined probability
of both ions either ending up both in the spin-up or spin-down state (case 1, see Fig. 4), or the
complimentary case, where the two spins behave differently, with one ion in the spin-up state, the
other ending in the spin-down state. The joint probability is given by

P (t) = P (↓, ↓) + P (↑, ↑) = 1
2 cos

(1
2(ωL1 − ωL2) t

)2

+ 1
2 cos

(1
2(ωL1 + ωL2 − 2ωD) t

)2

︸ ︷︷ ︸
1/2

(9)

= 1
4 cos((ωL1 − ωL2) t) + 1

2 , (10)

where, due to the loss of coherence with respect to the drive frequency, the second term in equation
9 averages to 1/2. The same formula can be derived for any known initial spin configuration.

1.2 Calculation of the initial phase
As our method relies on a single external drive for this specific measurement, used to drive both
spins simultaneously, the drive has to be applied at the median Larmor frequency. This results in an
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Figure 4: Illustration of two of the possible outcomes of the measurement for an initial configuration
with both ions in spin-down state. The decoherence of the spins with respect to the
microwave drive leads to a reduction in visibility, which is not included in this illustration.

additional phase difference that is acquired during the π/2 - pulses. We have determined this phase to
be Φinit =35.8(50)° using a numerical simulation. Here, we use the knowledge of the Rabi frequency
as well as the uncertainty of the magnetic field determination, which leads to an effective jitter of
the microwave drive from cycle to cycle. The simulation is performed for different evolution times,
extrapolating to the phase that would be measured for zero evolution time. Although the phase that
we can extract from the measured data as a cross-check is consistent with this prediction, we still
assign an uncertainty of ± 5° to the simulation.
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1.3 Combined systematic shifts on ∆g of coupled ions with uncertainty of
cancellation

Here, we evaluate the total systematic shift and its uncertainty for this method, specifically for the
measurement case of 20Ne9+ and 22Ne9+. For this approach, we consider only a separation distance
and no common mode. For small common mode radii rcom ≤ 100 µm which we give as an upper
limit, the systematic effects discussed here are actually further reduced [21]. We have to consider
multiple individual measurements performed with single ions to characterize these frequency shifts
and experimental parameters. More explanation on the methods used can be found in [7], the
individual frequency shifts are derived in [32]. We define our electric potential, and specifically the
coefficients Cn as

Φ(r, θ) = Vr
2

∞∑
n=0

Cnr
n

dnchar
Pn(cos(θ)), (11)

with applied ring voltage Vr, the characteristic trap size dchar and the Legendre polynomials Pn. The
magnetic field inhomogeneities B1 and B2 are defined as

~B1 = B1

(
z ~ez −

r

2 ~er
)

(12)

~B2 = B2

[(
z2 − r2

2

)
~ez − zr~er

]
. (13)

First, we consider the two main axial frequency shifts that depend on the magnetron radius of an
ion:

∆νz
νz

∣∣∣∣∣
C4

= −3
2

C4

C2d2
char

r2
− (14)

∆νz
νz

∣∣∣∣∣
C3

= 9
8

C2
3

C2
2d

2
char

r2
−. (15)

If the shift of νz is measured to be zero for any radius r−, these two shifts cancel and we can
conclude that C4 = 3

4
C2

3
C2

. As it is typically not feasible to tune this for arbitrary radii, especially
since higher orders will have to be considered as well for larger radii, we allow a residual ηel,r− , which
includes both, the residual observed shift as well as all neglected smaller contributions. This is a
relative uncertainty, scaling with r2.

∆νz
νz

∣∣∣∣∣
el

= 9
8

C2
3

C2
2d

2
char

r2
− −

3
2

C4

C2d2
char

r2
− = ηel,r− (16)

Similarly, we consider all frequency shifts that depend on the cyclotron radius r+ of an ion:

∆νz
νz

∣∣∣∣∣
C4

= −3
2

C4

C2d2
char

r2
+ (17)

∆νz
νz

∣∣∣∣∣
C3

= 9
8

C2
3

C2
2d

2
char

r2
+. (18)

The electrostatic contributions are identical to those for the magnetron mode, and per assumption
above will also combine to the same ηel,r+ , scaling with the cyclotron radius. However, we have to
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consider the additional terms that stem from the magnetic field inhomogeneities which are sizeable
in this mode due to the significantly higher frequency:

∆νz
νz

∣∣∣∣∣
B2

= B2

4B0

ν+ + ν−
ν+ν−

ν+r
2
+

≈ B2

B0

ν2
+

2ν2
z

r2
+

(19)

∆νz
νz

∣∣∣∣∣
B1

= − 3B1C3νcν+

4B0C2dcharν2
z

r2
+

≈ −
3B1C3ν

2
+

4B0C2dcharν2
z

r2
+.

(20)

Additionally, for large cyclotron excitations we have to consider the relativistic effect of the mass
increase, which also slightly shifts the axial frequency:

∆νz
νz

∣∣∣∣∣
rel.

= − 3B1C3νcν+

4B0C2dcharν2
z

r2
+ (21)

The combined shift depending on magnetic inhomogeneities can be expressed as

∆νz
νz

∣∣∣∣∣
mag

=
(
B2

B0

ν2
+

2ν2
z

−
3B1C3ν

2
+

4B0C2dcharν2
z

)
r2

+ = ηmag. (22)

While we cannot currently tune these contributions actively (which could be implemented by
using active compensation coils [23]), we can slightly shift the ion from its equilibrium position to a
more preferable position along the z-axis to minimize the B2 coefficient. Doing so, we have achieved
frequency shifts of vz close to zero for any cyclotron excitations as well, which means these terms have
to cancel as well. We will still allow for another residual error from higher orders, as well as a small
residual shift, defined as ηmag. The observed difference of the frequency shift between cyclotron and
magnetron excitations ηmag +ηel,r+ +−ηel,r− can be used to cancel the identical electric contributions
ηel,r+ and ηel,r− when measuring at the same radius. If we solve this combined equation for C3, we are
left with only the magnetic field dependent terms B1 and B2, which is what the Larmor frequency
difference is sensitive to

C3 = 2
3
B2C2dchar

B1
− 4

3
B0C2dcharv

2
z

B1ν2
+r

2
+

ηmag︸ ︷︷ ︸
ξ

= 2
3
B2C2dchar

B1
− ξ.

(23)

Now, instead of looking at frequency shifts of individual ions, we consider the effects on coupled
ions. Due to their mass difference, the coupled state is not perfectly symmetrical but slightly distorted
due to the centrifugal force difference. In the case of the neon isotopes, this leads to a deviation of
δmag = 0.87%, with the definition of r1 = dsep

(1−δmag)
2 and r2 = dsep

(1+δmag)
2 , when choosing ion 1 to

be 20Ne9+ and ion 2 as 22Ne9+. Consequently, the frequency difference νL1 − νL2 will be positive,
as the g factor (and therefore the Larmor frequency) of 20Ne9+ is larger than for 22Ne9+ We now
consider the axial position shift as a function of the slightly different r2

−. This is given by
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∆z = 3
4

C3

dcharC2
r2
−. (24)

Now we want to express all frequency shifts in terms of νL, which is to very good approximation
only dependent on the absolute magnetic field, first considering only the effect of B1 and all shifts
along the z-axis:

∆νL
νL

∣∣∣∣∣
B1

= ∆zB1

B0
. (25)

The difference of the shift for the individual ions can then be written as

∆(∆νL)
νL

∣∣∣∣∣
B1

= ∆νL1 −∆νL2

νL

= (∆z1 −∆z2) B1

B0

= 3
4
C3

C2

B1

B0dchar

(
r2

1 − r2
2

)
=
(

1
2
B2

B0
− 3

4
B1ξ

B0C2dchar

)
(r2

1 − r2
2)

=: νrelL,B1 .

(26)

We have now the additional uncertainties all summarized in the term scaling with the above-
defined factor ξ. The final shift to consider is the same radial difference as mentioned before in the
presence of B2. This leads to additional individual shifts in the νL of the ions as

∆νL
νL

∣∣∣∣∣
B2

= −B2

2B0
r2. (27)

As a relative shift with respect to the measured Larmor frequency difference, this can be written
as

∆(νL)
∆νL

∣∣∣∣∣
B2

= ∆νL1 −∆νL2

νL

= −1
2
B2

B0

(
r2

1 − r2
2

)
=: νrelL,B2 .

(28)

Combining these shifts, νrelL,B2 and νrelL,B1 , results in
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∆(∆νL,tot)
νL

= νrelL,B1 + νrelL,B2

=
[

1
2
B2

B0
− 3

4
B1ξ

B0C2dchar
− 1

2
B2

B0

] (
r2

1 − r2
2

)
= −3

4
B1

B0C2dchar
ξ
(
r2

1 − r2
2

)
= −3

4
B1

B0C2dchar

4
3
B0C2dcharv

2
z

B1ν2
+r

2
+

ηmag
(
r2

1 − r2
2

)
= − v

2
z

v2
+

ηmag
r2

+

(
r2

1 − r2
2

)
= 6× 10−13.

(29)

We find that, in the ideal case where neither magnetron nor cyclotron excitations produce shifts
of the measured axial frequency vz, the final difference of the Larmor frequency is also not shifted
at all. Here, we use the worst case, with a measured combined relative shift for ηmag

r2
+
≈ 125 mHz

560 µm2 .
This corresponds to a systematic shift of ∆(∆νL,tot)

∆νL,tot = 6× 10−13 which we did correct for in the final
result. This been confirmed by performing two measurements on different separation distances, of
dsep = 340 µm and dsep = 470 µm. Both measurements have been in agreement after correcting
for their respectively expected systematic shift. The uncertainty of this correction of 5× 10−13 has
been evaluated numerically by combining the uncertainties of ηmag and the radii intrinsic to its
determination, an uncertainty of δmag and the potential of a systematic suppression of the systematic
shift by a residual common mode radius.

1.4 Different axial amplitudes
The measurement is performed by first thermalizing the 20Ne9+, then increasing the voltage to bring
the 22Ne9+ into resonance with the tank circuit. This will slightly decrease the axial amplitude of
the 20Ne9+, which nominally has the larger amplitude when cooled to the identical temperature,
compared at the same frequency due to its lower mass. The residual difference in amplitude will lead
to a further systematic shift in the presence of a B2, which has been evaluated to about 3× 10−14

and can therefore safely be neglected at the current precision.
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1.5 Coupling the ions
After determining the spin orientations of the individual ions, one ion is excited to a magnetron
radius rm ≈ 600 µm. The ions are now transported into electrodes next to each other, with only a
single electrode in between to keep them separated. Subsequently, this electrode is ramped down as
quickly as experimentally possible, limited by DC filters to a time constant of 6.8 ms to keep any
voltage change adiabatic compared to the axial frequencies of several 10 kHz. The potentials are also
optimized to introduce as little axial energy as possible during this mixing.

1.6 Preparing the ions for measurement
After the ions are mixed, both ions are brought into resonance with the tank circuit one at a time
by adjusting the voltage to repeatedly cool their axial modes. Once thermalized, the axial frequency
is automatically measured and adjusted to the resonance frequency. From the observed shift in axial
frequency compared to a single cold ion, the separation distance dsep of the ions can already be
inferred, without further information about the common mode however. At this point, both ions
are cooled in their respective cyclotron motions via sideband coupling [16]. The common mode
radius rcom of the coupled ions can be measured by applying a C4 field contribution, causing the
axial frequency to become dependent on the magnetron radius. With the amplitudes of the axial
and reduced cyclotron motion being small, this frequency shift allows for determining the RMS
magnetron radius of each ion. If the common mode is large, the modulation of the magnetron
radius, due to slightly different frequencies of separation and common mode, will lead to visible
sidebands due to the axial frequency modulation.
For small common mode radii, we will simply measure half the separation radius for each ion. In
combination with the known separation distance, the common mode radius can now be determined,
however due to limited resolution of the axial frequency shift and the quadratic dependency, rcom ≈√
r2
rms − (1

2dsep)2, a conservative uncertainty after the ion preparation of rcom = 0(100) µm is assumed.
For consistency, we have prepared the ions in the final state and again excited the common mode
to a known radius which could be confirmed using this method. In case of a large initial common
mode, we first have to cool it. Unfortunately, addressing it directly is complicated, as the separation
mode will always be cooled as well. However, using the method described in [21], we are able to
transfer the common mode radius to the separation mode. This requires a non-harmonic trapping
field with a sizeable C4, combined with an axial drive during this process. The axial frequency will
now be modulated due to the detuning with C4 in combination with the modulated radius due to
the common mode. As the ion will only be excited when being close to the drive, we gain access
to a radius dependant modulation force, that finally allows the coupling of common and separation
mode.
Finally, with the common mode thus sufficiently cooled, we directly address the separation mode,
cooling it to the desired value. Due to the strong axial frequency change during cooling, scaling
with d3

sep and typically being in the range of ∆νz ≈ 150 Hz, the final radius cannot be exactly
chosen but rather has a distribution that scales with the power of the cooling drive used. Therefore,
one can chose to achieve more stable radii at the cost of having to perform more cooling cycles,
ultimately increasing the measurement time. We choose a separation distance dsep = 411(11) µm,
with the uncertainty being the standard deviation of all measurements as an acceptable trade-off
between measurement time and final separation distance distribution. Furthermore, while a smaller
separation distance directly corresponds to a decreased systematic uncertainty (see Methods 1.3),
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the increased axial frequency shift as well as a deteriorating signal quality of the coupled ions result
in a practical limit around dsep = 300 µm.

1.7 Measurement
Before irradiating the microwave pulses, the cyclotron frequency is measured via the double dip
technique using 22Ne9+. This measurement is required to be accurate to only about 100 mHz, which
corresponds to a microwave frequency uncertainty of about 400 Hz, which is neglectable considering
a Rabi frequency of over 2 kHz for a spin transition. The microwave pulse is applied at the median
of the Larmor frequencies of 22Ne9+ and 20Ne9+ and therefore detuned from each Larmor frequency
by about 380 Hz. This detuning is taken into account when calculating the required time for a π/2
- pulse.

Separation of ions
The strong magnetic bottle, or B2 coefficient that is present in the AT gives rise to a force dependent
on the magnetic moment of the ion. The main purpose is to allow for spin-flip detection via the
continuous Stern-Gerlach effect. Additionally, this B2 can be utilized to create different effective
potentials for the ions depending on their individual cyclotron radii r+. These give rise to the
magnetic moment µcyc = πν+qionr

2
p, which then results in an additional axial force in the presence of

a B2. To use this effect to separate the coupled ions, one of them is pulsed to rp ≈ 800 µm at the
end of the measurement in the PT. Subsequently, both ions are cooled in their magnetron modes,
resulting in a state where one ion is in the centre of the trap at thermal radii for all modes while the
other is on the large excited cyclotron radius. We verify this state by measuring the radii of both ions
to confirm the successful cooling and excitation. Now, we use a modified ion transport procedure,
with the electrode voltages scaled such that the ion with rp > 700 µm cannot be transported into the
AT but rather is reflected by the B2 gradient, whereas the cold ion follows the electrostatic potential
of the electrodes. The hot ion is transported back into the PT and can be cooled there, leaving both
ions ready to determine their electron spin orientation again, completing a measurement cycle. This
separation method has worked flawlessly for over 700 attempts.

Rabi measurement
To determine the required π/2 - pulse duration, a single ion, in this case 22Ne9+ is used. We determine
the spin orientation in the AT, transport to the PT, irradiate a single microwave pulse and check
the spin orientation again in the AT. Depending on the pulse duration, the probability of achieving
a change of spin orientation follows a Rabi cycle as

P (SF ) = Ω2
R

Ω′2R
sin2(Ω′Rπt))

Ω′R =
√

(Ω2
R + ∆Ω2

L).
(30)

Here, ΩR is the Rabi frequency and ∆ΩL the detuning of microwave drive with respect to the
Larmor frequency. With a measured Rabi frequency of ΩR = 2465(16) Hz, we can irradiate the mean
Larmor frequency of the two ions, with the difference being about 758 Hz. Thereby, we are able to
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Figure 5: The measured Rabi frequency ΩR on a single ion. The probability of inducing a change of
spin orientation is modulated by the pulse length of the microwave pulse.

use a single pulse simultaneously for both ions while accounting for the detuning to achieve a π/2 -
pulse of 101.1 µs for both ions simultaneously.

Measurement of charge radii differences
We would in principle be able to improve upon any charge radii differences, where this is the limiting
factor for the theoretical calculation of g. This holds true for most differences between nuclear spin
free isotopes, as well as differences between different atoms, provided they are either light enough
for theory to be sufficiently precise or close enough in nuclear charge Z such that the corresponding
uncertainties are still strongly suppressed.
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1.8 g factor calculation
In Table 2 the individual contributions to the g factors of both ions are shown. The main uncertainty,
the higher order two loop QED contribution, is identical for both ions and does cancel in their
difference and can therefore be neglected for the uncertainty of ∆g.

20Ne9+ 22Ne9+

Dirac value (point nucleus) 1.996 445 170 898(2) 1.996 445 170 898(2)
Finite nuclear size, FNS 0.000 000 004 762(7) 0.000 000 004 596(12)
QED, one loop (α) 0.002 325 473 294(1) 0.002 325 473 294(1)
QED, two loop (α)2 −0.000 003 547 780(117) −−0.000 003 547 780(117)
QED, ≥three loop (α)3+ 0.000 000 029 524 0.000 000 029 524
Nuclear recoil

Non-QED 0.000 000 146 093 420 0.000 000 132 810 693
QED 0.000 000 000 478 954 0.000 000 000 434 499
(α/π)(m/M) −0.000 000 000 113 2(6) −0.000 000 000 102 9(5)
(m/M)2 −0.000 000 000 044 1(2) −0.000 000 000 036 5(2)

Hadronic effects 0.000 000 000 003 0.000 000 000 003
g factor Total theory 1.998 767 277 114(117) 1.998 767 263 640(117)
Difference (in 10−9)

FNS 0.166(11)
Recoil, non-QED 13.283
Recoil, QED 0.043
Recoil, α(m/M) −0.010
Recoil, (m/M)2 −0.0076
Deformation < 0.0001
Polarisation < 0.002

∆g Total theory 13.474(11)FNS

∆g Experiment 13.47524(53)stat(99)sys

Table 2: Contributions to the calculation of the g-factors of 20Ne9+ and 22Ne9+ and their difference
and the final experimental result. TW = this work.
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1.9 Setting Limits on new physics

Measuring the g factor allows for high-precision access to the properties of very tightly bound elec-
trons, and hence to short-range physics, including potential new physics (NP). Bounds on NP can be
set with isotope shift data on the g factor of H-like Ne. The Higgs portal mechanism, in particular,
involves the mixing of a new (massive) scalar boson, the relaxion, with the Higgs boson. It has been
proposed as a solution to the long-standing electroweak hierarchy problem [14] with the relaxion as a
dark matter candidate [33]. Constraints on this proposed extension of the Standard Model (SM) can
be set with cosmological data, as well as with particle colliders, beam dumps, and also with smaller,
high-precision experiments (see, e.g., Ref. [34] and references therein).
The most common approach in atomic physics is to search for deviations from linearity on experi-
mental isotope shift data in a so-called King plot analysis [25, 34–38], which can be a sign of NP,
although nonlinearities can also happen within the SM [10, 26, 38, 39], which limits the bounds which
can be set on NP parameters. Here, we present constraints on NP from data on a single isotope pair.

The influence of Higgs Portal relaxions (scalar bosons) on atoms can be expressed [34, 36–38] by
a Yukawa-type potential (often called ‘fifth force’) exerted by the nucleus on the atomic electrons:

VHP (r) = −~c αHPA
e−

mφc

~ |r|

|r|
, (31)

where mφ is the mass of the scalar boson, αHP = yeyn/4π is the Higgs portal coupling constant, with
ye and yn the coupling of the boson to the electrons and the nucleons, respectively, and A is the
nuclear mass number. Yukawa potentials naturally arise when considering hypothetical new forces
mediated by massive particles. The corresponding correction to the H-like g factor is given by [10]

gHP = −4
3αHPA

(Zα)
γ

(
1 + mφ

2Zαme

)−2γ
×
[
1 + 2γ − 2γ

1 + mφ
2Zαme

]
, (32)

where γ =
√

1− (Zα)2. The mass scale of the hypothetical new boson is not known [34], apart from
the upper bound mφ < 60 GeV. In the small boson mass regime mφ � Zαme, the contribution to
the g factor simplifies to

gHP = −4
3αHPA

(Zα)
γ

, for mφ � Zαme. (33)

In the large boson mass regime mφ � Zαme, on the other hand, we obtain

gHP = −4
3αHPA

(Zα) (1 + 2γ)
γ

(
mφ

2Zαme

)−2γ
, for mφ � Zαme. (34)

We can set bounds on the NP coupling constant by comparing the measured and calculated values
of the g-factor isotope shift (see Ref. [10], and also Ref. [40] for an implementation of the same idea
with transition frequencies in atomic systems). Uncertainties from theory are a source of limitation
in this approach. The SM contributions to the isotope shift of the g factor of H-like Ne are given in
Table 2, as calculated in this work based on the approaches developed in the indicated references.
As can be seen, the largest theoretical uncertainty comes from the leading finite nuclear size correc-
tion, and is due to the limited knowledge of nuclear radii (the uncertainty on the finite nuclear size
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correction due to the choice of the nuclear model is negligible at this level of precision). We note
that the standard source for these nuclear radii is data on X-ray transitions in muonic atoms [24].
In the NP relaxion scenario, the energy levels of these muonic atoms is also corrected by the relaxion
exchange. Another source of root-mean-square charge radii and their differences is optical spectro-
scopy. The electronic transitions involved are far less sensitive to hypothetical NP than muonic X-ray
transitions. The radius difference between 20Ne and 22Ne extracted from optical spectroscopy [41]
agrees with the one determined from muonic atom data within the respective uncertainties, which
shows that NP need not be taken into account to extract nuclear radii from these experiments at
their level of precision. To conclude, for our purposes, hypothetical contributions from NP do not
interfere with the interpretation of muonic atom data for the extraction of nuclear radii.
Taking ∆gAA′theo = 1.1× 10−11 as the theoretical error on the isotope shift, it can be seen from Eq. (33)
that this corresponds to an uncertainty of ∆yeyn ∼ 7.1× 10−10 (and a 95% bound on yeyn twice as
large as this) in the small boson mass regime mφ � Zαme, which is weaker than the currently most
stringent bounds coming from atomic physics (H-D 1S-2S, [42]). In the large boson mass regime
mφ � Zαme, our bound remains weaker, but becomes more competitive, and is more stringent
than those of Ref. [25], thanks to two favourable factors. First, the nuclear charge Z in Eq. (34)
is somewhat larger than the screened effective charge perceived by the Ca+ valence electron, and
larger than the charge of the H nuclei, which also enter the scaling of the bound obtained with these
respective ions [37]. Second, when carrying out a King analysis as done in Ref. [25], one works with
two different transition frequencies, and the leading term in the hypothetical NP contribution in the
large boson mass regime, which is the equivalent of the r.h.s. of Eq. (34), is cancelled out in the
nonlinearity search, due to its proportionality to the leading finite nuclear size correction [37], leaving
the next term, which scales as (mφ/ (2Zαme))−1−2γ, as the first nonvanishing contribution.
In the present case, the g factor of a single electronic state is considered (for a single isotope pair),
and this cancellation does not occur. This leads to competitive bounds in the large boson mass
regime with the simple g factor isotope shift of H-like ions, as shown in Fig. 3 (where we used the
exact result, Eq. (32)). We compare our bounds on the coupling constant yeyn = 4παHP, to the
bounds obtained in Refs. [25, 42], through isotope shift measurements in Ca+ (Ca+ IS-NL) and H
(with nuclear radii extracted from muonic atom spectroscopy), as well as to the bounds obtained
through Casimir force (CF) measurements [43], globular cluster (GC) data [44], and a combination
of neutron scattering and free-electron g factor data ((g − 2)e · n [25]).
We also reproduce the preferred range for the coupling constant obtained in Ref. [26], through isotope
shift measurements in Yb+(Yb+ IS-NL). This range was obtained by assuming that the observed
King nonlinearity in the experimental isotope shift data is caused by NP. By contrast, all nuclear
corrections to the g factor which are relevant at the achieved experimental precision were taken into
account in our approach, allowing for an unambiguous interpretation of the experimental data.
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