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The thermal or equilibrium ensemble is one of the most ubiquitous states of matter. For models com-
prised of many locally interacting quantum particles, it describes a wide range of physical situations,
relevant to condensed-matter physics, high-energy physics, quantum chemistry and quantum computing,
among others. We give a pedagogical overview of some of the most important universal features about
the physics and complexity of these states, which have the fact that interactions in the Hamiltonian are
short ranged at its core. We focus on mathematically rigorous statements, many of them inspired by ideas
and tools from quantum information theory. These include bounds on their correlations, the form of the
subsystems, various statistical properties, and the performance of classical and quantum algorithms. We
also include a summary of a few of the most important technical tools, as well as some self-contained
proofs.
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I. INTRODUCTION

We are currently at the dawn of the age of synthetic
quantum matter. Increasingly better experiments on a vari-
ety of quantum platforms are improving in size and con-
trollability at unprecedented rates, aided by the current
impulse of quantum information science and technology.
This gives very good prospects to the exploration of the
physics of complex quantum many-body systems. Our
aspiration to better understand these systems is very well
motivated from a scientific perspective, but also potentially
from the industrial one: unlocking the potential of com-
plex quantum systems may bring surprising advances to
the engineering of new materials or chemical compounds
in the future. It may also yield computational tools with
unprecedented capabilities for a still unknown range of
applications.

Many of the most commonly studied materials and cur-
rent experimental platforms are described by an arrange-
ment of quantum particles in some geometric configura-
tion, such as a lattice. Due to the spatial decay of elec-
tromagnetic forces, as well as possible screening effects,
each of these particles only interacts appreciably with their
immediate vicinity, which causes the couplings between
them to be local.

In this tutorial, we focus on the properties of these
important systems when at thermal equilibrium, so that
they are accurately described by the so-called thermal or
Gibbs state. We review and explain some of their most
important universal properties, covered from a mathemati-
cal perspective. That is, we focus on statements that can be
proven about states of the Gibbs form

ρβ = e−βH

Z
= 1

Z

∑

l

e−βEl |El〉〈El|, (1)

where H =∑l El|El〉〈El| is the Hamiltonian, β is the
inverse temperature, and Z ≡ Tr[e−βH ] is the parti-
tion function. The Hamiltonian describes the interactions
between the N particles, which are restricted to short
ranged or local. A “local Hamiltonian” is a Hermitian
operator H in the finite-dimensional Hilbert space of N d-
dimensional particles (Cd)⊗N . It is defined as a sum of

terms

H =
∑

i

hi ⊗ I, (2)

each of which has support (i.e., acts nontrivially) on at
most k particles, and bounded strength, such that

max
i

||hi|| = h. (3)

For a definition of the operator norm || · || see Sec. II A
below. Typically, the Hamiltonians are scaled so that h =
O(1).

In what follows we just write the terms as hi for sim-
plicity. These constitute the individual interactions, which
are typically arranged in a lattice of a small dimension, or
some other geometric configuration. A simple example is,
e.g., the transverse-field Ising model in one dimension with
open boundary conditions

HIsing =
N−1∑

j =1

(
Jσ X

j σ
X
j +1 +�σ Z

j

)
+�σ Z

N . (4)

Here, k = 2 and the interactions are arranged on a one-
dimensional (1D) chain.

The idea of a local Hamiltonian is very general, and
involves many different models describing a wide range
of situations, of interest for many fields of physics, chem-
istry, and computer science. The only thing they have
in common is the locality of the interactions. We aim
to understand mathematically how this fact alone con-
strains both the physics and the computational complexity
when combined with thermal fluctuations. In this tutorial
we focus on strictly short-ranged interactions, although
many of their features will be shared with models that
are not strictly local, but where the interactions among the
particles decay sufficiently quickly with their distance.

The thermal states of these general local Hamiltonians
appear in many different contexts, and are interesting for
a wide variety of reasons. Some of the main ones are as
follows:

(a) It is one of the most ubiquitous states of quantum
matter: typical experiments happen at finite temper-
ature, where the quantum system at hand is weakly
coupled to some external radiation field or phonon
bath, that drive it to the thermal state. For com-
pleteness, we sketch the standard argument of how
the weak coupling assumption leads to states of the
Gibbs form in Appendix A 1.

(b) The thermal state is also important when studying
not just systems with an external bath, but also in
the evolution of isolated quantum systems, even
when their global state is pure: in very generic
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cases, these end up being “their own bath,” and
the individual subsystems thermalize to the Gibbs
ensemble [1,2].

(c) From a general condensed-matter or material
science standpoint, we are very interested in
numerous questions about the physics at finite
temperature: How are conserved quantities (e.g.,
charge, energy) propagated in a state close to equi-
librium? How does the system respond to small or
large perturbations away from equilibrium?

(d) Systems at thermal equilibrium (both quantum and
classical) display interesting phase transitions in
certain (low-) temperature regimes [e.g., classical
Ising model in two dimensions (2D)]. It is thus rele-
vant to study what are their universal properties both
in and away from the critical points.

(e) They are also important from the point of view
of quantum phases of matter and topological
order at zero temperature. It has been widely estab-
lished that thermal states of local models in dimen-
sion D − 1 appear in the entanglement spectrum of
D-dimensional ground states [3]. As such, under-
standing their structure should also help us in eluci-
dating the low-energy behavior of many interesting
systems.

(f) They very naturally appear in information theory
and inference as the distributions that best repro-
duce partial current knowledge of a system. This is
justified by Jaynes’ principle, which we explain in
Appendix A 2.

(g) These states are also important for computation.
For instance, being able to sample from the thermal
distribution of local models is a typical subroutine
for certain classical and quantum algorithms [4–
7]. They are also a very naturally occurring data
structure in both classical and quantum machine
learning [8–12] (often under the name of Boltzmann
machines).

(h) It is known from quantum computational com-
plexity that the low-energy subspace of local Hamil-
tonians is able to encode the solution to very hard
computational problems: finding the ground-state
energy is QMA complete [13]. Thus, it is widely
believed that even a quantum computer should not
be able to do it in polynomial time. This then at least
also applies to the thermal state at very low tempera-
ture, and motivates the study of how the complexity
changes as the temperature rises [14,15].

There are many different specific aspects that one could
explore, but here we focus on the following, which we
believe to be of particular importance:

(a) The correlations between the particles at differ-
ent parts of the system. In particular, how those

correlations are structured in relation to the geom-
etry of the interactions.

(b) The states of the subsystems that a thermal state can
take, and how they are related to few-particle Gibbs
states.

(c) The statistical physics properties of these systems at
equilibrium, including Jaynes’ principle, concentra-
tion bounds, and equivalence of ensembles.

(d) The efficiency of classical and quantum algorithms
for the generation and manipulation of thermal
states, and the computation of expectation values
and partition functions.

More specifically, we focus on these topics for a broad
family of Gibbs states that can be understood as being
away from phase transitions within the phase space. It is
for this region of the parameter space of Hamiltonians that
the mathematical results described here are typically more
tractable and give insightful results. We elaborate on this
point in Sec. I B.

The general topic of this tutorial, and the particular
results explained here, are a small part of the exciting
past, present, and future efforts to understand the physics
and complexity of quantum many-body systems. We hope
to contribute to the understanding and cross-fertilization
of the many different angles that the quantum many-body
problem can take. See also, e.g., Refs. [1,16] for previous
references with partially overlapping content.

A. Scope and content

Throughout this tutorial, we cover statements that have
a precise mathematical formulation, many of them moti-
vated by a quantum information theoretic perspective. This
notably includes a short exposition of a few key techni-
cal tools in Sec. III. These have not previously appeared
together, but are rather separately explained in the litera-
ture with various levels of detail, depending on the context
and usage. We hope that this encourages new, potentially
unexpected, applications thereof.

Along the sections with the actual physical and com-
putational results, we write the proofs of some of the
simpler or more important ones explained throughout. This
includes at least one main result per section, which should
serve as a pedagogical example. For the rest, some of
which have more detailed or involved derivations, we refer
the reader to the original works cited along the text. One
of our main hopes is that after reading this tutorial even
the more technical works will be more easily accessible to
a wider range of researchers. Because of this, rather than
the traditional theorem-proof structure of most mathemat-
ical physics writing, we have chosen a more streamlined
style for the presentation, which allows for more physical
explanations and intuitions of the steps. This will hopefully
contribute to a wider readability.
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Most of what we describe are known results, with at
most some small improvements, with the proofs either
being the same or slightly simplified versions of previous
ones. The relevant references are included, but this does
not mean that all of the previous relevant ones are listed
here: we are certainly failing to mention a very large body
of work. This includes many relevant papers on mathemat-
ical physics, but also a lot of important physics literature
that covers these topics from perspectives that are beyond
our scope: based on numerical methods, theory work on
experimental implementations, as well as all experimental
results.

B. Completely analytical interactions

Before we proceed, we should put the content of this
tutorial into context more precisely. In the mathematical
study of many-body systems, one of the biggest points
of interest are phase transitions, including the study of
order parameters, symmetry breaking, and other very well-
established ideas, which aim at classifying the possible
kinds of phase transitions. For instance, there are impor-
tant models, such as the paradigmatic Ising in two and
three dimensions, that have a very well understood phase
transition at a given temperature.

However, for many classes of models and most regions
of their parameter space, local Hamiltonians are not at a
thermal phase transition. We call these large regions of
parameter space “one phase regions” (as it is sometimes
referred to [17]), which likely contains the “simplest” cases
of thermal equilibrium, including those of noninteracting
gases. These situations are typically characterized by the
partition function being analytic and other closely related
facts, such as the following:

(a) The convergence of the cluster expansion.
(b) The localization of correlations in adjacent regions

of the system, and absence of long-range order.
(c) The approximation of marginals with local Gibbs

states, and the idea of locality of temperature.
(d) Concentration properties of local observables.
(e) Efficiency of approximation, either with quantum or

classical algorithms.
(f) The existence and boundedness of log-Sobolev con-

stants.

It is expected that many or all of these simplifying facts
are equivalent, in that a model that obeys one (such as the
analyticity of the partition function) will also display the
other features. In the classical case, a large number of con-
ditions are known to be equivalent to the analyticity of the
partition function. The study of this problem was initiated
by the seminal work of Dobrushing and Shlosman [18],
aiming at characterizing these “completely analytical inter-
actions” in terms of many different equivalent conditions
(12 in the original article). In the quantum case, much less

is known about the equivalence of the analyticity of the
partition function with other physical facts, although some
important steps have been taken (see, e.g., Refs. [19,20]).

Notice that, despite the name, a given model might have
different such “one-phase regions” within the space of
parameters. These are then separated by phase-transition
points, such as the Curie temperature. While these regions
of the parameter space will differ in important quantitative
ways (such as displaying widely different magnetization),
they should also have common qualitative features such as
those mentioned above.

The main aim of this tutorial is to cover results that
show that Gibbs states have simplifying features with
respect to generic quantum states. Following that spirit,
most (although not all) of the results explained here apply
to this “phase” or universality class of Gibbs states, in
which those simplifying facts are expected to hold. In fact,
every element of the list above is individually considered
in each of the sections below. Because of that, we do not
cover an important part of the literature where analytical
results are typically much harder to obtain. For instance,
those studying the effect of phase transitions in, e.g., the
simulability of Gibbs states, the types of correlations that
can arise, and others.

II. MATHEMATICAL PRELIMINARIES AND
NOTATION

A. Operator norms

A basic but very important mathematical tool in this
context are the Schatten p norms for operators, as well as
the different inequalities between them. These norms are
maps from the space of operators to R, as M → ||M ||p ,
that obey the following properties:

(a) Homogeneous: if α is a scalar, ||αM ||p = |α|||M ||p .
(b) Positive: ||M ||p ≥ 0.
(c) Definite: ||M ||p = 0 ⇐⇒ M = 0.
(d) Triangle inequality: ||M1 + M2||p ≤ ||M1||p +

||M2||p .

For a given operator M with singular values {αM
l } and p ∈

[1, ∞), they are defined as

||M ||p ≡ Tr[|M |p ]
1
p =

(
∑

l

(αM
l )

p

) 1
p

. (5)

The more important ones are the operator norm
||M || ≡ ||M ||∞ = maxl |αM

l |, the Hilbert-Schmidt 2-norm
||M ||2 = Tr[MM †]1/2 and the 1-norm or trace norm

||M ||1 = max
||P||≤1

Tr[MP]. (6)

Thus |Tr[M ]| ≤ ||M ||1, with equality for positive opera-
tors. For quantum states, Tr[ρ] = ||ρ||1 = 1.
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Typically we measure the “strength” of an observable
with the operator norm, and the closeness of two quan-
tum states with the trace norm ||ρ − σ ||1, since it is related
to the probability of distinguishing them under measure-
ments. The 2-norm, on the other hand, is often the easiest
one to compute in practice. Also note the very important
Hölder’s inequality

||M1M2||p ≤ ||M1||q1 ||M2||q2 , (7)

which holds for 1/p = 1/q1 + 1/q2 (e.g. p = q1 =
1, q2 = ∞). A particularly useful corollary is the Cauchy-
Schwarz inequality, when q1 = q2 = 2 and p = 1,

|Tr[M †
1 M2]|2 ≤ Tr[M1M †

1 ]Tr[M2M †
2 ]. (8)

B. Information-theoretic quantities

Let us define the von Neumann entropy of a quantum
state ρ [21]

S(ρ) = −Tr[ρ log(ρ)], (9)

which, roughly speaking, quantifies the uncertainty we
have about the particular state. It is bounded by 0 ≤
S(ρ) ≤ log d. The lower bound is obtained by choosing ρ
pure, and the upper bound by the identity ρ = I/d. Another
important quantity is the Umegaki relative entropy

D(ρ|σ) = Tr[ρ(log ρ − log σ)], (10)

which is a measure of distinguishability of quantum states.
It obeys Pinsker’s inequality

D(ρ|σ) ≥ 1
2
||ρ − σ ||21, (11)

which links the relative entropy with the 1-norm. It is
strictly positive for ρ = σ , and vanishes otherwise. It is
also closely related to the nonequilibrium free energy

D(ρ|ρβ) = βTr[ρH ] − S(ρ)+ log Z ≡ βFβ(ρ)+ log Z,
(12)

which also shows that the equilibrium free energy is
Fβ(ρβ) = −β−1 log Z. This distance measure naturally
appears in the derivation of Jayne’s principle, as shown
in Appendix A 2.

From these quantities we can also define the quantum
mutual information, which, given a bipartite state ρAB on
subsystems A and B, with TrB[ρAB] = ρA, TrA[ρAB] = ρB,

quantifies the correlations between A and B as

I(A : B)ρ = S(ρA)+ S(ρB)− S(ρAB) (13)

= D(ρAB|ρA ⊗ ρB). (14)

In particular, it is zero if and only if ρAB = ρA ⊗ ρB. For
all these three functions we can also define their cor-
responding Rényi generalizations. See Refs. [22,23] for
details.

A further, perhaps more refined quantity is the condi-
tional mutual information (CMI), defined as

I(A : C|B)ρ = S(ρAB)+ S(ρBC)− S(ρABC)− S(ρB)

= I(A : BC)ρ − I(A : B)ρ . (15)

This perhaps less known quantity is behind many non-
trivial statements in quantum information theory (see Sec.
11.7 in Ref. [24] for more details). In a nutshell, it mea-
sures how much A and C share correlations that are not
mediated by B. That is, if this quantity is small, most of the
correlations between A and C (which may be weak) are in
reality correlations between A and B and B and C.

C. Interaction structure

In what follows we need some technical definitions
regarding the properties of the Hamiltonian and the geome-
try of the underlying interactions. This geometry is defined
through a hypergraph, which we denote by � = {V, E}
with vertex set V and hyperedges E. To each vertex we
associate a Hilbert space of dimension d, Cd. The number
of particles is N = |V|, and the number of hyperedges is
|E|. The locality of the Hamiltonian can be expressed by a
parameter d, defined as the largest number of hyperedges
adjacent to any individual hyperedge.

We can separate the vertices into subregions, such as
VA, and we denote with ∂A ∈ VA the sites at the bound-
ary of that region (that is, with at least one hyperedge
connecting to V \ VA, the complement of VA), of which
there are |∂A|. For simplicity, we often refer to regions as
A, B, .. instead of VA, VB, . . .. We also need the notion of
“distance” between two regions, dist(A, B), defined as the
smallest number of overlapping hyperedges that connect a
vertex from A with a vertex from B.

To define the Hamiltonian, we associate local inter-
actions to hyperedges, such that H =∑i∈E hi. For an
operator hi, the set of vertices on which it has nontrivial
support is supp(hi). We have already specified that each
hi is such that |supp(hi)| ≤ k (that is, the hyperedges have
size at most k), so that for constant k, N ∝ |E|. We also
note that ||hi|| ≤ h and introduce the following quantity:

J = max
x∈V

∑

i:x∈supp(hi)

||hi||, (16)
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that is, J upper bounds the norm of the interactions that act
on an individual vertex.

D. Asymptotic notation

The so-called asymptotic or Bachmann-Landau notation
succinctly describes the asymptotic behavior of a function
when the argument grows large. It is typically used when
in a particular expression there are constant factors that we
are happy to omit, that are unnecessarily cumbersome, or
when we only have partial knowledge of the exact expres-
sion but know the asymptotic behavior. We say that, given
functions f (N ), g(N ) ≥ 0:

(a) f (N ) = O(g(N )) if there are constants M , N0 > 0
such that ∀N > N0, f (N ) ≤ Mg(N ).

(b) f (N ) = Õ(g(N )) is similar to O(g(N )) but with
possible additional polylogarithmic factors, so that
instead ∀N > N0, f (N ) ≤ Mg(N )polylog(g(N )).

(c) f (N ) = o(g(N ) if for every ε > 0 there exists a
N0 > 0 such that ∀N > N0, f (N ) ≤ εg(N ).

(d) f (N ) = �(g(N )) if there are constants M , N0 > 0
such that ∀N > N0, f (N ) ≥ Mg(N ).

These are the most commonly used symbols of this nota-
tion, all of which appear below.

III. AN OVERVIEW OF TECHNICAL TOOLS

When studying quantum thermal states from a mathe-
matical point of view, what we often need is some way
of simplifying the operator e−βH , in a way that makes the
particular problem at hand mathematically tractable. This
is usually achieved by expressing the relevant function of
e−βH in simpler terms. Potential issues that complicate this
are as follows:

(1) The exponential of a local operator is not a local
operator, due to the high-order terms in the expan-
sion, and could in principle be arbitrarily compli-
cated.

(2) The individual elements in the Hamiltonian Eq. (2)
do not commute with each other. Thus we can-
not divide the exponential of the Hamiltonian into
smaller pieces by iterating simple identities like
e−β(H1+H2) ?= e−βH1e−βH2 .

The locality of the Hamiltonian helps make these two
problems often not as severe as they could be in general sit-
uations. There is a number of tools to deal with this, and we
now describe some of the most relevant ones. Below, we
explain how the cluster expansion in Sec. III A helps with
issue 1, while there are at least two different techniques in
Secs. III B and III C that help us with issue 2. These tech-
niques might also be useful for systems with long range,

but still spatially decaying, interactions, but fewer results
are known in that setting [25].

A. Connected cluster expansion

This is a powerful set of ideas whose origins can be
traced back to a wide set of the classic (and classical) lit-
erature on mathematical physics and statistical mechanics
(see, e.g., Ref. [26]), initiated in Ref. [27]. It has tradition-
ally been used to prove the analyticity of the partition func-
tion at high temperatures and other regimes, so it serves as
an ideal tool to characterize the completely analytical inter-
actions from Sec. I B. More recently, it has also been used
to study the existence of computationally efficient approx-
imation schemes to it (see, e.g., Ref. [28]). The technique
is flexible and general enough that it can also cover objects
beyond partition functions, such as characteristic functions
and other related quantities.

For simplicity we here focus on the high-temperature
expansion [29]. The starting point is the logarithm of the
partition function log Z ≡ log Tr[e−βH ]. Let us consider its
Taylor expansion around β = 0

log Z =
∑

m

βm

m!
Km. (17)

One can then ask, what is the radius of convergence of
this Taylor series? More precisely, we would like to know
whether there is some β∗ independent of the system size
such that for 0 ≤ β < β∗ we have that

(a) The function log Z is analytic.
(b) The mth derivative at β = 0 is such that

∣∣∣∣
dm log Z

dβm

∣∣∣∣ = |Km| ≤ C1N (β/β∗)mm!, (18)

for some constant C1.
(c) The truncated Taylor series gives a good approxi-

mation as
∣∣∣∣∣log Z −

M∑

m=0

βm

m!
Km

∣∣∣∣∣ ≤ C1N
(β/β∗)(M+1)

1 − (β/β∗)
. (19)

There are various ways to narrow down the radius of con-
vergence of this series, but they all revolve around the idea
of writing log Z in terms of connected clusters.

A cluster is a multiset (that is, a set counting mul-
tiplicities) of Hamiltonian terms hi (or alternatively, of
hyperedges {i ∈ E}), which can appear more than once.
A given cluster W has size |W| equal to the number of
elements in the multiset (counting multiplicities μW

i , so
that |W| =∑{i∈W} μ

W
i ). Moreover, W is connected if the

hypergraph with hyperedges i ∈ W is connected. Let us
define the set of all clusters of size at most |W| = m with
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FIG. 1. Illustration of the clusters, defined as a multiset of
interaction terms or hyperedges. In this example, the interaction
is a graph on a square lattice. The cluster on the left is connected
W ∈ Gm, while the one on the right is disconnected. The thick-
ness of the lines represents the multiplicities μW

i of the edges,
which may appear any number of times in a cluster as long as∑

i μ
W
i = m.

Cm, and the set of all connected clusters as Gm. For instance,
G1 is the set of {hi}, G2 are the pairs {hi, hj } provided that
i, j are adjacent or i = j (in which caseμW

i = 2). See Fig. 1
further illustrations of a connected and a disconnected
cluster.

Now, let us define the Hamiltonian with auxiliary vari-
ables {λi} with λi ∈ [0, 1] as H(λ) =∑i λihi. We use this
to introduce the cluster derivative

DW =
∏

i∈W

(
∂

∂λi

)μW
i
∣∣∣∣∣
λ=0

. (20)

Here, the subscript λ = 0 means to set λi = 0 for all i
after taking the derivatives. This cluster derivative, when
applied to the function log Tr[e−βH(λ)], outputs the coef-
ficient of the monomial

∏
i∈W λiin the expansion with

respect to {λi}. This contribution also appears in the mth
order term Km of Eq. (17). We thus write

βmKm =
∑

W∈Cm

DW log Tr[e−βH(λ)]. (21)

What we have done in Eq. (21) is to simply write each
moment of the Taylor series as a sum of the contributions
of all clusters W, without further specifying what each
contribution looks like.

We now prove the key simplification stemming from this
expression. Let W /∈ Gm, so that we have W = W1 ∪ W2
where W1, W2 are nonoverlapping clusters. This allows
us to define hW1 , hW2 as the Hamiltonian terms in those
clusters, so that supp(hW1) ∩ supp(h)W2 = Ø. We then
have

DW log Tr[e−βH(λ)] = DW log Tr[e−β(hW1 (λ)+hW2 (λ))]

= DW log Tr[e−βhW1 (λ)] + DW log Tr[e−βhW2 (λ)]

= 0. (22)

This means we can write the moments in terms of con-
nected clusters only

βmKm =
∑

W∈Gm

DW log Tr[e−βH(λ)]. (23)

This reduces the number of contributions to Km dramati-
cally, and makes it possible to estimate them. One way to
show the convergence of the series (see Refs. [30–32]) is
to prove the following:

(a) The number of connected clusters of size m is
bounded by Ncm

1 for some constant c1 [33,34].
(b) The size of each cluster derivative for a cluster of

size |W| = m is at most
∣∣DW log Tr[e−βH(λ)]

∣∣ ≤ (βc2)
mm! (24)

for some constant c2 [31,32].

The constants here can usually be taken to be simple func-
tions of the parameters d, k, J , h and of some property of
the interaction graph. For instance, in Refs. [31,32], it is
shown that c1 = ed, and that c2 = 2eh(d + 1) [see Eq. (3)
for the definition of h]. These facts together imply that
|Km| ≤ 2e2hd(d + 1) ≡ (β∗)−1 � O(h), so that the parti-
tion function is analytic within a disk in the complex plane
of radius β < β∗, and is also well approximated by its
Taylor series.

Beyond this argument for the convergence of the series,
there are other more general abstract methods for prov-
ing convergence of this type of quantity, in terms of the
so-called polymer models [28,34–36]. See Chapter 5 of
Ref. [37] for an introduction.

So far we have only discussed convergence of the
series. However, the cluster expansion can be used to
devise efficient approximation schemes. The main idea is
to prove that the individual Taylor terms can be computed
efficiently. This requires two separate steps:

(a) The set of all clusters of size m can be enumerated
in time poly(N )× exp(O(m)) [31,38].

(b) Each cluster derivative can be computed exactly in
time poly(N )× exp(O(m)) [28,31,39].

We can thus add all the contributions from the dif-
ferent derivatives to obtain Km in time poly(N )×
exp(O(m)). This, together with Eq. (19), implies that
by calculating the Taylor series up to a degree M =
O (log(N/ε)× log(β∗/β)) there exists an ε-close addi-
tive approximation to log Z that can be computed in time
poly(N , ε−1).

We do not expect to be able to prove many general
statements at all temperatures, due to the presence of ther-
mal phase transitions, and to the fact that the ground-state
energy is computationally hard to estimate [13]. However,
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there are specific models in the literature for which the
convergence can be guaranteed for larger ranges of tem-
peratures (see, e.g., Ref. [40] and references therein). See
Sec. VII B for more details.

This same technique also allows for, e.g., the com-
putation of expectation values such as Tr[hie−βH/Z] by
differentiating by an extra λi in the cluster derivative.
It can be also applied to other similar objects such as
characteristic functions of the form Tr[eαAe−βH/Z] for
some local observable A, which allows for the derivation
of probability theory statements, as explained further in
Sec. VI A.

B. Thermal locality estimates

We now show the first method to decompose the ther-
mal state into a product of smaller operators despite the
noncommutativity, which is related to the general idea of
operator growth. Consider an operator A with local support
on some small region on the system. For simplicity, let this
region be such that |supp(A)| ≤ k.

An interesting quantity to study is the operator
evolved in Euclidean or imaginary time β under the
Hamiltonian H ,

A(iβ) = e−βH AeβH . (25)

This is in analogy with the Heisenberg-picture operator
A(t) = eitH Ae−itH , which can be understood in terms of the
well-known Lieb-Robinson bounds [41], that state that the
support of A(t) is mostly confined to a linear lightcone. In
many situations, one will want to choose A here to be one
of the hi operators.

It then makes sense to ask the following question: what
is the locality of the Euclidean-evolved operator A(iβ)?
Perhaps surprisingly, this can be dramatically different to
the real-time case: there is no general linear growth with
the inverse temperature β, but a much wilder dependence
on it.

The main difference is that e−itH is a unitary matrix,
while e−βH is not. This means that results that exploit uni-
tarity, such as the aforementioned Lieb-Robinson bounds,
do not apply straightforwardly. Our best way forward
seems then to analyze A(iβ) in terms of nested commu-
tators

A(iβ) =
∞∑

m=0

(−β)m
m!

[H , [H , . . . ., [H , A] · · · ]

≡
∞∑

m=0

βmCm(A). (26)

It is easy to see that the m-th term in this expansion has
support on a connected region whose furthermost point is a
distance m away from A. The question then becomes: how

does this expansion in terms of β converge? We now dis-
cuss how the known regions of convergence are either high
temperatures for arbitrary models, and all temperatures for
1D systems.

It can be shown that, for general interaction graphs
[26,42],

||Cm(A)|| ≤ k||A||(2Jk)m, (27)

with J , k as defined in Sec. II C. This statement is very
much related to the bound on the number of connected
clusters in Sec. III A above, since only connected clus-
ters contribute to the nested commutators. Equation (27)
implies that as long as β < (2Jk), the expansion can be
bounded by a geometric series, from which we obtain

||A(iβ)|| ≤ k||A|| 1
1 − 2βJk

, (28)

||A(iβ)−
M∑

m=0

βmCm(A)|| ≤ k||A|| (2βJk)M+1

1 − 2βJk
. (29)

Given that the mth nested commutator can have support on
at most k × m sites, the latter equation means that A(iβ) is,
roughly speaking, localized within the subset of vertices
a distance at most k × m away from supp(A). It is known
that one cannot extend this result to temperatures lower
than βJ � O(1), since there exists a 2D lattice in which
the terms in the nested commutators in Eq. (26) add up
constructively, in a way that the norm of A(iβ) grows with
system size, and diverges as N → ∞ [43].

On the other hand, it has been known for some time
[44] that when the lattice is a one-dimensional chain, the
nested commutators grow more slowly, so that this type
of convergence happens for all temperatures. For simplic-
ity, we show explicitly the result for k = 2 combining [45]
and [43], which is

||A(iβ)|| ≤ ||A||f (β, J ) exp(f (β, J )) (30)

||A(iβ)−
M∑

m=0

βmCm(A)|| ≤ 15||A||e−(M+1)

∀M > g(β, J ). (31)

Here, we have defined f (β, J ) ≡ 16βJ exp(1 + 8βJ ) and
g(β, J ) ≡ exp(240e2βJ )− 1 [46]. The intuitive reason for
these is that the geometric bound of Eq. (27) can be
improved in this case as [43] (again, for k = 2)

||Cm(A)|| ≤ 15||A||
(

240eJ
log(m + 1)

)m

. (32)

Notice that, because of the logarithm, the series in Eq. (26)
is not geometric, and converges for all β. For further
explanations of these points see also Ref. [47].
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So far, we have described how does A(iβ) approximate
its Taylor expansion. An alternative approximation com-
monly considered is to the operator e−βH�m AeβH�m , where
H�m =∑supp(hi)∈�m

hi and �m is a part of the hypergraph
corresponding to some subset of vertices Vm of the full
vertex set V. One can then consider how the norm

||A(iβ)− e−βH�m AeβH�m || (33)

decays with m in terms of how �m is defined (typically,
some hypersphere centered around A). The analysis and
convergence turn out to be almost the same as the one
for the moments Cm(A) above. The reason is that the dif-
ference between

∑M
m=0 β

mCm(A) and e−βH�m AeβH�m are
essentially the higher-order terms in β of the latter, which
are also suppressed. See, e.g., Ref. [45] for a detailed anal-
ysis of the 1D case or, e.g., Lemma 20 in Ref. [48] for a
proof in higher dimensions.

One of the main reasons why both of these approxima-
tions are interesting is that they are related to the following
propagator:

EA ≡ e−β(H+A)eβH = T
(

e− ∫ β0 A(s)ds
)

, (34)

where A(s) = e−sH AesH and T denotes the usual time-
ordered integral. This is such that

e−β(H+A) = EAe−βH . (35)

This operator EA can be used, for instance, to decompose
e−βH as a product of its parts by, e.g., choosing A as the
Hamiltonian at the boundary of two regions. This opera-
tor can be analyzed through a usual Dyson series in terms
of powers of e−xH AexH . Assuming β < (2Jk)−1, it can
be shown that EA has bounded norm as it follows from
Eqs. (28) and (34) that

||EA|| ≤ exp
(∫ β

0
ds||e−sH AesH ||

)
≤
(

1
1 − 2βJk

) ||A||
2βJ

.

(36)

In Appendix B 1 we also show that it is approximately
localized in a similar way as e−xH AexH is. This means that
there exist an operator EA(l) with support restricted to a
distance at most l away from A such that for β < (2Jk)−1

||EA − EA(l)|| ≤ βk||A|| (2βJk)l+1

(1 − 2βJk)
||A||
2βJ +1

. (37)

Also, notice that if [H , A] = 0, then EA = e−βA. With the
right choice of H , A, the operator EA can thus be thought of
as a “transfer operator.” Corresponding results also exists
for 1D using Eqs. (30) and (31).

Alternatively, one can also define the following
operator:

E′
A ≡ e−β(H+A)eβH eβA, (38)

with the difference that H and A are now treated on equal
footing. In this case, E′

A is just the multiplicative error
term in the first-order Trotter product formula, which can
be similarly analyzed through the expansion of A(iβ) (see
the thorough analysis of Trotter errors in Ref. [49] for
more details). These Trotter errors are most commonly
analyzed in the context of digital quantum simulation [50],
for which it is often convenient to go to higher orders in
the decomposition.

We finish this subsection outlining a result in 1D related
to this discussion, which follows from bounds on the quan-
tity in Eq. (33). It appeared first in Ref. [44], and it features
in Secs. V A 1 and VII A. Let us define El

A = e−β(Hl+A)eβHl ,
where Hl are the interaction terms a distance at most l away
from supp(A). It can be shown that

||EA|| ≤ C1 (39)

||EA − El
A|| ≤ C2

ql

(l + 1)!
, (40)

where C1, C2, and q > 1 are constants depending on
k, J ,β, which we do not show explicitly for simplicity,
although notice that C1 will be essentially the exponential
of Eq. (30). The proof is similar to that of Appendix B 1,
together with a bound on Eq. (33). We refer the reader to,
e.g., Refs. [44,45] for further details.

The approximations EA(l) and El
A to the operator EA are

important in that they allow us to decompose e−βH into a
product of smaller local operators despite the Hamiltonian
being noncommuting. For instance, they will be useful in
the arguments of Sec. V A 1.

C. Quantum belief propagation

An idea related to the previous locality estimates
appeared first in Ref. [51], and has more recently fea-
tured in several results about Gibbs states on lattices
[12,19,48,52–55]. It is a tool similar to that of the previ-
ous Sec. III B, in that it also allows us to decompose the
thermal state as a product of smaller, localized operators,
which makes certain calculations more tractable. The goal
is to be able to divide the big operator e−βH into smaller
pieces, that allow, for instance, to prove that the Gibbs state
can be sequentially generated, or that local perturbations
only have effect in the near vicinity.

This is part of a celebrated series of works including
the decay of correlations for gapped ground states [56] or
the area law of entanglement in one dimension [57], which
show how Lieb-Robinson bounds (a dynamical statement)
can be used to prove static properties about ground and
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thermal states. The derivation here is a particular example
of that idea, but see Refs. [58,59] for overviews that go
beyond Gibbs states.

The goal is to construct a quasi-local-operator Om
A (to be

defined below) with support near supp(A) such that

e−β(H+A) � Om
A e−βH (Om

A )
†. (41)

Notice the difference with Eq. (35), where we multiply
only e−βH with an operator from the left.

We start by considering the “perturbed” Hamiltonian
H(s) = H + sA and the following derivative:

de−βH(s)

ds
= −β

2

{
e−βH(s),H(s)

β (A)
}

, (42)

where, if H(s) =∑i Ei(s)|i(s)〉〈i(s)| is the energy eigen-
basis,


H(s)
β (A)ij = 〈i(s)|A|j (s)〉f̃β(Ei(s)− Ej (s)), (43)

where f̃β(ω) = tanh(βω/2)/βω/2. With fβ(t) = 4
βπ

log
(
eπ |t|β + 1/eπ |t|β − 1

)
the Fourier transform of f̃β(ω) (see

Appendix B of Ref. [12]), we can also write


H(s)
β (A) =

∫ ∞

−∞
dtfβ(t)e−itH(s)AeitH(s). (44)

The proof leading to Eq. (42) that explains the appearance
of f̃β(ω) is shown in Appendix B 2.

Since ||e−itH(s)AeitH(s)|| = ||A||, ||H(s)
β (A)|| ≤ ||A|| by

the triangle inequality and Eq. (B16). Moreover, it can also
be approximated by a localized operator around the support
of A by using Lieb-Robinson bounds [41]. In particular,
when H(s) is local, it can be shown that [60]

||e−itH(s)AeitH(s) − e−itH�m (s)AeitH�m (s)||
≤ mD−1b||A||ec′(vt−m), (45)

where H�m(s) is the restriction of H(s) to the sum of local
terms that are at most a distance m away from the support
of A, v, b, and c′ are constants, and D is the dimension of
the interaction lattice. This should be reminiscent of the
H�m appearing in Eq. (33), with the only difference being
that now the evolution is for real times.

Equation (45) allows us to establish that after time
evolving A for a short time, the support is still approxi-
mately localized, with a radius growing with time. This
also allows us to define H�m (s)

β (A), which is close to the

original H(s)
β (A) in the following sense:

1
||A|| ||

H(s)
β (A)−

H�m (s)
β (A)||

≤ mD−1b
∫ m/2v

−m/2v
ec′(v|t|−m)fβ(t)dt + 4

∫ ∞

m/2v
fβ(t)dt

≤ mD−1be−c′m/2 + 1

e
πm
2βv − 1

, (46)

where in the first line, after the triangle inequality, we
divided the integral into two different ranges, and used
Eq. (45) in the first range and ||H(s)

β (A)|| ≤ ||A|| in the
second. The bounds on the integrals were obtained using
the properties of fβ(t) from Eqs. (B16) and (B18). As a
result, for m large enough, the difference between the two
operators is exponentially decaying in m.

We can now integrate Eq. (42) between s = 0 and s = 1
to obtain

e−β(H+A) = OAe−βH O†
A, (47)

where

OA = T e− β
2
∫ 1

0 dsH(s)
β (A). (48)

Similarly to Eq. (34) above (see the analyisis of the opera-
tor EA in Appendix B 1), this operator has a bounded norm,
since

||OA|| ≤ e
β
2
∫ 1

0 ds||H(s)
β (A)|| = e

β
2 ||A||. (49)

Additionally, it is also approximately localized exactly
around the support of A. Let us define the operator Om

A in
the natural way

Om
A ≡ T e− β

2
∫ 1

0 ds
H�m (s)
β (A). (50)

We can use an argument analogous to that used in
Appendix B 1 to show that OA and Om

A are exponentially
close, as, given Eq. (46), for large enough m,

||OA − Om
A || ≤ β||OA||

2

∫ 1

0
ds||H(s)

β (A)−
H�m (s)
β (A)||

(51)

≤ β||A||e β||A||
2 −�(m). (52)

These bounds can be compared to Eq. (39) and (40),
which are of a very similar nature. There are, however,
two important differences between OA and EA in Eq. (34)
above:

(a) Since it is based on the Lieb-Robinson bound, the
operator OA is well behaved in all lattices and at all
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temperatures, in the sense that it has a bounded norm
and is approximately localized. This is as opposed to
EA, which is likely a large operator in high dimen-
sions and low temperatures. That is, this result holds
for all Gibbs states, irrespective of whether they are
completely analytical interactions or not.

(b) On the other hand, to recover e−β(H+A) from e−βH

we require left and right multiplication with OA, O†
A,

as opposed to Eq. (35), which may be problematic
in some applications. In particular, we should not
expect it to be a key ingredient in proving results
that do not hold at all temperatures such as the decay
of correlations or the analyticity of the partition
function.

D. Selected trace inequalities

In the past two subsections we have explored how to
analyze perturbations to the Hamiltonian in the Gibbs
operator e−β(H+A) via EA and OA. When considering traces,
simpler identities hold. We exemplify this with two very
elementary implications and proofs, which can be found
in (at least) Ref. [17]. The first one is about the stability
of partition functions. Let H1, H2 be Hermitian operators.
Then we have

∣∣log Tr[eH1+H2] − log Tr[eH1 ]
∣∣ ≤ ||H2||. (53)

The proof is just as follows:
∣∣log Tr[eH1+H2 ] − log Tr[eH1 ]

∣∣

=
∣∣∣∣
∫ 1

0

d
dt

log Tr
[
eH1+tH2

]
dt
∣∣∣∣

≤
∫ 1

0

∣∣∣∣
Tr[H2eH1+tH2 ]

Tr[eH1+tH2 ]

∣∣∣∣ dt

≤ ||H2||, (54)

where in the last inequality we have simply used Hölder’s
inequality Eq. (7) with q1 = 1, q2 = ∞. If we take, e.g.,
H1 = −βH , H2 = −βA, this implies that changing the
Hamiltonian by A changes the log-partition function at
most by β||A||.

The second is a similar result that holds for expectation
values of positive operators. Let H1, H2 be as before, and
let C > 0. Then

∣∣log Tr[CeH1+H2] − log Tr[CeH1 ]
∣∣

≤
∫ 1

0
dt
∫ 1/2

−1/2
ds||e−s(H1+tH2)H2es(H1+tH2)||. (55)

The proof can be found in Appendix B 3. This norm can
then be bounded with the results from Sec. III B, to scale
as ∝ ||H2||. The resulting expression can, for instance, be

used for analyzing characteristic functions of observables
F by taking C = eαF for α ∈ R [17].

More generally, in the practice of mathematical quan-
tum physics, whether it is from the many-body, the QI,
or any other perspective, many important proof ingredi-
ents take the form of inequalities, either between opera-
tors, traces, or norms (such as those already mentioned
in Sec. II A). There are too many to give a reasonably
complete overview here but we refer the reader to, e.g.,
Ref. [61,62].

IV. CORRELATIONS

One of the more important questions when studying
many-body systems is: how and how much are the different
parts correlated? Intuitively, the stronger these correla-
tions, and the longer their range, the more complex a state
is—the reason being that we cannot think of the large sys-
tem as a collection of simpler, weakly correlated parts. The
obvious extreme example is that of an uncorrelated gas,
in which the particles do not interact and have completely
independent properties.

For thermal states with local interactions, we can expect
that locality will make the state far from generic, in a
way that constraints its complexity. Intuitively, it should
cause the correlations to be “localized,” meaning that par-
ticles are only correlated with their vicinity as given by
the geometry of the interactions. For a rough intuition,
consider the first terms of the Taylor series

e−βH = I − β
∑

i

hi + β2

2

∑

i,j

hihj + . . . (56)

That is, at very high temperatures we approach the trivial
uncorrelated state ∝ I and the leading-order term includes
only k-local couplings, with only higher-order terms cou-
pling far away particles. We thus expect that the corre-
lations between particles will generally be weaker i) the
higher the temperature and ii) the larger their distance
on the interaction graph. This is one of the main ways
of understanding how the Gibbs states of the “one-phase
region” of Sec. I B are very different from generic states.

An important motivation for this is that, as we will see
in later sections, the situations in which the correlations are
weaker or short range roughly correspond to those in which
we expect better algorithms for the description of thermal
states. This is perhaps most clearly the case in the context
of tensor-network methods. We now proceed to describe
(and even prove) the more important ways in which these
correlations are constrained.

A. Correlations between neighboring regions:
Thermal area law

One of the more important statements about correla-
tions in quantum many-body systems is the area law. This

040201-11



ÁLVARO M. ALHAMBRA PRX QUANTUM 4, 040201 (2023)

roughly states that a measure of correlations between two
adjacent regions is upper bounded by a number propor-
tional to the size of their mutual boundary.

Traditionally, this has been mostly studied in the context
of ground states, which are pure. There, the relevant mea-
sure of correlations is the entanglement entropy, or some
Rényi version of it. In that context, an area law for the
entanglement entropy is believed to hold for all ground
states of models with a gap [63]. This can be proven in
1D [57,64] and in some cases in 2D [65]. The interest in
it is largely due to its relation to other phenomena, such
as phase transitions [66], the decay of long-range correla-
tions [67], or the effectiveness of certain tensor network
algorithms [68,69].

For thermal states, a very general area law can be shown
to hold for systems in any dimension, at all temperatures.
We now give a short proof of this statement, and then
discuss its significance (see Ref. [70] for the original refer-
ence). In this case, since it is a mixed state, an appropriate
measure of correlations is the mutual information from
Eq. (13).

Let us partition our interaction graph into two subsets
of particles A, B, with a thermal state ρAB

β . We start with
the very simple thermodynamic observation that the free
energy F from Eq. (12) of the thermal state is lower than
that of any other state [this follows from Eq. (12)], and in
particular

Fβ(ρAB
β ) ≤ Fβ(ρA

β ⊗ ρB
β ). (57)

Writing out the free energy explicitly as Fβ(ρ) =
Tr[ρH ] − β−1S(ρ) and rearranging yields

S(ρA
β ⊗ ρB

β )− S(ρAB
β ) ≤ β

(
Tr[HρA

β ⊗ ρB
β ] − Tr[HρAB

β ]
)

.
(58)

Given that the entropy is additive S(ρ ⊗ σ) = S(ρ)+
S(σ ) notice that the lhs is exactly the mutual information
I(A : B)ρAB

β
. Since the Hamiltonian is local, we can write

it as

H = HA + HB + HI , (59)

where HA, HB have support only on A, B, respectively, and
HI is the interaction between them (with support on both).
By definition, the expectation values of HA and HB coin-
cide on both states Tr[(HA + HB)ρ

A
β ⊗ ρB

β ] = Tr[(HA +
HB)ρ

AB
β ], so that

β
(
Tr[HρA

β ⊗ ρB
β ] − Tr[HρAB

β ]
)

= β
(
Tr[HIρ

A
β ⊗ ρB

β ] − Tr[HIρ
AB
β ]
)

. (60)

Now we can use a few of the operator inequalities from
Sec. II A to obtain

Tr[HIρ
A
β ⊗ ρB

β ] − Tr[HIρ
AB
β ] ≤ ||HI (ρ

A
β ⊗ ρB

β − ρAB
β )||1

≤ ||HI || × ||ρA
β ⊗ ρB

β − ρAB
β ||1

≤ ||HI || × (||ρA
β ⊗ ρB

β ||1 + ||ρAB
β ||1) = 2||HI ||.

(61)

Putting Eqs. (58) and (61) together we have the final result

I(A : B)ρAB
β

≤ 2β||HI ||. (62)

This is the area law for the mutual information of a
thermal state: it implies that the strength of the correla-
tions of systems A, B cannot depend on their size, but that
it grows at most as their common boundary. For a local
Hamiltonian, we have that

||HI || ≤ 2kh|∂AB|, (63)

where ∂AB = ∂A ∪ ∂B, h is defined in Eq. (3) and k is
the largest support of any hi. Notice that with |∂AB| we
do not mean the size of the boundary of systems A, B
together, but the number of elements of ∂A that are con-
nected to ∂B by hyperedges. We show this schematically
in Fig. 2. This is to be contrasted with the most general
upper bound on the mutual information, which is I(A :
B) ≤ min{log(dA), log(dB)} (since log dA ∝ |A| the largest
possible scaling is a “volume law” instead).

What this strongly suggests (although it does not quite
prove) is that the correlations between A and B are local-
ized around the mutual boundary, and that the bulks of A
and B are mostly uncorrelated. That is, the only relevant
information about A that B contains is about the region of
A that is near their boundary.

This statement, as can be seen from the proof, holds
for all temperatures and all interaction graphs, which is

FIG. 2. Under an area law, the correlations between regions A
and B grow at most as the size of their mutual boundary ∂AB.
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likely as general as it can be, at least for systems with
finite-dimensional Hilbert spaces [71]. The drawback of
that generality, however, is that it will be unable to signal
important phenomena that happens only at specific tem-
perature ranges, such as thermal phase transitions, or an
efficient classical or quantum simulability. That is, Eq. (62)
does not narrow down the set of “completely analytical
interactions” for Sec. I B in any meaningful way. Other
more specific versions of the thermal area law in the
literature may have more potential in this regard [23,72].

The temperature dependence of Eq. (62) can be
improved to Õ(β2/3) [48]. This can be proven with a vari-
ety of techniques, including those of Secs. III B and III C,
as well as methods originated in the study of ground states
[64]. The dependence O(β2/3) is close to the best bound
one could prove for general Hamiltonians, since there
exists a 1D model for which the scaling of the MI is at
least O(β1/5) at low temperatures [73].

Many important physical models have a very different
temperature dependence, such as log(β + 1) [74,75]. Clas-
sical systems, on the other hand, have an upper bound
that is independent of the temperature, as I(A : B)ρAB

β
≤

|∂AB| log d [70]. All these suggests that the scaling of the
mutual information with β in the low-temperature regime
is related to the computational complexity of the ground
space of the models.

B. Decay of long-range correlations

An important fact about thermal states is that often their
spatially separated parts are very weakly correlated. Let
C, D be regions such that their distance is dist(C, D) (see
Fig. 3). We focus on measures of correlations evaluated
at the marginals on these regions Tr\(CD)[ρβ] = ρCD

β . For
instance, taking the mutual information, we expect that in
general

I(C : D)ρCD
β

≤ f (dist(C, D)) , (64)

where f is some rapidly decaying function. In fact, we
expect that for completely analytical interactions f (l) ≤
K |∂C||∂D|e−l/ξ , where K > 0 is some constant, ∂C,D is the

D

FIG. 3. Regions C, D in the lattice are separated by a distance
dist(C, D). The mutual information between these two regions
typically decays exponentially with their distance.

size of the boundary of each region, and ξ is the ther-
mal correlation length that depends on the temperature and
other parameters, but not on l or the system’s size.

This has been proven in translation invariant 1D sys-
tems at all temperatures [76]. The main idea behind it is to
use the locality estimates from Sec. III B, and in particu-
lar the properties of the operator EA in Eq. (35). That this
also holds for high enough temperatures in all dimensions
also follows the cluster expansion applied to the mutual
information [48].

A more commonly stated but weaker condition is the
decay of connected two-point correlators. This usually
takes the form

∣∣Tr[ρβMC ⊗ MD] − Tr[ρβMC]Tr[ρβMD]
∣∣

||MC||||MD||
≤ K |∂C||∂D|e−dist(C,D)/ξ , (65)

where here MC and MD have support on regions C, D,
respectively. That this is weaker than the decay of the
mutual information follows from Pinsker’s inequality
applied to the marginal on regions C, D.

It is known that correlations decay exponentially at large
temperatures for arbitrary interaction graphs [77,78]. This
can be shown with the cluster expansion [79]. Instead of
showing the proof in full generality, we can already see
a simple but instructive case by noticing that, with the
notation of Sec. III A,

d log Z(λ)
dλidλj

∣∣∣
λ=1

= β2(〈hihj 〉 − 〈hi〉〈hj 〉). (66)

At the same time, when one differentiates over two vari-
ables λi, λj , the nonzero contributions come from clusters
that contain both

d log Z(λ)
dλidλj

= d
dλidλj

⎛

⎜⎜⎝
∑

m

1
m!

∑

W∈Gm
i,j ∈W

DW log Tr[e−βH(λ)]

⎞

⎟⎟⎠ . (67)

However, connected clusters such that i, j ∈ W belong to
Gm with m ≥ dist(i, j ). This means that the lowest moment
that appears in the correlation function is Km with m =
dist(i, j ). If Eq. (18) holds, then the correlation function
will decay at least as (β/β∗)dist(i,j ), mirroring Eq. (65).
A similar argument also holds for arbitrary few body
observables hC, hD if one consider an appropriate clus-
ter expansion of the perturbed Hamiltonian H + hC + hD.
See, e.g., Refs. [78,79] for more general results.

The connection between this type of correlation decay
and the analyticity of the partition function is well under-
stood in the classical case, where they are known to be
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equivalent [18]. In the quantum case, it is only known
that a condition stronger than the analyticity of log Z
(called analyticity after measurement) implies decay of
correlations. See Ref. [19] for details.

Intuitively, both these properties are related to the
absence of phase thermal phase transitions: at those critical
points, the correlation function diverges and the parti-
tion function becomes nonanalytic. Since there are known
phase transitions at finite temperature (e.g., 2D classical
Ising model), the exponential decay does not hold for all
thermal states at all temperatures. As such, this can typi-
cally be thought of as a characteristic property of the set of
completely analytical interactions from Sec. I B.

The decay of correlations is an important fact: it shows
that the different parts of the system behave almost com-
pletely independently. A state with this property should
then share many large-scale features with an uncorrelated
gas, in which the particles are not interacting at all. This
has as a wealth of related physical consequences. For
instance, it is associated with basic statistical physics facts
covered in Sec. VI, in particular the validity of the central
limit theorem and related results on concentration prop-
erties of thermal states [80,81] and the phenomenon of
equivalence of ensembles [80,82,83]. It also features in the
proof of local indistinguishabiliy in Sec. V A 1.

C. A refined correlation decay: conditional mutual
information

In Sec. IV A, we mentioned that the area law itself
does not quite imply that the correlations in a system are
localized, in the sense that a particular subsystem is only
appreciably correlated with its vicinity. There is, however,
a significantly stronger statement about correlations that
does imply it in a clear way [84].

This is the property of being an approximate quantum
Markov state [85], which is defined in terms of the decay of
the CMI in Eq. (15). Let us consider three regions A, B, C
such that B shields A from C. A simple example is given in
Fig. 4, or in Fig. 5 for 1D.

Since this quantifies how many of the correlations
between A and C are not mediated through B, we expect
that it becomes small as the size of B grows, and A, C are
further apart. This is perhaps the strongest sense in which
correlations can be localized.

This is studied in one-dimensional systems in Ref. [53].
By choosing A, B, C to be adjacent regions of the chain (see
Fig. 5), Ref. [53] shows that

I(A : C|B)ρβ ≤ c1|B|e−c2
√|B|. (68)

It is however expected that the real decay of the CMI in
one dimension is e−�(|B|) as opposed to Eq. (68), which
may be important for certain applications [53,55,86]. The
key technique is the quantum belief propagation from

C

A
B

dist(A,C)

FIG. 4. In this configuration, the region B shields A from C,
such that the minimum distance between A and C is given by the
shortest path from A to C through B.

Sec. III C, but the locality bounds from Sec. III B are
also sufficient. The idea is to use those results to define a
completely positive map corresponding to a particular pos-
itive operator-valued measure outcome, that can be used
in a “measure until success” strategy. This result, how-
ever, relies on the exponential decay of correlations in
1D, and also on a bound on the correlation length of the
form ξ ≤ eO(β), which is currently not known. Interest-
ingly, Ref. [53] also shows a converse statement: any state
with a sufficiently fast decaying CMI approximates the
thermal state of some local Hamiltonian.

In larger dimensions, the work [87] shows that a non-
commutative analogue of the cluster expansion suffices
to study this problem. In particular, if the cluster expan-
sion corresponding to the object log Tr\A[e−βH ] converges
exponentially well, one obtains an exponential decay of the
form

I(A : C|B)ρβ ≤ k1 min{|∂A|, |∂C|}
(
β

β∗
NC

)−k2×dist(A,C)

,

(69)

which works only for high enough temperatures β <

β∗
NC = O(1). This expansion is more involved than the one

described in Sec. III A in that the individual terms of the
expansion may not commute (since no trace is being taken
when expanding log Tr\A[e−βH ]). Thus, the constant β∗

NC
need not be the same as the β∗.

…..

C AB

dist(A,C)

FIG. 5. In this chain, the middle region B shields A from C,
and their distance is related to the size of B.
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The significance of a fast decay of the CMI is high-
lighted by the idea of the Petz map [85,88]. An important
result in this regard states that, given a tripartite state
ρ = ρABC, there exists a CPTP map N (·)B→BC (that is,
acting on B, and with output on BC) such that [89,90]

I(A : C|B)ρ ≥ 2||ρABC − N (ρAB)B→BC||1. (70)

The map N usually goes under the name of recovery map.
See Ref. [91] for an overview.

A fast decay of the CMI thus guarantees that the Gibbs
state on A, B, C can be reconstructed from ρAB by act-
ing locally on B (and importantly, not on A), such that
IA ⊗ RB→BC(ρ

AB) � ρABC, with RB→BC some CP map
taking only B as input. This gives a way of sequentially
preparing the whole thermal state from its smaller com-
ponents, which can potentially be used, e.g., for quantum
algorithms (see Sec. VII).

V. LOCALITY OF TEMPERATURE

In the previous section we focused on the correlations
between different parts. Now, we move to features of indi-
vidual subsystems. The question is: if we divide our system
into A and its complement \A, what does Tr\A[ρβ] look
like?

Consider first the trivial case: if the particles are non-
interacting, it holds that the marginal on A is the thermal
state of HA, which is the Hamiltonian that acts only on
subsystem A. That is

ρA ≡ Tr\A[ρ] = e−βHA

ZA
. (71)

Here we drop the subscript β for simplicity of notation.
Now, how does Eq. (71) change when we introduce local
(and potentially strong) interactions? Can we identify the
state of a subsystem with some thermal state? How differ-
ent is it from e−βHA/ZA? This general question sometimes
goes under the name of locality of temperature [77].

There are (to the author’s knowledge) two different but
related answers to this: the idea of local indistinguishabil-
ity and also the notion of Hamiltonian of mean force. We
now explain both of them, elaborate on their significance
for thermodynamics, and also give a proof of the simplest
instance of the first (in 1D).

A. Local indistinguishability

Given the above discussion on the decay of correla-
tions, we expect that the state of a local subsystem will not
depend much on the parts that are far away enough from it.
A possible way to phrase this is that the local marginal ρA
is indistinguishable from the marginal of a much smaller
thermal state, with a Hamiltonian that acts only in the
vicinity of A. We now make this intuition precise.

Let us refer to partitions into ABC such as those in Fig. 4
or Fig. 5, and write the Hamiltonian with the following
terms:

H = HA + HAB + HB + HBC + HC. (72)

We now have the full thermal state ρ, as well as a thermal
state supported on A, B defined as

ρAB
0 = e−β(HA+HB+HAB)

ZAB
, (73)

that is, without the terms in H that have support in C.
One can also think of this as the marginal of the ther-
mal state ρAB

0 ⊗ ρC
0 ≡ e−β(HAB+HC)/ZABZC in which we

have removed the interactions HBC between AB and C.
Notice that ρAB

0 = ρAB due to the presence of HBC. This
is, however, just a small local term.

The main idea is that if B is large enough, these two
states are almost indistinguishable on A. Let us assume that
the connected correlations from Eq. (65) decay with func-
tion f (dist(C, D)). Then, the following upper bound holds
for some constant K > 0 [55]

||TrBC[ρ] − TrB[ρAB
0 ]||1

≤ K |∂C| (f (dist(A, C))+ e−�(dist(A,C))) . (74)

The first term in the rhs comes from the decay of correla-
tions’ assumption. The second comes from using the QBP
technique in Sec. III C. The exponential decay of this quan-
tity thus holds whenever both the correlations decay fast
enough, and Lieb-Robinson bounds hold. An alternative
proof for high temperatures using the cluster expansion can
also be found in Ref. [77].

A straightforward consequence of this is that we do not
need to know the whole state to compute local quantities.
If we care about some kind of local order parameter, or
want to compute currents or else between some part and
its surroundings, we can calculate them without having to
diagonalize a huge matrix of size exp(N ), but rather just
focus on a much smaller region. This is particularly useful
in translation-invariant systems.

1. Proof in 1D

We now show the full proof of this result in the case of
one dimension. The more general one, however, is essen-
tially the same and can be found in Ref. [55]. It uses
previously mentioned results, and shares some steps and
ideas that appear in other fundamental questions including
the proof of the absence of phase transitions in 1D [19,44]
or of the decay of correlations [44,76]. It will also be a key
ingredient in the algorithm of Sec. VII A.

We focus on the restricted setting of a chain, that we
divide into three parts A, B, C, such that B is in the middle
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C B A
…..

FIG. 6. Choice of regions for the proof in Sec. V A 1, and
depiction of the distance l on which the operator El

BC acts
within B.

and A is a small subsystem at the end of the chain, as in
Fig. 6. The aim is a small upper bound on

||TrBC[ρ]−TrB[ρAB
0 ]||1= max

||MA||≤1
|Tr[MA(ρ−ρAB

0 ⊗ ρC
0 )]|,
(75)

where MA has support on A only, and the equality comes
from the definition of the 1-norm. Now, let us define the
following two operators:

(i) EBC = eβH e−β(H−HBC),
(ii) El

BC = eβ(H
l
C+Hl

B+HBC)e−β(Hl
B+Hl

C), where H l
B and H l

C
are the terms of HB and HC that are a distance at
most l from the boundary terms HBC.

The parameter l is free, so we can choose to our con-
venience. We refer now to the result from Ref. [44] in
Eq. (39) and (40), from which it follows that

||EBC|| ≤ C1, (76)

||EBC − El
BC|| ≤ C2

q1+l

(l + 1)!
. (77)

That is, the operator EBC has bounded norm and, since
we can approximate it by El

BC with some l < dist(A, C),
its support on region A is superexponentially suppressed
in l (due to the factorial, which always dominates over
ql). In what follows, we choose l = |B|/2. Notice that by
definition ρAB

0 ⊗ ρC
0 = Z

ZABZC
ρEBC.

Let us define M ∗
A to be the operator that optimizes the

rhs of Eq. (75). With the triangle inequality we can write

|Tr[M ∗
A(ρ − ρAB

0 ⊗ ρC
0 )]|

≤
∣∣∣∣Tr[M ∗

A(ρ − Z
ZABZC

ρEl
BC)]
∣∣∣∣

+
∣∣∣∣Tr[M ∗

A(
Z

ZABZC
ρEl

BC − ρAB
0 ⊗ ρC

0 )]
∣∣∣∣ . (78)

Let us now upper bound these two terms independently.
The second can be bounded with Eq. (77) and Hölder’s

inequality applied twice.
∣∣∣∣Tr[M ∗

A
Z

ZABZC
ρEl

BC − ρAB
0 ⊗ ρC

0 )]
∣∣∣∣ (79)

=
∣∣∣∣Tr[M ∗

A
Z

ZABZC
ρ(El

BC − EBC)]
∣∣∣∣ (80)

≤ Z
ZABZC

||M ∗
A ||||ρ||1||El

BC − EBC|| (81)

≤ Z
ZABZC

× C2
q1+l

(1 + l)!
. (82)

Given Eq. (53), max{Z/ZABZC, ZABZC/Z}≤eβ||HBC||, which
is a constant that depends only on β, k, J . Thus, this second
term is superexponentially suppressed in |B|.

For the first term, we require the decay of correlations
property Eq. (65) (which holds in 1D under the assumption
of translation invariance). Since l = |B|/2,

∣∣Tr[M ∗
AρEl

BC] − Tr[M ∗
Aρ]Tr[ρEl

BC]
∣∣ (83)

≤ Ke− |B|
2ξ ||El

BC|| ≤ 2KC1e− |B|
2ξ , (84)

where for the last inequality we used ||El
BC|| ≤ ||EBC|| +

||El
BC − EBC|| ≤ 2C1, which holds for sufficiently large l.

We can now write
∣∣∣∣Tr[M ∗

A(ρ − Z
ZABZC

ρ)El
BC]
∣∣∣∣

≤
∣∣∣∣Tr[M ∗

Aρ] − Z
ZABZC

Tr[M ∗
Aρ]Tr[ρEl

BC]
∣∣∣∣+ 2KC1e− |B|

2ξ

≤
(

1 − Z
ZABZC

Tr[ρEl
BC]
)

+ 2KC1e− |B|
2ξ , (85)

where we used the triangle inequality in the first line, and
Hölder’s inequality Tr[M ∗

Aρ] ≤ ||M ∗
A || ≤ 1 to get to the

second. Finally, we can use Eq. (77) again after another
application of Hölder’s inequality

|Tr[ρEl
BC] − Tr[ρEBC]| ≤ ||EBC − El

BC|| ≤ C2
q1+l

(1 + l)!
,

(86)

and since Tr[ρEBC] = Z/ZABZC ≤ eβ||HBC|| we obtain
∣∣∣∣Tr[M ∗

A(ρ − Z
ZABZC

ρEl
BC)]
∣∣∣∣ (87)

≤ C2eβ||HBC|| q1+l

(1 + l)!
+ 2KC1e− |B|

2ξ . (88)

This finishes the proof. Putting everything together, we
see that we have upper bounded our target quantity in
Eq. (75) by a small number related to the error term in the
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decay of correlations and Araki’s result. Without writing
the constants explicitly, and just on the leading exponential
error, the final result is

||TrBC[ρ] − TrB[ρAB
0 ]||1 ≤ e−�(|B|), (89)

where �(x) is defined in Sec. II D.
For simplicity, we have only dealt with the case of a 1D

chain, where A is at the end of it. To generalize the proof,
one just needs to define an analogous partition ABC in
higher dimensions (see Fig. 4 for 2D) and then remove all
the different interaction terms from HBC one by one. Here,
we have done it with the operator EBC, but this can also
be done with the (suitably defined) QBP operator OA from
Sec. III C, and the result Eq. (74) is essentially unchanged.

B. Hamiltonian of mean force

The state ρA is obviously the thermal state of some
Hamiltonian on A, since we can always define

H̃A ≡ β−1 log Tr\A[e−βH ], (90)

which is in general different from HA. This is the so-called
Hamiltonian of mean force [92]. Notice that it can in prin-
ciple be defined up to some additive constant chosen at will
although often there might be physical reasons to motivate
a specific value (see, e.g., Sec. V C and Ref. [93]) .

How does this Hamiltonian compare to the “bare”
Hamiltonian HA, which disregards the interactions
between A and the rest? That is, we would like to under-
stand the norm and locality of the operator A ≡ H̃A −
HA. This turns out to be a difficult problem, very much
related to both the decay of mutual information and of the
conditional mutual information from Sec. IV.

One potential result is as follows. Since the interactions
are local, it makes sense that, if the size of A is much larger
than the number of nearest neighbors k, most of the weight
of A is localized around its boundary with the rest of the
system, of size |∂A|.

The precise question then is: can we approximate A
with another operator l

A that only has support on sites
a distance l away from the boundary? Using a noncom-
mutative cluster expansion, as in Sec. IV C, Theorem 2
in Ref. [87] shows that, in any local model, and for any
inverse temperature β below a threshold one β∗

NC > 0, one
can define a l

A such that

||A −l
A|| ≤ e

2β
(β/β∗

NC)
l/k|∂A|. (91)

That is, A can be exponentially well approximated with
an operator localized around the boundary. See Fig. 7 for
an illustration.

A similar result is expected to hold in 1D at all tempera-
tures, but this is a so far open problem. See Ref. [94] for a

FIG. 7. Illustration of the regions of the Hamiltonian of mean
force. The correction term A is exponentially well approxi-
mated by l

A, which has support on the region ∂A only.

recent overview on this topic for a different set of models,
and its implications.

C. Nonequilibrium thermodynamics with strong
coupling

The ideas of this section may help understand how a
priori complex nonequilibrium thermodynamic processes
may be tractable in practice. In many situations of interest,
the starting point at t = 0 is an equilibrium state with time-
dependent Hamiltonian

H(t) = HS(t)+ HB + HI . (92)

This includes a system Hamiltonian HS(t), a bath Hamil-
tonian HB, and an interaction HI between them [95]. The
driving of HS(t) for t > 0 takes the system away from equi-
librium, and different thermodynamic quantities can then
be studied.

Textbook thermodynamics are typically centered around
macroscopic systems such as gases, where one can take
the weak coupling limit HI � HS, HB. In many-body
quantum systems, such as the ones considered here, this
limit may no longer apply, which creates a number of
difficulties for thermodynamic considerations (see, e.g.,
Refs. [92,93,96]). These, however, can be dealt with if one
considers the effective state on the system

ρS(t) = TrB[e−βH(t)]
TrSB[e−βH(t)]

≡ e−βH̃S(t)

Z̃S(t)
, (93)

where it is convenient to define the Hamiltonian of mean
force H̃S(t) such that Z̃S(t) ≡ (TrSB[e−βH(t)])/(TrB[e−βHB]).
This way, for instance, the nonequilibrium free energy (and
thus the second law) is defined as

FS(t) = TrS[H̃S(t)ρS(t)] − 1
β

S(ρS(t)). (94)

See, e.g., Ref. [93] for details. These quantities may be dif-
ficult to calculate. While H̃S(t) may be inferred from the
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system alone, Z̃S(t) may depend on the system but also
potentially on its relation to the whole bath.

Consider the rather general situation in which the system
is a small part of a lattice Hamiltonian of a Gibbs state with
short-ranged correlations, and the bath is the rest of the
lattice. In that case, the situation simplifies dramatically.
First, the discussion from Sec. V B suggests that typically
the Hamiltonian of mean force H̃S does not necessarily
depend on the whole bath, but has some corrections, which
depend only on the region around the boundary between S
and B.

Then, for the effective partition function Z̃S, the same
fact follows from local indistinguishability. To show this,
notice that

Z̃S(t)
ZS(t)

≡ TrSB[e−βH(t)]
TrSB[e−βHS(t) ⊗ e−βHB]

(95)

= TrSB

[
O†

I OI
e−βHS(t) ⊗ e−βHB

TrSB[e−βHS(t) ⊗ e−βHB]

]

= TrSB

[
(Ol

I )
†Ol

I
e−βHS(t) ⊗ e−βHB

TrSB[e−βHS(t) ⊗ e−βHB]

]

+ eO(β||HI (t)||−l), (96)

where OI is the belief propagation operator from Eq. (48)
with A = HI and Ol

I is its local approximation in Eq. (50).
Defining Bl to be the region of the bath that is at most a
distance 2l away from S, we have that

Z̃S(t)
ZS(t)

= TrSBl

[
(Ol

S)
†Ol

S
e−βHS(t) ⊗ e−βHBl

TrSBl[e−βHS(t) ⊗ e−βHBl ]

]

+ eO(β||HI ||−l). (97)

This shows that the effective partition function can be
approximated to multiplicative error ε by computing the
expectation value of O†

I OI on the system and a region of
the bath a distance l = log(ε−1)+ O(β||HI ||) away from
the small system. In D dimensions, assuming ||HI || =
O(1), the computational cost of exact diagonalization is
eO(l) = eO(logD ε−1), independent of the size of the bath.

VI. STATISTICAL PROPERTIES

We now explain and prove some important statistical
features of thermal states. These are central statements of
the field of statistical physics and characterize the ensem-
bles involved: the thermal (or canonical) and the micro-
canonical, as well as the grand canonical or others, when
relevant. In contrast to the results of other sections, all
those shown here (as well as their proofs) apply equally
to classical models.

A. Measurement statistics and concentration bounds

In Sec. IV we saw how in many instances of thermal
states, in particular for those in the “one phase region,”
the different subsystems tend not to have strong correla-
tions. This has a number of consequences, and we now
explore an important one that shows that their large-scale
statistical properties resemble those of noninteracting or
statistically independent systems. These are concentration
bounds, akin to the (perhaps more widely known) central
limit theorem.

The setting is as follows: let us consider a k-local
observable A =∑j Aj , such that Aj has support on at most
k sites. The best example is the energy, but also other
properties like magnetization

∑
j σ

Z
j .

The expectation value of any such observable can be
thought of as a macroscopic property of the system (such
as the average magnetization of the material). While we
expect that there will be thermal fluctuations around that
average value, our intuition from thermodynamics tells us
that any such large-scale property should have a definite
value, almost free of fluctuations. This is due to one of the
most basic ideas from probability theory: the measurement
statistics of sums of independent random variables greatly
concentrate around the average. The main conclusion is
that if we measure an observable A on a thermal state,
the outcome will be very close to the average 〈A〉β with
overwhelmingly large probability. That is, the distribution

PA,β(x) = Tr[ρδ(x − A)], (98)

which is the probability of obtaining outcome x when
measuring A, is highly peaked around the average 〈A〉β =
Tr[ρβA]. This has important implications for the validity of
thermodynamic descriptions of these systems, in that aver-
aged macroscopic quantities characterize the large system
of many particles whose properties we do not know with
certainty.

In the theory of probability, there are various types
of results characterizing distributions comprised of many
independent (or close to independent) variables. Their
proofs most often involve constraining the characteristic
function 〈eλA〉β , where λmay be real or imaginary. We now
describe some of them.

1. Chernoff-Hoeffding bound

This is a concentration bound that reads

PA,β(|x − 〈A〉β | > δ) ≤ 2 exp
(

− δ2

4cĀ

)
, (99)

where Ā ≡∑j ||Aj ||. Thus if δ2 � cĀ, the probability of
measuring A to be away from 〈A〉β by at least δ is expo-
nentially small. The most common proof technique is via a
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bound on the characteristic function of the form

log〈eτ(A−〈A〉β)〉β ≤ cτ 2Ā, (100)

for some O(1) constant c > 0 (which might depend on β
and the parameters of the Hamiltonian) and a wide enough
range of τ . From this it follows that

PA,β(x − 〈A〉β > δ)

=
∫

x−〈A〉β>δ
Tr[ρδ(x − A)] (101)

=
∫

x−〈A〉β>δ
Tr[ρeτ(A−〈A〉β)e−τ(A−〈A〉β)δ(x − A)] (102)

≤ e−τδTr[ρβeτ(A−〈A〉β)] ≤ exp
(−τδ + cτ 2Ā

)
. (103)

One can follow the same steps for the range 〈A〉β − x > δ.
Then, choosing τ = δ/(2cĀ) yields Eq. (99).

This result can be very easily shown for independent
random variables or for independent spins. For interact-
ing spins, Eq. (100) was shown in Ref. [30] with the
cluster expansion technique from Sec. III A, which holds
for all dimensions and all temperatures β < β∗. To see
this, notice that a bound of the form of Eq. (100) fol-
lows from proving the convergence of the expansion of
log〈eτ(A−〈A〉β)〉β to second order. The main result from
Ref. [81] proves a slightly weaker version of Eq. (99)
with a different technique, only assuming the decay of
correlations from Sec. IV B.

2. Large deviation bound

A related important type of concentration result is given
by large deviation theory. This is the branch of proba-
bility theory concerned with understanding the likelihood
of very rare events, and has a long history as one of the
most important mathematical frameworks for studying sta-
tistical physics. For instance, it gives a way of describing
the equilibrium properties of large ensembles (as is also
the case here), or for predicting the long-time behavior of
nonequilibrium processes such as Brownian motion. See
Ref. [97] for an excellent overview of the main results and
their consequences for classical systems.

The basic idea is that given any set of measurement out-
comes A, we would like to identify whether there always
exists a rate function IA such that

lim
N→∞

− log PA,β(x ∈ A)
N

= IA. (104)

If this is the case, the dominant behavior of PA,β(x ∈
A) is essentially a decaying exponential PA,β(x ∈ A) �
e−NIA+o(N ), unless IA = 0. This means that, in the ther-
modynamic limit, the measurement statistics of A are

extremely peaked around the points where the rate function
vanishes IA = 0.

This is slightly stronger than the Chernoff-Hoeffding
inequality, in that it can in principle give an exact expres-
sion of the probability distribution for large enough N .
However, we do not always know how large an N is
“enough,” and for finite N , it often does not give an
expression as explicit as Eq. (99).

Again, the proof strategy most often involves the char-
acteristic function. In particular, the Gärtner-Ellis theorem
states that a sufficient condition is that the function

g(τ ) = lim
N→∞

log〈eτA〉β
N

(105)

exists and is differentiable. This has been shown using
the cluster expansion in [98] for 1-local observables, and
upper bounds on the rate for general observables have
been shown using the locality estimates from Sec. III B in
Ref. [17,99]. The full large deviation principle was shown
in 1D in Refs. [100]. An alternative proof can be found in
Ref. [101].

3. Berry-Esseen theorem

Another interesting probability theory result is the
Berry-Esseen theorem [80,102,103], which can be thought
of as a refinement of the central limit theorem for a finite
sample size (which in this case is the system size N ). Let
us define the cumulative distribution function

F(x) =
∫ x

−∞
PA,β(x)dx (106)

as well as the equivalent for a Gaussian with the same
average and variance

G(x) = 1

σA
√

2π

∫ x

−∞
e

−(y−〈A〉β
2σ2

A , (107)

where σ 2
A = 〈A2〉β − 〈A〉2

β . The distance between these two
functions is bounded by Esseen’s inequality [104], which
states that, for all T > 0

� ≡ max
x

|F(x)− G(x)| (108)

≤ 18√
2π3T

+ 1
π

∫ T

0

∣∣∣∣e
− t2

2 − 〈eit
A−〈A〉β
σA 〉

∣∣∣∣
t

dt. (109)

That is, the right-hand side is small if the characteristic
function inside the integral is close to a Gaussian for rather
long times t.
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This can be shown by bounding the logarithm of the
characteristic function

〈eit
A−〈A〉β
σA 〉 = Tr

[
eit

A−〈A〉β
σA

e−βH

Z

]

with the cluster expansion from Sec. III A. Assuming h =
O(1), for short times t/σA ≤ t∗, with t∗ some O(1) con-
stant, it can be shown that it is close to the second-order
Taylor expansion as

∣∣∣∣log〈eit
A−〈A〉β
σA 〉 − −t2

2

∣∣∣∣ ≤ O
(

Nt3

σ 3

)
, (110)

so that

〈eit
A−〈A〉β
σA 〉 = e

− t2
2 +O

(
Nt3

σ3

)

. (111)

To prove this, see for instance Theorem 13 in Ref. [32].
This allows us to bound the integral in Eq. (109) choosing
T = t∗σA/2, to achieve

� ≤ O
(

1
σA

+ N
σ 3

A

)
, (112)

which, considering that σA = �(
√

N ), means that � =
O(N−1/2). This means that the cumulative functions F(x)
and G(x) become increasingly similar with system size,
which shows that the probability PA,β(x) approaches a
Gaussian in the thermodynamic limit.

A different proof, starting from the assumption of decay
of correlations, can be found in Ref. [105].

B. Equivalence of ensembles

We now prove an important statement in the study of sta-
tistical physics, which goes back all the way to Boltzmann
and Gibbs. In large systems, the average macroscopic
properties of both the thermal or canonical state, and of the
microcanonical ensemble, are essentially the same. This
means that both canonical and ergodic averages coincide
in the thermodynamic limit, and shows that the particular
ensemble used for calculations does not necessarily matter.

There are various similar statements in the literature
[30,80,82,83,106–108], but the proof that we now show
follows that of Refs. [30,82,83] and relies on the Chernoff-
Höffding bound. Let us define the extensive observable
A =∑j Aj (such as, e.g., the total magnetization

∑N
j σ

Z
j )

with the thermal and canonical average 〈A〉β , which for
simplicity (and without loss of generality) we will set to
〈A〉β = 0, while the microcanonical average is

〈A〉E,� = 1
DN (E,�)

∑

Ej ∈(E−�,E)

〈Ej |A|Ej 〉, (113)

where E is the energy and � the width of the microcanon-
ical window (which might depend on N ), and |Ej 〉 is the

energy eigenstate of energy Ej . DN (E,�) is a normaliza-
tion constant counting the number of eigenstates within the
window. This motivates the following probability distribu-
tion:

PE,�(x) = 1
DN (E,�)

∑

Ej ∈(E−�,E)

δ(x − 〈Ej |A|Ej 〉), (114)

which gives the probability of measuring x = 〈Ej |A|Ej 〉
when sampling eigenstates from the microcanonical
ensemble.

First, we need to determine what is the energy that
corresponds to temperature β and thus characterizes the
microcanonical ensemble. Given the temperature β, the
microcanonical energy E0 is such that [30,82,83]

E0(�,β) ≡ argmaxEDN (E,�)e−βE . (115)

Assuming that the width is significantly different than the
energy scales of the system,� � 〈H 〉β (which is most typ-
ically the case), this roughly implies that E0 is the energy of
the microstates {|Ej 〉} that have the dominant weight in the
canonical ensemble (when the density of states is weighted
by the factor e−βE). To be more precise, notice that

〈H 〉β =
∑

E

1
Z

DN (E,�)e−βE × E =
∫

x
PH ,β(x)x. (116)

It can be inferred from Secs. VI A and VI A 2 that the
distribution PH ,β(x) is highly peaked at its maximum,
which is E0(�,β). Thus, in the thermodynamic limit, the
overwhelmingly largest contribution to 〈H 〉β comes from
E0(�,β), so we recover the usual condition E0(�,β) �
〈H 〉β . We have written the dependence on β,� explicitly
in Eq. (115), but let us now drop them for simplicity of
notation.

We start by upper bounding the mth (even) moment of
PE0,�(x)

∫ ∞

−∞
xmPE0,�(x)

= 1
DN (E0,�)

∑

Ej ∈(E0−�,E0)

|〈Ej |A|Ej 〉|m

≤ 1
DN (E0,�)

∑

Ej ∈(E0−�,E0)

|〈Ej |Am|Ej 〉| = 〈Am〉E0,�,

(117)

where we used the convexity of xm with m even. The bound
can easily be expressed in terms of a canonical average as,
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since Am is positive,

〈Am〉E0,� = 1
DN (E0,�)

∑

Ej ∈(E0−�,E0)

〈Ej |Am|Ej 〉 (118)

≤ eβE0

DN (E0,�)

∑

Ej ∈(E0−�,E0)

e−βEj 〈Ej |Am|Ej 〉

(119)

≤ eβE0

DN (E0,�)

∑

Ej ∈(−∞,∞)

e−βEj 〈Ej |Am|Ej 〉 (120)

= ZeβE0

DN (E0,�)
〈Am〉β . (121)

The factor ZeβE0/DN (E0,�) can now be upper bounded
using the definition of the microcanonical ensemble and
the concentration bound. Let us define the following modi-
fied partition function Z̃ ≡∑|Ej −E0|≤δ e−βEj . If we also set
δ = KN 1/2 with K = O (1) it follows from Eq. (99) that

Z̃
Z

= 1 − PH ,β(|x − 〈H 〉β | ≥ δ) (122)

≥ 1 − 2 exp
(

− δ2

4cJN

)
≥ 1/2. (123)

Now divide the energy range in the sum in equal parts of
width �∗ ≡ min{�,β−1}, such that the largest energy of
each interval is Eν , so that Eν+1 = Eν +�∗ and

Z̃ ≤
∑

ν∈Z

|Eν−E0|≤�∗+δ

DN (Eν ,�∗)e−β(Eν−�∗) (124)

≤ eβ�
∗
(

2δ
�∗ + 2

)
max
ν

DN (Eν ,�∗)e−βEν (125)

≤ 1
2

K ′ N
1/2

�∗ DN (E0,�)e−βE0 , (126)

with K ′ = O(1), where the last inequality follows from
the fact that DN (E0,�) is monotonic in �. We thus have∫∞
−∞ xmPE0,�(x) ≤ K ′ N 1/2

�∗ 〈Am〉β . To finish this part of the
proof we bound 〈Am〉β . It was shown in Ref. [30,83] that
the concentration inequality Eq. (99) implies that

〈Am〉β ≤ (4cĀ
)m/2 (m

2

)
!. (127)

For completeness, we reproduce the proof in Appendix B 4.
We are now in a position to bound the tail of PE,�(x) as

PE,�(x ≥ x0) =
∫ ∞

x0

PE,�(x)dx ≤ 1
xm

0

∫ ∞

−∞
xmPE0,�(x)

≤ K ′ N
1/2

�∗

(
4cĀ
x2

0

)m/2 (m
2

)
! ≤ K ′ N

1/2

�∗

(
4mcĀ

x2
0

)m/2

.

(128)

Thus, choosing m = �x2
0/4ceĀ� and repeating for x ≤ −x0,

leads to (let us now bring back the average 〈A〉β explicitly,
previously taken to be zero)

PE,�(|x − 〈A〉β | ≥ x0) ≤ 2eK ′ N
1/2

�∗ exp
(

− x2
0

8ceĀ

)
.

(129)

We are almost done. We now bound the difference between
canonical and microcanonical as

|〈A〉E,� − 〈A〉β | ≤
∑

j

|〈Ej |A|Ej 〉 − 〈A〉β |
DE0,�

(130)

≤
∫

|x|≤Ā
PE,�(x − 〈A〉β)(x − 〈A〉β)dx (131)

≤ x0 + 2ĀPE,�(|x − 〈A〉β | ≥ x0), (132)

and so choosing x0 =
√

8ceĀ log(4ĀeK ′ N 1/2

�∗ ), the fact that
Ā ∝ N yields, for some constant K ′′,

1
N

|〈A〉E,� − 〈A〉β | ≤ K ′′ log N 3/2

�∗

N 1/2 , (133)

so that the difference vanishes in the thermodynamic limit.
Notice that �∗ ≡ min{�,β−1}, so that in principle even
rather low temperatures and very small (up to exponen-
tially small) microcanonical windows are allowed.

This is the final result. It states that average properties
are essentially the same, provided that the average energy
E0 is determined by Eq. (115), and that the width � is
not too small. The fact that it can be up to exponentially
small in system size is rather strong, and related to weak
statements of the eigenstate thermalization hypothesis (see
Refs. [83,109]).

VII. ALGORITHMS AND COMPLEXITY OF
THERMAL STATES

When addressing specific problems in many-body
physics, we would most often like to understand whether
they are fundamentally complex or not, in the precise
sense established by theoretical computer science. This can
typically done in two complementary ways:
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(a) By showing that there exists an algorithm with a
provable performance and run-time. Additionally,
it is interesting if the algorithm can be explicitly
constructed, and implemented in practice.

(b) By establishing that a problem, or a set of them,
belong to or are complete or hard for a certain
complexity class.

This applies to both classical and quantum computation,
and their respective complexity classes.

Problems related to quantum thermal states can also be
studied under this light. The relevant ones include most
notably the estimation of the partition function, or the gen-
eration of either approximations to the thermal states (in
quantum computers) or their classical representations (in
classical computers).

As an illustrative example of what can be proven, we
start with a simple explicit algorithm that approximates
the quantum partition functions in 1D in polynomial time
[110]. We then briefly review some other important known
results about the hardness of approximating partition func-
tions. The rest of the section includes an explanation of
the current best tensor network results, which are provably
efficient in a wide range of situations, and a short overview
of quantum algorithms for preparing thermal states.

A. An efficient classical algorithm for the 1D partition
function

Using some of the results from the previous sections,
we now show that, assuming that h,β = O(1), and that
exponential decay of correlations holds, we can efficiently
approximate the partition function in 1D. This is done with
an algorithm with runtime poly(N , ε−1) that outputs Z ′,
where

| log Z ′ − log Z| ≤ O (ε) . (134)

This section follows the result and proof strategy from
Ref. [110], with some minor modifications.

In one dimension, let us consider the partial Hamiltonian
Hj =∑j −1

i=1 hi, which includes the first j − 1 interaction
terms as counted from the left, starting from the leftmost
h1. Then, define the partial partition function

Zi = Tr[e−β(Hi+hi)] (135)

= Tr[Ohie
−β(Hi)O†

hi
] ≡ Tr[e−β(Hi)Ai], (136)

where Ohi is the quantum belief propagation from
Sec. III C and Ai = O†

hi
Ohi . Now, rewriting Eq. (135)

notice the simple iterative relation

Zi = Zi−1Tr[ρiAi], (137)

where ρi = e−βHi/Zi−1. Thus we can write

Z = dN
|E|∏

i=1

Tr[ρiAi], (138)

where Z ≡ Z|E| and dN = Z0. The key now is to use
results from Sec. III C to approximate Ai, and local indis-
tinguishability from Sec. V A 1. Let Al

i ≡ (Ol
hi
)†Ol

hi
, so

that

||Ai − Al
i|| = ||Ai − O†

hi
Ol

hi
+ O†

hi
Ol

hi
− Al

i|| (139)

≤ 2||Ohi |||Ohi − Ol
hi
|| (140)

≤ eO(βh)e−�(l), (141)

where in the first line we used the triangle inequality and
in the second we used both Eqs. (49) and (51). Now, let
us label by �l∗ to be the rightmost part of the chain of
length l∗, with vertex set Vl∗ and in which Hi+1 has support.
Choose l∗ ∈ R so that Al∗

i has support in the right side of
V2l∗ and define ρ(l∗)i = e−βH�l∗ /Tre−βH�l∗ , where H�l∗ =∑

supp(hi)∈Vl∗ hi.
The expectation value can be approximated as

∣∣∣Tr[ρiAi] − Tr[ρ(2l∗)
i Al∗

i ]
∣∣∣

≤
∣∣∣Tr[ρiAi] − Tr[ρiA

l∗
i ]
∣∣∣+
∣∣∣Tr[ρiA

l∗
i ] − Tr[ρ(2l∗)

i Al∗
i ]
∣∣∣

≤ ||Ai − Al∗
i || + ||Al∗

i ||
× ||Tr\Vl∗ [ρi] − TrV2l∗\Vl∗ [ρ(2l∗)

i ]||1. (142)

This follows from the triangle inequality. The partial trace
\Vl∗ is over the support of ρi excluding vertices Vl∗ .
Equation (142) now has a form that we can upper bound.
Since ||Al∗

i || ≤ ||Ai − Al∗
i || + ||Ai|| ≤ eO(βh), we can use

Eq. (141) to bound the first term, and Eq. (89) with |B| =
l∗ to bound the second. With these, we conclude that
there exists constants c1, c2 depending on all the constants
involved (i.e., β, h, J , k, c′, v) such that

∣∣∣Tr[ρiAi] − Tr[ρ(2l∗)
i Al∗

i ]
∣∣∣ ≤ c1e−c2l∗ . (143)

The key feature of Tr[ρ(2l∗)
i Al∗

i ] is that it is an expectation
value of an operator whose form we know explicitly, as per
Eq. (50), evaluated in a thermal state of size 2l∗. This can
be computed exactly (or rather, with a subleading error) in
a time exp (O(l∗)). Let us now choose a precision ε/N in
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Eq. (143), so that l∗ = O
(
log N/ε−1

)
. This way, we have

Z ′ ≡ dN
|E|∏

i=1

Tr[ρ(2l∗)
i Al∗

i ] (144)

= Z
|E|∏

i=1

(
1 + ε

NTr[ρiAi]

)
= Z (1 + O (ε)) . (145)

The last equation comes from the fact that N ∝ |E| and
that all eigenvalues of Ai are O(1), as per the definition in
Eq. (48). The algorithm thus consists of exactly calculating
the numbers {Tr[ρ(2l∗)

i Al∗
i ]} exactly, and then multiplying

them, so that
∣∣log Z ′ − log Z

∣∣ ≤ O (ε) . (146)

Since there are |E| ∝ N terms in Z′, and each takes
time poly(N × ε−1), the final runtime is poly(N , ε−1), as
desired. See also Ref. [111] for a related result in the
translation invariant setting.

B. Hardness of approximating partition functions

In the previous section we have seen how the parti-
tion function can be approximated in 1D in the sense of
Eq. (134) as long as the temperature is β = O(1). More-
over, through the cluster expansion we briefly explained
in Sec. III A how it can be approximated for any local
model as long as β < β∗, where β∗ is some fixed constant
independent of system size.

On the other hand, in the limit of β → ∞, the log-
partition function equals the energy of the ground state. For
classical models, approximating this to a certain precision
is an NP-complete problem. For local quantum Hamilto-
nians, it is QMA hard. This means that there should be
no efficient classical or quantum algorithm to approximate
log-partition functions for low enough temperatures, both
for classical and quantum models. In fact, it is known
that the classical problem is only slightly harder than NP
[112] [113], and that it is at least #P hard if complex inter-
actions are allowed [114]. For the quantum case, the exact
complexity class to which this belongs or is complete for is
not yet clear (see Ref. [115] for more details and results).

There is still the expectation that for certain classes
of interesting models we can still compute the partition
function efficiently, even with classical algorithms and at
very low temperatures. One notable example are quantum
Monte Carlo methods [116–118], which are restricted to
Hamiltonians without the so-called “sign problem” (or sto-
quastic [119]). Other results cover different specific kinds
of models [40,115]. Quantum algorithms for approximat-
ing general partition functions also exists [115,120–122],
but often come with exponential runtimes.

Another relevant angle of this problem is the connection
of efficient algorithms to the idea of completely analytical

interactions from Sec. I B, as well as the physics of phase
transitions. The intuition is that a physical phase transi-
tion in the system may come together with a computational
phase transition in which approximating log Z becomes
fundamentally harder. Along these lines it has been shown
in Ref. [19] that the analyticity of the log-partition function
implies the existence of an efficient algorithm. This can be
understood in terms of the setting of Sec. III A: as long as
the Taylor expansion converges well, we can compute the
individual coefficients of Eq. (17) efficiently.

C. Tensor network methods

Tensor network (TN) techniques are perhaps the most
successful way of classically computing physical prop-
erties of quantum systems in 1D, and sometimes 2D
and often come with rigorous theoretical guarantees. This
includes most notably the regime of low-energy physics
[57,68,123–125] and, as we now review, that of finite tem-
perature too. See, e.g., Refs. [126–129] for introductory
texts to this topics.

The main aim is to obtain a TN representation of an
operator MD such that ||e−βH − MD||1 ≤ εZ, which then
allows us to compute all thermal expectation values up
to error ε as per Eq. (6). The index D labels the bond
dimension, which, roughly speaking, quantifies the com-
plexity of representing MD. A TN of bond dimension D
requires a memory ∝ N × D2 to be stored. Intuitively, the
approximation operator MD should be made out of a sum or
low-depth product of operators with smaller support, i.e.,
of size at most ∝ log D. This is graphically described for
1D in Fig. 8.

One possible way to do this is by adding piece by piece
from right to left, aided by the results from Sec. III B. To
do this, first define segments of the chain of length l such

−

Product of
operators

Tensor network

log

FIG. 8. Schematically, the way to prove that a 1D thermal state
is a tensor network is by decomposing it as a product of smaller
operators. It then follows from standard methods that the bond
dimension of the tensor network representation is related to the
size of those operators.
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that the Hamiltonian up to segment j − 1 is defined by Hj .
This allows us to define the operator

�j = eβHj e−βHj +1 , (147)

such that e−βH = e−βh1
∏

j =1�j . Each operator �j can
then be approximated by a localized operator � l

j with sup-
port in a region of length l as in Eq. (40), exponentially
well in l. This can take the form

� l
j = eβhj e−βhj +1 , (148)

There are O(N ) of those operators, and the error e−�(l)
of each approximation can be shown to contribute addi-
tively. Thus, choosing l ∝ log N/ε gives the desired ε-
good approximation to e−βH . By construction, the product
of operators resembles that of Fig. 8. In that case, the bond
dimension can be straightforwardly assumed to be D ≤
eO(l) = poly(N , ε−1), which is already computationally
efficient and likely close to optimal.

A nontrivial improvement to this can be found in
Ref. [48]. Roughly speaking, one can define an operator
�̃ l

j in which the exponential functions of Eq. (148) are
approximated by their Taylor series. In that case, we can
put forward results about the bond dimension required to
represent polynomials of Hamiltonians [64]. This leads to
an improvement of the bond dimension to D ≤ eÕ(

√
l) =

exp
(
Õ(
√

log(N/ε))
)

. This is sublinear in system size,
much more computationally efficient.

In higher dimensions, the best-known method is a vari-
ation of the cluster expansion proposed in Ref. [130].
There, the expansion is treated in a slightly different way,
to approximate the exponential e−βH rather than the log-
partition function as in Sec. III A. Instead of counting the
number of individual clusters of at most size m, one has
to consider arbitrary products

∏
i∈W hi ≡ h(W) of terms hi

from a multiset W of size |W|, that can be divided into
connected clusters. Let us label the multisets W = {hi} in
which the biggest cluster has size M to be CM . That this
is consistent with the cluster expansion can be seen from
taking the exponential of Eq. (17) given the expression in
terms of clusters of the powers in Eq. (21).

The following result was proven in detail in Ref. [77]. It
reads

||e−βH −
∑

W∈CM

(−β)|W|

|w|! h(W)||1 ≤ Z
(

eN b(β)M
1−b(β) − 1

)
,

(149)

where b(β) < 1 for all β < β∗ = O(1). In Ref. [131] the
sum over clusters on the rhs of Eq. (149) was shown to be
a tensor network (in fact, a so-called PEPO, or projected

entangled pair operator) of bond dimension eO(M ). Thus,
by setting the rhs to be ε, we achieve a TN approxi-
mation to e−βH with bond dimension poly(N , ε−1). This
holds only for inverse temperatures below β∗, but the
result can be extended to arbitrary temperatures simply by
taking powers of the operator. This means the bond dimen-
sion grows as D ≤ exp

(
O
(
β log βN

ε

))
(see Ref. [131] for

the details). This scheme has recently been numerically
implemented in practice [132].

These results might seem surprising, since they show
that there are in principle efficient TN representations for
all dimensions and all temperatures β = O(1). This con-
tradicts the intuition (justified by numerical works [133–
138]) that, at phase transitions, when long-range correla-
tions are present, such efficient schemes should not exist.
The caveat, however, is that in dimensions higher than one,
a TN representation is not enough to be able to extract
numerical data efficiently. This is because the contraction
of TN can be a computationally demanding task by itself
[139,140]. What we expect is that the ability to reliably
contract a higher-dimensional tensor network is related to
facts such as local indistinguishability [141,142], which
allows us to obtain reliable results by contracting suitably
smaller regions.

Finally, let us note that by using the local indistinguisha-
bility from Sec. V A (or even without it in 1D [143]) it can
be shown that a much smaller bond dimension is needed to
simulate local properties [144] .

D. Quantum algorithms for preparing thermal states

One of the most promising applications of quantum
computers is the generation of exotic states of matter in
complex many-body models. The expectation is that this
should allow us to discover a potentially wide variety of
physics, and also serve as a subroutine in certain quan-
tum algorithms, such as those performing optimization
tasks.

Because of this, a question that has been very much
explored lately is that of how to prepare thermal states of
local Hamiltonians with a quantum computer. This could
be either a fully fledged fault-tolerant one or one more
suitable for the so-called noisy intermediate-scale quan-
tum (NISQ) devices. In the following we review some
of the currently existing ones, and also explain the ideas
that highlight the complexity of the problem. We mostly
focus on those that have some provable performance guar-
antees. There are many others we will not cover (such
as, e.g., Refs. [145–147] and others), which often rely
on some level of heuristic arguments. These also include
approaches such as variational algorithms [148–151] or
those based on quantum versions of metropolis sampling
[152–154]. These may nonetheless be more efficient in
many physically relevant settings.
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1. General considerations

We have very strong evidence pointing that preparing
thermal states is, in its most general setting, not an easy
task. The results on QMA hardness of the local Hamilto-
nian problem [13] show that there are vanishingly small
temperatures (scaling quickly with system size) at which
the preparation of ρβ is QMA complete. That is, not even
a quantum computer can do it efficiently [155]. This is the
case even for 1D systems [156].

There are also reasons to believe that the problem is not
easy even at slightly higher temperatures. For instance, it
was recently shown [157] (following a famous conjecture
[15]) that there are local models for which preparing states
below a certain energy density (including low-temperature
Gibbs states) requires a circuit of depth at least log N . This
property, however, does not apply to lattices [14].

Nevertheless, we expect that large interesting classes of
models and temperature ranges will have efficient algo-
rithms. The locality of the model, and some of its conse-
quences from the previous sections, should often simplify
this task.

2. Algorithms based on purifications

These algorithms work for general Hamiltonians, and
are often designed to be run in a fully fault-tolerant quan-
tum computer, capable of applying any quantum circuit
without large errors. They aim to construct the following
state:

|ρβ〉 = 1√
Z

∑

l

e−βEl/2|El〉A|l〉A, (150)

where the second subsystem A is made of auxiliary par-
ticles with an orthogonal basis {|l〉} such that, upon trac-
ing out, yield TrA[|ρβ〉〈ρβ |] = ρβ . The first stage of the
algorithm involves preparing a state |ψ〉 with |ρβ〉 as a
component such that

|ψ〉 = 1
N |ρβ〉|0〉R + . . . ., (151)

where we have included an additional register R.
The first works proposing this scheme [120,158,159]

instead apply the phase estimation algorithm [160]. To a
good approximation, this algorithm acts as follows [161]:

UPE(|El〉A|0〉A) = |El〉A|l〉A, (152)

that is, it records the energy of system A into the register
A. Inputting a uniform superposition 1/dN/2∑

l |El〉 yields

UPE

(
1

dN/2

∑

l

|El〉|0〉A
)

= 1
dN/2

∑

l

|El〉|l〉A. (153)

Now we add an additional qubit register on the state
|0〉R and rotate it to |θ〉 = cos θ |0〉 + sin θ |0〉 by an angle

θ(El,β) = arccos(e−βEl/2) conditioned on the system,
obtaining

1
dN/2

∑

l

|El〉|l〉A|θ(El,β)〉R =
√

Z
dN |ρβ〉|0〉R + . . . ,

(154)

which is the target state with N =
√

dN/Z. Other
approaches use more recent quantum simulation ideas,
such as the technique based on sums of unitaries [162],
which leads to a better dependence on the approximation
error ε in many cases of interest.

Finally, to obtain |ρβ〉 with high precision, one must then
apply amplitude amplification of the state |ψ〉, to output
the component of Eq. (154) corresponding to the register
state |0〉R. The gate complexity of this, however, grows
linearly in N , which sets the leading (almost) exponential
gate cost of the algorithm.

There already exists improvements to this type of
scheme. In one dimension, one can instead implement this
same algorithm connecting subsequent segments of the
chain, which can reduce the gate complexity to a poly-
nomial NO(β) [159]. Also, recent progress shows that the
phase estimation and amplitude amplification steps in these
schemes can instead be replaced by random circuits with
postselection [163], making them more amenable to cur-
rent technologies. For commuting Hamiltonians, a purifi-
cation in the form of a tensor network state (a PEPS) can
be very efficiently prepared through an adiabatic algorithm
[164]. See also the recent Ref. [165], which produces a
purification of a thermal state ∝ e−βH1 starting from that of
another Hamiltonian H0, and is efficient when ||H0 − H1||
is not too large. A potentially efficient scheme along these
lines is the one presented in Ref. [145].

3. Efficient algorithms from physical features

Perhaps the main caveat of most of the aforementioned
algorithms is that they are constructed for very general
Hamiltonians: they do not always make a very clear use
of the physical features that we expect could simplify the
problem, such as locality or any one of its consequences.
However, we expect that there exists efficient schemes to
prepare Gibbs states of local model that belong to the class
of “completely analytical interactions,” aided by facts such
as decay of correlations.

This is the case for the proposal in Ref. [55], whose effi-
ciency depends on two such factors: the speed of decay of
CMI from Sec. IV C, and the error in the local indistin-
guishability from Sec. V A. The algorithm uses iterations
of the recovery map that appeared in Eq. (70), which
are guaranteed to yield a low error if the CMI decays
quickly enough. The main idea is that one can construct
local decoupled parts of the thermal state independently,
and then join them together to make up the whole ρβ via
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subsequent applications of the recovery map. The local
indistinguishability guarantees that the local parts used in
the recovery are also accurate parts of the whole thermal
state the algorithm constructs. The results on the expo-
nential decay of correlations described in Sec. IV B and
of exponential decay in CMI from Sec. IV C thus imply
that there might exist efficient algorithms for local mod-
els with a high enough temperature β ≤ β∗

NC, and also for
1D systems as long as the corresponding assumptions on
the correlation decay are satisfied. The main caveat here
is the implementation of the recovery map, which is not
known to be efficient, although steps have been taken in
this direction [166].

Another potential alternative route along these lines is
to find out under which conditions the dissipative dynam-
ics (that is, when the system is coupled weakly to some
external bath) associated to a Gibbs state converge quickly.
Then, tools to engineer dissipative dynamics can be in
principle implemented in a quantum computer [167,168].
The challenge is to find under which conditions these
dynamics have a fast convergence or mixing rate. Rigor-
ous results along these lines are so far mostly limited to
commuting Hamiltonians, as we explain in Sec. VIII.

VIII. COMMUTING HAMILTONIANS

There is a much simpler and yet physically relevant class
of Hamiltonian that merits a specific mention: those in
which all the {hi} commute with each other. This includes
many interesting models for quantum many-body physics
and quantum computation. It includes all stabilizer Hamil-
tonians, including the toric code and other widely studied
examples, as well as many other models describing various
topological phases of matter.

Notice that these are not the same as classical Hamilto-
nians: even if we can diagonalize all the hi simultaneously,
the energy eigenbasis will in general be highly entan-
gled. In contrast, classical Hamiltonians have a product
eigenbasis. At the same time, we have

e−β(H−hi) = e−βH eβhi = eβhi/2e−βH eβhi/2, (155)

so the tools in Secs. III B and III C are unnecessary. This
means that many of the results described above take much
simpler forms and easier proofs, as we now briefly explain.

Let us divide the system into two complementary
regions D, E, with boundary ∂DE = ∂D ∪ ∂E , so that H =
HD + HE + HI , with supp(HI ) ∈ ∂DE . Notice that

TrE[e−βH ] = e−βHDTrE[e−β(HE+HI )]. (156)

Clearly TrE[e−β(HB+HI )] has nontrivial support on the
region ∂D only. This means that the local indistinguishabil-
ity from Sec. V A holds with no error by choosing A = D,
B = E ∩ ∂DE , C = E \ B, so that dist(A, C) is roughly the

width of the boundary. A similar exact result applies to
the Hamiltonian of mean force. We now briefly show the
proof, which is elementary and can be found in Ref. [169].
If we define e−β ≡ TrE[e−β(HE+HI )], we see that

−1
β

log(TrE[e−βH ]) = αI + HD +, (157)

where α is some constant, and  is localized in D ∪ ∂DE
and has bounded norm, as

HD + HE − h|∂DE| ≤ H ≤ HD + HE + h|∂DE| (158)

implies that

e−βh|∂DE |e−β(HD+HE) ≤ e−βH ≤ eβh|∂DE |e−β(HD+HE),
(159)

which upon tracing E out and multiplying by eβHD , implies
that |||| ≤ 2h|∂DE|.

It should also be no surprise then that the Markov prop-
erty of Sec. IV C also holds exactly. This means that if we
define regions A, B, C such that A, C are shielded by region
B, we have that I(A : C|B) = 0 [170,171]. In fact, a con-
verse statement holds (vanishing CMI implies the state is a
thermal state of a local Hamiltonian) when the interaction
graph � is triangle-free [172]. As mentioned in Sec. IV C,
this is the quantum equivalent of the Hammersley-Clifford
theorem [173].

All these exact results strongly suggest that algorithms
such as those described in Sec. VII are much more effi-
cient in this setting. For instance, it is immediate from a
repeated application of Eq. (155) that the thermal states
can be expressed exactly as tensor networks with constant
bond dimension D ≤ eO(k). There also exists quantum
algorithms for commuting Hamiltonians that are signifi-
cantly more efficient than the general ones in Sec. VII D
[164]. In fact, the exact Markov property guarantees that
Gibbs states of finite temperature can always be prepared
efficiently (in linear time), simply by iterating applications
of the Petz recovery map [88].

Another important fact about commuting Hamiltonians
is that, when weakly coupled to an external heat bath,
the dissipative dynamics is known to remain local. This
process is modeled by a Lindblad equation of the form

dρ
dt

= L(ρ) = −i[H , ρ] +
∑

α

LαρL†
α−

1
2
{
LαL†

α, ρ
}

,

(160)

where Lα are local “jump” operators and α indexes the
energy gaps of H . The best known example are the Davies
generators [174]. See, e.g., Refs. [175,176] for introduc-
tory references.
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The interesting cases are those for which ρβ is the
unique fixed point, such that L(ρβ) = 0. The important
question then is how long does this local dissipative evo-
lution etL(ρ) take to approach the Gibbs state? This can be
tackled by analyzing the spectral gap and the so-called log-
Sobolev constant of L. A bound on the spectral gap was
proven assuming the decay of correlations in Ref. [177],
and for specific models in Refs. [178–181]. This shows
that it takes poly(N ) time to thermalize. On the other
hand, a bound on the log-Sobolev constant [182] instead
constraints that to O(log N ). This scaling agrees with the
intuition that a thermalization induced by local jump oper-
ators should resemble that of independently thermalizing
spins, without interactions. This was recently proven for
1D chains [183,184] and in Refs. [20,185] for other mod-
els of dissipation. It is currently not known how to extend
this result to models with noncommuting interactions.

IX. CONCLUSIONS AND OPEN QUESTIONS

There are many different models and systems for which
we would like to know their properties at equilibrium. This
is due to their pervasive presence in physics, but also due
to their appearance in learning and sampling algorithms.

It may appear at first that studying thermal states of gen-
eral complex quantum models is a very challenging task.
We hope to have illustrated the fact that this is not always
the case: for a large array of situations involving local
Hamiltonians many nontrivial analytical statements can be
made. These are both about universal physical features
of the models at hand, but also about the computational
complexity of the problems the physics poses. The con-
nections found motivate a timely research program, largely
inspired by quantum information theory: to understand
the links between fundamental physical features and their
computational complexity.

In the present context, much of the technical difficulty
lies in working with the matrix exponential of any such a
Hamiltonian, in which typically the individual terms do not
commute. As seen in Sec. III, however, we have a number
of mathematical tools to deal with these in many physically
relevant regimes.

A. List of open questions

We have covered a number of statements in different
areas and summarized many of the existing results on the
topic. However, plenty of relevant questions are still open.
We now summarize some of them, which we believe to be
of particular physical or technical interest:

(a) In Sec. III A we have explained the technical con-
cept of cluster expansion, and their large number
of applications in this context. Understanding its
convergence further, in particular when consider-
ing the expansion of operators as done in [87],

seems crucial for understanding relevant ideas such
as the Hamiltonian of mean force (Sec. V B), and
the decay of the conditional mutual information
(Sec. IV C). It could also be interesting to extend
them to long-range interacting systems [25].

(b) The ideas of Sec. V, and in particular the Hamil-
tonian of mean force, have in the past few years
features in the study of thermodynamic quantities
for strongly coupled systems [92,93,96,186,187].
Many existing results on this topic focus on simpler
models than those considered here, such as indi-
vidual spins coupled to quadratic baths [94,188]. In
Sec. V C we have outlined how one can also answer
thermodynamic questions about strongly coupled
spin systems. It would be interesting to further
explore whether the results from Sec. V have fur-
ther nontrivial consequences, such as those found in
Ref. [189].

(c) With the advent of quantum computing, there are
multiple ongoing efforts aiming to find more effi-
cient quantum algorithms for thermal sampling and
partition functions. As we have seen in Sec. VII D,
many of the existing ones are designed for very
general situations, and as such have performance
bounds that will often be too conservative. Some
existing schemes make use of relevant physical
features to simplify them [55,159,164,190], but it
seems that there is still plenty of room for exploring
the regimes in which explicit and efficient algo-
rithms can be proven. Since preparing thermal states
is presumably an easier task than a general quantum
computation (at least in certain regimes), it may be
possible to tailor them to the limited capabilities of
near-term noisy devices [163,191].

(d) An important question when dealing with large
quantum systems is to construct efficient ways to
verify and characterize them. In the present context,
the question is that of the complexity of the problem
of thermal state tomography [12,31,169,192]. The
basic question is: can we learn the Hamiltonian from
a small number of simple (local) measurements of
few copies of e−βH/Z? Optimal sample and com-
putational complexity bounds exists in the high-
temperature regime, in which the cluster expansion
applies [31], but beyond that our theoretical under-
standing is not complete (for instance, in 1D). This
problem has a number of applications, including
the verification of quantum computation in which
thermal sampling is involved [4–7], or the charac-
terization of many-body entanglement [193,194].
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APPENDIX A: DERIVATIONS OF GIBBS STATES

1. Gibbs weights from the ultraweak coupling
assumption

Here we sketch the standard derivation of how the Gibbs
factor appears when a system is weakly coupled to a bath.
Let us take a system-bath Hamiltonian H = HS + HB +
HI , in which the interaction HI is arbitrarily weak. In that
limit, we can approximate

H =
∑

E(j )S +E(i)B =E

E |Es〉〈Es| ⊗ |E(i)B 〉〈E(i)B |, (A1)

so that the eigenstates are product between system and
bath.

A common and often relevant assumption is that the
dynamics is ergodic, in the sense that we can describe the
system bath by the microcanonical ensemble, where all
configurations of the same energy E have equal probabil-
ity. This is

�E

dE
= 1

dE

∑

E(j )S +E(i)B =E

|E(j )S 〉〈E(j )S | ⊗ |E(i)B 〉〈E(i)B |. (A2)

The bath is typically understood as an infinitely large sys-
tem, with an unbounded heat capacity C = d〈HB〉β/dT =
−β2d〈H 〉β/dβ. The bath also obeys the very weak con-
straint that its entropy is extensive with system size.
Both these facts translate into the density of states of the
bath B having the following exponential form (see, e.g.,
Ref. [196]):

#(EB) ∝ eβEB . (A3)

That is, the number of bath eigenstates |E(i)B 〉 with energy
EB is exponential in that energy.

We can use this to obtain the expression for the reduced
density matrix on the system

TrB

[
�E

dE

]
∝
∑

j

#(E − E(j )S )|E(j )S 〉〈E(j )S | (A4)

∝
∑

j

e−βE(j )S |E(j )S 〉〈E(j )S , (A5)

which are exactly the Gibbs weights.

2. Jaynes’ maximum entropy principle

A well-known property that uniquely characterizes ther-
mal states is the so-called maximum entropy principle.
This specifies that of all the states with a given energy (or
the expectation value of some other quantity) they are the
state of largest possible entropy. To see this, let us choose
ρ = ρβ such that Tr[ρH ] = Tr[ρβH ]. Then,

S(ρβ)− S(ρ) = Tr[ρ log ρ] + βTr[ρβH ] + log Z (A6)

= Tr[ρ log ρ] + βTr[ρH ] + log Z (A7)

= Tr[ρ log ρ] − Tr[ρ log ρβ] (A8)

= D(ρ||ρβ) > 0. (A9)

Notice that these steps are unchanged if instead of consid-
ering just the Hamiltonian H we take into account a higher
number of charges Qi with their chemical potentials μi,
and the state exp(−∑j μj Qj )/Tr[exp(−∑j μj Qj )].

This simple principle is often interpreted as follows: if
there is some state of which we only have partial informa-
tion (in this case, its average energy), it is very often a good
guess to assume it is the thermal state of that energy. Since
it is the state with maximum entropy (which we can asso-
ciate with “maximum ignorance”), its choice makes the
fewest assumptions about the structure of the actual state
at hand. This idea is often applied in fields like statisti-
cal inference and optimization problems, as well as certain
quantum algorithms [4–7]. It can also be seen as a vari-
ational definition that uniquely singles out thermal states.
This allows for the application of this principle in differ-
ent types of algorithms for finding or characterizing them
[12,197].

APPENDIX B: MISCELLANEOUS PROOFS

1. Locality of operator EA

In Sec. III B we defined the operator

EA = e−β(H+A)eβH = T e− ∫ β0 dse−sH AesH
, (B1)

which is the solution of the differential equation

dEA

dβ
= −EAA(iβ), (B2)
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with A(iβ) = e−βH AeβH . We can also define the localized
generator

Al(iβ) =
l∑

m=0

βmCm(A), (B3)

and also the corresponding operator EA(l) as the solution of

dEA(l)
dβ

= −EA(l)Al(iβ). (B4)

Now from the Trotter-Suzuki decomposition

EA = lim
L→∞

L−1∏

j =0

e−A
(

i βj
L

)
β
L (B5)

EA(l) = lim
L→∞

L−1∏

j =0

e−Al
(

i βj
L

)
β
L , (B6)

we have that

EA − EA(l) = lim
L→∞

L−1∑

j =0

⎛

⎝
j −1∏

j ′=0

e
−Al

(
i βj ′

L

)
β
L

⎞

⎠

(
Al
(

i
βj
L

)
β

L
− A

(
i
βj
L

)
β

L

)⎛

⎝
L−1∏

j ′=j +1

e−A
(

i βj ′
L

)
β
L

⎞

⎠ .

(B7)

Considering that Eq. (28) also applies to the generator
Al(iβ), using Eqs. (29) and (36) and the triangle inequality
repeatedly yields

||EA − EA(l)|| ≤ ||EA||
∫ β

0
||Al(is)− A(is)||ds (B8)

≤ βk||A|| (2βJk)l+1

(1 − 2βJk)
||A||
2βJ +1

. (B9)

2. Proof of quantum belief propagation Eq. (42)

The aim of this section is to give an expression for the
derivative of the matrix exponential de−βH(s)/ds, where we
assume H(s) = H + sA. These steps are elementary and
have been omitted in some previous relevant references
[12,52,53], but here we reproduce them in full as they
appear in Ref. [195]. First, using DuHamel’s identity, we

can write

de−βH(s)

ds
= −β

∫ 1

0
e−βτH(s)Ae−β(1−τ)H(s)dτ . (B10)

We now expand the operator A in the eigenbasis of H(s) =∑
i Ei(s)|i(s)〉〈i(s)| as A =∑i,j Ai,j |i(s)〉〈 j (s)|, and write

de−βH(s)

ds

= −β
∑

i,j

Ai,j

∫ 1

0
e−βτH(s)|i(s)〉〈 j (s)|e−β(1−τ)H(s)dτ

= −β
∑

i,j

Ai,j

∫ 1

0
eβτ�Ei,j |i(s)〉〈 j (s)|e−βH(s)dτ

= −β
∑

i,j

Ai,j (1 + eβ�Ei,j )−1

×
∫ 1

0
eβτ�Ei,j dτ

{
e−βH(s), |i(s)〉〈 j (s)|}

= −β
2

{
e−βH(s),H(s)(A)

β

}
, (B11)

where �Ei,j = Ej (s)− Ei(s) and we define the operator


H(s)(A)
β =

∑

i,j

f̂β(�Ei,j )Ai,j |i(s)〉〈 j (s)| (B12)

=
∫ ∞

−∞
dtfβ(t)e−itH(s)AeitH(s), (B13)

where it can be seen from Eq. (B11) that the function
f̂β(ω) is

f̂β(ω) = 2
1 + eβω

∫ 1

0
eβτωdτ = 2

βω

eβω − 1
eβω + 1

, (B14)

with its corresponding Fourier transform (as derived in
Appendix B of Ref. [65])

fβ(t) = 2
βπ

log
(

eπ |t|/β + 1
eπ |t|/β − 1

)
. (B15)

It is important to note that

∫ ∞

−∞
fβ(t)dt = 1 (B16)

and that, since by the fact that log x ≤ x − 1,

fβ(t) ≤ 4
βπ

1
eπ |t|/β − 1

. (B17)
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So both this function and its integral are exponentially
small, in the sense that, for a > β/π ,

∫ ∞

a
dtfβ(t) ≤ 4

βπ

∫ ∞

a
dt

1
eπ |t|/β − 1

= 4
βπ(eπa/β − 1)

∫ ∞

a
dt

eπa/β − 1
eπ |t|/β − 1

≤ 4
βπ(eπa/β − 1)

∫ ∞

a
dteπ(a−t)/β

≤ 4
π2(eπa/β − 1)

. (B18)

3. Proof of Eq. (55)

This can also be found in Ref. [17]. Let F(t) be a dif-
ferentiable and bounded operator. DuHamel’s identity for
a general operator function F(t) states that

d
dt

eF(t) =
∫ 1

0
dueuF(t) dF(t)

dt
e(1−u)F(t). (B19)

Then we have that

d
dt

log Tr
(
CeH1+tH2

)
(B20)

=
Tr
(∫ 1

0 duCeu(H1+tH2)H2e(1−u)(H1+tH2)
)

Tr
(
CeH1+tH2

) (B21)

=
Tr
(

C′ ∫ 1
0 due(u−1/2)(H1+tH2)H2e(1/2−u)(H1+tH2)

)

Tr (C′)
(B22)

≤
∣∣∣∣

∣∣∣∣
∫ 1

0
due(u−1/2)(H1+tH2)H2e(1/2−u)(H1+tH2)

∣∣∣∣

∣∣∣∣ , (B23)

where C′ = e
H1+tH2

2 Ce
H1+tH2

2 . This follows from Hölder’s
inequality Eq. (7) and the positivity of C, C′. Finally,

∣∣log Tr[CeH1+H2] − log Tr[CeH1 ]
∣∣ (B24)

=
∣∣∣∣
∫ 1

0

d
dt

log Tr
[
CeH1+tH2

]
dt
∣∣∣∣ (B25)

≤
∫ 1

0
dt
∫ 1/2

−1/2
ds||es(H1+tH2)H2e−s(H1+tH2)||, (B26)

where the last step follows from the triangle inequality,
Eq. (B23) and the change of variable u − 1/2 = s.

4. Proof of Eq. (127)

This can also be found in Ref. [83]. Let p(x) be an arbi-
trary probability distribution with

∫∞
−∞ xp(x)dx = a, and

the condition that p(x) be Lebesgue integrable. We aim to
bound

∫ ∞

−∞
|x − a|mp(x)dx =

∫ ∞

−∞
|x|mp(x + a)dx (B27)

=
∫ ∞

0
|x|m(p(x + a)+ p(−x + a))dx (B28)

= −
∫ ∞

0
xm d

dx

[∫

|x′−a|≥x
p(x′)dx

]
dx, (B29)

where in the last step we used the fundamental theorem of
calculus. This can now be integrated by parts as

−
∫ ∞

0
xm d

dx

[∫

|x′−a|≥x
p(x′)dx′

]
dx (B30)

= −
(

xm
∫

|x′−a|≥x
p(x′)dx′

) ∣∣∣∣
∞

0

(B31)

+
∫ ∞

0
mxk−1

∫

|x′−a|≥x
p(x′)dx′dx

≤
∫ ∞

0
mxk−12e− x2

4cĀ dx = (4cĀ)m/2
(m

2

)
!, (B32)

where in the second line the first term vanishes by
definition, and in the third line we used the concentration
bound Eq. (99).
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