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From a biological perspective, humans differ in the speed they age, and this may
manifest in both mental and physical health disparities. The discrepancy between an
individual’s biological and chronological age of the brain (“brain age gap”) can be
assessed by applying machine learning techniques to Magnetic Resonance Imaging
(MRI) data. Here, we examined the links between brain age gap and a broad range
of cognitive, affective, socioeconomic, lifestyle, and physical health variables in up
to 335 adults of the Berlin Aging Study II. Brain age gap was assessed using
a validated prediction model that we previously trained on MRI scans of 32,634
UK Biobank individuals. Our statistical analyses revealed overall stronger evidence
for a link between higher brain age gap and less favorable health characteristics
than expected under the null hypothesis of no effect, with 80% of the tested
associations showing hypothesis-consistent effect directions and 23% reaching nominal
significance. The most compelling support was observed for a cluster covering both
cognitive performance variables (episodic memory, working memory, fluid intelligence,
digit symbol substitution test) and socioeconomic variables (years of education and
household income). Furthermore, we observed higher brain age gap to be associated
with heavy episodic drinking, higher blood pressure, and higher blood glucose. In
sum, our results point toward multifaceted links between brain age gap and human
health. Understanding differences in biological brain aging may therefore have broad
implications for future informed interventions to preserve mental and physical health in
old age.
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INTRODUCTION

The world’s population is growing older rapidly. It is expected
that by 2050, every sixth living person will be aged 65 + and
every 20th person aged 80 + (United Nations, 2019). To seize
the opportunities that come with increasing longevity and the
extension of individual life spans, it is imperative to foster
successful aging, i.e., to maximize healthy and functional years
among older adults (Urtamo et al., 2019). Aging itself is
considered a risk factor for several prevalent conditions (Niccoli
and Partridge, 2012). The incidence for Alzheimer’s disease, for
instance, doubles every 5 years after age 65, ultimately affecting
more than one out of three people above age 85 (Querfurth
and LaFerla, 2010). The impeding burden by neurodegeneration
and dementia brings brain health and successful cognitive aging
into the main focus.

Aging is often accompanied by cognitive decline, particularly
in the domains of episodic memory and executive functioning
(Tucker-Drob et al., 2019). At the same time, cognitive aging
is highly heterogeneous. Individual differences in developmental
trajectories of cognitive aging are of considerable size, and
an early age-related cognitive decline in some individuals is
juxtaposed by many older adults who are able to maintain a high
level of cognitive functioning into very old age (Nyberg et al.,
2012; Lindenberger, 2014). A similar variation can be observed
regarding the trajectories of physical health, which underscores
that it is not chronological age per se that constitutes the major
risk factor for morbidity, disability, and frailty, but a decline
in tissue and organ functioning that results from a build-up
of damage and limitations in somatic maintenance that occur
throughout adulthood (Kirkwood, 2005; Ferrucci et al., 2018).
This decline can be described as biological aging (Hamczyk
et al., 2020). According to the biological aging perspective, age-
related loss of functionality and resulting frailty begin once
compensatory mechanisms are exhausted and the organism
forfeits its resilience (Ferrucci and Fabbri, 2018).

Processes of biological aging themselves, however, are gradual
and often begin long before apparent clinical manifestations.
Finding a sensitive measure for biological aging is therefore an
important step not only toward a better understanding of aging
processes, but also toward identifying individuals at high risk
for accelerated biological aging, who would benefit the most
from early interventions so as to slow its progress, to counteract
or buffer resulting functional losses, and to prolong health
over the lifespan (Ferrucci et al., 2020). Current attempts focus
predominantly on disparities between chronological age and
biological age in order to identify individuals who age particularly
fast and who would benefit from such interventions the most
(Li et al., 2020). This is commonly achieved through normative
models of biological aging that build on predictive analytics to
predict chronological age from various biological data sources
(Jia et al., 2017).

An easily applicable, effective, and robust method for such
an endeavor has been proposed and validated over the recent
years (Franke and Gaser, 2019): the brain age gap estimation
method (brainAGE). BrainAGE utilizes a common voxel-based
morphometry pipeline to train a classifier that learns to predict

chronological age from structural magnetic resonance images
(MRI). The classifier represents a normative model of brain
aging (Dosenbach et al., 2010; Cole and Franke, 2017), and once
trained, the classifier can be applied to new data so as to predict
the chronological age of an individual from his or her brain
characteristics. This prediction can reveal a discrepancy between
an individual’s chronological age and his or her brain age, as
derived from the normative training data. The estimated brain
age gap has been interpreted as accelerated or decelerated brain
aging relative to one’s chronological age. MRI-based brain age gap
has been shown to be highly reliable, applicable in both human
subjects and animal models, as well as sensitive to health variables
and risk factors, and can be derived for adults across the entire
lifespan (Franke and Gaser, 2012; Franke et al., 2013, 2014, 2016,
2018).

Over the past decade, a plethora of investigations have
linked individual differences in brain age gap to physical and
mental health traits as well as sociodemographic characteristics
(Franke and Gaser, 2019). For instance, a higher discrepancy
between brain age and chronological age has been found to be
associated with drinking and smoking behavior, higher systolic
and diastolic blood pressure, diabetes, depressive symptoms,
and lower educational attainment (Franke et al., 2013, 2014;
Steffener et al., 2016; Smith et al., 2019). Brain age gap has also
been observed to predict the conversion from mild cognitive
impairment to Alzheimer’s disease, and seems to be malleable to
interventions (Gaser et al., 2013; Luders et al., 2016; Rogenmoser
et al., 2018). Higher brain age gap is commonly observed in
neurological and psychiatric disorders such as schizophrenia,
multiple sclerosis, mild cognitive impairment, and dementia,
and has a genetic foundation that overlaps with the genetic
architecture of psychiatric phenotypes (Nenadić et al., 2017;
Hajek et al., 2019; Kaufmann et al., 2019). One major aim of
the present study is to establish brain-predicted age estimates
in a cohort that has not yet been used in brain age research,
and to replicate a set of previously reported mental and physical
health associations. The great merit of replication is to potentially
corroborate previous findings and foster their credibility through
an inevitably differing approach. Our replication attempt can
be considered a generative contribution to the field, as it will
add information concerning the generalizability and validity of
reported brain age associations.

It is an impeding question whether individuals with higher
brain age compared to their chronological age also show
signs of earlier cognitive decline. Several studies have reported
correlations between brain age gap and cognitive variables (for
a recent overview see Boyle et al., 2021), but interpretability is
still compromised by methodological issues such as small sample
sizes with reduced statistical power, confounding between brain
age gap and chronological age (Smith et al., 2019), possible alpha
error inflation through multiple null hypothesis significance
testing, unclear replicability, and complex composite measures.
Associations between brain age gap and cognitive measures in
healthy participants have been reported for general cognitive
status, verbal fluency, processing speed, and selective attention
(Franke et al., 2013; Richard et al., 2018; Smith et al., 2019;
Boyle et al., 2021), but effect sizes and also the number of tested
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cognitive variables suggest that associations are often subtle and
ability-specific. Further work on the relationship between brain
age gap and cognition is clearly needed.

Next to cognitive variables, it is currently also unclear how
brain age gap relates to motivational choices and goal priorities,
and to the future time perspective people hold for themselves.
People who lead active and enriched lives and routinely engage
in physically and intellectually demanding activities often show
higher levels of cognitive functioning throughout older age, show
less signs of brain atrophy, and are also less likely to develop
dementia (Najar et al., 2019; Casaletto et al., 2020). Making
plans for future activities has been shown to be dependent
on an individual’s global perception of their overall time left,
i.e., whether one’s own future is regarded as open-ended with
many opportunities or rather close-ended and limited (Lang and
Carstensen, 2002). An open-ended perspective has been linked to
wellbeing and lower scores of depression (Kooij et al., 2018). On
average, older adults perceive their future time as more limited
(Lang and Carstensen, 2002), and as the amount of time left in
life gets increasingly salient, motivational priorities are shifted
so that emotional goals are favored over knowledge-related goals
(Carstensen et al., 1999; Carstensen, 2006). As individuals grow
older, they may also tend to emphasize short-term over long-
term consequences of their current behavior (Orbell et al., 2004).
Interestingly, subjective age, referring to the degree to which
individuals experience themselves younger or older than their
actual chronological age, has been linked to cognitive function
in later life (Stephan et al., 2014), as well as to gray matter
volume and brain aging (Kwak et al., 2018). Similarly, future time
perspective and facets of the subjective health horizon have both
been linked to episodic memory, metabolic health (Düzel et al.,
2016) as well as to differences in specific gray matter regions of
the brain among older adults (Düzel et al., 2018b). Associations
with brain age gap, however, have not been tested before.

The present study investigates brain age gap in a subset of
participants from the Berlin Aging Study II (BASE-II, N = 355),
a developmental cohort study comprising 2,200 adult volunteers
from the greater metropolitan area of Berlin, Germany (Bertram
et al., 2014). The scope of BASE-II is to examine a broad range of
aging-related variables from different health domains including
genetics, internal medicine, immunology, psychology, sociology,
and economics. To assess brain age gap, we make use of our
recently established normative classifiers that we trained on
structural MRI data from 32,634 adults from the UK Biobank
cohort (Jawinski, 2022). Our classifiers provide estimates for the
tissue types gray matter, white matter, and combined gray and
white matter. We have decided to take into account both gray
and white matter segmentations, because brain aging has been
shown to encompass biologically distinct patterns of change,
with tissue-specific analyses possibly granting additional and
biologically more meaningful insights (Smith et al., 2020). In
line with this, our own previous analyses suggest that gray and
white matter brain age gap are genetically correlated at rG = 0.70
(SE = 0.018), indicating both shared and segregated biological
mechanisms (Jawinski, 2022). As carried out by the majority of
previous investigations, we also calculated a single “all-in-one”
brain age estimate.

Brain age gap has not been examined in the BASE-II cohort
before, which gives us the opportunity to assess the following
three research questions: First, we seek to corroborate previously
shown associations between brain age gap and physical health,
mental health, lifestyle factors, as well as socioeconomic status.
We regard this is highly relevant, because reproducibility and
replicability are key principles for scientific progress and have
been identified as major issues in the natural sciences (Begley and
Ellis, 2012; Aarts et al., 2015; Baker, 2016). Second, we seek to
add to the current literature on the link between brain age gap
and cognitive functioning. And third, we test associations of brain
age gap with aspects of an individual’s time horizon such as future
time perspective.

MATERIALS AND METHODS

In the following sections, we report how we determined our
sample size, all data exclusions, all preparation and mining, and
provide details about the measures in the study (Simmons et al.,
2012). All analysis scripts have been made publicly available on
GitHub.1

Sample
The study population consisted of older participants drawn
from the Berlin Aging Study II (BASE-II; Bertram et al., 2014;
Gerstorf et al., 2016). Participants were recruited from the greater
metropolitan area of Berlin, Germany, through advertisements
in newspapers and public transportation systems as well as
through a participant pool at the Max Planck Institute for Human
Development. In the years 2012–2014, participants completed
a comprehensive 2-day assessment program that consisted of
a medical anamnesis performed by a physician, psychosocial
surveys, a cognitive test battery, and a variety of laboratory
tests. Information were collected on vision, hearing, physical
capacity, the cardiovascular system, the muscolo-skeletal system,
the immune system, as well as nutrition, social activities, political
preferences and personality. Details on the assessment domains
and specific tests have been provided previously (Bertram et al.,
2014; Gerstorf et al., 2016). Older participants in BASE-II ranged
in age from 61 to 88 years (n = 1,591; mean = 70.1; SD = 3.7; 50.9%
female; Düzel et al., 2019). About 55% of all subjects reported a
regular intake of one up to four medications, with another 25%
reporting an intake of more than four medications (Toepfer et al.,
2019). Prevalent diseases included arterial hypertension (73%),
hyperlipidemia (76%), hypercholesterolemia (64%), diabetes
(12%), chronic kidney disease (17%), as well as coronary heart
disease (8%; Rosada et al., 2020). About 17% reported a history of
depression (Demuth et al., 2021). Education and self-rated health
were higher when compared to the general population (Bertram
et al., 2014). After completing the main assessment program,
MRI-eligible participants were invited to a structural brain
imaging session within an average time interval of 3.2 months.
Of the total 345 participants with structural T1-weighted MRI
data, we included 337 participants who provided data for at least

1https://github.com/pjawinski/base2
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one of the 27 defined criterion variables of interest (see section
“Criterion Variables”). Two participants of the MRI sample were
not included due to severe MRI motion artifacts. This resulted
in N = 335 older adults (127 female, age range: 61–82 years,
mean age = 70.5 years; SD = 3.8 years) eligible for brain age gap
analyses. Subjects gave written informed consent and received an
expense allowance. All procedures were conducted according to
the Declaration of Helsinki. BASE-II was approved by the Ethics
Committee of the Charité-Universitätsmedizin Berlin (approval
number EA2/029/09), and by the Ethics Committee of the Max
Planck Institute for Human Research. In addition, the MRI
protocol was approved by the Ethics Committee of the German
Society for Psychology (DGPs, GA Kühn 012013_6).

Magnetic Resonance Imaging Data
Acquisition
Magnetic resonance imaging (MRI) data were acquired on a
3-Tesla Siemens Magnetom Trio scanner (Erlangen, Germany)
using a 32-channel head coil. Structural T1 images were
obtained according to the ADNI protocol.2 We applied a
three-dimensional T1-weighted magnetization prepared rapid
gradient-echo sequence (MPRAGE) in the sagittal plane with
2,500 ms repetition time (TR), 4.77 ms echo time (TE), 1,100 ms
inversion time (TI), 7◦ flip angle, 140 Hz/pixel bandwidth,
256 × 256 × 176 acquisition matrix, 1 × 1 × 1 mm voxel size,
10.9 ms echo spacing, of 9:20 min duration.

Magnetic Resonance Imaging
Preprocessing
T1 images were preprocessed using the voxel-based
morphometry pipeline of CAT12 (r1364)3 for SPM12 (r7487)
in MATLAB 2018b. In brief, preprocessing involved affine and
DARTEL registration of brain images to a reference brain,
segmentation into gray matter, white matter, and cerebrospinal
fluid, correction for bias-field inhomogeneities, and modulation
of segmentations to account for the amount of volume changes
due to spatial registration. Processed images were smoothed
by applying an 8 mm full-width-at-half-maximum (FWHM)
Gaussian kernel with subsequent resampling to 8 mm3 voxel size.

Age Estimation Models
Age estimation models were trained through supervised machine
learning in a sample of N = 32,634 unrelated, white-British
ancestry individuals of the UK Biobank cohort (age range: 45–
80 years). A detailed description of the UK Biobank study
design, participants and quality control (QC) methods has
been published previously (Bycroft et al., 2018). We were
granted access to the UK Biobank dataset through application
number 42032. Details on our age estimation procedure have
been provided previously (Jawinski, 2022), and were adapted
from Franke et al. (2010). In short, we first derived gray and
white matter brain images by applying the CAT12 voxel-based
morphometry to structural T1-weighted MRI scans (equivalent

2www.adni-info.org
3http://dbm.neuro.uni-jena.de

to the procedure described in section “Magnetic Resonance
Imaging Preprocessing”). Age estimation models were then
trained in a 10-fold cross-validation manner with 100 repeats.
Therefore, we randomly split the UK Biobank imaging sample
into ten equally sized subsets. Nine subsets served as training
sample to build a statistical model that predicts the true
chronological age from MRI data. The prediction model was
subsequently applied to the MRI data of the left-out test sample
to derive brain-predicted age estimates. After the first model was
trained and applied, the next subset served as test sample, while
the other nine subsets were selected for model training. This
procedure was carried on until each subset served as test sample.
Models were trained separately on gray matter and white matter
segmentations. Before applying the machine learning algorithms,
we excluded voxels that did not show any variation across
individuals. Moreover, we carried out principal component
analyses (PCA) to remove redundant information and reduce
dimensionality. The first 500 principal components served as
feature set, which explained about 90% of the total variance
observed across individuals in gray matter and white matter
brain images, respectively. Age estimation models were trained
using three different types of machine learning algorithms: We
made use of the sparse Bayesian “Relevance Vector Machine” in
MATLAB (Tipping, 2001), and we used the gradient boosting
package “xgboost” v.0.82.1 in R with both the decision tree
and linear booster (Chen et al., 2019). To improve prediction
performance, age estimates derived from applying the three
types of machine learning algorithms (relevance vector machine,
xgboost with decision tree booster, and xgboost with linear
booster) were stacked for each tissue type and across tissue
types, respectively, by linear regression. This resulted in three
brain-predicted age estimates per subject, representing the tissue
types gray matter, white matter, and combined gray and white
matter. Our age estimation models have previously achieved
excellent prediction accuracies, with mean absolute errors (MAE)
ranging between 3.09 and 3.37 years, and correlation coefficients
between brain-predicted and chronological age ranging between
r = 0.83 (R2 = 0.68) and r = 0.86 (R2 = 0.73) in the UK Biobank
cohort (age range: 40–85 years, Jawinski, 2022). Prediction
accuracies reached similar levels (combined gray and white
matter: MAE = 3.56 years, r = 0.86) in an independent MRI
sample of about 1,900 individuals (age range: 45-80 years) of the
LIFE-Adult cohort (Loeffler et al., 2015; Engel et al., 2022).

Brain Age Gap Calculation
Gray matter, white matter, and combined gray and white matter
brain age gap estimates were calculated by subtracting the
chronological age from the predicted age of an individual. Due to
regression dilution and non-Gaussian distribution of subject ages
(Smith et al., 2019), brain age gap estimates have commonly been
observed to be confounded by age (i.e., younger participants’ ages
are systematically overestimated and older participants’ ages are
underestimated). In line with the previous literature, we removed
this bias by using age and age2 as covariates in all association
analyses (Kaufmann et al., 2019; Smith et al., 2019; Cole, 2020).
Importantly, since the brain age gap paradigm draws inferences
based on errors in model prediction, validation of brain age
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gap with other meaningful variables is essential. For the models
applied in the present study, we have previously shown that brain
age gap is under substantial genetic control, with about 30% of
the phenotypic variance explained by common genetic variation
(Jawinski, 2022). Further, we have demonstrated their excellent
test-retest reliability (ICCs ranging from 0.88 to 0.92 with a 2-year
test-retest interval) and external validity when correlated with
other UK Biobank phenotypes such as “overall health ratings”
and “fluid intelligence.”

Criterion Variables
Criterion variables were selected based on the comprehensive
review article by Franke and Gaser (2019), The review article
puts particular emphasis on brain age gap estimates derived from
applying voxel-based morphometry. It should be noted, though,
that we did not explicitly include studies based on feature type
or modality, and essentially regarded every brain MRI study
that was set out to examine associations of brain-predicted age
estimates as “brain age” study. For an overview of modalities,
procedures, and feature sets used by the studies we refer to, please
see Supplementary Table B1.

A large proportion of variables examined in the present
study have first been linked to brain age gap by Franke
et al. (2013, 2014). This concerns measures of drinking and
smoking behavior, depression, diabetes-related and metabolic
syndrome variables, as well as a variety of blood laboratory
parameters. Moreover, we considered findings on mild cognitive
impairment (Franke and Gaser, 2012; Gaser et al., 2013) and
socioeconomic status (Steffener et al., 2016; Smith et al., 2019).
Our investigation on cognitive performance variables and time
horizon was based on Smith et al. (2019) and Düzel et al. (2016,
2018b, see also Murphy and Dockray, 2018), respectively. In the
following, we provide a brief overview of all criterion variables
employed in the present study. Please see section “Assessment
of Criterion Variables” in Supplementary Material A for further
details. A list of all criterion variables with hypothesized effect
directions, references to previous articles which have provided
support for an association with brain age gap, and a list of all
MRI datasets employed by these previous studies, is shown in
Supplementary Table B1.

In a first step, we sought to confirm previously shown
associations between brain age gap and socioeconomic status,
lifestyle factors, and variables related to mental and physical
health. We considered years of education and monthly household
net income as indicators of socioeconomic status, which have
been assessed via the German Socio-Economic Panel (SOEP)
questionnaire (Goebel et al., 2019). Furthermore, we considered
smoking status as single-item variable and the three items
of the Alcohol Use Disorder Identification Test-Consumption
(AUDIT-C; Bush et al., 1998), measuring amount and frequency
of alcohol intake as well as heavy episodic drinking (binge
drinking), as indicators of lifestyle. Regarding mental health,
we took into account results derived from the Mini-Mental-
State-Examination (MMSE, Folstein et al., 1975), the Geriatric
Depression Scale (GDS, Yesavage et al., 1982), and the CES-
D screening test for depression (Lewinsohn et al., 1997). We
also considered a variety of physical health variables including

diabetes diagnosis, systolic and diastolic blood pressure, body
mass index as well as the metabolic load factor, i.e., a latent
factor score that represents the five major indicators of metabolic
syndrome (Düzel et al., 2018a). Moreover, we took into account
laboratory parameters including fasting blood glucose, post-
load glucose and hemoglobin A1c (HbA1c) as diabetes-related
criterion variables. We also calculated the Homeostasis Model
Assessment insulin resistance (HOMA-IR) index, i.e., a marker
that is predictive for metabolic syndrome (Gayoso-Diz et al.,
2013). We also considered serum concentrations of gamma-
glutamyl-transferase and uric acid, as well as tumor necrosis
factor alpha (TNF-α). In a second step, we sought to add to
the current literature on the associations between brain age gap
and cognitive performance variables. We here focused on the
digit symbol substitution test performance as a manifest score
as well as extracted factor scores of working memory, episodic
memory, and fluid intelligence (for a detailed description of
the latent factor models see Supplementary Material in Düzel
et al., 2016). Third, we tested novel potential associations with
an individual’s time horizon including scores derived from the
Future Time Perspective Scale (Carstensen and Lang, 1996)
and Consideration of Future Consequences Scale (Strathman
et al., 1994). In total, 27 criterion variables were tested for an
association with brain age gap.

Statistical Analyses
Statistical analyses were carried out using R version 4.04
(R Core Team, 2021) and MATLAB R2018a (The MathWorks
Inc., Natick, Massachusetts, United States). We performed partial
Pearson correlations between brain age gap and the 27 criterion
variables adjusting for confounding effects of sex, age, age2, and
total intracranial volume. We selected this set of confounds
in accordance with our previous UK Biobank investigation,
where each of these confounds has been shown to independently
correlate with brain age gap (Jawinski, 2022). We hypothesized
that higher brain age gap is related to overall less favorable
health characteristics and behavior, e.g., higher depression scores,
more frequent alcohol intake, higher risk for diabetes and
mild cognitive impairment, as well as lower fluid intelligence.
We formulated directed hypotheses for all criterion variables
(see Supplementary Table B1) and report one-tailed levels of
significance. The nominal level of significance was set at p < 0.05.
In order to determine the study-wise level of significance, we
calculated the effective number of independent tests based on the
eigenvalues derived from the bivariate correlation matrices of all
variables of interest. The effective number of independent tests
was estimated using R package poolr (Cinar and Viechtbauer,
2020) with method “Li Ji.” For the 27 criterion variables, the
effective number of independent tests was estimated at 22. For
the 3 brain age gap variables, the effective number of independent
tests was estimated at 2. Considering a total number of 2 by
22 independent tests, we set the threshold of significance after
multiple-testing correction at p < 0.001 (≈ 0.05/44). In line
with this, subsequent permutation-based analyses (as described
below) revealed that there was a 4.9% chance (i.e., a family-wise
error-rate of α = 0.049) to observe at least one association with
p < 0.001 among all tested associations under the null hypothesis
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of no effect. Based on our formulated hypotheses, we will consider
results for discussion that reach at least nominal significance
(p < 0.05).

Furthermore, we investigated whether the observed pattern
of associations provides overall stronger evidence than expected
under the null hypothesis of no effect. In this regard, we
considered the complete set of associations and tested for a
general inflation of test statistics, which is a particularly powerful
approach in scenarios with multiple true associations. We
previously carried out a similar procedure using permutation-
based quantile-quantile plots (Hensch et al., 2019; Jawinski
et al., 2021). In order to test for “overall stronger effects than
expected under the null,” we repeated our partial correlation
analysis between the 3 brain age gap and the 27 criterion
variables (as described above) after randomly shuffling the
empirical data. Specifically, in our data matrix (rows: subjects,
columns: 3 brain age gap and 27 criterion variables), we
randomly shuffled the rows of the 3 brain age gap variables
(altogether), while the other entries of the matrix (criterion
variables) were kept constant. In this vein, we preserved
the original correlations within the group of brain age gap
variables and within the group of criterion variables, while the
original correlations between the two groups of variables were
eliminated. After data permutation, any observed correlation
between brain age gap and the criterion variables can be
considered to occur at random. It should be noted that, before
data permutation, we calculated the residuals of all variables
by regressing them on the covariates sex, age, age2, and total
intracranial volume. Pearson correlations were then computed
based on the residualized variables and degrees of freedom
were adjusted accordingly. Data permutation was repeated 1
million times (i.e., 1 million permutations), which resulted in 1
million sets of “expected results” (i.e., each set comprised 3 × 27
correlations expected under the null). We chose to carry out 1
million permutations in order to derive reliable permutation-
based p-values while keeping the computational burden within
reasonable limits. Permutation-based p-values were derived by
comparing our “observed results” (i.e., the original correlations)
against the 1 million sets of “expected results,” as described
in the following.

First, we counted all observed associations with hypothesis-
consistent effect directions and determined the corresponding
p-value as the proportion of sets of expected results showing
the same or a larger number of associations with hypothesis-
consistent effect directions (e.g., 7,000 out of 1 million sets show
the same or a larger number of associations with hypothesis-
consistent effect directions: p = 0.007). In the same vein,
we counted all observed nominally significant associations
and determined the corresponding p-value as the proportion
of sets of expected results showing the same or a larger
number of nominally significant associations. Next, we calculated
the average of the observed correlation coefficients (via the
inverse hyperbolic tangent function also known as Fisher’s z
transformation) and determined the corresponding p-value as
the proportion of sets of expected results showing the same
or a larger average correlation coefficient. Before averaging,
the scale of criterion variables with hypothesized negative

associations was inverted, so that any positive correlation
indicated an association in the hypothesized direction and vice
versa. Ultimately, we created a permutation-based quantile-
quantile plot to visually compare the distribution of observed
p-values against the distribution of expected p-values under
the null hypothesis. The extent of deviation was quantified by
calculating the inflation factor λ over all observed associations.
The inflation factor λ is defined as the observed median χ2

divided by the expected median of a χ2 distribution with one
degree of freedom (i.e., 0.4549364 corresponding to p = 0.5). The
inflation factor λ has most commonly been used in genome-
wide association studies (Yang et al., 2011). In scenarios with
large numbers of true effects among the tested associations, λ

is expected to increase. Significance of λ was determined as the
proportion of sets of expected results showing the same or a
larger λ .

Statistical Power
We carried out sensitivity power analyses (see Lakens, 2021)
using r package pwr (Champely, 2020), with effect sizes quantified
as Pearson’s rho. Across the 27 criterion variables, the number
of observations varied between 160 and 335. Given N = 335
and α = 0.05, power calculations revealed that associations with
true effect sizes of r = 0.044, r = 0.090, and r = 0.135 were
identified with a chance of 20, 50, and 80% (1-β), respectively.
Considering the variable with the lowest number of observations
(N = 160), power calculations suggested that associations with
true effect sizes of r = 0.064, r = 0.130, and r = 0.195 were
identified with a chance of 20, 50, and 80% (1-β), respectively.
Supplementary Figure A1 shows the probabilities of associations
to reach the level of significance, given true effect sizes of up
to r = 0.4.

RESULTS

Prediction Accuracies
Figure 1 shows the distributions of gray matter, white
matter, and combined gray and white matter brain age as a
function of chronological age in BASE-II and UK Biobank
cohort. The overlapping distributions of estimates in BASE-
II and UK Biobank suggest overall good agreement of
model performances.

Due to the different chronological age range in BASE-II (61–
82 years) relative to UK Biobank (45–80 years), differences
in model accuracy parameters mean absolute error (MAE)
and rho (correlation coefficient between brain-predicted and
chronological age) are an expected finding. To compare model
accuracies across studies with different age ranges, the weighted
mean absolute error (wMAE) as ratio of MAE and age range
has been proposed (Cole et al., 2019). We observed lower
wMAEs in BASE-II when compared to UK Biobank, suggesting
lower model accuracies in BASE-II. Notably, wMAE has been
reported to vary as a function of age range, as it does not
account for the underlying age distribution (de Lange et al.,
2022). Therefore, we additionally matched UK Biobank to BASE-
II participants by chronological age and sex using R package
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FIGURE 1 | Brain-predicted (“brain age”) vs. chronological age stratified by sample and tissue class. Blue dots reflect the estimates of the BASE-II sample (N = 335),
with their fitted linear regression line shown in blue. Gray dots reflect the estimates of the UK Biobank imaging cohort (N = 32,634), among whom age estimation
models were trained and applied in a 10-fold cross-validation manner. The linear regression line fitted on the UK Biobank data is shown in gray. The identity line (y = x
line) is shown in black. At this stage, brain-predicted age estimates have not been corrected for regression dilution, that is, the overestimation of younger participant’s
ages and vice versa. Prediction accuracy (blue: BASE-II, black: UK Biobank) was quantified by MAE (mean absolute error between brain-predicted and chronological
age), wMAE (weighted MAE defined as ratio between MAE and age range) and rho (Pearson’s correlation coefficient between brain-predicted and chronological age).

MatchIt (Ho et al., 2011), and recalculated prediction accuracies
for the resulting UK Biobank subset (for details see section
“Comparison of Age Prediction Accuracies in BASE-II and
UK Biobank” in Supplementary Material A). In this matched
UK Biobank subset, correlations between brain-predicted and
chronological age ranged between r = 0.62 and r = 0.66, with
MAE ranging from 3.08 to 3.31 years. In BASE-II, correlations
ranged between r = 0.48 and r = 0.57, with MAE ranging
from 2.94 to 3.33 years. Hence, correlation coefficients suggested
overall lower prediction accuracies in BASE-II. At the same
time, we observed lower MAE that appeared to result from
a general bias toward higher brain age estimates in BASE-II
(Supplementary Figure A2). We argue that lower correlations
and overall higher brain age estimates likely result from different
MRI scanner properties and acquisition procedures, which we
address in the discussion section of this article. In sum, prediction
accuracy metrics suggested somewhat lower but still good model
accuracies in BASE-II when compared to UK Biobank.

Descriptive Statistics of Criterion
Variables
Descriptive statistics of the 3 brain age gap and 27 criterion
variables are shown in Table 1. First-order and partial correlation
matrices as well es hierarchical cluster analysis results of the
27 criterion variables are shown in Supplementary Figures
A3–5 (for intercorrelations of brain age gap variables see
Supplementary Table A1).

Brain Age Gap Associations
Partial Pearson correlations between brain age gap and the
27 criterion variables are summarized in Figure 2. We
provide an interactive version of Figure 2 with additional
information on GitHub. Detailed association results are provided
in Supplementary Table A3.

Replication
For replication analyses, we considered twenty-one variables
related to socioeconomic status, mental health, as well as physical
health. Six variables were associated at p < 0.05. In particular,
we observed that higher brain age gap is linked to fewer years of
education (white matter: r = −0.143, p = 0.007; gray and white
matter: r = −0.116, p = 0.023), lower household income (gray
matter: r =−0.131, p = 0.027; white matter: r =−0.145, p = 0.016;
gray and white matter: r =−0.158, p = 0.010), higher frequency of
six glasses of alcohol intake (white matter: r =−0.159, p = 0.023),
higher fasting blood glucose levels (white matter: r = 0.136,
p = 0.010; gray and white matter: r = 0.116, p = 0.024), as well as
higher diastolic blood pressure (white matter: r = 0.131, p = 0.015;
gray and white matter: r = 0.124, p = 0.019).

Cognition
All four cognitive domains showed significant associations
with brain age gap at the level of nominal significance. In
particular, higher brain age gap significantly correlated with lower
performance in the digit symbol substitution test (gray matter:
r = −0.171, p = 0.001; white matter: r = −0.136, p = 0.007;
gray and white matter: r = −0.176, p = 8E-4), lower episodic
memory capacity (white matter: r = −0.135, p = 0.007; gray and
white matter: r = −0.130, p = 0.009), lower working memory
capacity (white matter: r = −0.150, p = 0.003; gray and white
matter: r = −0.140, p = 0.005), as well as lower fluid intelligence
(white matter: r = −0.135, p = 0.007; gray and white matter:
r = −0.123, p = 0.013). The observed link between the digit
symbol substitution test performance and combined gray and
white matter brain age gap (r = −0.176, p = 8E-4) reached the
level of significance after stringent correction for multiple testing.

Time Horizon
Moreover, we carried out association analyses between brain age
gap and variables of an individual’s time horizon including future
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TABLE 1 | Descriptive statistics of the three brain age gap and 27 criterion variables.

N Mean SD Min Max Q1 Q2 Q3 Skew Kurt

Brain age gap

Gray matter (years) 335 0.00 2.99 −7.26 8.74 −1.89 0.08 2.06 −0.02 −0.19

White matter (years) 335 0.00 3.71 −12.07 9.49 −2.57 0.00 2.44 0.01 −0.08

Gray and white matter (years) 335 0.00 3.17 −9.03 8.15 −2.26 0.05 2.19 0.05 −0.29

Replication

Years of education 300 14.05 2.88 7 18 12 13 18 0.14 −1.29

Household income (EUR) 221 2,376 1,259 430 10,000 1,600 2,200 2,800 2.09 8.32

Mini-mental state examination 326 28.52 1.49 18 30 28 29 30 −2.46 11.75

Geriatric depression scale 327 1.15 1.64 0 10 0 1 2 2.05 5.15

CES-Depression 327 6.42 5.94 0 31 2 5 9 1.51 2.29

Smoking status 278 “Never”: 134, “stopped more than a year ago”: 117, “stopped less than
a year ago”: 3, “current smoker”: 24

Frequency of alcohol intake 163 “Never”: 3, “once a month or less”: 30, “two to four times a month”: 42,
“two to four times a week”: 40, “four times a week or more”: 48

Amount of alcohol intake 160 “One to two glasses”: 122, “three to four glasses”: 32, “five to six
glasses”: 6, “seven to nine glasses”: 0, “ten or more glasses”: 0

Frequency of 6 glasses of alcohol intake 161 “Never”: 120, “less than once a month”: 36, “once a month”: 2, “once a
week”: 3, “daily or almost daily”: 0

Diabetes diagnosis 328 controls: 294, cases: 34

HOMA-Insulin resistance 318 2.61 3.24 0.10 45.71 1.28 1.86 2.99 8.71 104.36

Hemoglobin A1c (%) 322 5.58 0.55 4.70 9.80 5.30 5.50 5.80 2.90 15.74

Fasting glucose (mg/dl) 294 96.41 21.18 67 241 86 91 100 3.45 16.93

Post-load glucose (mg/dl) 276 110.39 38.24 27 275 87 103 123 1.61 3.47

Body mass index (kg/m2) 327 26.69 3.46 18.59 40.16 24.29 26.56 28.93 0.39 0.47

Diastolic blood pressure (mmHg) 281 84.72 10.94 50 130 77 85 92 0.39 1.11

Systolic blood pressure (mmHg) 281 145.52 18.12 80 205 133 145 156 0.26 0.74

Metabolic load factor 321 0.01 0.14 −0.24 0.77 −0.08 −0.02 0.07 1.78 6.14

Gamma-glutamyl-transferase (U/L, serum) 327 30.08 29.08 6 273 16 22 33 4.84 30.49

Uric acid (mg/dL, serum) 327 5.48 1.28 2.60 9.60 4.60 5.50 6.20 0.40 0.46

Tumor necrosis factor-alpha (pg/ml) 307 0.82 3.48 0.00 47.74 0.00 0.14 0.44 10.30 124.15

Cognition

Digit symbol substitution test 324 44.93 9.78 16 90 39 44 50 0.38 1.04

Episodic memory 335 0.03 0.34 −0.90 1.04 −0.20 0.05 0.26 −0.03 −0.13

Working memory 335 0.05 0.61 −1.39 2.19 −0.36 0.07 0.46 −0.01 0.11

Fluid intelligence 335 0.03 0.71 −1.52 2.45 −0.50 0.11 0.54 −0.05 −0.18

Time horizon

Future time perspective 332 2.65 0.69 1.00 4.90 2.18 2.65 3.10 0.34 0.13

Consideration of future consequences 335 3.24 0.47 2.00 4.86 2.86 3.29 3.57 0.29 0.19

SD, standard deviation; Min, minimum observed value; Max, maximum observed value; Q1, quartile 1; Q2, median; Q3, quartile 3; Skew, skewness; Kurt, excess kurtosis.
Note that brain age gap variables were bias-corrected for sex, age, age2, and total intracranial volume. Variables “smoking status,” “frequency of alcohol intake,” “amount
of alcohol intake,” “frequency of 6 glasses of alcohol intake,” and “diabetes diagnosis” were numerically coded to range from 0 to the number of respective categories
minus 1 (e.g., 0–3 for smoking status).

time perspective and consideration of future consequences. None
of the tested associations reached the level of significance (all
p ≥ 0.269).

Evidence for Overall Stronger Effects
Than Expected Under the Null
Hypothesis
Next, we conducted a series of permutation-based analyses in
order to examine whether the observed associations provide
overall stronger evidence than expected by chance. We observed
that 19 out of 27 (p = 0.101), 23 out of 27 (p = 0.006), and

again 23 out of 27 (p = 0.006) tested associations, respectively,
showed hypothesis-consistent effect directions for gray matter,
white matter, and combined gray and white matter brain age
gap (p-values derived from 1 million permutations). In total,
across the three brain age gap variables, 65 out of 81 tested
associations (80%) showed effects in the expected direction
(p = 0.002), and 19 out of 81 (23%, p = 0.001) reached nominal
significance. Moreover, the observed mean correlations between
brain age gap and the 27 criterion variables aggregated to
r = 0.032 (p = 0.044), r = 0.066 (p = 2E-4), and r = 0.060
(p = 6E-4), respectively, and thus provided further support for an
association of brain age gap with the set of criterion variables. The
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FIGURE 2 | Partial Pearson correlations between the 27 criterion variables and gray matter, white matter, and combined gray and white matter brain age gap.
Effects of sex, age, age2, and total intracranial volume were partialled out. Only cells containing associations with p < 0.05 (one-tailed) have been assigned with
colors of the blue and red color palette. Green cells show associations not reaching nominal significance (p ≥ 0.05) but with hypothesis-consistent effect directions.
Note that the number of observations varied across the criterion measures so that stronger associations do not necessarily reflect results with lower p-values. We
provide an interactive version of this plot at https://github.com/pjawinski/base2/. TH, time horizon.

observed mean correlation across all 81 tests reached r = 0.053
(p = 0.001).

In addition, we created permutation-based quantile-quantile
plots to compare the distribution of observed p-values against
the distribution of expected p-values under the null hypothesis.
Quantile-quantile plots indicated an excess of low p-values when
compared to what would be expected by chance (Figure 3). To
quantify the extent to which the distribution of observed p-values
deviated from a random uniform distribution, we calculated λ

over all observed associations (defined as median χ2/0.4549)
and compared it against λ derived from the association results
after 1 million permutations. The observed λ values were 2.94
(p = 0.028), 5.15 (p = 7E-4), and 4.16 (p = 0.004). Please see
Supplementary Figure A6 for a quantile-quantile plot across all
81 tests (λ = 3.52, p = 0.005).

Exploratory Analysis
Association analysis between brain age gap and the employed
covariates indicated that age2 is not independently associated
with any of the three brain age gap variables (Supplementary
Table A2). In order to examine if our choice to include age2

as covariate has influenced the present statistical results, we
repeated all partial correlation analyses between the 3 brain
age gap and the 27 criterion variables without age2 serving
as covariate. This resulted in virtually identical results with
modest deviations of the observed t-statistics (Supplementary
Figure A7). Nevertheless, concerning gray matter brain age
gap, we observed two additional associations reaching nominal
significance (episodic memory: r = −0.095, p = 0.041;
working memory: r =−0.093, p = 0.045) and one additional
association reaching the study-wise level of significance (digit
symbol substitution test: r = −0.174, p = 9E-4). All other
associations supported the same inferential decisions. Signs of all
correlation coefficients remained unchanged. Results are shown
in Supplementary Table A4, which is provided along with
other post hoc analyses in Supplementary Material A, section
“Exploratory Analyses.”

DISCUSSION

Individual deviations from normative aging are a key interest in
aging research in order to understand different aging trajectories
and to inform intervention strategies toward preserving physical
and cognitive health in old age. Here, we estimated the biological
age of the brain in participants of the Berlin Aging Study-
II by applying a normative machine-learning model that was
trained on 32,634 MRI scans from the UK Biobank cohort. We
assessed the relationship between brain age gap, i.e., the difference
between an individual’s brain-predicted and chronological age,
and a total of 27 health-related criterion variables. Our analyses
revealed overall stronger evidence for an association between
higher brain age gap and less favorable health characteristics than
expected under the null hypothesis of no effect. In particular,
80% of the tested associations showed hypothesis-consistent
effect directions (50% expected under the null) and 23% reached
nominal significance (5% expected under the null). A large
proportion of significant brain age gap associations emerged
from a cluster of variables covering both socioeconomic and
cognitive performance measures (see Supplementary Figure A5
for cluster analysis results). However, individual associations
showed typically weak effect sizes, and only one association
survived a stringent correction for multiple testing, that is, the
link between combined gray and white matter brain age gap and
the digit symbol substitution test.

In the present study, a number of previously reported
associations between brain age gap and health-related variables
replicated at the level of nominal significance. First, we observed
higher brain age gap to be linked to fewer years of education and
lower household income (i.e., socioeconomic variables), which is
consistent with the findings of Steffener et al. (2016) and Smith
et al. (2019). A relationship between income and health is well-
documented in the literature (Case et al., 2002) and might be
traced back to better access to care in high-income households
and a higher frequency of stressful situations in low-income
households, which is detrimental to health. Similarly, educational
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FIGURE 3 | Permutation-based quantile-quantile plots showing the distribution of observed p-values from the association analyses (blue circles) sorted from largest
to smallest and plotted against the expected p-values under the null hypothesis (1 million permutations; one-tailed testing). The solid diagonal line reflects the mean
expected p-values (-log10 scale). The lower and upper bound of the gray shaded area represent the 5th and 95th percentile of the expected p-values. The plots
show the association results between the 27 criterion variables and gray matter, white matter, and combined gray and white matter brain age gap, respectively.
Overall, quantile-quantile plots suggest that association analyses revealed stronger evidence than expected under the null.

attainment has commonly been found to be linked to better
health, which has been attributed to economic and psychological
resources (e.g., coping skills) as well as health-oriented behavior
(Ross and Chia-Ling, 1995). Interestingly, aside from cross-
sectional associations, evidence from a recent longitudinal study
questions the view that educational attainment has beneficial
effects on the speed of aging (Nyberg et al., 2021). Although we
regard associations of brain age gap with educational attainment
and household income as plausible findings, future studies may
further elaborate their potential bidirectional interactions over
the course of life.

As mentioned above, we observed the two socioeconomic
variables (years of education and household income) to correlate
not only with each other, but also with cognitive performance
variables. In line with this, hierarchical cluster analyses suggested
these variables to group together (Supplementary Figure A5).
This is consistent with the previous use of educational attainment
as proxy phenotype for cognitive performance (e.g., Okbay
et al., 2016). Intriguingly, a large proportion of significant brain
age gap associations in the present study emerged from this
cluster, and due to the observed result consistency as well as
one association reaching the study-wise level of significance, we
regard our findings in this domain as particularly compelling.
In addition, exploratory regression analyses (Supplementary
Material A) suggested that the two socioeconomic variables
independently correlate with brain age gap, which further
strengthens the evidence for a link between this cluster of
variables and brain aging.

Further, our results corroborate that higher brain age gap
relates to alcohol consumption (Franke et al., 2013; Smith et al.,
2019; Ning et al., 2020), higher blood pressure (Franke et al., 2014;
Smith et al., 2019; Cole, 2020), and higher fasting blood glucose
levels (Franke et al., 2013). None of the other metabolic syndrome
or diabetes-related variables showed significant associations.
Noteworthy, we considered higher body mass index as less
favorable health characteristic and expected a positive association
with brain age gap, which is line with the results of Franke
et al. (2014). However, the present results rather point toward
in inverse relationship which would be consistent with findings
by Smith et al. (2019), who have demonstrated that lower body
mass index is among the strongest correlates of higher brain
age gap in the UK Biobank cohort. In general, the relationships
between body mass index, brain atrophy, and cognitive function
remains an ongoing debate (cf. Ronan et al., 2016) and requires
further elaboration.

The current study consistently linked higher brain age gap to
poorer performance in cognitive measures. Although an inverse
relationship between brain age gap and cognitive performance
has previously been suggested, reported associations have so far
been domain-specific while the exact domains have not been
unequivocally confirmed (Boyle et al., 2021). It is therefore
of note that we found consistent associations across cognitive
domains and across brain age gap estimates derived from
different tissue classes. Our results are in line with the well-
replicated association between brain age gap and processing
speed (Richard et al., 2018; Boyle et al., 2021), and provide
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additional evidence for the link between brain age gap and
working memory, episodic memory, and fluid intelligence.

Furthermore, we tested associations between brain age gap
and aspects of an individual’s time horizon including future time
perspective and consideration of future consequences. Future
time perspective has previously been linked to better episodic
memory (Düzel et al., 2016) as well as to differences in specific
gray matter regions of the brain (Düzel et al., 2018b). In addition,
the consideration of future consequences has been shown to
correlate with illness preventive and health promotive behavior
(Murphy and Dockray, 2018). Despite these previous indications,
our analysis did not reveal convincing support for an association
with brain age gap. Studies employing larger and more diverse
samples might be needed to establish a link between brain age
gap and aspects of an individual’s time horizon.

As mentioned above, we observed more hypothesis-consistent
effect directions and more nominally significant associations
than expected under the null, although only one association
survived a stringent correction for multiple testing. These results
may indicate that the true effects of bivariate associations are
generally weak, and the current study’s statistical power was too
low to identify individual associations reliably. Essentially, subtle
associations are in line with previous estimates derived from large
samples (Smith et al., 2019; Cole, 2020). In fact, the majority
of top associations reported by Smith et al. (2019) showed
effects beneath r = 0.1 in the UK Biobank cohort. Moreover,
the median reported effect size across studies that support our
current hypotheses (Supplementary Table B1) aggregates to
r = 0.09. In the present study, the probability to identify a true
effect of r = 0.09 at p < 0.05 reached about 50% (Supplementary
Figure A1). The achieved statistical power to identify individual
associations may thus be regarded as limited. In scenarios with
multiple true associations, considering the whole set of observed
test statistics may provide a more powerful approach to unravel
subtle patterns of associations. By quantifying the inflation of
test-statistics in the present dataset, we found that the overall
evidence derived from the present statistical analyses is stronger
than expected by random chance. We thus anticipate several
true associations at subthreshold significance-levels in the present
study and presume that more of them will reach significance in
future studies with higher statistical power.

In addition to deriving a single “all-in-one” brain age estimate,
we here investigated tissue-specific effects for gray and white
matter. In comparison, the majority of previous voxel-based
morphometry studies used gray matter segmentations only (e.g.,
Franke et al., 2010, 2014; Gaser et al., 2013; Koutsouleris et al.,
2014) or combinations of gray and white matter (e.g., Franke and
Gaser, 2012; Gaser et al., 2013; Cole et al., 2018). Some studies
also used separate gray and white matter segmentations as well
as other image types to derive brain age estimates (e.g., Cole
et al., 2015; Jonsson et al., 2019). Noteworthy, multiple modes
of brain age with distinct biological foundations have previously
been proposed (Smith et al., 2020), and these have been argued
to possibly grant biologically more meaningful insights when
compared to an aggregated all-in-one measure. In line with this,
our own previous work suggests both a shared and segregated
genetic architecture of gray and white matter brain age gap

(Jawinski, 2022). On these grounds, we regard the investigation
of tissue-specific effects as logical and encouraging extension
of previous works.

In the present study, we observed more convincing results for
white matter relative to gray matter brain age gap, as indicated by
a larger number of nominally significant results and a stronger
deviation of the observed p-value distribution from the null
distribution. Nevertheless, we urge to interpret the observed
differences between gray and white matter with caution, given
that there is a substantial degree of uncertainty regarding the
“true” underlying effect sizes. Bearing in mind the confidence
intervals around each point estimate, we argue that associations
do not appear very different between gray and white matter in
the present study. This might be exemplified by our exploratory
analyses, where we recalculated partial correlations without age2

serving as covariate and observed gray matter to gain upon
white matter to some extent: Although point estimates remained
virtually unchanged, there were two additional associations for
gray matter brain age gap that surpassed the nominal (episodic
memory and working memory) and one that surpassed the
study-wise threshold of significance (digit symbol substitution
test). In sum, we believe that the present findings do not
suggest a substantial heterogeneity of associations between the
3 brain age gap phenotypes and the 27 criterion variables. We
postulate that larger studies are needed to shed light on putative
differential associations.

The current study results on brain age gap in different
tissue classes are well in agreement with previous studies that
served to derive our hypotheses. This is underscored by an
excess of associations reaching nominal significance and the large
proportion of results with hypothesis-consistent effect directions.
Our results thereby corroborate previous findings and foster their
credibility, generalizability, and validity. It should be emphasized
that the majority of studies we refer to employed voxel-based
morphometry (Supplementary Table B1, references). Of these,
some reported brain age estimates for combined gray and
white matter tissue segmentations (Franke and Gaser, 2012;
Franke et al., 2013; Cole et al., 2018), while others reported
separate brain age estimates for gray and white matter (Cole
et al., 2015), or they used gray matter tissue segmentations
only (Franke et al., 2010, 2014; Gaser et al., 2013; Koutsouleris
et al., 2014). We also considered studies providing support
from surface-based morphometry and subcortical segmentations
(Steffener et al., 2016; Kaufmann et al., 2019; Ning et al.,
2020), as well as studies pursuing multimodal approaches with
structural, functional, and diffusion tensor imaging (Liem et al.,
2017; Smith et al., 2019; Cole, 2020). Despite the fact that
biological aging cannot be considered a homogenous process
across different tissue classes, there are apparent intercorrelations
between brain age gap estimates derived from different feature
sets and modalities (Smith et al., 2020). The underlying biological
mechanisms captured by different analysis procedure may
therefore contribute to the consistency across studies.

To our knowledge, pre-trained and publicly available brain
age models are still very scarce. One reason for this is that
the employed models often contain data that allow partial
reconstruction of the training dataset and, thus, they pose privacy
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issues that hamper data sharing among researchers (Hahn et al.,
2022). Shielding individual privacy is a major challenge in the
field of machine learning and artificial intelligence. Still, there
are some pre-trained models that can be accessed publicly. One
of them has been made available by the ENIGMA group and
requires uploading Freesurfer output via a web-based interface
(Han et al., 2021).4 Another pre-trained model has been made
available by Cole and colleagues (Cole et al., 2018).5 Cole and
colleagues’ analysis pipeline is very similar to our own approach,
using voxel-based morphometry with gray matter and white
matter segmentations plus cerebrospinal fluid. In the present
study, we decided to use our own age estimation models as
they have been trained on an exceptionally large dataset (32,634
individuals). Using our own models also enabled us to ensure
that no research participants’ privacy or consent is compromised
(as may have been the case with uploading the data). Another
advantage to be noted is that using custom models—and thereby
introducing some degree of methodological heterogeneity—
further strengthens the robustness and generalizability of results
derived in this field of research. Still, we believe that future
research will tremendously benefit from establishing shareable
age estimation models as proposed by Hahn et al. (2022), as they
facilitate research in small datasets, promote consensus-building
and increase interpretability of results.

Brain age gap has frequently been interpreted as accelerated
or decelerated biological aging. In line with this notion, an
accelerated progression of brain aging has been shown in mild
cognitive impairment and Alzheimer’s disease by comparing
follow-up and baseline assessment (Franke and Gaser, 2012).
However, brain age gap may also reflect stable individual
differences that emerge at an ontogenetically early period
and are carried into old age (Vidal-Piñeiro et al., 2021). In
general, researchers should be cautious to draw inferences
about intraindividual variation (within-person differences) from
interindividual variation (between-person differences; Molenaar,
2004; Schmiedek et al., 2020) Further longitudinal approaches are
needed to clarify whether brain age gap captures constant, early
formed brain characteristics carried into age, or rather differences
in the speed of aging over lifespan.

A long-term goal of biological aging research is to
develop tailored interventions based on biological instead
of chronological age. The feasibility of an accurate real-time
brain age estimation framework for use in routine clinical MRI
examinations has only recently been shown (Wood et al., 2022).
Indications on brain atrophy derived from such a screening tool
may help to identify individuals with poor health outcomes and
guide clinical decision-making. Nevertheless, the small effect
sizes observed in the current and in previous investigations
raise the questions how this evidence may inform personalized
treatment strategies. In this regard, we believe that whole-
brain age estimates may provide valuable indications for an
individual’s overall health status with an emphasis on capturing
neurological, psychological, and cognitive traits. However,
follow-up examinations are required to identify particular

4https://www.photon-ai.com/enigma_brainage
5https://github.com/james-cole/brainageR

patient needs. To take a further step toward individualized
medicine, we believe that deriving cell, tissue, region, function
and modality-specific age estimates may be an encouraging
strategy to identify health domains that require particular care
and guide protective interventions.

Limitations
Several limitations to our study need to be addressed. First,
BASE-II is a convenience sample comprising above-average
healthy participants and our results may thus not generalize
to more vulnerable groups of the population. Healthy samples
also imply lower variances in health-related variables, so that
observed effect sizes may be lower and statistical tests more
conservative when compared to tests in samples representative
for the general population. More heterogenous samples may
facilitate the identification of mental and physical health variables
affected by, or contributing to, brain age gap.

Further, our results may not generalize across other age
groups, e.g., younger adults, among whom brain atrophy,
cognitive decline and civilization diseases may be less prevalent.
Several associations may even be speculated to be reversed in
childhood and adolescence, where lower relative brain age could
reflect delayed brain maturation and may therefore be associated
with lower cognitive performance metrics. The number of brain
age studies in younger cohorts is just increasing (Brouwer et al.,
2020; Hong et al., 2020; Ball et al., 2021; Cropley et al., 2021;
Hedderich et al., 2021), so that more evidence is to be expected
in the upcoming years. Along this way, other biological aging
indicators such as telomere length and DNA methylation status
may additionally advance our understanding of aging processes
and could aid to identify individuals that would benefit from
interventions (Henje Blom et al., 2015; Vetter et al., 2019; Marini
et al., 2020).

Moreover, we here applied a cross-sectional and entirely
correlative design which precludes any inference on temporal
ordering and causality. While it seems intuitive that higher brain
age gap results from unhealthy lifestyle choices such as smoking
habits or alcohol consumption and results in cognitive decline,
our data cannot rule out other causal directions. While it has been
shown that brain age gap can predict later cognitive decline in
patients with mild cognitive impairment and Alzheimer’s disease
(Franke and Gaser, 2012), there is also evidence that higher
brain age gap in midlife is preceded by a decline in cognitive
functioning from childhood onward (Elliott et al., 2019). The
BASE-II cohort is followed in a longitudinal design and we hope
to derive more conclusive evidence from within-person repeated
assessments that track how study participants age.

A further limitation refers to the lower accuracies of the age
estimation models in BASE-II when compared to UK Biobank.
Specifically, gray matter models appeared to systematically
overestimate participants’ ages (reflected by a positive shift
of the regression intercept), although the correlation between
brain-predicted and chronological age suggested that between-
subject differences were captured very well. In comparison,
white matter models only showed a modest trend toward
overestimation, while the respective correlation coefficient
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suggested a more pronounced drop in capturing between-
subject differences. While age estimation models generalize
across scanning hardware and field strength (Franke and
Gaser, 2012), prediction accuracies tend to be lower when
training and test dataset come from different cohorts (Liem
et al., 2017). For our own cross-validated UK Biobank models,
we have previously shown high prediction accuracies when
applied to a large external MRI dataset of 1,900 subjects
of the LIFE-Adult cohort (Jawinski, 2022). Noteworthy, the
UK Biobank, LIFE-Adult and BASE-II cohort studies acquired
brain-images on 3T Siemens scanners with 32-channel head
coils and MPRAGE sequences. However, the three cohort
studies employed different scanning systems (Skyra, Verio,
and Trio), with varying acquisition duration (5:20, 5:06, and
9:20 min), relaxation time (TR; 2,000, 2,300, and 2,500 ms),
echo time (TE; 2.01, 2.98, 4.77 ms) and inversion time
(TI; 880, 900, and 1,100 ms). We regard these acquisition
differences as plausible reason for varying image properties that
result in diverging prediction accuracies. There may also be
other unknown, systematic sources of variation (biologically
meaningful differences between the average UK Biobank
and BASE-II participant) that may have affected prediction
accuracies in BASE-II. Essentially, training the models on a
more heterogenous dataset derived from different scanner sites
with varying acquisition protocols and hardware will likely
increase robustness and generalization performance in future
investigations (Liem et al., 2017).

Another limitation refers to the fact that our age estimation
models only consider structural T1-weighted MRI scans,
while a number of previous investigations have shown that
multimodal neuroimaging (e.g., combinations of structural
MRI, resting-state and task-based functional MRI, as well as
diffusion tensor imaging) may increase prediction accuracy
(Liem et al., 2017; Cole, 2020; Smith et al., 2020). A drawback
of achieving higher prediction accuracies through combination
of different modalities might be that biologically meaningful
associations could be diluted, as shown by Smith et al. (2020).
Therefore, it appears to remain crucial to not regard brain
aging as homogeneous process, but to identify joint and
segregated components of structural and functional change
across imaging modalities.

Our study also has the following strengths: As replication
study, we here foster the credibility of previous brain age
studies and provide evidence of generalizability and validity
of associations with health-related variables. At the same time,
we show that our previously established UK Biobank models
accurately predict chronological age in the independent BASE-
II cohort, which is a prerequisite to derive meaningful brain
age gap associations. In addition to the common approach
of deriving a single “all-in-one” brain age estimate, we here
investigated tissue-specific effects for both gray and white
matter, providing additional insights into biological aging
mechanisms. Moreover, given that studies addressing the link
between specific cognitive domains and brain age gap are
scarce, we here report on four relevant cognitive domains
implicated in aging processes. As a novel approach, we tested
potential associations of brain age gap and aspects of an
individual’s time horizon.

CONCLUSION

The present results point toward multifaceted links between brain
age gap and health-related variables. In particular, we observed a
cluster of socioeconomic and cognitive performance variables to
constitute convincing correlates of brain age gap, whose potential
bidirectional trajectories may be within the scope of future
investigations. In general, it should be noted that individual
associations appear to be weak, indicating a need for large sample
sizes to identify and quantify effects reliably. Deriving cell-type,
tissue, region, and function-specific age estimates, and their latent
factors, may be a fruitful strategy to identify health domains that
require particular attention in clinical settings, and may thereby
guide individualized protective interventions.
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