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Trimer states with Z3 topological order in Rydberg atom arrays
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Trimers are defined as two adjacent edges on a graph. We study the quantum states obtained as equal-weight
superpositions of all trimer coverings of a lattice, with the constraint of having a trimer on each vertex: the
so-called trimer resonating-valence-bond (tRVB) states. Exploiting their tensor network representation, we show
that these states can host Z3 topological order or can be gapless liquids with U(1) × U(1) local symmetry. We
prove that this continuous symmetry emerges whenever the lattice can be tripartite such that each trimer covers
all the three sublattices. In the gapped case, we demonstrate the stability of topological order against dilution
of maximal trimer coverings, which is relevant for realistic models where the density of trimers can fluctuate.
Furthermore, we clarify the connection between gapped tRVB states and Z3 lattice gauge theories by smoothly
connecting the former to the Z3 toric code, and discuss the nonlocal excitations on top of tRVB states. Finally,
we analyze via exact diagonalization the zero-temperature phase diagram of a diluted trimer model on the square
lattice and demonstrate that the ground state exhibits topological properties in a narrow region in parameter
space. We show that a similar model can be implemented in Rydberg atom arrays exploiting the blockade effect.
We investigate dynamical preparation schemes in this setup and provide a viable route for probing experimentally
Z3 quantum spin liquids.
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I. INTRODUCTION

When quantum fluctuations meet classical frustration,
exotic strongly correlated states can arise. Paradigmatic exam-
ples are resonating valence bond (RVB) states of hard dimers.
They are defined as equal-weight quantum superpositions of
all dimer coverings with one dimer touching each vertex of a
lattice. These many-body states are the ground states of local
Hamiltonians with peculiar properties, such as a ground-state
degeneracy that depends on the topology of the system and
deconfined excitations that come in pairs [1]. When their
correlation length is finite, a stable, topologically ordered,
quantum phase of matter exists with RVB states as its repre-
sentatives [2]. This kind of topological order is characterized
by a local Z2 symmetry closely related to the Gauss’ law in the
gauge theory description of these phases, and it is expected
to emerge in dimer models defined on non-bipartite lattices
[1]. In this paper, we consider RVB states of hard trimers
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(tRVB). A trimer is an object made up of two nearest-neighbor
edges of a lattice that share a common vertex [cf. Fig. 1(a)].
Hard trimers cannot touch each other, such that each vertex
of the lattice can be covered by at most one trimer, yielding
what we refer to as the trimer constraint. Maximally-packed
trimer configurations are obtained by demanding that exactly
one trimer covers each vertex. These configurations are then
promoted to orthogonal quantum states, and the tRVB state is
their equal-weight quantum superposition. On certain lattices,
tRVB states are known to be gapped and to possess a form
of topological order with emergent Z3 gauge symmetry [3–5],
and thus to be good representatives of a quantum phase with
Z3 topological order. However, a general condition on the
lattice geometry for which these states are gapped and have
topological character is still lacking, and physical realiza-
tions of this phase are little known [6]. Here, we identify
a necessary condition for having a gapped tRVB state with
Z3 topological order, similar to the condition of non-bipartite
lattices for dimer models. Moreover, we provide a trimer
model where signatures of the above-mentioned topological
phase are identified. This model is physically relevant for
experimental platforms based on Rydberg atom arrays, as we
demonstrate by proposing and analyzing a viable implemen-
tation of the trimer constraint in this setup.

Firstly, we focus on the square lattice, where we demon-
strate the emergence of the trimer coverings Hilbert space
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FIG. 1. (a) Maximal trimer configuration with arrows pointing
from the center to the two external vertices of each trimer, on
the square and honeycomb lattice. The net flux for each vertex is
2 mod 3. The region enclosed by the dashed line has Ns = 3 vertices
and a net flux 3 = 2Ns mod 3. (b) One-parameter family of tRVB
states on the square lattice. The parameter t = tan θ weights the
presence of straight trimers, such that for θ = 0 (π/2) the tRVB state
is solely made of bent (straight) trimers.

as a particular limit of a Z3 lattice gauge theory (LGT). We
introduce a tensor network (TN) [7–9] representation that
describes a one-parameter family of tRVB states [Fig. 1(b)].
Utilizing exact and approximate TN methods, we show that all
the tRVB states considered have Z3 topological order except
for a fine-tuned point, where we establish the presence of a
U(1) × U(1) local symmetry that leads to long-range correla-
tions. We show that topological properties are stable against
dilution of the maximally-packed trimer configurations by
studying a tensor-network perturbation that encodes all hard
trimer configurations with at most one trimer on each vertex.
Furthermore, we discuss a general mechanism that explains
the enhancement of the local Z3 conservation law of Fig. 1(a)
to a U(1) × U(1) law, yielding long-range correlations and
ultimately spoiling Z3 topological order. We support our con-
clusions with further examples of gapless and gapped tRVB
states, on the triangular and honeycomb lattices.

Secondly, we consider a diluted trimer model on the square
lattice with a single type of trimers, namely the bent blue
trimers in Fig. 1(a). The corresponding tRVB state [Fig. 1(b)
for t = 0] will be shown to be a gapped Z3 topological liq-
uid, thus motivating the choice of this geometry. The model
Hamiltonian has a control parameter that tunes the density
of trimers. We compute the ground-state wavefunction via
exact diagonalization on periodic clusters and show that a Z3

topologically ordered phase arises at finite density. We show
that the blockade effect induced by van der Waals interactions
in Rydberg atom arrays can be used to engineer the (bent)
trimer constraint on the square lattice, by mapping the four
possible trimer orientations on a square into four different
excited Rydberg atoms. The effective Rydberg model is equiv-
alent to the diluted trimer model upon neglecting some trimer
configurations [cf. Fig. 11(a)]. We prove numerically that
removing these configurations from the superposition does not
spoil the Z3 topological nature of the fully-packed tRVB state.
We find that, despite signatures of a topological phase being

elusive in the ground state of the Rydberg Hamiltonian, a
semi-adiabatic dynamical preparation bolsters the topological
character of the prepared state.

The paper is structured as follows. In Sec. II we introduce
a one-parameter family of tRVB states on the square lattice,
its TN representation, and a one-parameter perturbation that
lower the density of trimers, preserving the TN form. We
study the state phase diagram of this two-parameters family
and demonstrate the presence of a stable Z3 topologically
ordered phase. In Sec. III we relate gapped tRVB states to
the Z3 toric code, from which we can define string operators
and nonlocal excitations. We discuss the condition for which a
U(1) × U(1) gauge theory emerges in trimer models, and ver-
ify it by considering tRVB states on various lattice geometries.
In Sec. IV A we introduce the model of diluted bent trimers
on the square lattice, analyze its ground-state properties on
finite periodic systems, and show that a narrow topological
phase emerges. We outline the implementation of this model
in Rydberg atom arrays, point out the differences between
the trimer and Rydberg models and discuss the consequences.
Finally, we analyze dynamical preparation protocols to realize
Z3 topologically ordered states in experiments.

II. tRVB STATES ON THE SQUARE LATTICE

Trimers on the square lattice can either be bent or straight
[cf. blue and red trimers in Fig. 1(a)]. Therefore, we can
define a one parameter family of tRVB states on this lattice
by weighting each covering c with coefficients that depend
on the number of bent and straight trimers [N⊥(c) and N‖(c)
respectively] in the covering. In particular, we introduce
the parameter θ ∈ [0, π/2] such that the coefficient of a
maximally-packed configuration c is

W (c) = (cos θ )N⊥(c)(sin θ )N‖(c). (1)

The tRVB state then reads

|tRVB(θ )〉 = 1

N (θ )

∑
{c}

W (c) |c〉, (2)

where N (θ ) =
√∑

{c}[W (c)]2 is a normalization factor. The

angle θ changes the relative weight of bent versus straight
trimers [see Fig. 1(a)]: in the limit θ = 0 (θ = π/2) only bent
(straight) trimers contribute.

In this section, we analyze the topological properties of
this state with tensor network methods. After studying the
one-parameter family in Eq. (5), we add another parameter by
considering a diluted TN deformation obtained by destroying
trimers with a certain probability. We map out the state phase
diagram and demonstrate the stability of the topological phase
against dilution.

A. The tensor network representation of the tRVB model

We turn our attention to the classical statistical-mechanics
model whose partition function is the sum of the squared
weights in Eq. (1) of all maximally-packed trimer configu-
rations on the square lattice. This partition function can be
interpreted as the norm of the quantum state in Eq. (5). Its
tensor-network representation was previously introduced in
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Ref. [3]: the partition function Z can be written as the tiling of
rank-4 tensors

Z = T T

TT T

T

T T T

(3)

The rank-4 tensor T is constructed in such a way that, once the
tensor is contracted with its neighbors, only the valid trimer
configurations survive. As will be later discussed in Sec. III,
it is beneficial to consider an equivalent representation of this
model, where trimer configurations are mapped to possible
ways to position arrows on the links such that there is a local
constraint—or Z3 conservation law—around each edge. As
shown in Fig. 1(a), a given trimer configuration has a one-
to-one mapping to a single arrow configuration obtained by
assigning arrows to the links covered by the trimers, in such a
way that each arrow goes from the center of the trimer to the
external vertices. In a fully-packed configuration, each vertex
has either two outgoing arrows or one ingoing arrow. Because
the net outgoing flux for each vertex is 2 (where the flux is
measured mod 3), we obtain that a region of Ns vertices has
flux 2Ns mod 3. This Z3 rule for the flux suggests that the
tRVB state can be described as a Z3 gauge theory and can
be a gapped Z3 quantum spin liquid.

The tensor T is then constructed by labeling each leg
with indices {0,+1,−1}, where 0 means no arrow, and +1
(−1) corresponds to an arrow aligned (anti-aligned) with the
direction of the leg. The nonzero entries are

0

0

0

+1 0

0

+1

0 -1

0

0

0 0

-1

0

0

0

0

-1

-1 0

+1

0

-1 +1

+1

0

0 +1

0

-1

0

+1

0

0

-1 0

+1

-1

0 sin2 θ

cos2 θ

=

=

=

=

=

=

=

=

1

=

=

.

(4)
The Z3 symmetry of the underlying gauge theory is reflected
in the tensor. Indeed the symmetry operator σ , whose matrix
representation [10] is later defined in Eq. (12), acts on the
tensor as

. (5)
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FIG. 2. (a) Correlation length ξ as a function of θ , computed
using infinite cylinders of circumference L, as well as infinite-size
methods (see main text). The bond dimensions employed for the
latter are D = 1536 and D = 729 for CTMRG and VUMPS, re-
spectively. (b) Topological entanglement entropy γ � SL − 2SL/2

extracted from finite-size cylinders.

We remark that if one wishes to remove the factor ω = ei2π/3

from Eq. (5) it is sufficient to block three consecutive tensors
and construct a Z3-invariant tensor. When interpreting the
partition function encoded in the tensor Eq. (4) as the norm
of the tRVB state, each leg of the tensor is interpreted as the
product between the bra and ket virtual layers of the quantum
state.

The properties of the tRVB wavefunction can be extracted
by analyzing the row-wise transfer operator

(6)

By computing the leading eigenvalues (ordered by magnitude)
λ0, λ1, . . . of the transfer operator of length L (with periodic
boundary conditions), we obtain the correlation length ξ as

ξ = 1/ ln

∣∣∣∣
λ0

λ1

∣∣∣∣. (7)

This quantity bounds all correlation functions in the height
direction of the infinitely-tall cylinder of circumference L.
The Z3 virtual symmetry in Eq. (5) can be used to label the
eigenvalues of the transfer operator as λQ

k , where Q = 0,±1
is the Z3 charge and k = 0, 1 . . . is eigenvalue index starting
from the largest in magnitude. As expected for a topologi-
cally ordered state, this symmetry is spontaneously broken,
yielding an approximate threefold degeneracy for the largest
eigenvalues from the three Z3 symmetry sectors: the gap be-
tween the logarithm of these eigenvalues closes exponentially
in L [11]. In fact, the spectrum E = − log λ is analogous to
the spectrum of a Hamiltonian with spontaneous symmetry
breaking. To compute the correlation length at finite L we thus
consider the two largest eigenvalues in the Q = 0 sector. The
results of numerical diagonalizations on finite cylinders are
presented in Fig. 2(a). These finite-size results are compared
to the correlation lengths obtained from the corner-transfer
matrix renormalization group (CTMRG) [12–17] exploiting
the reflection symmetry along the tensor diagonal [18]. For
the sake of comparison, in this case we also include results
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from the variational uniform matrix product state algorithm
(VUMPS) [19]. From the numerical results [20], we conclude
that the correlation length diverges only in the limit θ → π/2,
while it remains finite below that value. As we will discuss
in the next section, long-range correlations concur with the
emergence of a U(1) × U(1) local symmetry for θ = π/2.
Despite the data do not clearly rule out the presence of an ex-
tended interval of diverging ξ in the proximity of θ = π/2, the
theoretical arguments in the following section, demonstrating
that a local continuous symmetry emerges only at θ = π/2,
provide further support to this claim.

The leading eigenvector of the transfer operator on a cylin-
der encodes the reduced density operator ρ of the infinite
half-cylinder [21], from which we can as well obtain the
entanglement entropy S = −Tr(ρ ln ρ) of this bipartition. The
scaling with the circumference length L of the entanglement
entropy obeys

SL ∼ αL − γ , (8)

where γ is a well-known topological correction [22,23]. γ �
ln 3 implies that the state is in a gapped Z3 topological phase.
In Fig. 2(b) we plot the topological entanglement entropy
obtained from the subtraction γ = SL − 2SL/2, as a function
of θ . While γ appears to approach a finite value compatible
with ln 3 for θ 	= π/2, a bump occurs in the proximity of
this point. The peak position drifts towards θ = π/2 as L
increases due to finite size effects and we expect it to turn
into a singularity at θ = π/2 in the thermodynamic limit. In
fact, in the presence of continuous local symmetries such as
U(1) × U(1) the topological correction is expected to scale
logarithmically with L [24,25].

B. Stability under dilution of the tRVB state

We now study a deformation of the tRVB state obtained by
diluting fully-packed trimer coverings. This deformation will
be relevant for Sec. IV A, where we will discuss how to imple-
ment trimer models in Rydberg atom arrays. In these setups,
the total occupation can fluctuate, so it is important to con-
sider imperfect trimer coverings. Similarly to a recent paper
on dimer models [26], we consider the following variational
ansatz, which depends on two real parameters 0 � θ � π/2
and z ∈ R:

|�(θ, z)〉 ∝
⊗

i, j

(
1 + z2�−

i j

)|tRVB(θ )〉, (9)

where �−
i j is the operator that removes a trimer on the edges i

and j, and z2 corresponds to the weight of a removed trimer.
In essence, we add to the fully-packed trimer configurations
other trimer configurations that can be obtained from the
former by removing trimers without moving the remaining
ones. Each removed trimer is weighted by z2. In the limit
z → ∞, the state is simply the vacuum, while at z → 0 we
recover the tRVB state, which we showed to be in a topo-
logical phase. Similarly to |tRVB〉, the state |�〉 has a simple
projected entangled-pair state (PEPS) [9] representation of

bond dimension 4

|Φ〉 = .

(10)

Its construction is relegated to Appendix A 1.
In Fig. 3, we study the density of occupied links n [27] and

the correlation length of the state as we vary θ and z using
CTMRG. Remarkably, the topological phase survives up to
values of order one of the dilution strength z, and is fairly
insensitive to the mixing angle θ . The transition between the
topological and trivial phases appears to be continuous, as
witnessed by a possibly diverging correlation length at the
critical point [Fig. 3(b)]. It is worth noting that because the
bond dimension D of CTMRG environment bond is always
finite, we never obtain a truly diverging correlation length (the
maximum ξ � 50 for D = 1458). We do not address the char-
acterization of the universality class of this phase transition as
the critical exponents we could extract from the available data
exhibit strong dependence on the CTMRG environment bond
dimension D, even for the largest D we employed. We note
that topological and trivial phases are distinguished by two
different degeneracies of the PEPS cylinder transfer matrix.
The spectrum of the transfer matrix is threefold degener-
ate in the former and ninefold degenerate in the latter. The
ninefold degeneracy reflects the full breaking of the Z3 × Z3

virtual symmetry of the PEPS double tensor, which implies
the condensation of magnetic and the confinement of electric
excitations (see Sec. III) in the gauge theory picture [11].

III. tRVB STATES AND LATTICE GAUGE THEORIES

To understand the emergence of Z3 topological order in the
tRVB state, it is useful to shed light on its connection with a
gauge theory. To this end, in Sec. III A we compare the tRVB
state to the ground state of a Z3 toric code.

We argued in Sec. II that the presence of a Z3 local conser-
vation law of the flux suggests an emergent description as a Z3

gauge theory, and hence the tRVB state is a good candidate
for being a gapped Z3 quantum spin liquid. However, as we
show below, it may happen that for some trimer models the
Z3 local symmetry is enhanced to a U(1) × U(1) symmetry,
in which case the state is gapless [28]. A similar scenario
occurs for RVB states of dimer models, that are known to
host gapped Z2 spin liquids only on non-bipartite lattices; on
bipartite lattices, they are described by a U(1) gauge theory,
that does not support a stable topologically ordered phase.
In Sec. III B we will formulate a similar criterion for trimer
models.

A. The Z3 toric code

A state that is very similar to the tRVB state and has Z3

topological order is the ground state of the Z3 generalization
of Kitaev’s toric code [29]. We now review this model and
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FIG. 3. (a) Density of occupied links of the diluted tRVB state |�(θ, z)〉, obtained from CTMRG with an environment bond dimension
D = 729. The grey dots indicate where its numerical derivative with respect to z has an extremum. (b) Correlation length ξ obtained from the
transfer matrix of the diluted tRVB state computed with CTMRG. Note that ξ diverges at the phase boundary and at θ → π/2. (c) Details for
θ = 0: the density displays a nonanalyticity at zc = 0.88(6) (dashed line), which corresponds to a divergence of the correlation length (inset).
The critical point is extrapolated from the maximum ξ at fixed D (ξ � 50 for D = 1458).

show the similarities and differences between its ground state
and the tRVB state.

To define the Z3 toric code, we introduce clock variables on
the links of our lattice; on each link we define the operators σ

and τ , that satisfy the following properties:

στ = ωτσ, σ 3 = 1, τ 3 = 1, (11)

where ω = e2iπ/3. These variables are the Z3 generalizations
of the Pauli matrices σ z and σ x, and their most common
matrix representation is

σ =
⎛
⎝

1 0 0
0 ω 0
0 0 ω∗

⎞
⎠, τ =

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠. (12)

We now define the star and plaquette operators as in Figs. 4(a)
and 4(b). Similarly to the case of the Z2 toric code, these
operators all commute: [Av, Bp] = 0 for every vertex v and
plaquette p. We now define the state |ψTC〉 as the equal-weight

FIG. 4. Definitions of operators (a) Av and (b) Bp. (c) Mapping
from a trimer configuration to a state in the σ basis. (d) Configura-
tions for a vertex in the trimer model. The 10 total configurations are
obtained from these under rotations. (e) Configurations that satisfy
Gauss’ law but to do not correspond to trimer configurations. The
full set of unallowed configurations (17 in total) is obtained from
these under rotations.

superposition of all the states in the σ basis that satisfy the
Gauss’ law Av = ω for all vertices. Note that this choice
differs from the typical case with Av = 1 and corresponds
to the presence of a background charge on each vertex of
the lattice. Nevertheless, the physical properties that we are
interested in are not altered by this background charge, as
a unitary transformation can be defined to eliminate it. The
state defined here has the property that Bp |ψTC〉 = |ψTC〉 for
every plaquette p, and is the ground state of the following
Hamiltonian:

HTC = −
∑

v

(ω∗Av + ωA†
v ) −

∑
p

(Bp + B†
p). (13)

Because star and plaquette operators commute, it is easy
to identify the excitations of the model: we call an exci-
tation with Av = ω∗ (Av = 1) a charge (anticharge), while
an excitation with Bp = ω (Bp = ω∗) is a vison (antivi-
son). Both “electric” (charge/anticharge) and “magnetic”
(vison/antivison) excitations are gapped.

We now elucidate the connection between the tRVB state
and |ψTC〉. We can map each configuration of fully-packed
trimers to a configuration in the σ basis as shown in Fig. 4(c).
It is easily shown that this configuration satisfies Gauss’ law.
However, not all the configurations of the Z3 toric code that
satisfy Gauss’ law correspond to a trimer configuration: as
shown in Fig. 4(d), only 10 of the 27 configurations of a
vertex correspond to allowed vertex configurations of the
trimer model. Despite this difference, the tRVB state may still
have Z3 topological order like |ψTC〉 if the missing configura-
tions are recovered under renormalization: for 0 � θ < π/2
the renormalization-group flow from the state |tRVB(θ )〉 ulti-
mately leads to the toric code ground state, which is a fixed
point under blocking, with correlation length ξ = 0. Another
approach to establish that the tRVB state and the toric code
ground state describe the same phase consists in showing that
no phase transitions occur when interpolating between the two
states. This operation can as well be interpreted as a smooth
interpolation between the two parent Hamiltonians, since
Z3 injectivity is preserved [11,30]. We interpolate between
the states |ψTC〉 and |tRVB〉 by progressively decreasing the
weight of the forbidden configurations in Fig. 4(e). In Fig. 5(c)
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FIG. 5. (a) String operators in the Z3 toric code: ’t Hooft lines and ’t Hooft loops (green), Wilson lines and Wilson loops (purple).
(b) Creation of a charge-anticharge pair on a trimer configuration with a string operator: a monomer is an anticharge, and a charge consists of a
pair of monomers. (c) The correlation length remains finite when interpolating between the Z3 toric code (α = 0) and the tRVB state (α = 1)
at different mixing angles θ of the Z3-charged tensor T = (1 − α)TTC + αTtRVB(θ ). In the tensor TTC, all the components allowed by the virtual
symmetry have unit weight (see Fig. 4). Finite-size results on a cylinder of L = 18 (solid lines) agree with the CMRG results with D = 729
(dotted lines).

we plot the correlation length ξ obtained from CTMRG during
the interpolation. The gradual increase of ξ for any 0 � θ <

π/2 indicates the absence of phase transitions. We note that
what we observed here differs from what happens in the dimer
model of the kagome lattice, where the RVB state is a fixed
point of Z2 topological order, and can be directly mapped into
the toric code ground state [31].

Finally, the connection with the Z3 toric code allows one
to define string operators that are useful for detecting topo-
logical order, namely Wilson lines and ’t Hooft lines. The
latter can be defined as in Fig. 5(a). Because of Gauss’ law,
the value of the ’t Hooft line around a closed loop is equal to
ωNv+nq−nq̄ , where Nv is the number of vertices, and nq, nq̄ are
respectively the numbers of charges and anticharges enclosed
by the loop. Similarly, Wilson loops detect the number of
visons/antivisons in a region. Moreover, a ’t Hooft (Wilson)
line creates a vison/antivison (charge/anticharge) pair at the
two ends of the line.

We now consider the same string operators on the
trimer model. The diagonal operator (’t Hooft line) is still
well defined. Closed ’t Hooft loops count the number of
charges/anticharges in a closed region. Note that, if we con-
sider a diluted tRVB state, we allow only for the presence of
monomers on vertices, i.e., anticharges having Av = 1. In this
case, a pair of monomers represents a charge. In contrast with
the ’t Hooft line, the off-diagonal operator (Wilson line) is
not well defined on the trimer model, as it can map a valid
trimer configuration to one that contains one of the vertices in
Fig. 4(e). However, as shown in Fig. 5(b), on some states it is
possible to define an operator that acts similarly to a Wilson
line, and creates a monomer at one end of the line, and a pair
or monomers at the other end. The charges and anticharges
obtained in this way are deconfined if the state has topological
order.

Knowing the operatorial form of Wilson and ’t Hooft lines
provides (nonlocal) order parameters [32,33] that can be used
to assert the presence of Z3 topological order, as exploited in
[34] for Z2 topological spin liquids in Rydberg atom arrays.
Although in Sec. IV A we will not undertake the calculation
of these order parameters because of the limited system sizes,
we point out that they might be an effective probe for experi-
mental realizations of trimer models.

B. Tripartite trimer models and U(1) × U(1) lattice gauge
theories

As shown in Fig. 2, the correlation length of the model
diverges for θ = π/2, implying that the tRVB state containing
only straight trimers is gapless. We now explain this result, by
proving that for straight trimers the Z3 symmetry is enhanced
to a U(1) × U(1) symmetry. We define a partition of the
square lattice in three sublattices A, B, and C as in Fig. 6(a).
It is easy to check that a straight trimer always covers one and
only one site per type. A similar scenario occurs for dimer
models on bipartite lattices: each dimer covers one site of
each type, and the symmetry is enhanced from Z2 to U(1).
Here, we will show that the emergent symmetry for straight
trimers is U(1) × U(1). To prove it, we define two electric
fields. The first electric field flows from the A to the B site
of each trimer [Fig. 6(b)], and the second electric field flows
from the A to the C site [Fig. 6(c)]. Consider a region with
NA, NB, NC vertices of the three types: the net flux going out
of the region is NA − NB for the first electric field and NA − NC

for the second electric field. We then obtain two independent
conservation laws, one for each electric field (for a proof of
the independence see Appendix B). Therefore, the tRVB state

(a) (b) (c)

FIG. 6. (a) Partition of the square lattice in the three sublattices
A (yellow), B (blue), and C (pink). A straight trimer always covers
one site of type A, one of type B and one of type C. (b) First U(1)
symmetry: electric field lines go from the A site to the B site for each
trimer. The net flux going out of the region enclosed by the red line
is −1 = NA − NB. (c) Second U(1) symmetry: electric field lines go
from the A site to the C site for each trimer. The net flux going out
of the region enclosed by the red line is −1 = NA − NC .
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FIG. 7. (a) Trimer model on the honeycomb: the lattice is not
tripartite. [(b),(c)] Two possible tripartitions of the trimer model on
the kagome lattice. We define trimers of type I (straight), II (bent,
with angle 60◦), and III (with angle 120◦). (b) The lattice is tripartite
if no type III trimers are included. (c) Similarly, the lattice is tripartite
if no type I trimers are included. (d) Trimer model on the triangular
lattice: the lattice is tripartite for triangular trimers. (e) The triangular
lattice is tripartite for trimers of type I and II, not tripartite for trimers
of type III.

has a local symmetry U(1) × U(1) and must be gapless, as
shown by Polyakov [35]. This local symmetry can be recasted
as a virtual symmetry of the tRVB tensor defined in Eq. (4)
(see Appendix A 1 for more details).

The argument presented above can be generalized to any
trimer model on a two-dimensional lattice. We posit that a
trimer model is tripartite if three sublattices can be defined,
such that a trimer always covers one site for each sublattice.
Note that this definition depends both on the lattice and on
the class of trimers considered. If a trimer model is tripartite,
the tRVB state has a local U(1) × U(1) symmetry. In the
absence of lattice symmetry breaking, the emergence of this
continuous local symmetry leads to a gapless spin liquid state
akin to RVB states in dimer models on bipartite lattices. We
can thus conclude that a necessary condition for having a
gapped Z3 spin liquid from a tRVB state is that the trimer
model is not tripartite. We remark that this condition is not
sufficient, as demonstrated by the examples that we provide
below.

Let us first consider the tRVB state on the honeycomb
lattice [Fig. 7(a)]. This trimer model is not tripartite, so this
state on the honeycomb lattice can be a gapped state with Z3

topological order. The numerics in Fig. 8 confirm that this is
the case. In Fig. 8(b) we show that the correlation length of the
tRVB state on a finite cylinder converges to a finite value as
the circumference increases. In Fig. 8(b) we show that the en-
tanglement entropy of a half-infinite cylinder exhibits a − ln 3
correction to its area law scaling. Finally, the blue hexagons
in Fig. 8(c) demonstrate that the logarithmic gap between the
leading eigenvalues of the neutral and charged sectors closes
exponentially, pointing to the spontaneous breaking of Z3

virtual symmetry.
Let us now turn our attention to the kagome lattice. In this

case, various types of trimers can be defined. If we consider
the tripartition of the lattice shown in Fig. 7(b), we note that
some types of trimers (I and II) cover sites of different types,
while trimers of type III do not. Therefore, we deduce that
type III trimers are needed to have a Z3 spin liquid phase.
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− ln(3)
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101
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( λ

0 0/
λ
±1 0

)

(c)

Honeycomb Triangular
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N
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20
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FIG. 8. (a) Scaling of the entanglement entropy of the tRVB state
on the honeycomb lattice as a function of the number of tensors N
around the cylinder. We extract a topological correction γ � ln 3.
(b) Correlation length of the tRVB state on the honeycomb lattice.
(c) Logarithmic gap between the leading eigenvalues of the Q = 0
and Q = ±1 sectors for the tRVB state on the honeycomb (blue
hexagons) and triangular (orange triangles). On the triangular lattice,
only triangular trimers are considered. Transfer matrix eigenvalues
are labeled as λQ

n where Q is the Z3 symmetry sector and n =
0, 1 . . . is the position in the spectrum starting from the largest in
magnitude. (d) Correlation length of the tRVB on the triangular
lattice. Similar to dimer models on bipartite lattices, it grows linearly
with the number of tensors N along the circumference. The TN
description of these models can be found in Appendix A.

Similarly, from the tripartition in Fig. 7(c), we find that type
II trimers are also needed. This result is in agreement with
Ref. [5], where it was shown that a gapped tRVB state with
topological order is found only when all types of trimers are
included. This lattice provides a counterexample that shows
how our “non-tripartibility” condition is not sufficient for
gapped Z3 topological order. In fact, in Ref. [5] it was proven
that the tRVB state with trimers of type I and III possesses a
U(1) local symmetry that spoils Z3 topological order although
the trimer model cannot be tripartite. Trimer models on this
geometry also provide an example of U(1) × U(1) symmetric
tRVB state that is not gapless but has symmetry breaking: the
tRVB state with trimers of type II only is tripartite, but all
trimer coverings break the two-fold rotation of the lattice that
maps upper into lower triangles.

Finally, let us consider the triangular lattice. As can be
inferred from Fig. 7(d), the tRVB state of triangular trimers
[36] (grey triangles in the figure) is U(1) × U(1) symmet-
ric because the model is tripartite: this finding agrees with
Ref. [37], where a U(1) × U(1) conservation law (for “left-”
and “right-movers”) was found in the classical configurations.
From numerical diagonalization of the transfer matrix on
finite-size cylinders, we deduce that this tRVB state is indeed
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gapless, as demonstrated in Fig. 8(d), where we show that for
the sizes accessible with our numerics, the correlation length
scales linearly with the circumference of the cylinder. We
refer to Appendix A 3 for the explicit TN representation of
this tRVB state. Using the same definitions of trimers as for
the kagome lattice, we have that trimers of type I (straight)
on the triangular lattice are also tripartite and expected to
spoil gapped topological order, while trimers of type III do
not respect the tripartition [Fig. 7(e)]. This implies that tRVB
states on this lattice can have topological order only if these
trimers are included. We leave a complete analysis of this
family of tRVB states for future work.

IV. DILUTED TRIMER MODELS AND RYDBERG ATOMS

In the previous sections we have shown that RVB states of
trimers can be gapped and have topological character. When
these conditions are met they are good candidates for repre-
senting a stable phase with Z3 topological order. It is thus
natural to ask if simple Hamiltonians exist that have tRVB-like
phases at zero temperature. As trimer states are TN states
with finite bond dimension, they are exact ground states of
local Hamiltonians with finite range. However, it is known
that such Hamiltonians can be rather complex and include
fairly unphysical operators [30,31,38]. In particular, parent
Hamiltonians of tRVB states on certain lattices are discussed
in Refs. [3,5]. Here, instead, we introduce a simple trimer
model on the square lattice and study its ground-state phase
diagram via exact methods, providing evidence of a tRVB-like
phase with Z3 topological order. Moreover, we show that a
similar model can be implemented in Rydberg atom arrays
and that hallmarks of Z3 topological order can be observed
employing semi-adiabatic dynamical preparation schemes.

A. An effective trimer models on the square lattice

We consider the Hilbert space spanned by all diluted trimer
configurations of bent trimers on the square lattice, i.e., with
at most one trimer per vertex of the square lattice, and take the
following model Hamiltonian:

H =
Ω
2 �

| 〉〈 | + H.c. − Δ | 〉〈 | + Rπ
2
.

(14)

R π
2

denotes the terms that can be obtained by 90-degree rota-
tions from those given in Eq. (14). The first term coherently
creates and destroys bent trimers (subject to the hard trimer
constraint), whereas the second, diagonal term acts like a
chemical potential for trimers. The ratio �/� controls the
density of trimers in the ground state. For large and negative
�/� the ground state is trivial and adiabatically connected to
the vacuum. For �/� = +∞ the classical ground space is ex-
ponentially degenerate and consists of all maximally-packed
trimer coverings, corresponding to a link density 〈n〉 = 1/3.
By treating perturbatively the off-diagonal diagonal term, it is
easy to see that the first nontrivial process in this subspace oc-
curs at fourth order and produces resonances between pairs of
trimer coverings differing only on two nearby squares. There-
fore, at large �/� a valence bond solid (VBS) ground state
is expected to emerge, with a maximal density of resonating

48

36

L = 4

L = 8 L = 10

L = 6

60

FIG. 9. Periodic clusters employed for the exact diagonalization
of the Hamiltonian in Eq. (14). 36, 48, and 60 stand for the number of
edges inside the cluster. These sizes are chosen such that the number
of links is a multiple of 6, to avoid imperfect trimer coverings at large
density. The turquoise regions are the subsystems used to compute
the entanglement entropy. We measure their perimeter L in units of
an edge of the square lattice.

“plaquettes”, i.e., resonating pairs of nearby squares [39]. At
finite �/�, quantum fluctuations act in two ways: they create
defects in the trimer coverings by lowering the density and
build coherent superpositions of high density components. As
we showed in Sec. II, topological order can survive at finite
dilution, implying that a diluted tRVB state might also arise
from this setup.

To understand the character of the ground state at interme-
diate �/� we performed exact diagonalization calculations
on periodic clusters of up to 60 edges of the square lat-
tice [Fig. 9]. In Fig. 10(a) we plot the overlap between the
ground state and the pure tRVB state (solid line), and the
ground-state fidelity with the diluted tRVB state Eq. (9) for
θ = 0 optimized over z (dashed line). The optimal values of z
as a function of �/� are shown in Fig. 10(c). Remarkably
the overlap displays a maximum at �/� � 1, pointing at
the presence of an intermediate tRVB-like phase. The max-
imum fidelity is greatly improved when optimized with the
diluted tRVB state. We note that the optimal value of z near
the maximum is perfectly consistent with the topologically
ordered phase in the state phase diagram in Fig. 3. The oc-
currence of an intermediate phase is also witnessed by the
presence of two peaks in the ground-state fidelity susceptibil-
ity per link F = (1 − | 〈GS(λ)|GS(λ + dλ)〉 |)/Ndλ2, where
λ = �/� [40] for the 48- and 60-links clusters, as depicted
in the Fig. 10(b). To confirm the nature of the intermediate
phase in an unbiased way, in Fig. 10(d) we show the topo-
logical entanglement entropy extracted from γ � S2L − 2SL

as functions of �/�. Here L is the length of the contour of
the subsystem, in units of one edge of the square lattice, and
the subsystems employed for the computation are depicted
in Fig. 9. The value of γ obtained near the tRVB fidelity
maximum is remarkably close to the value ln 3, hinting at the
emergence of Z3 topological order.
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FIG. 10. (a) Overlap between the ground state of the Hamiltonian
Eq. (14) and the tRVB state (solid line), and the diluted tRVB state
Eq. (9) optimized over z (dashed line). The shaded red region set ap-
proximate boundaries for the topologically ordered phase, where the
fidelity with the tRVB state is maximized. (b) Ground-state fidelity
susceptibility per link F = (1 − | 〈GS(λ)|GS(λ + dλ)〉 |)/Ndλ2,
with λ = �/�. Two peaks appear for the larger clusters, pointing
at the presence of an intermediate phase for 0.95 � �/� � 1.15.
(c) Optimal value of z that maximizes the overlap between the ground
state and the diluted tRVB state Eq. (9). |z| � 0.4 in the intermediate
phase, a value that lies deep in the topological phase in the state phase
diagram plotted in Fig. 3. (d) Ground-state topological entanglement
entropy computed by subtracting the entropies of the square-shaped
regions in Fig. 9 with L = 4 and L = 8. (e) Scaling of the entangle-
ment entropy of the ground state for L = 4, 6, 8, 10 and �/� = 1.

B. The trimer constraint with Rydberg atoms

We now turn to a discussion of potential realizations of
trimer models and tRVB states with experiments based on
Rydberg atom arrays. In these systems, neutral atoms are
individually trapped and arranged in a desired lattice config-
uration using optical tweezers [41,42]. Spin models can then
be realized by manipulating the internal degrees of freedom
of each atom with an external laser field [43–48]. Specifically,
we consider a situation where a laser induces a coherent
coupling from the atomic ground state |g〉 to a highly excited
Rydberg state |r〉. The frequency mismatch between the laser
frequency and the transition frequency between those two
states, i.e., the laser detuning, is denoted by �. The coupling
strength for this transition, i.e., the Rabi frequency, is denoted
by �, and is proportional to the laser amplitude. Importantly,
two atoms that are both in the Rydberg state interact via a
van der Waals process, whose strength decays with the sixth
power of the atomic separation. As a result, the Hamiltonian
governing the dynamics of this system is given by [49]

HRyd = �

2

∑
i

σ x
i − �

∑
i

ni + C
∑
i> j

nin j

|�xi − �x j |6 , (15)

(b)

(a)

= |r= |g

h

R2
b − h2

Rb

FIG. 11. (a) Mapping between Rydberg atoms and bent trimers
on the square lattice. Atoms are placed at each corner of the square
lattice such that an excited atom is mapped to a bent trimer on
that corner. (b) Atoms are split into two groups (green and red)
depending on the sublattice of the square lattice bipartition to which
the corresponding corner belongs. The groups are arranged onto two
planes at distance h such that the 2D blockade radius between atoms
of different colors is

√
R2

b − h2, where Rb is the 3D blockade radius.
Tuning h and the distance of the atoms from the vertexes allows
realizing a constraint equivalent to the trimer constraint where the
“wedged” trimer configurations on the bottom left are blockaded
(and its 90-degree rotations).

where �xi is the position of atom i, and we defined σ x
i =

|g〉i〈r| + |r〉i〈g| and ni = |r〉i〈r|. The parameter C depends on
the Rydberg state. The interplay between the laser parameters
and the geometry of the atom arrangement gives rise to a
variety of phenomena [50–55]. Most of them are based on the
Rydberg blockade effect, that prohibits the simultaneous exci-
tation of two atoms located at a distance r < Rb = (V/�)1/6.
Below we show that this effect can be used to implement
trimer constraints in Rydberg atom arrays. For example, it
is easy to prove that the hard trimer constraint for triangular
trimers on the triangular lattice in Fig. 7(d) is equivalent to
a Rydberg blockade constraint on a honeycomb lattice: the
atoms sit on the centers of the original triangular lattice and
a Rydberg excitation represents a triangular plaquette; the
blockade radius Rb is chosen such that two atoms cannot
be simultaneously excited if and only if they belong to the
same hexagon. We now show that the Rydberg blockade effect
also allows one to realize a bent trimer model on the square
lattice very similar to the one outlined above. A sketch of
the implementation is depicted in Fig. 11. Rydberg atoms are
placed on the corners of a square lattice such that an excited
atom is mapped to a bent trimer. The basic idea is to exploit the
blockade radius to mimic the hard trimer constraint. However,
while the latter is anisotropic, the blockade effect is not, as
long as the Rydberg state is rotational invariant. Nevertheless,
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FIG. 12. (a) The protocol employed for the semi-adiabatic
dynamical preparation. The vacuum |0〉 is evolved with a time-
dependent Hamiltonian with �(t ) and �(t ) as depicted in the figure.
First, � is switched on from 0 to 1 at constant � = �0 with a
smoothed linear ramp. � is then increased linearly from �0 = −1.5
to �1 = +3 of constant �. The total sweep duration is T . (b) Topo-
logical entanglement entropy of the dynamically prepared state, for
different preparation times. The black line corresponds to the ground
state of the Hamiltonian Eq. (14) (T = ∞). Solid and dashed lines
are obtained in the effective Rydberg model where the “wedged”
trimer configuration of Fig. 11(b) are not included in the Hilbert
space and the unrestricted diluted trimer model, respectively. Results
are obtained on the periodic cluster 48 of Fig. 9. (c) E = − ln λ,
where λ are the eigenvalues of the cylinder transfer matrix of the
tensor network representation of the restricted tRVB state of bent
trimers on the square lattice. N is the number of tensors along
the circumference, Q is the Z3 virtual charge (Q = ±1 sectors are
exactly degenerate), n is the eigenvalue index in the sector with
charge Q. (d) Exponential scaling of the gap between the smallest Es
in the neutral and charged sectors, signaling spontaneous symmetry
breaking of the Z3 virtual symmetry of the tensor.

we can avoid the use of anisotropic Rydberg states by dividing
the atoms into two groups, according to the sublattice of the
square to which they are closer. The two groups are then
arranged onto two planes at a distance h. Consequently, atoms
between different planes will be blockaded if their planar
distance is less than

√
R2

b − h2, where Rb is the blockade
radius. By properly choosing h and the atoms positions inside
the plaquettes of the square lattice, it is possible to realize a
trimer constraint, as demonstrated by Fig. 11(b). This trimer
constraint is such that some trimer configurations are locally
prohibited. The latter are trimer coverings that include two
trimers with the same orientation that are “wedged” diago-
nally as in Fig. 11(b).

Before addressing the Rydberg model, we study the ef-
fect of removing these coverings from the fully-packed tRVB
state. In Figs. 12(c) and 12(d) we plot the lowest logarithmic
gaps in the spectrum of the cylinder transfer matrix of the
corresponding TN state as functions of the cylinder circum-

ference L. The TN representation is outlined in Appendix A 1.
Despite a level crossing occurring at finite L, the gap between
the neutral and charged sectors eventually closes exponen-
tially (green circles), whereas the neutral gap (blue circles)
appears to be increasing for the available Ls. From infinite-
size calculations we can infer that this gap converges to � 0.6,
yielding a correlation length ξ � 1.7. We note that this value
is larger than the correlation length of the unrestricted trimer
state ξ � 1.1 [cf. Fig. 2(a)]. This fact is expected, as removing
these configurations pushes away the tRVB state from the
Z3 toric code fixed point, for which ξ = 0. These results
demonstrate that Z3 topological order is preserved. Although
we did not study TN perturbations that lower the density of
trimers, we expect a diluted version of this tRVB state to host
a topologically ordered phase.

We now focus on the Rydberg model arising from the
implementation explained above. For simplicity, we neglect
interactions beyond the blockade, so that the effective Hamil-
tonian is the same as Eq. (14), with the caveat that all the states
containing wedged trimers as in Fig. 11(b) are not included
in the Hilbert space of diluted trimer coverings. The exact
diagonalization of this restricted trimer model displays no
evidence of an intermediate topological phase in the ground
state, rather a single phase transition between a disordered
phase and a plaquette phase can be identified. Therefore, we
conclude that if such a phase exists it is extremely narrow.
In fact, the topological entanglement entropy extracted from
the finite size cluster 48 in Fig. 9 exhibits a peak approaching
γ = ln 3 that is much sharper than in the unrestricted model,
as we show in Fig. 12(b). The black lines are the ground-state
curves for γ in the restricted (solid line) and unrestricted
(dashed line) trimer models. However, below we provide nu-
merical evidence that this witness of Z3 topological order is
stabilized by a dynamical preparation protocol regularly used
in experiments [52].

The initial state is the vacuum, subsequently evolved with
the time-dependent Hamiltonian H (t ) = H (�(t ),�(t )). To
prepare the ground state of H (t ) the variation of the time-
dependent couplings has to be perfectly adiabatic. In real
experiments, this is very hard in practice, due to limited
coherence time. Thus it is often preferable to consider nona-
diabatic state preparation schemes. In fact, as demonstrated in
Refs. [26,52], nonadiabatic effects can even enhance topologi-
cal order in the prepared state with respect to the ground state.
In the following, we show that a similar result is observed
here. Specifically, we study the dynamical preparation process
depicted in Fig. 12(a) and described below. The latter is the
simplest possible preparation protocol to drive the system
from the vacuum to a state with a high density of Rydberg
excitations. The vacuum state |0〉 is evolved with the time-
dependent Hamiltonian H (�(t ),�(t )), where �(0) = −2.5,
�(t ) = 0, such that |0〉 is the ground state at t = 0. A first
(smoothed) linear ramp turns on the effective Rabi frequency
until the final value � = 1 is reached. The latter sets our
units of energy and time. A second ramp is used to drive
the detuning from �(0) = −1.5 to �(T ) = 3, where T is the
total sweep time, and the final value of � is chosen to be well
beyond the peaks in tRVB overlap and topological entangle-
ment entropy of the ground state. The slopes of the two ramps
decrease with increasing T and are fixed by requiring that the
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switching on of � (�) takes T/3 (2T/3). In both the restricted
and unrestricted models a phase transition is crossed during
the second ramp.

In Fig. 12 we plot the topological entanglement entropy
of the state during the preparation sweep, for different total
sweep times T , for the 48 cluster in Fig. 9, that corresponds
to 96 atoms in the mapping of Fig. 11(a). The result indicates
that topological properties are stabilized in the prepared state
when the preparation is not adiabatic, i.e., for short and inter-
mediate T . Remarkably, the peaks in the topological entropy
correction disappear in this regime, and the latter points to
a topological state when �/� � 1. For the largest T s the
ground-state curve is recovered (T = ∞). We note that this
phenomenon occurs in both the restricted and unrestricted
models [cf. dash and solid lines in Fig. 12(b)].

We remark that it might be possible to engineer other
implementations of the Hamiltonian in Eq. (14) that do not
require a restriction of the diluted trimer Hilbert space.

V. CONCLUSIONS

We showed that maximally-packed trimer states can be
simple representatives of quantum spin liquids with Z3 topo-
logical order. By mapping trimer configurations into the
Hilbert space of a lattice gauge theory, we identified a con-
dition on the lattice geometry and trimer model that leads to
the emergence of a U(1) × U(1) symmetry and a tRVB state
with infinite correlation length. We verified this condition by
performing numerical checks on several trimer models with
TN methods. We demonstrated that when tRVB states are
gapped, Z3 topological order is stable against fluctuations
in the number of trimers. We did so by studying a TN per-
turbation that represents a diluted tRVB state on the square
lattice and showing that it hosts a wide topologically ordered
phase in the state phase diagram. Finally, we considered a
simple model Hamiltonian on the square lattice that exhibits
signatures of a tRVB-like phase, where the ground state is
well approximated by the Z3 topologically ordered diluted
TN perturbation previously studied. We provided an imple-
mentation of a very similar model by exploiting the blockade
effect in Rydberg atom arrays, and show that hallmarks of
a Z3 quantum spin liquid can be observed in nonadiabatic
dynamical preparation schemes.

Our findings open future directions for the quantum
simulation of topological phases of matter. The necessary
condition for having Z3 topological order that we formu-
lated depends solely on the geometry of the model and
can therefore guide the search for quantum spin liquids in
various experimental implementations, including—but not
limited to—Rydberg atom arrays. In this respect, it would
be interesting to study more extensively the realization of
tRVB states both as ground states of realistic Hamiltonians
and as dynamically-prepared nonequilibrium states. In addi-
tion, our approach can be naturally extended from trimer-
to polymer-RVB states, which can support the emergence
of Zn topological order. A systematic study of such states
can similarly be performed efficiently with tensor network
methods and is left for future work. Finally, an interesting
direction is the related problem of quantum spin liquid phases
in SU(3) and SU(N) symmetric models. In certain models,

trimers (polymers) can be interpreted as simplified versions
of SU(3) [SU(N)] spin singlets; it remains an open question
to what extent this interpretation can be used to infer the
properties of RVB states of singlets.
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APPENDIX A: DETAILS ON THE TENSOR-NETWORK
REPRESENTATIONS

1. tRVB model on the square lattice

a. Symmetries

The tensor defined in Eq. (4) enjoys a reflection symmetry
along the diagonal, which can be exploited in the CTMRG
algorithm. The corresponding transfer operator is not self-
adjoint, which requires one to compute both fixed points for
the VUMPS algorithm. However, the fixed point in one direc-
tion can be readily converted into the the fixed point into the
other direction, since

(A1)

where P is the operator that permutes the ±1 indices.
At θ = π/2, a representation of the U(1) × U(1) symme-

try at the level of a single tensor can be obtained as follows.
The symmetry transformation on a site of type “A” (and simi-
larly for “B” and “C”, with a cyclic permutation of the indices)
acts as

.

(A2)

where UBA = exp (iφ1G(1)
BA + iφ2G(2)

BA ) (and analogous defini-
tions for the links AC, CB). The generators of the two
symmetries in the basis {0,+1,−1} of the virtual indices are

G(1)
BA = −G(2)

AC =
⎛
⎝

0 0 0
0 1 0
0 0 1

⎞
⎠, (A3a)
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G(1)
CB = −G(2)

BA =
⎛
⎝

0 0 0
0 −1 0
0 0 0

⎞
⎠, (A3b)

G(1)
AC = −G(2)

CB =
⎛
⎝

0 0 0
0 0 0
0 0 −1

⎞
⎠. (A3c)

The phases acquired by the tensor read

cA(φ1, φ2) = eiφ1+iφ2 , (A4a)

cB(φ1, φ2) = e−iφ1 , (A4b)

cC (φ1, φ2) = e−iφ2 . (A4c)

To obtain a translationally-invariant and neutral tensor
representation, one must block a 3 × 3 patch of elementary
tensors.

b. Diluted tRVB PEPS

The PEPS representation for the diluted tRVB in Eq. (9)
is constructed by introducing two species of trimers; one that
appear on the physical layer and ones that do not. Graphically,
we have the following construction:

(A5)

We label the indices of the tensor T̃ with
{0,+1,−1,+1̃,−1̃}. We now have two pairs of uncoupled
charges, each of which have the similar diagrams as Eq. (4).
In order to preserve the correspondence with the partition
function in Eq. (3), we must also take the square root of each
weight. The black dot on each link represents a projector,
which signals the presence of one type of trimer on the
physical layer, and gives a fugacity contribution z to the
second type

0 0

0

= = 1,
±1 ±1

1

= z
±1̃ ±1̃

0

.
(A6)

The corresponding PEPS tensor, formed by contracting one
T̃ and two projectors, has bond dimension D = 5. It should
be noted that the double-layer tensor—coming from the con-
traction of the norm 〈�|�〉—can be reduced to dimension
9 (instead of the naïvely expected 52). We observe this by
performing Gaussian elimination on the tensor, which is exact
up to numerical precision.

c. Restricted tRVB model

The mapping to Rydberg atoms in Sec. IV A suggests the
ansatz state in which we restrict the trimer configurations to
not have any “wedged” configurations, as shown in Fig. 11.
We start from the arrow representation in Fig. 4(d), but we

FIG. 13. Allowed diagrams at each vertex for the restricted tRVB
model, up to rotations of π/2.

introduce new color labels

. (A7)

Referring to Fig. 13, we start by labeling the two outgoing
arrows of a bent trimer with different colors (blue and orange).
To enforce the additional constraint, we introduce a dashed
arrow, which continues anticlockwise from the blue arrow.
Notice that the arrow does not convey any charge information,
as all dashed lines correspond to a Z3-charge 0. A vertex with
the middle of the trimer cannot couple to it directly since it
requires two gray lines. The other diagrams then account for
the possible ways of closing the dashed lines. Accounting for
rotations, in total there are 28 distinct diagrams.

The construction of the tensor network from Fig. 13 is
straightforward, and is similar to Eq. (4). We must however
remember that the mapping from the arrow representation to
the index of the tensor is different if a leg of the tensor is
ingoing or outgoing. Each leg of the double-layer tensor is
then eight-dimensional.

2. tRVB model on the honeycomb lattice

On the honeycomb lattice there is only one type of trimer.
On each vertex of the lattice we can place the tensor

(A8)

to obtain the corresponding partition function. To convert the
problem into a TN on the square lattice, we define the tensor

=T .

(A9)

Similarly to the case of square lattice in Eq. (5), this tensor
obeys a similar transformation, (σ † ⊗ σ † ⊗ σ ⊗ σ )T = ω2T .

3. tRVB model on the triangular lattice

On the triangular lattice an efficient TN representation can
be found in the dual-lattice picture, where a site is defined on
each triangular face, similarly to the way in which one would
propose a Rydberg implementation. In this picture, only one
site around each original vertex of the triangular lattice can be
occupied. Correspondingly, in the TN picture we define a δ
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tensor on each face, representing the site

=
0 0

0

1 1

1

= 1 ,
(A10)

which is connected to three rank-6 constraint tensors

(A11)

We can then bring the problem back to a TN contraction on
the square lattice by first defining a decomposition of the
constraint tensor

= ,

(A12)

and performing the contraction

= .

(A13)

APPENDIX B: PROOF OF U(1) × U(1) GAUGE SYMMETRY

In Sec. III B we showed that two U(1) flux conservation
laws could be defined for a model with straight trimers on
the square lattice. To prove that a U(1) × U(1) gauge theory
emerges in the model we have to further prove that the two
conservation laws are independent. We here prove it by show-
ing that the number of sectors for a semi-infinite cylinder of
circumference L is at least O(L2).

Let us consider the trimer configuration in Fig. 14(a). To
obtain a cylinder, we impose periodic boundary condition in
the horizontal direction and call L the circumference (where
L is an integer multiple of 3), while the vertical direction
extends indefinitely. We perform a horizontal cut [dashed
black line in Fig. 14(a)] and we compute the two electric
fluxes along the cut. We assign a positive sign to the electric
fields pointing upwards along the cut. The configuration in
Fig. 14(a) has fluxes �1 = +L/3 and �2 = −L/3. From this
configuration, we can systematically construct configurations
belonging to other sectors by shifting some columns in the
vertical direction [Fig. 14(b)]: a column can be shifted up
(highlighted in blue) or down (in red) of one site; these are the

-1
+1

(a)

(b)

FIG. 14. (a) A columnar configuration of straight trimers and the
corresponding electric field configurations. The dashed-black line is
the cut that defines the semi-infinite cylinder. �1 and �2 are the
fluxes of the two electric field across the cut. (b) Each column can
shifted up (in blue) or down (in red) of one lattice site to obtain a
new configuration of trimers. Shifting a single column changes only
one of the two fluxes.

only two relevant cases, because of the Z3 symmetry (i.e., the
columns are invariant under a 3-site translation). Comparing
Fig. 14(a) and Fig. 14(b) we see that (i) shifting one column
up gives �1 → �1, �2 → �2 + 1, (ii) shifting one column
down results in �1 → �1 − 1, �2 → �2. It can be easily
verified that this result is valid for every column. Therefore,
by shifting n↑ columns up and n↓ columns down, we obtain
a configuration that belongs to the sector with electric fluxes
�1 = L/3 − n↓,�2 = −L/3 + n↑. Because we can choose
any pair of integers n↓, n↑ � 0 with n↓ + n↑ � L, the number
of different sectors that we obtain is (L + 1)(L + 2)/2. This
proves that the number of sectors scales proportionally to L2,
meaning that the two emergent U(1) gauge symmetries are
independent. A similar argument can be used to prove the
emergence of a U(1) × U(1) symmetry for other tripartite
trimer models.
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