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A B S T R A C T

In this paper, we consider the problem of finding surrogate models for large-scale second-order linear time-
invariant systems with inhomogeneous initial conditions. For this class of systems, the superposition principle
allows us to decompose the system behavior into three independent components. The first behavior corresponds
to the transfer between the input and output having zero initial conditions. In contrast, the other two
correspond to the transfer between the initial position or the initial velocity and the output when no input is
applied. Based on this superposition of systems, our goal is to propose model reduction schemes that allow
to preserve the second-order structure in the surrogate models. To this aim, we introduce tailored second-
order Gramians for each system component and compute them numerically, solving Lyapunov equations. As
a consequence, two methodologies are proposed. The first one consists in reducing each of the components
independently using a suitable balanced truncation procedure. The sum of these reduced systems provides an
approximation of the original system. This methodology allows flexibility on the order of the reduced-order
model. The second proposed methodology consists in extracting the dominant subspaces from the sum of
Gramians to build the projection matrices leading to a surrogate model. Additionally, we discuss error bounds
for the overall output approximation. Finally, the proposed methods are illustrated by means of benchmark
problems.
1. Introduction

Second-order dynamical systems arise in many engineering ap-
plications, e.g., electrical circuits, structural dynamics, and vibration
analysis. In many setups, these systems are modeled by partial dif-
ferential equations having second-order time-derivatives. In order to
compute the numerical simulations, spatial discretizations are needed,
leading to high fidelity models. However, those high fidelity models
may present a high number of degrees of freedom, which are not
suitable for numerical computations. Consequently, model order re-
duction techniques are used to construct reduced-order models, that
approximate the behavior of the original system.

Most reduction techniques assume that the considered systems have
zero initial conditions. Consequently, these methods fail in approxi-
mating systems if they have inhomogeneous initial conditions. Addi-
tionally, the corresponding error estimators of these methods are not
applicable in this case. This work is dedicated to finding surrogate
models for second-order systems with inhomogeneous initial conditions
while preserving the system structure.
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(P. Benner).

In the literature, there exist several reduction methods dedicated
to systems with homogeneous initial conditions. Examples are singular
value based approaches such as balanced truncation [1–3] and Han-
kel norm approximations [4]. Additionally, there exist Krylov based
methods such as the iterative rational Krylov algorithm (IRKA) [3,5,6],
as well as, data driven methods such as the Loewner framework [7].
In this work, we consider second-order continuous-time dynamical
systems governed by the system of differential equations

𝐌𝐱̈(𝑡) + 𝐃𝐱̇(𝑡) +𝐊𝐱(𝑡) = 𝐁𝐮(𝑡), (1a)

𝐲(𝑡) = 𝐂𝐱(𝑡), (1b)

𝐱(0) = 𝐱0, 𝐱̇(0) = 𝐱̇0, (1c)

where 𝐌,𝐃,𝐊 ∈ R𝑛×𝑛, 𝐁 ∈ R𝑛×𝑚, 𝐂 ∈ R𝑝×𝑛, 𝐱(𝑡) ∈ R𝑛, 𝐮(𝑡) ∈ R𝑚 and
𝐲(𝑡) ∈ R𝑝. We assume that the position and velocity initial conditions
are not known a priori. However, they are assumed to lie in two known
subspaces 0 ∶= span

{

𝐗0
}

and VVV0 ∶= span
{

𝐕0
}

, respectively, with
𝐗0 ∈ R𝑛×𝑛𝐱0 and 𝐕0 ∈ R𝑛×𝑛𝐯0 . Hence, the initial conditions can be
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expressed as

𝐱(0) = 𝐗0𝐳0, and 𝐱̇(0) = 𝐕0𝐰0. (2)

Our main goal in this work is to find low dimensional surrogate
odels for the system (1) with inhomogeneous conditions (2) pre-

erving the second-order system structure. By structure-preserving, we
ean to determine Petrov–Galerkin projection matrices 𝐖,𝐕 ∈ R𝑛×𝑟

leading to a reduced second-order system

𝐌̂𝐱̈r (𝑡) + 𝐃̂𝐱̇r (𝑡) + 𝐊̂𝐱r (𝑡) = 𝐁̂𝐮(𝑡),

𝐲r (𝑡) = 𝐂̂𝐱r (𝑡), (3)
𝐱r (0) = 𝐗̂0𝐳̂0, 𝐱̇r (0) = 𝐕̂0𝐰̂0,

with 𝐌̂ = 𝐖T𝐌𝐕, 𝐃̂ = 𝐖T𝐃𝐕, 𝐊̂ = 𝐖T𝐊𝐕, 𝐁̂ = 𝐖T𝐁, 𝐂̂ = 𝐂𝐕,
𝐗̂0 = 𝐖T𝐗0, 𝐕̂0 = 𝐖T𝐕0, and 𝐱r (𝑡) ∈ R𝑟.

In the literature, there exist several methods enabling model order
eduction preserving the second-order structure [8,9]. These techniques
ange from balanced truncation as well as balancing related model
rder reduction [10–12] to moment matching approximations based on
he Krylov subspace method [13,14]. The recent work [15] provided an
xtensive comparison among common second-order model reduction
ethods applied to a large-scale mechanical fishtail model. Addition-

lly, [16] proposed interpolation based methods for systems possessing
ery general dynamical structures.

More recently, the authors in [17] propose a new philosophy to find
he dominant reachability and observability subspaces enabling very
ccurate reduced-order models preserving the structure. Moreover, an
xtension of the Loewner framework was proposed in [18] for the class
f Rayleigh damped systems and in [19] for general structured systems.

To the best of our knowledge, there is no dedicated work on
ystem theoretical model reduction of second-order systems with in-
omogeneous initial conditions. For the class of first-order systems
ith inhomogeneous conditions, we briefly review four proposed ap-
roaches from the literature. In [20], the authors proposed to shift
he state by the initial condition 𝐱0, e.g. the new state is given as
𝐱̃(𝑡) ∶= 𝐱(𝑡) − 𝐱0. That way, the initial condition is included in the
nput and output equation and therefore considered in the reduction
rocess. This method, however, is not straightforwardly applicable to
econd-order systems if we have a velocity initial condition and want
o preserve the second-order structure. This is because we cannot apply
his technique to the initial conditions for the displacement and the
elocity at the same time.

In [21] the input 𝐁𝐮(𝑡) is extended by the initial condition space
𝐗0. More detailed, a new input matrix 𝐁̃ ∶= [𝐁 𝐗0] and a new input
[𝐮(𝑡) 𝐳0]T are defined such that the initial condition is taken into
account applying reduction methods. As in the previous method, this
approach is not feasible if we consider velocity initial conditions in the
second-order case.

In [22], the authors’ strategy is to decompose the system into a
zero initial condition system and a system with initial conditions but
no input. The sum of the two corresponding outputs provides the
original output. This superposition is used to reduce these two systems
separately. Extensions of the proposed methodology for the class of
bilinear systems is proposed in [23,24] based on different splittings.

A recent approach [25] proposes a new balanced truncation proce-
dure based on the shift transformation on the state. This transformation
is depending on design parameters allowing some flexibility and en-
abling the generalization of the methodologies proposed in [21,22].
Additionally, those parameters can be optimized, leading to accurate
reduced-order models.

In this paper, the superposition ideas in [22] are extended to the
class of second-order systems. For this class, we show that, due to the
superposition principle, the original system can be decomposed into
three subsystems. The first subsystem corresponds to the map between
the input 𝐮(𝑡) and the output while the initial conditions are set to zero.
Additionally, the second subsystem corresponds to the output resulting
2

from the position initial condition 𝐱(0) and the third one corresponds
to the output obtained using the velocity initial condition 𝐱̇(0). Hence,
we analyze the three corresponding subsystems separately.

Based on the frequency domain representation of these subsystems,
that are introduced in this paper, we design tailored controllability and
observability Gramians related to the input and the initial conditions.
These second-order Gramians are related to the initial displacement
and initial velocity, and the underlying theory represents the main
novelty of this work. They can be seen as valuable tool for describing
the controllability spaces corresponding to the initial conditions as they
allow to preserve physically meaningful second-order structures.

Here, two model reduction schemes are proposed. The first one
consists in reducing each of the components independently using a
suitable balanced truncation procedure. Hence, the sum of these re-
duced systems provides an approximation of the original system. As a
consequence, an advantage of this approach is that the reduced dimen-
sions and therefore the accuracies can be chosen flexibly. The second
proposed methodology consists in extracting the dominant subspaces
from the sum of Gramians to build the projection matrices leading to
one surrogate model.

The rest of the paper is organized as follows. In Section 2, we
present balanced truncation for first and second-order systems. After-
wards, in Section 3, we introduce a superposition methodology for the
second-order system (1). In Section 4, tailored Gramians for inhomo-
geneous second-order systems are derived. Based on these Gramians,
two model reduction schemes are proposed in Section 5. Finally, Sec-
tion 6 provides the resulting error estimation and in Section 7, the
methodologies are illustrated in two numerical examples.

2. Balanced truncation

In this section, we briefly present a balanced truncation method for
first-order and second-order systems having zero initial conditions.

2.1. First-order systems

We consider the first-order dynamical system with zero initial con-
ditions
E𝐳̇(𝑡) = AAA𝐳(𝑡) +BBB𝐮(𝑡),
𝐲(𝑡) = CCC𝐳(𝑡),
𝐳(0) = 0,

(4)

ith AAA , E ∈ R𝑁×𝑁 , BBB ∈ R𝑁×𝑚, CCC ∈ R𝑝×𝑁 , 𝐳(𝑡) ∈ R𝑁 , 𝐮(𝑡) ∈
𝑚, 𝐲(𝑡) ∈ R𝑝. We assume that the system is asymptotically stable,

.e. all eigenvalues 𝜆 of the matrix pencil AAA − 𝜆E fulfill Re(𝜆) < 0.
The goal of balanced truncation is to find a reduced-order model

hat approximates the input–output behavior of (4). We recall the
aplace transform L{𝐰} of a function 𝐰 defined for positive values as

(𝑠) ∶= L{𝐰}(𝑠) = ∫

∞

0
𝐰(𝑡) exp(−𝑠𝑡)d𝑡.

he Laplace transform satisfies the initial condition property

{𝐰̇}(𝑠) = 𝑠L{𝐰}(𝑠) − 𝐰(0).

pplying the Laplace transform to system (4) provides

(𝑠) = CCC
(

AAA − 𝑠E
)−1 BBB𝐔(𝑠),

here 𝐘 and 𝐔 are the Laplace transforms of 𝐲 and 𝐮. The mapping
(𝑠) ∶= CCC

(

AAA − 𝑠E
)−1 BBB is called transfer function.

efinition 2.1. The input-to-state mapping  and the state-to-output
apping  of system (4) are

(𝑠) ∶=
(

AAA − 𝑠E
)−1 BBB, (𝑠) ∶= CCC

(

AAA − 𝑠E
)−1 .

he corresponding controllability and the transformed observability
ramian are defined as

= 1 (𝑖𝜔)(−𝑖𝜔)Td𝜔, QQQ = 1 (−𝑖𝜔)T(𝑖𝜔)d𝜔.

2𝜋 ∫R 2𝜋 ∫R
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The Gramian  and the transformed Gramian QQQ can be computed
by solving the Lyapunov equations

AET + EAAAT = −BBBBBBT, AAATQQQE + ETQQQAAA = −CCCTCCC.

Small singular values of  and ETQQQE correspond to states that are diffi-
cult to reach and to observe. In order to truncate small singular values
of  and ETQQQE simultaneously, we transform the system such that the
transformed Gramians ̃ , Q̃QQ satisfy ̃ = Q̃QQ = 𝜮 = diag

(

𝜎1,… , 𝜎𝑛
)

,
where 𝜎1,… , 𝜎𝑛 are called Hankel singular values. This transformation
process is called balancing. Afterwards, we truncate the 𝑛 − 𝑟 smallest
Hankel singular values 𝜎𝑟+1,… , 𝜎𝑛, 𝑟 ≪ 𝑛. Therefore, we consider the
low-rank factors 𝐑𝐑T =  and 𝐒𝐒T = QQQ and compute the singular value
decomposition 𝐒TE𝐑 = 𝐔𝜮𝐗T. The resulting projection matrices that
do both balance and truncate, are

W ∶= 𝐒𝐔r𝜮
− 1

2
r , VVV ∶= 𝐑𝐗r𝜮

− 1
2

r ,

where 𝜮r ∶= diag
(

𝜎1,… , 𝜎𝑟
)

and 𝐔r and 𝐗r include the 𝑟 leading
columns of 𝐔 and 𝐗. The balanced and truncated system is then given
by

𝐳̇r (𝑡) = WWWTAAAVVV 𝐳r (𝑡) +WWWTBBB𝐮(𝑡),
𝐲r (𝑡) = CCCVVV 𝐳r (𝑡),
𝐳r (0) = 0

(5)

since WWWT
EVVV = 𝐈𝑟. For more details about standard balanced truncation,

see [1,26].

2.2. Second-order systems

Balanced truncation for second-order systems (1) with zero initial
conditions is presented in [10]. The application of the Laplace trans-
form to the second-order system (1) with zero initial conditions results
in the following transfer function:

𝐇𝚂𝙾(𝑠) = 𝐂(𝑠2𝐌 + 𝑠𝐃 +𝐊)−1𝐁.

First, we define the input-to-state and the state-to-output mapping that
result from the transfer function.

Definition 2.2. The input-to-state mapping 𝚂𝙾 and the state-to-output
mapping 𝚂𝙾 of the second-order system (1) with zero initial conditions
are

𝚂𝙾(𝑠) ∶=
(

𝑠2𝐌 + 𝑠𝐃 +𝐊
)−1 𝐁,

𝚂𝙾(𝑠) ∶= 𝐂
(

𝑠2𝐌 + 𝑠𝐃 +𝐊
)−1 .

he corresponding second-order controllability Gramian 𝐏𝚂𝙾 and observ-
ability Gramian 𝐐𝚂𝙾 are defined by

𝐏𝚂𝙾 ∶= 1
2𝜋 ∫R

𝚂𝙾(𝑖𝜔)𝚂𝙾(−𝑖𝜔)Td𝜔,

𝐐𝚂𝙾 ∶= 1
2𝜋 ∫R

𝚂𝙾(−𝑖𝜔)T𝚂𝙾(𝑖𝜔)d𝜔.

In order to reduce the second-order system (1) with zero initial
conditions, we transform it to a first-order system (4) by setting

E ∶=
[

𝐈 0
0 𝐌

]

, AAA ∶=
[

0 𝐈
−𝐊 −𝐃

]

, BBB ∶=
[

0
𝐁

]

,

CC ∶=
[

𝐂 0
]

.

The first-order system is then equivalent to the second-order system and
the corresponding transfer function is given by

𝐇𝚂𝙾(𝑠) = CCC
(

AAA − 𝑠E
)−1 BBB = 𝐂(𝑠2𝐌 + 𝑠𝐃 +𝐊)−1𝐁.

Note that there exist several first-order representation that are equiv-
alent to system (1). We compute the controllability Gramian of the
second-order system (1) with zero initial conditions using the Gramian
3

of the first-order system (4) as described in the following theorem.
Proposition 2.1. The second-order controllability Gramian 𝐏𝚂𝙾 of system
(1) with zero initial conditions is equal to the upper left block 𝐏1 of the
first-order controllability Gramian

 =
[

𝐏1 𝐏2
𝐏T
2 𝐏3

]

= 1
2𝜋 ∫R

(AAA − 𝑖𝜔E)−1BBBBBBT(AAA + 𝑖𝜔E)−Td𝜔

= 1
2𝜋 ∫R

[

−𝑖𝜔𝐈 𝐈
−𝐊 −𝐃 − 𝑖𝜔𝐌

]−1 [0
𝐁

]

⋅
[

0 𝐁T]
[

𝑖𝜔𝐈 −𝐊T

𝐈 −𝐃T + 𝑖𝜔𝐌T

]−1

d𝜔.

Proof. Applying the Schur complement provides that 𝐏1 is given by

𝐏1 = 1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1𝐁𝐁T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔. □

The matrix 𝐏𝚂𝙾 is called the position controllability Gramian. We
bserve that 𝐏𝚂𝙾 encodes the important subspaces of the map between
he input and the state of the homogeneous second-order system (1).
ence, 𝐏𝚂𝙾 spans the controllability space and is used to apply balanced

runcation in the second-order case.
The same argument is used to extract the state-to-output mapping

pace from the first-order observability Gramian QQQ =

[

𝐐1 𝐐2

𝐐T
2 𝐐3

]

. The

econd-order observability Gramian 𝐐𝚂𝙾 presented in Definition 2.2 is
qual to the velocity observability Gramian 𝐐3.

As in the first-order case we use the low-rank factors 𝐑1 and 𝐒3
with 𝐏1 = 𝐑1𝐑T

1 and 𝐐3 = 𝐒3𝐒T3 and compute the singular value
ecomposition 𝐒T3𝐑1 = 𝐔𝛴𝐗T. The resulting balancing and truncating
rojection matrices are

∶= 𝐒3𝐔r𝜮
− 1

2
r , 𝐕 ∶= 𝐑1𝐗r𝜮

− 1
2

r , (6)

where 𝜮r is the diagonal matrix containing the 𝑟 largest singular values
of 𝜮. Moreover, 𝐔r and 𝐗r include the 𝑟 leading columns of 𝐔 and 𝐗.
Projecting by 𝐖 and 𝐕 provides the reduced system (3), which requires
zero initial conditions.

3. Superposition principle for second-order systems

This section aims at decomposing the original system behavior
of the second-order system (1) into simpler subsystems. This system
decomposition will be the inspiration of the proposed model reduction
schemes.

By applying the Laplace transform to Eq. (1a) we obtain

𝐁𝐔(𝑠) = 𝐌L{𝐱̈}(𝑠) + 𝐃L{𝐱̇}(𝑠) +𝐊L{𝐱}(𝑠)
= 𝐌(𝑠2𝐗(𝑠) − 𝑠𝐱(0) − 𝐱̇(0))

+ 𝐃(𝑠𝐗(𝑠) − 𝐱(0)) +𝐊𝐗(𝑠)

where 𝐗 is the Laplace transform of 𝐱 and 𝐔 the Laplace transform of
𝐮. Hence, it holds that

(𝑠2𝐌 + 𝑠𝐃 +𝐊)𝐗(𝑠) = 𝐁𝐔(𝑠) + 𝐃𝐱(0) + 𝑠𝐌𝐱(0) +𝐌𝐱̇(0).

Applying the Laplace transform to Eq. (1b) and defining 𝐘 as the
aplace transform of 𝐲 provides

(𝑠) = 𝐂𝜦(𝑠)𝐁𝐔(𝑠) + 𝐂𝜦(𝑠)(𝑠𝐌 + 𝐃)𝐗0𝐳0 + 𝐂𝜦(𝑠)𝐌𝐕0𝐰0

or 𝜦(𝑠) ∶= (𝑠2𝐌+ 𝑠𝐃+𝐊)−1. We observe that the output is a superpo-
ition of the input-to-output mapping, the position initial condition-to-
utput mapping and the velocity initial condition-to-output mapping.
s a consequence, the global input–output behavior is given by

(𝑠) = 𝐂𝐗(𝑠) = 𝐇𝚂𝙾(𝑠)𝐔(𝑠) +𝐇𝐱0 (𝑠)𝐳0 +𝐇𝐯0 (𝑠)𝐰0

here
𝐇𝚂𝙾(𝑠) ∶= 𝐂𝜦(𝑠)𝐁, 𝐇𝐱0 (𝑠) ∶= 𝐂𝜦(𝑠)(𝐃 + 𝑠𝐌)𝐗0,
and 𝐇𝐯0 (𝑠) ∶= 𝐂𝜦(𝑠)𝐌𝐕0.
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Fig. 1. System structures.

p to now, we saw that three independent transfer functions char-
cterize the inhomogeneous behavior of the second-order realization
1).

The transfer function 𝐇𝚂𝙾(𝑠) = 𝐂𝜦(𝑠)𝐁 corresponds to the input-to-
output map without initial conditions. Hence, it is associated with the
following realization

𝐌𝐱̈𝚂𝙾(𝑡) + 𝐃𝐱̇𝚂𝙾(𝑡) +𝐊𝐱𝚂𝙾(𝑡) = 𝐁𝐮(𝑡),
𝐲𝚂𝙾(𝑡) = 𝐂𝐱𝚂𝙾(𝑡),
𝐱𝚂𝙾(0) = 0, 𝐱̇𝚂𝙾(0) = 0.

(7)

The transfer function 𝐇𝐱0 (𝑠) = 𝐂𝜦(𝑠)(𝐃 + 𝑠𝐌)𝐗0 corresponds to the
transfer between the initial position condition and the output. Hence,
the following realization is associated to it:

𝐌𝐱̈𝐱0 (𝑡) + 𝐃𝐱̇𝐱0 (𝑡) +𝐊𝐱𝐱0 (𝑡) = 0,

𝐲𝐱0 (𝑡) = 𝐂𝐱𝐱0 (𝑡), (8)
𝐱𝐱0 (0) = 𝐗0𝐳0, 𝐱̇𝐱0 (0) = 0.

Finally, we write the realization for 𝐇𝐯0 (𝑠) = 𝐂𝜦(𝑠)𝐌𝐕0. This trans-
fer function corresponds to the transfer between the initial velocity
condition and the output. The following realization is associated to it:

𝐌𝐱̈𝐯0 (𝑡) + 𝐃𝐱̇𝐯0 (𝑡) +𝐊𝐱𝐯0 (𝑡) = 0,

𝐲𝐯0 (𝑡) = 𝐂𝐱𝐯0 (𝑡), (9)
𝐱𝐯0 (0) = 0, 𝐱̇𝐯0 (0) = 𝐕0𝐰0.

To summarize, we have seen that the output of the inhomogeneous
second-order system in (1) can be decomposed as

𝐲(𝑡) = 𝐲𝚂𝙾(𝑡) + 𝐲𝐱0 (𝑡) + 𝐲𝐯0 (𝑡)

governed by the transfer functions 𝐇𝚂𝙾, 𝐇𝐱0 and 𝐇𝐯0 . Fig. 1(a) sketches
the input and initial conditions-to-output behavior of the original
second-order system (1), while Fig. 1(b) draws the superposition of
the original system into three independent systems. Therefore, the sum
of the separately computed outputs leads to the same output as the
original system (1).

4. Gramians of inhomogeneous second-order systems

In order to derive the proposed model reduction schemes, we ana-
lyze separately the three subsystems and we introduce tailored Grami-
ans for each one of them.
4

i

Notice that subsystem (7) corresponds to a second-order realization
with homogeneous initial conditions. Hence, the controllability and
observability Gramians 𝐏𝚂𝙾 and 𝐐𝚂𝙾 presented in Definition 2.2 can be
used to characterize its dominant subspaces.

However, subsystems (8) and (9) have a different structure, and
hence, tailored Gramians are required. In Sections 4.1 and 4.2, we pro-
pose tailored Gramians for these subsystems. Afterwards, in Section 5,
we propose two different MOR schemes based on these Gramians.

4.1. Gramians of 𝐇𝐱0

Considering the transfer function 𝐇𝐱0 (𝑠) of system (8) more detailed
shows that the input-to-state mapping differs from the structure in
Definition 2.2. The state-to-output mapping, however, is the same.
Hence, we define the input-to-state mapping and the corresponding
second-order Gramian.

Definition 4.1. The input-to-state mapping 𝐱0 and the corresponding
controllability Gramian 𝐏𝐱0 of the second-order system (8) are

𝐱0 (𝑠) ∶= 𝐂(𝑠2𝐌 + 𝑠𝐃 +𝐊)−1(𝐃 + 𝑠𝐌)𝐗0,

𝐏𝐱0 ∶= 1
2𝜋 ∫R

𝐱0 (𝑖𝜔)𝐱0 (−𝑖𝜔)
Td𝜔.

roposition 4.1. The second-order controllability Gramian 𝐏𝐱0 of system
8) described in Definition 4.1 is the upper left matrix 𝐏1 of

=

[

𝐏1 𝐏2

𝐏T
2 𝐏3

]

= 1
2𝜋 ∫R

(AAA − 𝑖𝜔E)−1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∶=𝜞 (𝑖𝜔)

[

𝐗0
0

]

[

𝐗T
0 0

]

(AAA + 𝑖𝜔E)−Td𝜔.

roof. Applying the Schur complement to 𝜞 (𝑖𝜔) provides that its upper
eft block is −((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1(𝑖𝜔𝐌 + 𝐃) and hence it holds that

1 =
1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1(𝑖𝜔𝐌 + 𝐃)𝐗0

⋅ 𝐗T
0 (−𝑖𝜔𝐌 + 𝐃)T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔

= 1
2𝜋 ∫R

𝐱0 (𝑖𝜔)𝐱0 (−𝑖𝜔)
Td𝜔. □

Proposition 4.1 shows that the second-order controllability Gramian
𝐏𝐱0 of system (8) is given by the upper left part 𝐏1 of the controllability

Gramian  of the first-order system (4) with BBB ∶=
[

𝐗0
0

]

. Moreover,

the second-order observability Gramian 𝐐𝐱0 is equal to 𝐐𝚂𝙾 since the
state-to-output mapping 𝐱0 (𝑠) ∶= 𝐂

(

𝑠2𝐌 + 𝑠𝐃 +𝐊
)−1 that is used

to derive the observability Gramian is equal to the state-to-output
mapping 𝚂𝙾(𝑠) from Definition 2.2 for the homogeneous system case.

.2. Gramians of 𝐇𝐯0

In order to apply balanced truncation to system (9), we define the
corresponding input-to-state mapping. As in the previous section, the
state-to-output mapping is the same as for system (7).

Definition 4.2. The input-to-state mapping 𝐯0 and the corresponding
controllability Gramian 𝐏𝐯0 of the second-order system (9) are

𝐯0 (𝑠) ∶=
(

𝑠2𝐌 + 𝑠𝐃 +𝐊
)−1 𝐌𝐕0,

𝐏𝐯0 ∶= 1
2𝜋 ∫R

𝐯0 (𝑖𝜔)𝐯0 (−𝑖𝜔)
Td𝜔.

We note that the input-to-state mapping 𝐯0 (𝑠) and hence the
econd-order controllability Gramian 𝐏𝐯0 are of the same structure as

n the homogeneous case, presented in Definition 2.2.
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Algorithm 1 BT method for inhomogeneous second-order systems by
superposition.
Require: The original matrices 𝐌, 𝐊, 𝐃, 𝐁, 𝐂, 𝐗0, 𝐕0 and the orders

𝑟⋆, where ⋆ is 𝚂𝙾, 𝐱0, or 𝐯0 and describes the systems (7), (8) or
(9).

nsure: The reduced matrices 𝐌̂⋆, 𝐊̂⋆, 𝐃̂⋆, 𝐁̂⋆, 𝐂̂⋆, 𝐗̂0, 𝐕̂0.
1: Compute low-rank factors of the Gramians 𝐏⋆ ≈ 𝐑⋆𝐑T

⋆ and 𝐐 ≈ 𝐒𝐒T
from Definitions 2.2, 4.1 and 4.2.

2: Perform the SVD of 𝐒T𝐑⋆, and decompose as

𝐒T𝐑⋆ =
[

𝐔(1)
⋆ 𝐔(2)

⋆

]

diag
(

Σ(1)
⋆ ,Σ(2)

⋆

) [

𝐗(1)
⋆ 𝐗(2)

⋆

]T
,

with Σ(1)
⋆ ∈ R𝑟⋆×𝑟⋆ .

3: Construct the projection matrices

𝐖⋆ = 𝐒𝐔(1)
⋆ (Σ(1)

⋆ )−
1
2 and 𝐕⋆ = 𝐑⋆𝐗

(1)
⋆ (Σ(1)

⋆ )−
1
2 .

4: Construct reduced matrices

𝐌̂⋆ = 𝐖T
⋆𝐌⋆𝐕⋆, 𝐃̂⋆ = 𝐖T

⋆𝐃⋆𝐕⋆, 𝐊̂⋆ = 𝐖T
⋆𝐊⋆𝐕⋆

𝐁̂⋆ = 𝐖T
⋆𝐁⋆, 𝐂̂⋆ = 𝐂⋆𝐕⋆,

𝐗̂0 = 𝐖T
𝐱0
𝐗0, 𝐕̂0 = 𝐖T

𝐯0
𝐕0.

Proposition 4.2. The second-order controllability Gramian 𝐏𝐯0 of system
9) described in Definition 4.2 is the upper left matrix 𝐏1 of

=

[

𝐏1 𝐏2

𝐏T
2 𝐏3

]

= 1
2𝜋 ∫R

(AAA − 𝑖𝜔E)−1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∶=𝜞 (𝑖𝜔)

[

0
𝐌𝐕0

]

[

0 𝐕T
0𝐌

T] (AAA + 𝑖𝜔E)−Td𝜔.

Proof. Applying the Schur complement to 𝜞 (𝑖𝜔) provides that its upper
right part is −((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−1 and hence

𝐏1 =
1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1𝐌𝐕0

⋅ 𝐕T
0𝐌

T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔

= 1
2𝜋 ∫R

𝐯0 (𝑖𝜔)𝐯0 (−𝑖𝜔)
Td𝜔. □

Again the second-order observability Gramian 𝐐𝐯0 is equal to the
one of the homogeneous second-order system 𝐐𝚂𝙾 since their state-to-
output mappings coincide.

5. Model reduction schemes

In this section, we present two model reduction schemes for the
class of systems in (1). The procedures use the tailored Gramians pre-
sented in Section 4 and construct second-order reduced-order models
via balanced truncation as presented in Section 2.2.

5.1. Method 1: Reducing each subsystem

The first method we propose utilizes the superposition properties to
reduced the subsystems presented in Section 3 separately based on the
Gramians presented in Definition 2.2 and in Section 4.

For the homogeneous subsystem (7), we aim to apply the reduction
procedure from Section 2.2 using the Gramians from Definition 2.2 to
derive a reduced-order system with the transfer function

𝐇̂𝚂𝙾(𝑠) = 𝐂𝐕𝚂𝙾

(

𝐖T
𝚂𝙾
(𝑠2𝐌 + 𝑠𝐃 +𝐊)𝐕𝚂𝙾

)−1 𝐖T
𝚂𝙾
𝐁,

where 𝐖𝚂𝙾 and 𝐕𝚂𝙾 are the corresponding projection matrices given in
(6).
5

For the subsystem (8) describing the system behavior that results
from the initial position condition, we build the corresponding bal-
anced truncation projection matrices 𝐖𝐱0 and 𝐕𝐱0 as in Eq. (6) based
on the Gramians presented in Section 4.1. We reduce system (8) ac-
cordingly and obtain the reduced position initial condition transfer
function

𝐇̂𝐱0 (𝑠) = 𝐂𝐕𝐱0

(

𝐖T
𝐱0
(𝑠2𝐌 + 𝑠𝐃 +𝐊)𝐕𝐱0

)−1
𝐖T

𝐱0
(𝐃 + 𝑠𝐌)𝐕𝐱0𝐖

T
𝐱0
𝐗0.

Applying second-order balanced truncation to system (9) using
the second-order Gramians from Section 4.2 provides the projection
matrices 𝐖𝐯0 and 𝐕𝐯0 from Eq. (6). Reducing the system accordingly
generates the corresponding reduced transfer function

𝐇̂𝐯0 (𝑠) = 𝐂𝐕𝐯0

(

𝐖T
𝐯0
(𝑠2𝐌 + 𝑠𝐃 +𝐊)𝐕𝐯0

)−1
𝐖T

𝐯0
𝐌𝐕𝐯0𝐖

T
𝐯0
𝐕0

that describes the velocity initial condition-to-output behavior.
Summarizing, we apply balanced truncation to the three systems to

generate the corresponding reduced transfer functions 𝐇̂𝚂𝙾, 𝐇̂𝐱0 and 𝐇̂𝐯0
associated with the outputs 𝐲̂𝚂𝙾(𝑡), 𝐲̂𝐱0 (𝑡), and 𝐲̂𝐯0 (𝑡), respectively, such
that the overall behavior

𝐲̂ = 𝐲̂𝚂𝙾(𝑡) + 𝐲̂𝐱0 (𝑡) + 𝐲̂𝐯0 (𝑡)

pproximates the original output 𝐲(𝑡). The detailed reduction procedure
or each subsystem is given in Algorithm 1.

.2. Method 2: Combined gramians

We have discussed the approach where we use separated projec-
ions for each subsystem. However, for some applications it might be
dvantageous to have only one projection that reduces the original
ystem including the initial conditions at once. That means that we
eed to determine a projection based on a controllability space which
orresponds to the input and the initial conditions. This controllability
pace is spanned by the columns of the sum of the controllability
ramians introduced in the previous sections

𝐏c = 𝐏𝚂𝙾 + 𝐏𝐱0 + 𝐏𝐯0 =
[

𝐑𝚂𝙾 𝐑𝐱0 𝐑𝐯0
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐑T
𝚂𝙾

𝐑T
𝐱0

𝐑T
𝐯0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐐c = 𝐐𝚂𝙾 = 𝐐𝐱0 = 𝐐𝐯0 = 𝐒𝚂𝙾𝐒T𝚂𝙾

(10)

where 𝐑T
𝚂𝙾

, 𝐑T
𝐱0

, 𝐑T
𝐯0

and 𝐒𝚂𝙾 are the corresponding low-rank factors of
𝐏T
𝚂𝙾

, 𝐏T
𝐱0

, 𝐏T
𝐯0

and 𝐐𝚂𝙾. Applying balanced truncation for second-order
systems based on the low-rank factors of the combined Gramians 𝐏c
and 𝐐c from Eq. (10) results in a reduced-order system that takes into
account the input-to-state and the initial conditions-to-state mappings.

Another approach that results in the same controllability Gramian
𝐏c and therefore the same reduced-order system would be a modi-
ication of the method presented in [21] for second-order systems.
herefore, we consider the homogeneous first order system (4) with
he input matrix

=
[

0 𝐗0 0
𝐁 0 𝐌𝐕0

]

. (11)

roposition 5.1. The position controllability Gramian of the first order
ystem (4) with BBB as in Eq. (11) is equal to the Gramian 𝐏c in Eq. (10).

roof. The position controllability Gramian of system (1) is described
y the upper left part 𝐏1 of

=

[

𝐏1 𝐏2

𝐏T
2 𝐏3

]

= 1
2𝜋 ∫R

(

AAA − 𝑖𝜔E
)−1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

[

0 𝐗0 0

𝐁 0 𝐌𝐕0

]⎡

⎢

⎢

⎢

0 𝐁T

𝐗T
0 0

0 𝐕T𝐌T

⎤

⎥

⎥

⎥

(

AAA + 𝑖𝜔E
)−T d𝜔.
∶=𝜞 (𝑖𝜔) ⎣ 0 ⎦
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Applying the Schur complement to 𝜞 (𝑖𝜔) provides that the upper left
lock is −((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 + 𝐊)−1(𝑖𝜔𝐌 + 𝐃) and the upper right block is
((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1. It follows that

1 =
1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1𝐁

⋅ 𝐁T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔

+ 1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1(𝑖𝜔𝐌 + 𝐃)𝐗0

⋅ 𝐗T
0 (−𝑖𝜔𝐌 + 𝐃)−T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔

+ 1
2𝜋 ∫R

((𝑖𝜔)2𝐌 + 𝑖𝜔𝐃 +𝐊)−1𝐌𝐕0

⋅ 𝐕T
0𝐌

T((𝑖𝜔)2𝐌 − 𝑖𝜔𝐃 +𝐊)−Td𝜔

= 𝐏𝚂𝙾 + 𝐏𝐱0 + 𝐏𝐯0 . □

The final method is presented in Algorithm 2 and generates the
reduced transfer function

𝐇̂(𝑠) = 𝐂𝐕c
(

𝐖T
c (𝑠

2𝐌 + 𝑠𝐃 +𝐊)𝐕c
)−1 𝐖T

c𝐁.

The advantage of this approach is the fact that we obtain only one
second-order reduced-order model approximating the behavior of the
original system. The disadvantage of this method is the inflexibility
of the different controllability space dimensions. It follows, that the
combined Gramian leads possibly to reduced dimensions significantly
larger than the dimensions of the separately reduced systems to reach
the same approximation quality.

To preserve the system structure, we can also apply a one-sided pro-
jection, i.e. we set 𝐖 = 𝐕, where 𝐖 and 𝐕 are the projection matrices
corresponding to the system under consideration. If 𝐏 and 𝐐 are the
second-order controllability and observability Gramians associated to
the considered system, we can choose, e.g., 𝐖 = 𝐕 = 𝐔, where 𝐔 is the
basis resulting from a singular value decomposition

𝐏 = 𝐔Σ𝐗T or [𝐏, 𝐐] = 𝐔Σ𝐗T.

This method is called dominant subspaces projection model reduction
and was introduced for first-order systems in [27]. Using the bases
𝐖 = 𝐕 has the advantage that the reduced matrices 𝐌̂, 𝐃̂ and 𝐊̂ are
symmetric and positive semi-definite if the original matrices 𝐌, 𝐃 and
𝐊 are, which is usually the case in practice. This way we can preserve
the stability and passivity of a system, which is a great advantage
when we consider second-order systems rather than their first-order
representations.

6. Error bounds

In this section we develop a posteriori error bounds for the methods
of this article, as the authors in [21,22] did for first-order systems.
Therefore, we use the fact that

‖𝐲‖𝐿2
= ‖𝐡 ∗ 𝐮‖𝐿2

= ‖𝐇𝐔‖2
≤ ‖𝐇‖2

‖𝐔‖∞

where 𝐔 = L{𝐮} and 𝐡(𝑡) ∶= CCC exp(E−1AAA 𝑡)E−1BBB.
Firstly, we use the above inequality to find a posteriori error bounds

for the reduction scheme presented in Section 5.1. As a consequence, a
possible error bound for the reduced subsystems approximation is

‖𝐲 − 𝐲̂‖𝐿2
≤‖𝐇𝚂𝙾 − 𝐇̂𝚂𝙾‖2

‖L(𝐮)‖∞

+ ‖𝐇𝐱0 − 𝐇̂𝐱0‖2
‖𝐳0‖2 + ‖𝐇𝐯0 − 𝐇̂𝐯0‖2

‖𝐰0‖2.

Using the 2 norm has the advantage of less computational costs.
However, one needs to have 𝐮 ∈ ∞, which applies some restrictions
to the family of inputs 𝐮 because 𝐮 ∈ ∞ is a stronger condition than
𝐮 ∈ 2.

We compute the 2 norm of the difference between the transfer
function 𝐇(𝑠) ∶= CCC

(

AAA − 𝑠E
)−1 BBB and the reduced transfer function

𝐇̂(𝑠) ∶= ĈCC
(

ÂAA − 𝑠Ê
)−1

B̂BB in the following way

̂ 2
6

‖𝐇 −𝐇‖2
Algorithm 2 BT method for inhomogeneous second-order systems by
combined Gramians.
Require: The original matrices 𝐌, 𝐊, 𝐃, 𝐁, 𝐂, 𝐗0, 𝐕0 and the order 𝑟.
Ensure: The reduced matrices 𝐌̂, 𝐊̂, 𝐃̂, 𝐁̂, 𝐂̂, 𝐗̂0, 𝐕̂0.
1: Build the input matrix

BBB =
[

0 𝐗0 0
𝐁 0 𝐌𝐕0

]

.

2: Compute low factors of Gramians 𝐏 ≈ 𝐑𝐑T from (10) and 𝐐 ≈ 𝐒𝐒T
from Definition 2.2.

3: Perform the SVD of 𝐒T𝐑, and decompose as

𝐒T𝐑 =
[

𝐔(1) 𝐔(2)] diag
(

Σ(1),Σ(2)) [𝐗(1) 𝐗(2)]T ,

with Σ(1) ∈ R𝑟×𝑟.
4: Construct the projection matrices

𝐖c = 𝐒𝐔(1)(Σ(1))−
1
2 and 𝐕c = 𝐑𝐗(1)(Σ(1))−

1
2 .

5: Construct reduced matrices

𝐌̂ = 𝐖T
c𝐌𝐕c, 𝐃̂ = 𝐖T

c𝐃𝐕c, 𝐊̂ = 𝐖T
c𝐊𝐕c

𝐁̂ = 𝐖T
c𝐁, 𝐂̂ = 𝐂𝐕c, 𝐗̂0 = 𝐖T

c𝐗0, 𝐕̂0 = 𝐖T
c𝐕0.

= 1
2𝜋 ∫R

tr
(

(

𝐇(𝑖𝜔) − 𝐇̂(𝑖𝜔)
)H (

𝐇(𝑖𝜔) − 𝐇̂(𝑖𝜔)
)

)

d𝜔

= 1
2𝜋 ∫R

tr
(

𝐇(𝑖𝜔)H𝐇(𝑖𝜔)
)

d𝜔 − 2
2𝜋 ∫R

tr
(

𝐇(𝑖𝜔)H𝐇̂(𝑖𝜔)
)

d𝜔

+ 1
2𝜋 ∫R

tr
(

𝐇̂(𝑖𝜔)H𝐇̂(𝑖𝜔)
)

d𝜔

= tr
(

CCCCCCT
)

− 2tr
(

CCC ̃ĈCC
T)

+ tr
(

ĈCC ̂ĈCC
T)

, (12)

here  and ̂ are the controllability Gramians of the original first-
rder system and the reduced first-order system. The cross Gramian ̃
olves the Sylvester equation

̃Ê
T
+ E̃ÂAAT

= −BBBB̂BB
T
.

he controllability Gramians  of the full system needs to be computed
nyway to apply balanced truncation and the reduced Gramians ̃ and
̂ are cheap to compute.

The error estimation for the combined Gramian and the resulting
educed-order system is equal to the error estimate above, where the
rojection matrices that lead to the reduced system are the same for
he three subsystems. On the other hand one can evaluate

𝐲 − 𝐲̂‖𝐿2
≤ ‖𝐇 − 𝐇̂‖2

‖L(𝐮c)‖∞

= ‖𝐇 − 𝐇̂‖2

(

‖L(𝐮)‖∞
+ ‖𝐳0‖2 + ‖𝐰0‖2

)

for the matrix BBB as in (11) and 𝐮c ∶=
⎡

⎢

⎢

⎣

𝐮(𝑡)
𝐳0𝛿(𝑡)
𝐰0𝛿(𝑡)

⎤

⎥

⎥

⎦

. This estimation can be

computed using Eq. (12).

7. Numerical results

In this section, we illustrate the procedure presented in this article
using two different examples. The first example is a vibrational model
of a building and the second one a mass spring damper system. We
evaluate and compare for each example three reduced systems. We
obtain the first one by applying balanced truncation to the full system
(1) that does not consider the initial conditions. Hence, the projection
matrices result from the evaluation of the Gramians of the homoge-
neous system (7). The second reduced system is obtained by reducing
the three subsystems, separately, as presented in this article. The third
method uses the combined Gramian presented in Section 5.2 to obtain
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the reduced-order model. For all reduced systems, we evaluate the
output behavior and the corresponding output error.

The computations were done on a computer with 4 Intel® Core™i5-
690 CPUs running at 3.5 GHz. The experiments use MATLAB®
2017a. In the second example, the Lyapunov equations are solved
sing the methods from the M-M.E.S.S. toolbox [28].

We will refer to the original system (1) as FOM, in the following,
nd to the reduced system generated by standard balanced truncation
hat considers homogeneous systems, i.e, by applying second-order
alanced truncation as described in Section 2.2 by ROM_HOM. The
educed system approximation that is obtained by applying method

introduced in Section 5.1 is referred to as ROM_SPL and the re-
uced system that is generated by applying method 2 introduced in
ection 5.2 as ROM_COM.

.1. Building example

In this section we consider the building example from page 17 of the
echnical report [29]. The data are available in [30]. The dimension of
he matrices are 𝑛 = 24, 𝑚 = 𝑝 = 1. For the projection matrix 𝐖𝚂𝙾 that
esults from the balanced truncation procedure for the homogeneous
econd-order system (7) we consider the singular value decomposition

𝜮𝐗T = 𝐖𝚂𝙾.

ssume that rank(𝐖) = 𝓁. The position and velocity initial condition
re the (𝓁 + 1)-st column of 𝐔:

0 = 𝐱0 = 𝐕0 = 𝐱̇0 = 𝐔[ ∶ , 𝓁 + 1 ].

n this example, the separately reduced systems and the combined re-
uced system are truncated with a reduced dimension 𝑟 = 10. Fig. 2(a)
hows the output behavior of the original system and the reduced ones
or an input 𝐮(𝑡) = 0.2 ⋅ 𝑒−𝑡. We observe that the original output behav-
or that is depicted in green is well approximated by the separately
educed system ROM_SPL that is depicted by the blue, dashed line.
he reduced system ROM_COM using the combined Gramian (depicted
y the orange colored, dashed line) provides a proper approximation
f the original output as well. Additionally, we see that the reduced
utput of the reduced system ROM_HOM, which is depicted in red, fails
n approximating the original system’s transient behavior.

Fig. 2(b) depicts the errors and their 𝓁2-norms. The light blue
ine with markers depicts the error of the separately reduced system
OM_SPL and the dashed, brown colored line the error of the re-
uced system ROM_COM using the combined Gramian. The reduced
ystem ROM_HOM leads to the error depicted by the dashed, orange
olored line. We observe, that the separately reduced system and the
educed system that uses the combined Gramian lead to errors that
re significantly smaller than the error corresponding to the reduced
ystem ROM_HOM. Additionally, we evaluate the actual 𝓁2-norm error.
herefore, we plot the integral

∫

𝑡

0
‖𝐲(𝑡) − 𝐲̂(𝑡)‖2d𝑡 (13)

hat converges to the 𝓁2-norm of the error. The dark blue, dashed line
ith markers is the integral (13) converging to the actual 𝓁2-norm
rror of the separately reduced system ROM_SPL. The error bound
rom Section 6 provides a value of 3.2740 ⋅ 10−5 (depicted by the black
ine). We see that this error estimator provides a proper upper bound
f the actual 𝓁2-norm error. The green line with markers provides the
ntegral (13) corresponding to the combined Gramian reduced system
OM_COM and its error estimation 1.5469 ⋅ 10−4 is depicted by the
ashed, black line. The red line shows the integral (13) of the reduced
ystem ROM_HOM. It confirms again, that this method fails for this
xample.
7

o

Fig. 2. Build example.

7.2. Mass spring damper example

The mass spring damper model we consider in this section is pre-
sented in [31]. More detailed background can be found in [32].

We choose the model of dimensions 𝑛 = 2000, 𝑚 = 𝑝 = 1. The input
s the external forcing on the 𝑛-th mass and the output observes the 𝑛-th
ass.

The initial conditions are set to be the last and the first unit vector

0 = 𝐱0 ∶= 𝑒𝑛, 𝐕0 = 𝐱̇0 ∶= 𝑒1.

In this example, we truncate the systems with a tolerance of 10−4,
.e. all Hankel singular values smaller than 10−4 ⋅𝜎1 are truncated. That
ay, we obtain reduced systems of dimensions 147, 180, 98 of the three

ystems resulting from the superposition method and the dimension 157
or the system reduced using the combined Gramians.

Fig. 3(a) shows the output behavior of the systems for the input
(𝑡) = 0.2 ⋅ 𝑒−𝑡. The output behavior of the original system is depicted
n green. The blue, dashed line displays the output composed by the
eparately reduced systems ROM_SPL and the orange colored, dashed
ine the reduced system ROM_COM using the combined Gramian. The
educed output resulting from the reduced system ROM_HOM is depicted
n red. We observe that all outputs approximate the original system
ehavior. Although ROM_HOM shows oscillations of slightly higher
agnitude than the FOM for some time.

The output errors and their 𝓁2-norms are illustrated in Fig. 3(b). The
ight blue line with markers, the brown colored, dashed line, and the
range colored, dashed line show the error of the separately reduced
utputs, the output corresponding to the combined Gramian, and the
utput resulting form the reduced system ROM_HOM, respectively. We
bserve again that the separately reduced system ROM_SPL and the
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Fig. 3. Mass–spring–damping example.

educed system ROM_COM using the combined Gramian lead to smaller
errors. Additionally, we evaluate the actual 𝓁2-norm error and plot
the integral (13) that converges to the 𝓁2-norm of the error. The
dark blue, dashed line with markers shows the integral (13) for the
separately reduced system ROM_SPL and the green one the integral
or the reduced system ROM_COM using the combined Gramian. The
rror estimator from Section 6 provides 𝓁2 error estimation values

of 7.5490 ⋅ 10−3 and 3.1922 ⋅ 10−2 for this example. It is depicted in
Fig. 3(b) by the black and black, dashed lines. We observe that the error
estimates are conservative. The integral (13) of the reduced system
ROM_HOM is depicted in red. It converges to a 𝓁2 error that is larger
than for the first two reduction methods.

8. Conclusion

We have proposed two approaches for constructing a reduction of
second-order linear time-invariant systems with inhomogeneous initial
conditions. First, we have used a superposition of the output into the
input-to-output mapping, the state initial condition-to-output mapping
and the velocity initial condition-to-output mapping. The three sub-
systems have been reduced, separately, such that the original system
can be approximated well. Afterward, a combined Gramian has been
used to derive projection matrices that reduce the system, including
the initial conditions, all at once. For those reduction processes we have
suggested new Gramians for inhomogeneous second-order systems.
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