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Trimer states with Z; topological order in Rydberg atom arrays
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Trimers are defined as two adjacent edges on a graph. We study the quantum states obtained as
equal-weight superpositions of all trimer coverings of a lattice, with the constraint of having a trimer
on each vertex: the so-called trimer resonating-valence-bond (tRVB) states. Exploiting their tensor
network representation, we show that these states can host Zz topological order or can be gapless
liquids with U(1) x U(1) local symmetry. We prove that this continuous symmetry emerges whenever
the lattice can be tripartite such that each trimer covers all the three sublattices. In the gapped case,
we demonstrate the stability of topological order against dilution of maximal trimer coverings, which
is relevant for realistic models where the density of trimers can fluctuate. Furthermore, we clarify
the connection between gapped tRVB states and Z3 lattice gauge theories by smoothly connecting
the former to the Zs toric code, and discuss the non-local excitations on top of tRVB states. Finally,
we analyze via exact diagonalization the zero-temperature phase diagram of a diluted trimer model
on the square lattice and demonstrate that the ground state exhibits topological properties in a
narrow region in parameter space. We show that a similar model can be implemented in Rydberg
atom arrays exploiting the blockade effect. We investigate dynamical preparation schemes in this
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setup and provide a viable route for probing experimentally Zs quantum spin liquids.

I. INTRODUCTION

When quantum fluctuations meet classical frustration,
exotic strongly correlated states can arise. Paradigmatic
examples are resonating valence bond (RVB) states of
hard dimers. They are defined as equal-weight quan-
tum superpositions of all dimer coverings with one dimer
touching each vertex of a lattice. These many-body states
are the ground states of local Hamiltonians with pecu-
liar properties, such as a ground state degeneracy that
depends on the topology of the system and deconfined
excitations that come in pairs [1]. When their correlation
length is finite, a stable, topologically ordered, quantum
phase of matter exists with RVB states as its representa-
tives [2]. This kind of topological order is characterized by
a local Zy symmetry closely related to the Gauss’ law in
the gauge theory description of these phases, and it is ex-
pected to emerge in dimer models defined on non-bipartite
lattices [1].

In this work, we consider RVB states of hard trimers
(tRVB). A trimer is an object made up of two nearest-
neighbor edges of a lattice that share a common vertex [cf.
1(a)]. Hard trimers cannot touch each other, such that
each vertex of the lattice can be covered by at most one
trimer, yielding what we refer to as the trimer constraint.
Maximally-packed trimer configurations are obtained by
demanding that exactly one trimer covers each vertex.
These configurations are then promoted to orthogonal
quantum states, and the tRVB state is their equal-weight
quantum superposition. On certain lattices, tRVB states
are known to be gapped and to possess a form of topolog-
ical order with emergent Z3 gauge symmetry [3-5], and
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Figure 1. (a) Maximal trimer configuration with arrows point-
ing from the center to the two external vertices of each trimer,
on the square and honeycomb lattice. The net flux for each
vertex is 2mod 3. The region enclosed by the dashed line
has N, = 3 vertices and a net flux 3 = 2N;mod 3. (b) One-
parameter family of tRVB states on the square lattice. The
parameter t = tan 6 weights the presence of straight trimers,
such that for § = 0 (7w/2) the tRVB state is solely made of
bent (straight) trimers.

thus to be good representatives of a quantum phase with
Z3 topological order. However, a general condition on
the lattice geometry for which these states are gapped
and have topological character is still lacking, and physi-
cal realizations of this phase are little known. Here, we
identify a necessary condition for having a gapped tRVB
state with Z3 topological order, similar to the condition



of non-bipartite lattices for dimer models. Moreover, we
provide a trimer model where signatures of the above-
mentioned topological phase are identified. This model
is physically relevant for experimental platforms based
on Rydberg atom arrays, as we demonstrate by propos-
ing and analyzing a viable implementation of the trimer
constraint in this setup.

Firstly, we focus on the square lattice, where we demon-
strate the emergence of the trimer coverings Hilbert space
as a particular limit of a Z3 lattice gauge theory (LGT).
We introduce a tensor network (TN) [6-8] representation
that describes a one-parameter family of tRVB states
[Fig. 1(b)]. Utilizing exact and approximate TN meth-
ods, we show that all the tRVB states considered have
Z3 topological order except for a fine-tuned point, where
we establish the presence of a U(1) x U(1) local symme-
try that leads to long-range correlations. We show that
topological properties are stable against dilution of the
maximally-packed trimer configurations by studying a
tensor-network perturbation that encodes all hard trimer
configurations with at most one trimer on each vertex.
Furthermore, we discuss a general mechanism that ex-
plains the enhancement of the local Z3 conservation law
of Fig. 1(a) to a U(1) x U(1) law, yielding long-range
correlations and ultimately spoiling Z3 topological or-
der. We support our conclusions with further examples
of gapless and gapped tRVB states, on the triangular and
honeycomb lattices.

Secondly, we consider a diluted trimer model on the
square lattice with a single type of trimers, namely the
bent blue trimers in Fig. 1(a). The corresponding tRVB
state [Fig. 1(b) for ¢ = 0] will be shown to be a gapped
Z3 topological liquid, thus motivating the choice of this
geometry. The model Hamiltonian has a control param-
eter that tunes the density of trimers. We compute the
ground state wavefunction via exact diagonalization on
periodic clusters and show that a Z3 topologically ordered
phase arises at finite density. We show that the blockade
effect induced by van der Waals interactions in Rydberg
atom arrays can be used to engineer the (bent) trimer
constraint on the square lattice, by mapping the four
possible trimer orientations on a square into four different
excited Rydberg atoms. The effective Rydberg model is
equivalent to the diluted trimer model upon neglecting
some trimer configurations [cf. Fig. 11(a)]. We prove
numerically that removing these configurations from the
superposition does not spoil the Z3 topological nature
of the fully-packed tRVB state. We find that, despite
signatures of a topological phase are elusive in the ground
state of the Rydberg Hamiltonian, a semi-adiabatic dy-
namical preparation bolsters the topological character of
the prepared state.

The paper is structured as follows. In Sec. II we in-
troduce a one-parameter family of tRVB states on the
square lattice, its TN representation, and a one-parameter
perturbation that lower the density of trimers, preserving
the TN form. We study the state phase diagram of this
two-parameters family and demonstrate the presence of

a stable Z3 topologically ordered phase. In Sec. III we
relate gapped tRVB states to the Z3 toric code, from
which we can define string operators and non-local exci-
tations. We discuss the condition for which a U(1) x U(1)
gauge theory emerges in trimer models, and verify it by
considering tRVB states on various lattice geometries. In
Sec. IV A we introduce the model of diluted bent trimers
on the square lattice, analyze its ground state proper-
ties on finite periodic systems, and show that a narrow
topological phase emerges. We outline the implementa-
tion of this model in Rydberg atom arrays, point out the
differences between the trimer and Rydberg models and
discuss the consequences. Finally, we analyze dynamical
preparation protocols to realize Z3 topologically ordered
states in experiments.

II. TRVB STATES ON THE SQUARE LATTICE

Trimers on the square lattice can either be bent or
straight [cf. blue and red trimers in Fig. 1(a)]. Therefore,
we can define a one parameter family of tRVB states on
this lattice by weighting each covering ¢ with coefficients
that depend on the number of bent and straight trimers
(N1(c) and Nj(c) respectively) in the covering. In partic-
ular, we introduce the parameter 6 € [0,7/2] such that
the coefficient of a maximally-packed configuration c is

W(e) = (cos )N+ (sin§)Ni(e), (1)

The tRVB state then reads
1
tRVB(0)) = —— >_W(c) |e), (2)
N(0) =

where N(0) = /> ;. V(c)]? is a normalization factor.

The angle 6 changes the relative weight of bent versus
straight trimers [see Fig. 1(a)]: in the limit § = 0 (6 = 7/2)
only bent (straight) trimers contribute.

In this section, we analyze the topological properties
of this state with tensor network methods. After study-
ing the one-parameter family in Eq. (2), we add another
parameter by considering a diluted TN deformation ob-
tained by destroying trimers with a certain probability.
We map out the state phase diagram and demonstrate
the stability of the topological phase against dilution.

A. The tensor network representation of the tRVB
model

We turn our attention to the classical statistical-
mechanics model whose partition function is the sum
of the squared weights in Eq. (1) of all maximally-packed
trimer configurations on the square lattice. This partition
function can be interpreted as the norm of the quantum
state in Eq. (2). Its tensor-network representation was



previously introduced in Ref. [3]: the partition function
Z can be written as the tiling of rank-4 tensors

The rank-4 tensor T is constructed in such a way that,
once the tensor is contracted with its neighbors, only the
valid trimer configurations survive. As will be later dis-
cussed in Sec. II1, it is beneficial to consider an equivalent
representation of this model, where trimer configurations
are mapped to possible ways to position arrow on the links
such that there is a local constraint —or Z3 conservation
law— around each edge. As shown in Fig. 1(a), a given
trimer configuration has a one-to-one mapping to a single
arrow configuration obtained by assigning arrows to the
links covered by the trimers, in such a way that each
arrow goes from the center of the trimer to the external
vertices. In a fully-packed configuration, each vertex has
either two outgoing arrows or one ingoing arrow. Because
the net outgoing flux for each vertex is 2 (where the flux
is measured mod 3), we obtain that a region of Ny vertices
has flux 2Ny mod 3. This Z3 rule for the flux suggests that
the tRVB state can be described as a Z3 gauge theory
and can be a gapped Z3 quantum spin liquid.

The tensor T is then constructed by labeling each leg
with indices {0,+1,—1}, where 0 means no arrow, and
+1 (—1) corresponds to an arrow aligned (anti-aligned)
with the direction of the leg. The non-zero entries are
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The Z3 symmetry of the underlying gauge theory is re-
flected in the tensor. Indeed the symmetry operator o,
whose matrix representation [9] is later defined in Eq. (12),
acts on the tensor as
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Figure 2. (a) Correlation length £ as a function of 6, computed
using infinite cylinders of circumference L, as well as infinite-
size methods (see main text). (b) Topological entanglement
entropy v ~ S, — 251, /2 extracted from finite-size cylinders.

We remark that if one wishes to remove the factor
w = €?/3 from Eq. (5) it is sufficient to block three
consecutive tensors and construct a Zs-invariant tensor.
When interpreting the partition function encoded in the
tensor Eq. (4) as the norm of the tRVB state, each leg of
the tensor is interpreted as the product between the bra
and ket virtual layers of the quantum state.

The properties of the tRVB wavefunction can be ex-
tracted by analyzing the row-wise transfer operator

By computing the leading eigenvalues (ordered by magni-
tude) Ao, A1, ... of the transfer operator of length L (with
periodic boundary conditions), we obtain the correlation
length ¢ as

¢E=1/In Ao

. ™

This quantity bounds all correlation functions in the
height direction of the infinitely-tall cylinder of circum-
ference L. The Z3 virtual symmetry in Eq. (5) can be
used to label the eigenvalues of the transfer operator as
AL where Q = 0,+1 is the Z3 charge and n = 0,1... is
eigenvalue index starting from the largest in magnitude.
As expected for a topologically ordered state, this sym-
metry is spontaneously broken, yielding an approximate
3-fold degeneracy for the largest eigenvalues from the
three Zs symmetry sectors: the gap between the loga-
rithm of these eigenvalues closes exponentially in L [10].
In fact, the spectrum E = —log A is analogous to the
spectrum of a Hamiltonian with spontaneous symmetry
breaking. To compute the correlation length at finite L
we thus consider the two largest eigenvalues in the Q@ = 0
sector. The results of numerical diagonalizations on fi-
nite cylinders are presented in Fig. 2(a). These finite-size
results are compared to the correlation lengths obtained
from the corner-transfer matrix renormalization group
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Figure 3. (a) Link density of the diluted tRVB state |®(6, z)), obtained from CTMRG with an environment bond dimension
D = 729. The grey dots indicate where its numerical derivative w.r.t. z has an extremum. (b) Correlation length & obtained
from the transfer matrix of the diluted tRVB state computed with CTMRG. Note that £ diverges at the phase boundary and at
0 — 7/2. (c) Details for # = 0: the density displays a non-analyticity at z. = 0.88(6) (dashed line), which corresponds to a

divergence of the correlation length (inset).

(CTMRG) [11-16] exploiting the refletion symmetry along
the tensor diagonal [17], as well as from the variational
uniform matrix product state algorithm (VUMPS) [18].
From the numerical results, we conclude that the corre-
lation length diverges only in the limit § — 7/2, while
it remains finite below that value. As we will discuss in
the next section, long-range correlations concur with the
emergence of a U(1) x U(1) local symmetry for § = 7 /2.

The leading eigenvector of the transfer operator on a
cylinder represents the diagonal reduced density operator
p of the infinite half-cylinder, from which we can as well
obtain the entanglement entropy S = — Tr(pln p) of this
bipartition. The scaling with the circumference length L
of the entanglement entropy obeys

SLNOKL_’}G (8)

where 7 is a well-known topological correction [19, 20].
v =~ In3 implies that the state is in a gapped Zj
topological phase. In Fig. 2(b) we plot the topologi-
cal entanglement entropy obtained from the subtraction
v = 8L — 2512, as a function of §. While v appears to
approach a finite value compatible with In 3 for 6 # /2,
a bump occurs in the proximity of this point. In fact,
in the presence of continuous local symmetries such as
U(1) x U(1) the topological correction is expected to scale
logarithmically with L [21].

B. Stability under dilution of the tRVB state

We now study a deformation of the tRVB state ob-
tained by diluting fully-packed trimer coverings. This
deformation will be relevant for Sec. IV A, where we will
discuss how to implement trimer models in Rydberg atom
arrays. In these setups, the total occupation can fluctuate,
so it is important to consider imperfect trimer coverings.

Similarly to recent work on dimer models [22], we con-
sider the following variational ansatz, which depends on

two real parameters 0 < 0 < /2 and z € R

(0, 2)) < (X) (1+ 2°%;;) [(RVB(0)) , (9)

0]

where 3;; is the operator that removes a trimer on the

edges i and j, and z? corresponds to the weight of a
removed trimer. In essence, we add to the fully-packed
trimer configurations other trimer configurations that
can be obtained from the former by removing trimers
without moving the remaining ones. Each removed trimer
is weighted by 22. In the limit z — oo, the state is simply
the vacuum, while at z — 0 we recover the tRVB state,
which we showed to be in a topological phase. Similarly
to [tRVB), the state |®) has a simple projected entangled-
pair state (PEPS) [8] representation of bond dimension 4

A
~
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=

Its construction is relegated to App. A 1.

In Fig. 3, we study the link density n [23] and the
correlation length of the state as we vary € and z using
CTMRG. Remarkably, the topological phase survives up
to values of order one of the dilution strength z, and is
fairly insensitive to the mixing angle 6. The transition
between the topological and trivial phases appears to
be continuous, as witnessed by a diverging correlation
length at the critical point [Fig. 3(b)]. We do not ad-
dress the characterization of the universality class of this
phase transition as the critical exponents we could ex-
tract from the available data exhibit strong dependence
on the CTMRG environment bond dimension D, even
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Figure 4. Definitions of operators (a) A, and (b) B,. (¢) Map-
ping from a trimer configuration to a state in the o basis.
(d) Configurations for a vertex in the trimer model. The
10 total configurations are obtained from these under rota-
tions. (e) Configurations that satisfy Gauss’ law but to do
not correspond to trimer configurations. The full set of unal-
lowed configurations (17 in total) is obtained from these under
rotations.

for the largest D we employed. We note that topologi-
cal and trivial phases are distinguished by two different
degeneracies of the PEPS cylinder transfer matrix. The
spectrum of the transfer matrix is 3-fold degenerate in
the former and 9-fold degenerate in the latter. The 9-fold
degeneracy reflects the full breaking of the Z3 x Z3 virtual
symmetry of the PEPS double tensor, which implies the
condensation of magnetic and the confinement of electric
excitations [see Sec. III] in the gauge theory picture [10].

IIT. TRVB STATES AND LATTICE GAUGE
THEORIES

To understand the emergence of Z3 topological order in
the tRVB state, it is useful to shed light on its connection
with a gauge theory. To this end, in Sec. III A we compare
the tRVB state to the ground state of a Z3 toric code.

We argued in Sec. II that the presence of a Zz local
conservation law of the flux suggests an emergent descrip-
tion as a Zz gauge theory, and hence the tRVB state is a
good candidate for being a gapped Z3 quantum spin lig-
uid. However, as we show below, it may happen that for
some trimer models the Z3 local symmetry is enhanced
to a U(1)xU(1) symmetry, in which case the state is
gapless [24]. A similar scenario occurs for RVB states of
dimer models, that are known to host gapped Z, spin
liquids only on non-bipartite lattices; on bipartite lattices,
they are described by a U(1) gauge theory, that does not
support a stable topologically ordered phase. In Sec. III B
we will formulate a similar criterion for trimer models.

A. The Z; toric code

A state that is very similar to the tRVB state and has
Z3 topological order is the ground state of the Z3 gener-
alization of Kitaev’s toric code [25]. We now review this
model and show the similarities and differences between
its ground state and the tRVB state.

To define the Z3 toric code, we introduce clock variables
on the links of our lattice; on each link we define the
operators o and 7, that satisfy the following properties:

oT = WTO, o° =1, =1, (11)
where w = €%7/3, These variables are the Z3 generaliza-
tions of the Pauli matrices 0* and ¢*, and their most
common matrix representation is

100 001
c=10w 0], T=(100 (12)
00 w 010

We now define the star and plaquette operators as in
Figs. 4(a) and 4(b). Similarly to the case of the Zy toric
code, these operators all commute: [A,, Bp] = 0 for every
vertex v and plaquette p. We now define the state |¢rc¢)
as the equal-weight superposition of all the states in the
o basis that satisfy the Gauss’ law A, = w for all vertices.
Note that this choice differs from the typical case with
A, =1 and corresponds to the presence of a background
charge on each vertex of the lattice. Nevertheless, the
physical properties that we are interested in are not altered
by this background charge, as a unitary transformation
can be defined to eliminate it. The state defined here has
the property that B, |¢rc) = |¢1c) for every plaquette
p, and is the ground state of the following Hamiltonian

Hype =—» (WA, +wAl) =Y (B, +Bf).  (13)

v p

Because star and plaquette operators commute, it is easy
to identify the excitations of the model: we call an excita-
tion with A, = w* (A, = 1) a charge (anticharge), while
an excitation with B, = w (B, = w*) is a vison (antivi-
son). Both “electric” (charge/anticharge) and “magnetic”
(vison/antivison) excitations are gapped.

We now elucidate the connection between the tRVB
state and |¢rc). We can map each configuration of fully-
packed trimers to a configuration in the ¢ basis as shown
in Fig. 4(c). It is easily shown that this configuration
satisfies Gauss’ law. However, not all the configurations
of the Z3 toric code that satisfy Gauss’ law correspond
to a trimer configuration: as shown in Fig. 4(d), only
10 of the 27 configurations of a vertex correspond to
allowed vertex configurations of the trimer model. De-
spite this difference, the tRVB state may still have Z3
topological order like |i)1¢) if the missing configurations
are recovered under renormalization: for 0 < 0 < 7/2
the renormalization-group flow from the state tRVB(6))
ultimately leads to the toric code ground state, which
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Figure 5. (a) String operators in the Z3 toric code: 't Hooft lines and ’t Hooft loops (green), Wilson lines and Wilson loops
(purple). (b) Creation of a charge-anticharge pair on a trimer configuration with a string operator: a monomer is an anticharge,
and a charge consists of a pair of monomers. (¢) The correlation length remains finite when interpolating between the Z3
toric code (a = 0) and the tRVB state (o = 1) at different mixing angles 6. Results obtained by performing CTMRG on the

Zs-charged tensor T' = (1 — a)Trc + oIirvB.

is a fixed point under blocking, with correlation length
& = 0. Another approach to establish that the tRVB
state and the toric code ground state describe the same
phase consists in showing that no phase transitions occur
when interpolating between the two states. This opera-
tion can as well be interpreted as a smooth interpolation
between the two parent Hamiltonians, since Z3 injectivity
is preserved [10, 26]. We interpolate between the states
|rc) and [tRVB) by progressively decreasing the weight
of the forbidden configurations in Fig. 4(e). In Fig. 5(c)
we plot the correlation length £ obtained from CTMRG
during the interpolation. The gradual increase of £ for any
0 < 6 < 7/2 indicates the absence of phase transitions.
We note that what we observed here differs from what
happens in the dimer model of the kagome lattice, where
the RVB state is a fixed point of Zy topological order,
and can be directly mapped into the toric code ground
state [27].

Finally, the connection with the Z3 toric code allows
to define string operators that are useful to detect topo-
logical order, namely Wilson lines and 't Hooft lines. The
latter can be defined as in Fig. 5(a). Because of Gauss’
law, the value of the 't Hooft line around a closed loop is
equal to w™N*t"a~"a where N, is the number of vertices,
and ng, ng are respectively the numbers of charges and
anticharges enclosed by the loop. Similarly, Wilson loops
detect the number of visons/antivisons in a region. More-
over, a 't Hooft (Wilson) line creates a vison/antivison
(charge/anticharge) pair at the two ends of the line.

We now consider the same string operators on the
trimer model. The diagonal operator (’t Hooft line) is
still well defined. Closed 't Hooft loops count the number
of charges/anticharges in a closed region. Note that, if
we consider a diluted tRVB state, we only allow for the
presence of monomers on vertices, i.e., anticharges having
A, = 1. In this case, a pair of monomers represents a
charge. In contrast with the 't Hooft line, the off-diagonal
operator (Wilson line) is not well defined on the trimer

model, as it can map a valid trimer configuration to one
that contains one of the vertices in Fig. 4(e). However,
as shown in Fig. 5(b), on some states it is possible to
define an operator that acts similarly to a Wilson line,
and creates a monomer at one end of the line, and a
pair or monomers at the other end. The charges and
anticharges obtained in this way are deconfined if the
state has topological order.

Knowing the operatorial form of Wilson and ’t Hooft lines
provides (non-local) order parameters [28, 29] that can
be used to assert the presence of Z3 topological order, as
exploited in [30] for Z5 topological spin liquids in Rydberg
atom arrays. Although in Sec. IV A we will not undertake
the calculation of these order parameters because of the
limited system sizes, we point out that they might be
an effective probe for experimental realizations of trimer
models.

B. Tripartite trimer models and U(1) x U(1) lattice
gauge theories

As shown in Fig. 2, the correlation length of the model
diverges for § = /2, implying that the tRVB state con-
taining only straight trimers is gapless. We now explain
this result, by proving that for straight trimers the Z3
symmetry is enhanced to a U(1)xU(1) symmetry. We
define a partition of the square lattice in three sublattices
A, B, and C as in Fig. 6(a). It is easy to check that a
straight trimer always covers one and only one site per
type. A similar scenario occurs for dimer models on bi-
partite lattices: each dimer covers one site of each type,
and the symmetry is enhanced from Z; to U(1). Here,
we will show that the emergent symmetry for straight
trimers is U(1) x U(1). To prove it, we define two electric
fields. The first electric field flows from the A to the B
site of each trimer [Fig. 6(b)|, and the second electric
field flows from the A to the C site [Fig. 6(c)]. We then



Figure 6. (a) Partition of the square lattice in the three
sublattices A (yellow), B (blue) and C (pink). A straight
trimer always covers one site of type A, one of type B and one
of type C. (b) First U(1) symmetry: electric field lines go from
the A site to the B site for each trimer. The net flux going
out of the region enclosed by the red line is —1 = N4 — Np.
(c) Second U(1) symmetry: electric field lines go from the A
site to the C site for each trimer. The net flux going out of
the region enclosed by the red line is —1 = Na — Nc¢.

obtain two independent conservation laws, one for each
electric field: consider a region with N4, Ng, N vertices
of the three types. The net flux going out of the region
is Ny — Np for the first electric field and N4 — N¢ for
the second electric field. Therefore, the tRVB state has
a local symmetry U(1) x U(1) and must be gapless, as
shown by Polyakov [31].

The argument reported above can be generalized to
any trimer model on a two-dimensional lattice. We posit
that a trimer model is tripartite if three sublattices can
be defined, such that a trimer always covers one site for
each sublattice. Note that this definition depends both
on the lattice and on the class of trimers considered. If
a trimer model is tripartite, the tRVB state has a local
U(1)xU(1) symmetry. In the absence of lattice symmetry
breaking, the emergence of this continuous local symmetry
leads to a gapless spin liquid state akin to RVB states in
dimer models on bipartite lattices. We can thus conclude
that a necessary condition for having a gapped Z3 spin
liquid from a tRVB state is that the trimer model is not
tripartite. We remark that this condition is not sufficient,
as demonstrated by the examples that we provide below.

Let us first consider the tRVB state on the honeycomb
lattice [Fig. 7(a)]. This trimer model is not tripartite,
so this state on the honeycomb lattice can be a gapped
state with Z3 topological order. The numerics in Fig. 8
confirm that this is the case. In Fig. 8(b) we show that the
correlation length of the tRVB state on a finite cylinder
converges to a finite value as the circumference increases.
In Fig. 8(b) we show that the entanglement entropy of
a half-infinite cylinder exhibits a — In 3 correction to its
area law scaling. Finally, the blue hexagons in Fig. 8(c)
demonstrate that the logarithmic gap between the lead-
ing eigenvalues of the neutral and charged sectors closes
exponentially, pointing to the spontaneous breaking of Z3
virtual symmetry.

Let us now turn our attention to the kagome lattice. In
this case, various types of trimers can be defined. If we
consider the tripartition of the lattice shown in Fig. 7(b),

Figure 7. (a) Trimer model on the honeycomb: the lattice is
not tripartite. (b, ¢) Two possible tripartitions of the trimer
model on the kagome lattice. We define trimers of type I
(straight), IT (bent, with angle 60°), and III (with angle 120°).
(b) The lattice is tripartite if no type III trimers are included.
(c) Similarly, the lattice is tripartite if no type I trimers are
included. (d) Trimer model on the triangular lattice: the
lattice is tripartite for triangular trimers. (e) The triangular
lattice is tripartite for trimers of type I and II, not tripartite
for trimers of type III.

we note that some types of trimers (I and II) cover sites of
different types, while trimers of type III do not. Therefore,
we deduce that type III trimers are needed to have a Zg
spin liquid phase. Similarly, from the tripartition in
Fig. 7(c), we find that type II trimers are also needed.
This result is in agreement with Ref. [5], where it was
shown that a gapped tRVB state with topological order
is found only when all types of trimers are included. This
lattice exhibits a counterexample that shows how our
“non-tripartibility” condition is not sufficient for gapped
Z3 topological order. In fact, in Ref. [5] it was proven that
the tRVB state with trimers of type I and III possesses
a U(1) local symmetry that spoils Z3 topological order
although the trimer model cannot be tripartite. Trimer
models on this geometry also provide an example of U(1) x
U(1) symmetric tRVB state that is not gapless but has
symmetry breaking: the tRVB state with trimers of type
II only is tripartite, but all trimer coverings break the
two-fold rotation of the lattice that maps upper into lower
triangles.

Finally, let us consider the triangular lattice. As can
be inferred from Fig. 7(d), the tRVB state of triangular
trimers [32] (grey triangles in the figure) is U(1) x U(1)
symmetric because the model is tripartite: this finding
agrees with Ref. [33], where a U(1)xU(1) conservation law
(for “left-" and “right-movers”) was found in the classical
configurations. From numerical diagonalization of the
transfer matrix on finite-size cylinders, we deduce that
this tRVB state is indeed gapless, as demonstrated in
Fig. 8(d), where we show that for the sizes accessible with
our numerics, the correlation length scales linearly with
the circumference of the cylinder. We refer to App. A 3 for
the explicit TN representation of this tRVB state. Using
the same definitions of trimers as for the kagome lattice,
we have that trimers of type I (straight) on the triangular
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Figure 8. (a) Scaling of the entanglement entropy of the tRVB
state on the honeycomb lattice as a function of the number
of tensors N around the cylinder. We extract a topological
correction v ~ In 3. (b) Correlation length of the tRVB state
on the honeycomb lattice. (¢) Logarithmic gap between the
leading eigenvalues of the @ = 0 and Q = =£1 sectors for the
tRVB state on the honeycomb (blue hexagons) and triangular
(orange triangles). On the triangular lattice, only triangular
trimers are considered. Transfer matrix eigenvalues are labeled
as A2 where Q is the Z3 symmetry sector and n = 0,1 ... is the

position in the spectrum starting from the largest in magnitude.
(d) Correlation length of the tRVB on the triangular lattice.

Similar to dimer models on bipartite lattices, it grows linearly
with the number of tensors IV along the circumference. The
TN description of these models can be found in App. A.

lattice are also tripartite and expected to spoil gapped
topological order, while trimers of type III do not respect
the tripartition [Fig. 7(e)]. This implies that tRVB states
on this lattice can have topological order only if these
trimers are included. We let a complete analysis of this
family of tRVB states for future work.

IV. DILUTED TRIMER MODELS AND
RYDBERG ATOMS

In the previous sections we have shown that RVB states

of trimers can be gapped and have topological character.

When these conditions are met they are good candidates

for representing a stable phase with Z3 topological order.

It is thus natural to ask if simple Hamiltonians exist that
have tRVB-like phases at zero temperature. As trimer
states are TN states with finite bond dimension, they are

exact ground states of local Hamiltonians with finite range.

However, it is known that such Hamiltonians can be rather

™~
Il
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Figure 9. (a) Periodic clusters employed for the exact diag-
onalization of the Hamiltonian in Eq. (14). 36, 48, and 60
stand for the number of edges inside the cluster. The turquoise
regions are the subsystems used to compute the entanglement
entropy. We measure their perimeter L in units of an edge of
the square lattice.

complex and include fairly unphysical operators [26, 27,
34]. In particular, parent Hamiltonians of tRVB states
on certain lattices are discussed in Refs. [3, 5]. Here,
instead, we introduce a simple trimer model on the square
lattice and study its ground state phase diagram via exact
methods, providing evidence of a tRVB-like phase with
Z3 topological order. Moreover, we show that a similar
model can be implemented in Rydberg atom arrays and
that hallmarks of Z3 topological order can be observed
employing semi-adiabatic dynamical preparation schemes.

A. An effective trimer models on the square lattice

We consider the Hilbert space spanned by all diluted
trimer configurations of bent trimers on the square lattice,
i.e. with at most one trimer per vertex of the square
lattice, and take the following model Hamiltonian

H= 3 TION I +he - AT IO+ s,

(14)
Rz denotes the terms that can be obtained by 90-degree
rotations from those given in Eq. (14). The fist term
coherently creates and destroys bent trimers (subject to
the hard trimer constraint), whereas the second, diagonal
term acts like a chemical potential for trimers. The ratio
A/ controls the density of trimers in the ground state.
For large and negative A/Q the ground state is trivial and
adiabatically connected to the vacuum. For A/Q = 400
the classical ground space is exponentially degenerate
and consists of all maximally-packed trimer coverings,
corresponding to a link density (n) = 1/3. By treating
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Figure 10. (a) Overlap between the ground state of the Hamil-
tonian Eq. (14) and the tRVB state (solid line), and the
diluted tRVB state Eq. (9) optimized over z (dashed line).
The shaded red region set approximate boundaries for the topo-
logically ordered phase, where the fidelity with the tRVB state
is maximized. (b) Ground state fidelity susceptibility per link
F = (1—](GS(\)) GS(\ + dN)|)/NdX?, with A = Q/A. Two
peaks appear for the larger clusters, pointing at the presence
of an intermediate phase for 0.95 < A/Q < 1.15. (¢) Optimal
value of z that maximizes the overlap between the ground
state and the diluted tRVB state Eq. (9). |z| < 0.4 in the
intermediate phase, a value that lies deep in the topological
phase in the state phase diagram plotted in Fig. 3. (d) Ground
state topological entanglement entropy computed by subtract-
ing the entropies of the square-shaped regions in Fig. 9 with
L =4 and L = 8. (e) Scaling of the entanglement entropy of
the ground state for L = 4,6,8,10 and Q/A = 1.

pertubatively the off-diagonal diagonal term, it is easy
to see that the first non trivial process in this subspace
occurs at fourth order and produces resonances between
pairs of trimer coverings differing only on two nearby
squares. Therefore, at large A/ a valence bond solid
(VBS) ground state is expected to emerge, with a maximal
density of resonating “plaquettes”, i.e., resonating pairs of
nearby squares [35]. At finite A/Q, quantum fluctuations
act in two ways: they create defects in the trimer coverings
by lowering the density and build coherent superpositions
of high density components. As we showed in Sec. II,
topological order can survive at finite dilution, implying
that a diluted tRVB state might also arise from this setup.

To understand the character of the ground state at
intermediate A/Q we performed exact diagonalization
calculations on periodic clusters of up to 60 edges of the
square lattice [Fig. 9]. In Fig. 10(a) we plot the overlap
between the ground state and the pure tRVB state (solid
line), and the ground state fidelity with the diluted tRVB
state Eq. (9) for § = 0 optimized over z (dashed line).

The optimal values of z as a function of A/} are shown in
Fig. 10(c). Remarkably the overlap displays a maximum
at A/Q ~ 1, pointing at the presence of an intermediate
tRVB-like phase. The maximum fidelity is greatly im-
proved when optimized with the diluted tRVB state. We
note that the optimal value of z near the maximum is
perfectly consistent with the topologically ordered phase
in the state phase diagram in Fig. 3. The occurrence of
an intermediate phase is also witnessed by the presence
of two peaks in the ground state fidelity susceptibility
per link F = (1 — [{GS(A\)) GS(A + d\)|)/NdA?, where
A = Q/A [36] for the 48- and 60-links clusters, as de-
picted in the Fig. 10(b). To confirm the nature of the
intermediate phase in an unbiased way, in Fig. 10(d) we
show the topological entanglement entropy extracted from
v =~ Sar, — 25, as functions of A/Q. Here L is the length
of the contour of the subsystem, in units of one edge
of the square lattice, and the subsystems employed for
the computation are depicted in Fig. 9. The value of ~
obtained near the tRVB fidelity maximum is remarkably
close to the value In 3, hinting at the emergence of Z3
topological order.

B. The trimer constraint with Rydberg atoms

We now turn to a discussion of potential realizations of
trimer models and tRVB states with experiments based
on Rydberg atom arrays. In these systems, neutral atoms
are individually trapped and arranged in a desired lat-
tice configuration using optical tweezers (37, 38|. Spin
models can then be realized by manipulating the internal
degrees of freedom of each atom with an external laser
field [39-44]. Specifically, we consider a situation where a
laser induces a coherent coupling from the atomic ground
state |g) to a highly excited Rydberg state |r). The fre-
quency mismatch between the laser frequency and the
transition frequency between those two states, i.e. the
laser detuning, is denoted by A. The coupling strength for
this transition, i.e. the Rabi frequency, is denoted by (2,
and is proportional to the laser amplitude. Importantly,
two atoms that are both in the Rydberg state interact
via a Van der Waals process, whose strength decays with
the sixth power of the atomic separation. As a result,
the Hamiltonian governing the dynamics of this system
is given by [45]

Q nin;
HRYd:EZJ?_AZnZ—’_CZm
i %

i>j

, (15)

where, Z; is the position of atom i, and we defined
of =|g);(r| +|r);(g| and n; = |r),(r|. The parameter C
depends on the Rydberg state. The interplay between
the laser parameters and the geometry of the atom ar-
rangement gives rise to a variety of phenomena [46-51].
Most of them are based on the Rydberg blockade effect,
that prohibits the simultaneous excitation of two atoms
located at a distance r < R, = (V/Q)'/6. Below we show



that this effect can be used to implement trimer con-
straints in Rydberg atom arrays. For example, it is easy
to prove that the hard trimer constraint for triangular
trimers on the triangular lattice in Fig. 7(d) is equivalent
to a Rydberg blockade constraint on a honeycomb lattice:
the atoms sit on the centers of the original triangular
lattice and a Rydberg excitation represents a triangular
plaquette; the blockade radius R is chosen such that two
atoms cannot be simultaneously excited if and only if
they belong to the same hexagon. We now show that
the Rydberg blockade effect also allows to realize a bent
trimer model on the square lattice very similar to the
one outlined above. A sketch of the implementation is
depicted in Fig. 11. Rydberg atoms are placed on the
corners of a square lattice such that an excited atom is
mapped to a bent trimer. The basic idea is to exploit
the blockade radius to mimic the hard trimer constraint.
However, while the latter is anisotropic, the blockade
effect is not, as long as the Rydberg state is rotational in-
variant. Nevertheless, we can avoid the use of anisotropic
Rydberg states by dividing the atoms into two groups,
according to the sublattice of the square to which they
are closer. The two groups are then arranged onto two
planes at a distance h. Consequently, atoms between
different planes will be blockaded if their planar distance
is less than «/Rg — h2, where R, is the blockade radius.
By properly choosing h and the atoms positions inside
the plaquettes of the square lattice, it is possible to realize
a trimer constraint, as demonstrated by Fig. 11(b). This
trimer constraint is such that some trimer configurations
are locally prohibited. The latter are trimer coverings
that include two trimers with the same orientation that
are “wedged” diagonally as in Fig. 11(b).

Before addressing the Rydberg model, we study the
effect of removing these coverings from the fully-packed
tRVB state. In Figs. 12(c) and 12(d) we plot the lowest
logarithmic gaps in the spectrum of the cylinder transfer
matrix of the corresponding TN state as functions of
the cylinder circumference L. The TN representation is
outlined in App. A 1. Despite a level crossing occurs at
finite L, the gap between the neutral and charged sectors
eventually closes exponentially (green circles), whereas the
neutral gap (blue circles) appears to be increasing for the
available Ls. From infinite-size calculations we can infer
that this gap converges to ~ 0.6, yielding a correlation
length £ ~ 1.7. We note that this value is larger than
the correlation length of the unrestricted trimer state
& ~ 1.1 [ef. Fig. 2(a)]. This fact is expected, as removing
these configurations pushes away the tRVB state from
the Z3 toric code fixed point, for which £ = 0. These
results demonstrate that Zs topological order is preserved.
Although we did not study TN perturbations that lower
the density of trimers, we expect a diluted version of this
tRVB state to host a topologically ordered phase.

We now focus on the Rydberg model arising from the im-
plementation explained above. For simplicity, we neglect
interactions beyond the blockade, so that the effective
Hamiltonian is the same as Eq. (14), with the caveat that
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Figure 11. (a) Mapping between Rydberg atoms and bent
trimers on the square lattice. Atoms are placed at each corner
of the square lattice such that an excited atom is mapped to a
bent trimer on that corner. (b) Atoms are split into two groups
(green and red) depending on the sublattice of the square
lattice bipartition to which the corresponding corner belongs.
The groups are arranged onto two planes at distance h such
that the 2D blockade radius between atoms of different colors
is /RZ — h?, where R, is the 3D blockade radius. Tuning
h and the distance of the atoms from the vertexes allows
realizing a constraint equivalent to the trimer constraint where
the “wedged" trimer configurations on the bottom left are
blockaded (and its 90-degree rotations).

all the states containing wedged trimers as in Fig. 11(b)
are not included in the Hilbert space of diluted trimer cov-
erings. The exact diagonalization of this restricted trimer
model displays no evidence of an intermediate topological
phase in the ground state, rather a single phase transition
between a disordered phases and a plaquette phase can
be identified. Therefore, we conclude that if such a phase
exists it is extremely narrow. In fact, the topological en-
tanglement entropy extracted from the finite size cluster
48 in Fig. 9 exhibits a peak approaching v = In 3 that
is much sharper than in the unrestricted model, as we
show in Fig. 12(b). the black lines are the ground state
curves for « in the restricted (solid line) and unrestricted
(dashed line) trimer models. However, below we provide
numerical evidence that this witness of Z3 topological
order is stabilized by a dynamical preparation protocol
regularly used in experiments [48].

The initial state is the vacuum, subsequently evolved with
the time-dependent Hamiltonian H(t) = H(Q(t), A(t)).
To prepare the ground state of H(t) the variation of the
time-dependent couplings has to be perfectly adiabatic.
In real experiments, this is very hard in practice, due
to limited coherence time. Thus it is often preferable to
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Figure 12. (a) The protocol employed for the semi-adiabatic
dynamical preparation. The vacuum |0} is evolved with a time-
dependent Hamiltonian with A(t) and €(t) as depicted in the
figure. First, 2 is switched on from 0 to 1 at constant A = Ay
with a smoothed linear ramp. A is then increased linearly
from Ag = —1.5 to A1 = 43 of constant Q. The total sweep
duration is T'. (b) Topological entanglement entropy of the dy-
namically prepared state, for different preparation times. The
black line corresponds to the ground state of the Hamiltonian
Eq. (14) (T = o). Solid and dashed lines are obtained in the
effective Rydberg model where the “wedged” trimer configura-
tion of Fig. 11(b) are not included in the Hilbert space and the
unrestricted diluted trimer model, respectively. Results are
obtained on the periodic cluster 48 of Fig. 9. (¢) E = —log A,
where A are the eigenvalues of the cylinder transfer matrix
of the tensor network representation of the restricted tRVB
state of bent trimers on the square lattice. N is the number
of tensors along the circumference, Q is the Z3 virtual charge
(Q = £1 sectors are exactly degenerate), n is the eigenvalue
index in the sector with charge Q. (d) Exponential scaling of
the gap between the smallest Es in the neutral and charged
sectors, signaling spontaneous symmetry breaking of the Z3
virtual symmetry of the tensor.

consider non-adiabatic state preparation schemes. In fact,
as demonstrated in Ref. [22, 48], non-adiabatic effects can
even enhance topological order in the prepared state w.r.t.
the ground state. In the following, we show that a similar
result is observed here. Specifically, we study the dynam-
ical preparation process depicted in Fig. 12(a). The vac-
uum state |0) is evolved with the time-dependent Hamil-
tonian H (Q(t), A(t)), where A(0) = —2.5, Q(¢) = 0, such
that |0) is the ground state at ¢ = 0. A first (smoothed)
linear ramp turns on the effective Rabi frequency until
the final value 2 = 1 is reached. The latter sets our units
of energy and time. A second ramp is used to drive the
detuning from A(0) = —1.5 to A(T") = 3, where T is the
total sweep time, and the final value of A is chosen to be
well beyond the peaks in tRVB overlap and topological
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entanglement entropy of the ground state. The slopes of
the two ramps decrease with increasing 7' and are fixed
by requiring that the switching on of  (A) takes T/3
(27/3). In both the restricted and unrestricted models a
phase transition is crossed during the second ramp.

In Fig. 12 we plot the topological entanglement entropy
of the state during the preparation sweep, for different
total sweep times T, for the 48 cluster in Fig. 9, that
corresponds to 96 atoms in the mapping of Fig. 11(a).
The result indicates that topological properties are stabi-
lized in the prepared state when the preparation is not
adiabatic, i.e. for short and intermediate 7. Remarkably,
the peaks in the topological entropy correction disappear
in this regime, and the latter witnesses a topological state
when A/Q > 1. For the largest T's the ground state curve
is recovered (T = oo). We note that this phenomenon
occurs in both the restricted and unrestricted models [cf.
dash and solid lines in Fig. 12(b)].

We remark that it might be possible to engineer other im-
plementations of the Hamiltonian in Eq. (14) that do not
require a restriction of the diluted trimer Hilbert space.

V. CONCLUSIONS

We showed that maximally-packed trimer states can be
simple representatives of quantum spin liquids with Z3
topological order. By mapping trimer configurations into
the Hilbert space of a lattice gauge theory, we identified a
condition on the lattice geometry and trimer model that
leads to the emergence of a U(1) x U(1) and a tRVB state
with infinite correlation length. We verified this condition
by performing numerical checks on several trimer models
with TN methods. We demonstrated that when tRVB
states are gapped, Z3 topological order is stable against
fluctuations in the number of trimers. We did so by
studying a TN perturbation that represents a diluted
tRVB state on the square lattice and showing that it
hosts a wide topologically ordered phase in the state
phase diagram. Finally, we considered a simple model
Hamiltonian on the square lattice that exhibits signatures
of a tRVB-like phase, where the ground state is well
approximated by the Z3 topologically ordered diluted
TN perturbation previously studied. We provided an
implementation of a very similar model by exploiting the
blockade effect in Rydberg atom arrays, and show that
hallmarks of a Z3 quantum spin liquid can be observed
in non-adiabatic dynamical preparation schemes.

Our findings open new future directions for the quantum
simulation of topological phases of matter. The necessary
condition for having Z3 topological order that we formu-
lated depends solely on the geometry of the model and
can therefore guide the search for quantum spin liquids in
various experimental implementations, including—but not
limited to—Rydberg atom arrays. In this respect, it would
be interesting to study more extensively the realization of
tRVB states both as ground states of realistic Hamiltoni-
ans and as dynamically-prepared non-equilibrium states.



In addition, our approach can be naturally extended from
trimer- to polymer-RVB states, which can support the
emergence of Z,, topological order. A systematic study
of such states can similarly be performed efficiently with
tensor network methods and is left for future work. Fi-
nally, an interesting direction is the related problem of
quantum spin liquid phases in SU(3) and SU(N) symmet-
ric models. In certain models, trimers (polymers) can be
interpreted as simplified versions of SU(3) (SU(N)) spin
singlets; it remains an open question to what extent this
interpretation can be used to infer the properties of RVB
states of singlets.
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Appendix A: Details on the tensor-network
representations

1. tRVB model on the square lattice
a. Symmetries

The tensor defined in Eq. (4) enjoys a reflection sym-
metry along the diagonal, which can be exploited in the
CTMRG algorithm. The corresponding transfer operator
is not self-adjoint, which requires one to compute both
fixed points for the VUMPS algorithm. However, the
fixed point in one direction can be readily converted into
the the fixed point into the other direction, since

= @k a (A1)

where P is the operator that permutes the +1 indices.

b. Diluted tRVB PEPS

The PEPS representation for the diluted tRVB in
Eq. (9) is constructed by introducing two species of
trimers; one that appear on the physical layer and ones


https://doi.org/10.1016/0370-2693(83)91171-1
https://doi.org/10.1007/BF01206315
https://doi.org/10.1103/PhysRevX.11.031005
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1103/PhysRevE.63.066122
https://doi.org/10.1103/PhysRevE.63.066122
https://arxiv.org/abs/2203.07443
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.120.113602
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1126/science.1258351
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1126/science.abo6587

that do not. Graphically, we have the following construc-
tion:

indices of the

We label the tensor T with
{0,41,—1,+1,—-1}. We now have two pairs of un-
coupled charges, each of which have the similar diagrams
as Eq. (4). In order to preserve the correspondence with
the partition function in Eq. (3), we must also take the
square root of each weight. The black dot on each link
represents a projector, which signals the presence of one
type of trimer on the physical layer, and gives a fugacity
contribution z to the second type
0

U<—L0 - il<—i<—il =1 ii(_i;ﬂ =z (AS)

The corresponding PEPS tensor, formed by contracting
one T and two projectors, has bond dimension D = 5.
It should be noted that the double-layer tensor—coming
from the contraction of the norm (®|®)—can be reduced
to dimension 9 (instead of the naively expected 5%). We
observe this by performing Gaussian elimination on the
tensor, which is exact up to numerical precision.

c. Restricted tRVB model

Figure 13. Allowed diagrams at each vertex for the restricted
tRVB model, up to rotations of 7 /2.

The mapping to Rydberg atoms in Sec. IV A suggests
the ansatz state in which we restrict the trimer configura-
tions to not have any “wedged” configurations, as shown
in Fig. 11. We start from the arrow representation in
Fig. 4(d), but we introduce new color labels

= = -

— — - -be- . (A4)
Referring to Fig. 13, we start by labelling the two outgo-
ing arrows of a bent trimer with different colors (blue and
orange). To enforce the additional constraint, we intro-

duce a dashed arrow which continues anticlockwise from
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the blue arrow. Notice that the arrow does not convey
any charge information, as all dashed lines correspond to
a Zz-charge 0. A vertex with the middle of the trimer can
not couple to it directly since it requires two gray lines.
The other diagrams then account for the possible ways
of closing the dashed lines. Accounting for rotations, in
total there are 28 distinct diagrams.

The construction of the tensor network from Fig. 13
is straightforward, and is similar to Eq. (4). We must
however remember that the mapping from the arrow
representation to the index of the tensor is different if a
leg of the tensor is ingoing or outgoing. Each leg of the
double-layer tensor is then eight-dimensional.

2. tRVB model on the honeycomb lattice

On the honeycomb lattice there is only one type of
trimer. On each vertex of the lattice we can place the

tensor
-1 0 +1 +1
0 0
+1

-1

V rotations

(A5)

ST AT

0 0 0 -1

to obtain the corresponding partition function. To convert
the problem into a TN on the square lattice, we define

the tensor

Similarly to the case of square lattice in Eq. (5), this tensor
obeys a similar transformation: (¢'®@of®@o®0)T = W?T.

(A6)

3. tRVB model on the triangular lattice

On the triangular lattice an efficient TN representation
can be found in the dual-lattice picture, where a site
is defined on each triangular face, similarly to how one
would propose a Rydberg implementation. In this picture,
only one site around each original vertex of the triangular
lattice can be occupied. Correspondingly, in the TN
picture we define a d-tensor on each face, representing the

site
U\T/U:]\f/]: 1
0 1

which is connected to three rank-6 constraint tensors

(A7)

0 0
=1
0 0

0

V rotations.

(A8)



We can then bring the problem back to a TN contraction
on the square lattice by first defining a decomposition of
the constraint tensor

- ﬁéﬁ o
AN

and performing the contraction

7 - ﬂi}ﬁ "
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