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Computational Estimation by Scientific Data Mining
with Classical Methods to Automate Learning
Strategies of Scientists
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Experimental results are often plotted as 2-dimensional graphical plots (aka graphs) in scientific domains

depicting dependent versus independent variables to aid visual analysis of processes. Repeatedly perform-

ing laboratory experiments consumes significant time and resources, motivating the need for computational

estimation. The goals are to estimate the graph obtained in an experiment given its input conditions, and

to estimate the conditions that would lead to a desired graph. Existing estimation approaches often do not

meet accuracy and efficiency needs of targeted applications. We develop a computational estimation ap-

proach called AutoDomainMine that integrates clustering and classification over complex scientific data in

a framework so as to automate classical learning methods of scientists. Knowledge discovered thereby from

a database of existing experiments serves as the basis for estimation. Challenges include preserving domain

semantics in clustering, finding matching strategies in classification, striking a good balance between elabo-

ration and conciseness while displaying estimation results based on needs of targeted users, and deriving ob-

jective measures to capture subjective user interests. These and other challenges are addressed in this work.

The AutoDomainMine approach is used to build a computational estimation system, rigorously evaluated

with real data in Materials Science. Our evaluation confirms that AutoDomainMine provides desired accu-

racy and efficiency in computational estimation. It is extendable to other science and engineering domains

as proved by adaptation of its sub-processes within fields such as Bioinformatics and Nanotechnology.

CCS Concepts: • Information systems → Data management systems; • Computing methodologies

→ Knowledge representation and reasoning; Supervised learning by classification; Cluster analy-

sis; Feature selection; • Applied computing → Computers in other domains; Physical sciences and

engineering;
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tion, graphical data mining, machine learning, predictive analytics, scientific applications
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1 INTRODUCTION

Background and Motivation: Experimental results of processes in scientific domains such
as Materials Science, Physics, Chemistry, Biology, and Geoscience can be depicted as graphical
plots [2, 13, 33, 55, 68]. These, also known as graphs, are 2-dimensional plots of dependent versus
independent variables often modeling the behavior of processes. They serve as good visual tools for
analysis. However, performing laboratory experiments to plot such graphs consumes significant
time and resources.

We present a motivating example from the domain of Heat Treating of Materials that inspired
this research. Heat Treating is a field in Materials Science that involves the controlled heating and
rapid cooling of a material in a liquid or gas medium to achieve desired mechanical and thermal
properties [37, 55, 57]. Consider the laboratory experiment shown in Figure 1. This depicts ex-
perimental data, i.e., input conditions and the resulting graph during a process called quenching,
namely, the rapid cooling step in heat treatment. The input conditions in this experiment such
the Quenchant Name (cooling medium) and Part Material are the parameters of the experimental
setup used in quenching. The result of the experiment is plotted as a graph called a heat transfer
curve, namely, the heat transfer coefficient h on the y-axis versus temperature T on the x-axis. The
heat transfer coefficient, a parameter measured in Watt/m2K, characterizes the experiment by rep-
resenting how the material reacts to rapid cooling. Scientists are interested in analyzing this graph
to assist decision-making for various activities such as designing the setup in the corresponding
real processes. For instance, in the material ST4140, a type of steel, heat transfer coefficient curves
with steep slopes imply fast heat extraction capacity. The corresponding input conditions could
be used to treat this steel in an industrial application that requires such a capacity. Performing
such an experiment in the laboratory takes approximately 5 hours and the involved resources in-
cur a capital investment of thousands of dollars with recurring costs worth hundreds of dollars.
This is clearly a huge expense especially since experiments are performed frequently to conduct
studies.

Problem Definition: It is desirable to estimate the graph in an experiment given its input
conditions. Conversely, given a desired graph, it is useful to estimate the conditions to achieve it.
This inspires the development of a computational estimation approach with the following goals.

(1) Given some or all of the input conditions of an experiment, display the most likely result-
ing graph.

(2) Given the desired graph in an experiment or ranges describing its features, determine the
most appropriate input conditions to achieve it.

The estimation is to be performed under the assumption that the input conditions and graphs of
prior experiments are stored in a database. Approaches such as mathematical modeling of process
parameters and similarity search over existing data are not found satisfactory, due to insufficient
formulae available and not enough use of domain knowledge [19, 39, 43]. Neural models based
on the original artificial neural networks (ANN) [39, 52] and deep learning advances such as
convolutional neural networks (CNN) [17, 29] are not recommended here since it important
to decipher the actual learning strategies of scientists, e.g., the flow from input conditions to the
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Fig. 1. Example of scientific experimental data (input conditions and graphical plots).

experimental results. Since a neural network is basically a black box, such reasoning is not facil-
itated via its deployment due to lack of clear interpretability. Hence, other methods are needed.
All this background is evident from a study of the literature and discussion with domain experts.
There is a need to perform the estimation with: accuracy acceptable for targeted applications;
distinctly less time than a laboratory experiment; minimal manual intervention; and clear deci-
pherable, comprehensible results for explicability.

Solution Approach: We develop an approach called AutoDomainMine as a solution to the
given computational estimation problem. AutoDomainMine is based on a graphical data mining
framework that constitutes mining stored graphs from existing experiments to discover knowledge
for estimation. This framework integrates the classical data mining methods of clustering and clas-
sification into a unique framework to perform knowledge discovery over existing graphical data
as follows. The data from existing experiments has been stored in a database in the form of input
conditions and the corresponding graph obtained. As a first step in AutoDomainMine, existing
experiments are clustered based on their graphs. Decision tree classification is then used to learn
the clustering criteria and the learned criteria are applied to build representative pairs of input
conditions and graph per cluster. These representatives along with the clustering criteria learned
through decision trees serve as the domain knowledge discovered from existing experiments. This
discovered knowledge then forms the basis for estimation as follows. Given a new set of input con-
ditions, the closest matching decision tree path is found to estimate the cluster of the experiment.
The representative graph of that cluster serves as the estimated graph for the new experiment.
Given a desired graph, the closest matching representative graph is found by comparison with
graphs. The corresponding representative conditions are offered as the estimated input conditions
that would obtain the desired graph. This approach is based on automating typical learning meth-
ods of scientists from the targeted domains. A significant challenge in AutoDomainMine is learning
a domain-specific notion of distance that adequately captures semantics for clustering graphs. This
is addressed through our proposed technique called LearnMet that will be elaborated in Section 3.
Another major challenge is designing semantics-preserving representative pairs of input condi-
tions and graphs as the output of classification, to be used during estimation. This is addressed by
our proposed methodology called DesRept that is outlined in detail in Section 4. Likewise, other
issues encountered along with their proposed solutions are described in the respective sections.

Evaluation: The AutoDomainMine approach has been used to develop a software system that
serves as a computational estimation tool. This is evaluated rigorously with real data in the Heat
Treating domain that motivated this work. Targeted applications such as parameter selection and
expert systems are used for evaluation. The estimation provided by AutoDomainMine is compared
with the real laboratory experiments not used for training the technique. If the real output com-
pletely matches the estimation, then the estimation is considered to be accurate. Also, it is required
that the estimation should take distinctly less time than a laboratory experiment. This evaluation
is conducted by targeted users through surveys and via the holdout strategy. AutoDomainMine
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provides extremely high accuracy and efficiency ensuring user satisfaction. It does not require
domain expert intervention during estimation and has comprehensible, explainable results.

Contributions: The contributions of this research fall in 3 broad categories: (1) AutoDomain-
Mine framework of integrating clustering and classification; (2) LearnMet technique to learn
domain-specific distance metrics for graphs; (3) DesRept methodology to design semantics-
preserving representatives. The AutoDomainMine approach is published as a short poster paper
in AAAI [63] and a demo paper in SIGMOD [67]. However, these papers present a panoramic
view of the proposed technique and its system demonstration respectively.

In this journal article, we delve deeper into the AutoDomainMine approach, describing all
its steps in the knowledge discovery and estimation processes. We explain how this approach
automates classical learning methods of scientists by integrating clustering and classification for
knowledge discovery. Furthermore, we focus on the details of the clustering and classification
steps, along with their respective sub-tasks. We address issues such as clustering over curves
instead of points, and finding approximate matches in decision tree classification for the purpose
of estimation. The LearnMet and DesRept techniques, as contributions of this overall effort,
have received attention as in the data mining community via papers [64–66]. However, these
papers focus on the individual proposal of the respective techniques in distance metric learning
and semantics-preserving representative design. In this article, as we describe the details of
LearnMet and DesRept, we also explain how these two techniques fit into the big picture of
AutoDomainMine, thus emphasizing their use in the overall problem of computational estimation.
We explain in detail how exactly AutoDomainMine uses the knowledge discovered through the
integrated framework of clustering and classification, after incorporating the outcomes of
LearnMet and DesRept, for the purpose of conducting the estimation. We present the stepwise
approach involved in estimating a graph that would result from an experiment given its input
conditions, and estimating the conditions that would produce a desired graph.

It is to be noted that this work is scalable to various domains as evident from the adaptation
of its sub-processes in fields such as Bioinformatics, Nanotechnology, and others [10, 62] with
interesting and useful results from the accuracy, efficiency, and interpretability standpoints.

Overall, the contributions of this work can be emphasized in terms of its specific advantages as
well as the differences between existing methods as follows.

• This work automates a typical learning strategy of scientists via an integrated framework
of data mining techniques and is among the first ones to achieve that, to the best of our
knowledge.

• The computational estimation in our proposed approach AutoDomainMine obtains the de-
sired levels of accuracy acceptable for targeted applications.

• The estimation is performed in distinctly less time than a laboratory experiment, thereby
saving significant time and resources.

• There is minimal manual intervention required in the implementation of AutoDomainMine
and its sub-processes of LearnMet and DesRept.

• The approaches in this work can proceed without requiring the usage of prior mathematical
models with explicit formulas for conducting simulations.

• Domain knowledge is incorporated within the processes in order to make them more mean-
ingful with respect to the computational estimation.

• The results are clearly decipherable and easily comprehensible, therefore catering to the
needs of interpretability as well as explicability for the users.

Hence, this work has advantages over lengthy simulations that can be very time-consuming;
it is better than similarity search which does not provide sufficient accuracy; it has an edge over
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mathematical modeling for which the required formulas are not available; and it is more beneficial
than neural networks since the latter constitute a black box with lack of interpretability. These
advantages are highlighted further in the evaluation. Furthermore, this work harnesses domain
knowledge, yet requiring minimal manual intervention and also automates a typical learning
strategy of scientists, providing added advantages from pedagogical as well as application
standpoints, e.g., with respect to usefulness in developing intelligent tutors and expert systems.

Layout of the Article: Section 2 of this article describes the overall approach, AutoDomain-
Mine, namely its knowledge discovery process that integrates clustering and classification, and
its estimation process that uses the discovered knowledge to perform the required estimation.
Sections 3 and 4 give details of clustering and classification along with LearnMet and DesRept,
respectively. Section 5 describes the steps of the process of estimation in AutoDomainMine using
the discovered knowledge. Section 6 presents the performance evaluation. Section 7 overviews
related work while Section 8 gives the conclusions.

2 COMPUTATIONAL ESTIMATION APPROACH: AUTODOMAINMINE

The approach developed for computational estimation, called AutoDomainMine, constitutes a
unique framework of employing both clustering and classification in a collaborative fashion over
graphical data in order to learn from the results of existing experiments. This is analogous to the
manner in which scientists often reason.

2.1 Learning Methods of Scientists

From a detailed study of the relevant literature [37, 55, 57], and discussions with domain experts,
it has been noticed that researchers in scientific domains such as Materials Science often use the
following learning methods to discover certain facts from experiments to propound hypotheses
empirically. They group experiments based on similarity of results and then reason about causes
of similarity between groups based on input conditions of experiments. For example, a hypothesis
propounded empirically was that a thin oxide layer on the surface of a part causes fast cooling while
a thick oxide layer causes slow cooling. This hypothesis was learned by conducting experiments
with thin and thick oxide layers as input conditions, respectively, all other criteria being the same.
The results showed that for all experiments with thin oxide layer the cooling was fast while for
those with thick oxide layer it was slow. Experts then reasoned further on the basis of existing
domain knowledge that the thin oxide probably caused the vapor blanket around a part to break,
thus resulting in fast cooling; while thick oxide acted as an insulator, resulting in slower cooling.
In short, this scientific understanding was gained by grouping experiments based on similarity of
their results and reasoning based on their input conditions in order to put forth the concerned
hypothesis empirically [37].

In this work, we postulate that such empirical learning by grouping and reasoning is analogous
to the data mining techniques of clustering and classification, respectively. This is because cluster-
ing involves grouping objects based on their similarity while classification serves to identify the
target class of an object, which is often done by reasoning about its attributes using a symbolic
method such as a decision tree. We thus set out to automate these learning methods of scientists
by integrating clustering and decision tree classification into a learning strategy for knowledge
discovery in AutoDomainMine.

Accordingly, the AutoDomainMine approach involves a one-time process of knowledge dis-
covery from existing data by integrating clustering and decision tree classification, and a re-
current process of using the discovered knowledge for performing each estimation. The overall
AutoDomainMine approach is illustrated in Figure 2, and is explained further next.
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Fig. 2. AutoDomainMine approach in a nutshell—Simulating the learning strategies of scientists.

Fig. 3. Knowledge discovery process in AutoDomainMine.

2.2 Knowledge Discovery in AutoDomainMine

The process of knowledge discovery is a one-time operation that is performed over data from
existing experiments stored in a database. This process is depicted in Figure 3.

Clustering is first performed over the graphical results of the existing experiments. Since clus-
tering techniques originally developed for points [19], a mapping is proposed that converts a 2-
dimensional graph into an n-dimensional point. A suitable notion of distance for clustering is

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.



Computational Estimation by Scientific Data Mining with Classical Methods 86:7

Fig. 4. Estimation process in AutoDomainMine.

learned by incorporating domain knowledge as using our proposed approach called LearnMet
(elaborated in Section 3). Once the clusters of experiments are identified by grouping their graphs,
the clustering criteria, i.e., input conditions that characterize each cluster are learned by decision
tree classification. This helps understand the relative importance of the conditions in clustering.
The paths of each decision tree are then traced to build a representative pair of input conditions
and graph per cluster. These cluster representatives are designed so as to capture semantics using
our proposed approach DesRept (see Section 4). The decision trees and representative pairs form
the discovered knowledge which is then used for estimation as follows.

2.3 Estimation in AutoDomainMine

The process of estimation is a recurrent operation that is performed using the discovered knowl-
edge, each time the user submits input conditions to estimate the graph (or vice versa). The es-
timation process illustrated in Figure 4 with its 2 parts, namely, estimating the graph given the
conditions, and estimating the conditions given the graph. These are explained as follows.
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Fig. 5. Points to define distances on a type of graph in Heat Treating of Materials.

In order to estimate a graph, given a new set of input conditions, the decision tree is searched to
find the closest matching cluster. The representative graph of that cluster is displayed as the esti-
mated graph for the given set of conditions. To estimate input conditions, given a desired graph in
an experiment, the representative graphs are searched to find the closest match using the learned
notion of distance for the graphs from LearnMet (Section 3). The representative conditions de-
signed using DesRept (Section 4) corresponding to the match are offered as the estimated input
conditions that would likely produce the desired graph. Note that this estimation incorporates the
relative importance of the conditions as identified from the decision tree.

3 DETAILS OF CLUSTERING IN AUTODOMAINMINE

The first step of the knowledge discovery process in AutoDomainMine is to cluster graphs obtained
from existing experiments. Clustering is a technique that groups objects into classes such that
objects within a class have high similarity but are different from items in other classes [19]. In
AutoDomainMine, we can use any clustering algorithm, for instance the classical k-means [19].
Various issues involved in clustering are addressed next.

3.1 Mapping Graphs (Curves) to Points

Clustering techniques were originally developed for points [19]. In order to apply them to graphs
that are curves, we propose a mapping from a 2-dimensional curve to a multi-dimensional point.
Consider a 2-dimensional curve consisting of n points each having an x-coordinate and a y-
coordinate. The n x-coordinates on the curve are mapped to n dimensions. The n y-coordinates on
the curve are mapped to values along these n dimensions, respectively. The mapping is conducted
such that the order is preserved thereby maintaining the sequential features on the 2-dimensional
graph while converting it to a multi-dimensional point. For example, consider the graph shown
in Figure 5 that represents a heat transfer coefficient curve. The n-dimensions corresponding to
the temperature values (on the x-axis) would be mapped sequentially (due to which the SC feature
would appear before the BP feature) and hence the corresponding heat transfer coefficient values
(on the original y-axis) along those respective dimensions would also be preserved in order. Math-
ematically, this can be represented as (x ,y) �→ (dimension,value ) where �→ denotes “maps to”. For
example, a point (200, 400) on the original curve can be mapped to value (y = 400) on the (x200)th

dimension. Likewise, each point on the curve would be mapped to a dimension and a value along
that dimension. Likewise, after mapping each (x ,y) point on the original 2-dimensional curve to
a (dimension,value ) pair we effectively get an n-dimensional point. However, in theory, there are
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infinite points on any curve, thus posing the curse of dimensionality, the solution for which is
addressed next.

3.2 Dimensionality Reduction

Since a curve has infinitely many points it is not feasible to convert each x-coordinate into a sepa-
rate dimension. Hence, dimensionality reduction technology is needed to make our proposed map-
ping applicable. There are various methods of dimensionality reduction among which we found
selective sampling and Fourier Transforms relevant to our problem, though other methods could
also be chosen. We briefly describe these.

3.2.1 Selective Sampling. The method of Sampling involves considering a part, i.e., a sample,
of the whole object (in this case, points on a graph) and using that for the purpose of analysis
(in this case, clustering). In random sampling, points would be picked, or sampled, at arbitrary
intervals. In selective sampling [19], points are chosen based on certain criteria. In our problem,
we sample the points at regular intervals, and in addition sample critical points that correspond
to significant features of the graph, thus making the sampling selective. Knowledge of the domain
gathered from literature surveys and discussions with domain experts helps in determining the
significant features on the graphs [37, 55, 57].

3.2.2 Fourier Transforms. A Fourier Transform decomposes a given waveform into sinusoids
of different frequencies such that they sum back to the original waveform, e.g., as used in [1]. By
retaining some of these sinusoids and discarding the rest, we can thus reduce the dimensionality
of the original curve. In our AutoDomainMine approach, Fourier Transforms are used as follows.
We first apply the equation below as found in suitable contexts in the literature [1] in order to map
the n dimensions of the curve (n-dimensional point) into n Fourier Coefficients.

F (s ) =
1
√
N

N−1∑
t=0

e−j2π f (t )/n . (1)

In this equation F (s ) refers to the frequency domain while f (t ) refers to the time domain. Each
Fourier Coefficient corresponds to a different frequency. We then retain the Fourier Coefficients
that are considered useful with respect to the domain. For example, in Heat Treating, the first 16
coefficients are considered to be useful as per domain knowledge. This is because the graphs (heat
transfer curves) [57] are such that these coefficients representing lower frequency values contain
useful information. The remaining coefficients representing higher frequency values are regarded
as noise.

3.3 Notion of Distance

Clustering techniques group objects based on their similarity or distance from each other. Hence,
in order to cluster the graphs, it is first important to define the notion of distance between them.
This notion of distance should be such that it adequately preserves the semantics of the domain. It
has been found from our preliminary analysis and discussions with experts that using the default
Euclidean distance alone is not sufficient to capture domain knowledge. For example, some fea-
tures on a graph could represent critical occurrences in the corresponding experimental results.
Likewise, there can be statistical observations that are significant on the graphs. In terms of the
absolute positions of the points, there could be some that are relatively more important than oth-
ers. There are subtle factors that an expert would consider subjectively in an intuitive manner.
These need to be captured through an objective distance function for use in computational pro-
cesses such as clustering. Although a variety of distance metrics exist in the literature, it is seldom
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known which of them work best in terms of incorporating domain knowledge. It is thus desirable
to conduct distance metric learning in order to define a domain-specific notion of distance for ad-
equately clustering the graphs. This learning forms an important sub-problem of our research and
is discussed next.

Before proceeding with the discussion of the distance metric learning strategy, we first state the
following terminology on distance types in the literature.

Position-based Distances: These distances in the literature refer to distances based on the
absolute position of the objects. Examples of position-based distances are Euclidean and Manhattan
distances [19].

Statistical Distances: These refer to distances based on statistical observations [43]. Exam-
ples include Mean distance, Maximum distance, and Minimum distance, i.e., absolute differences
between the mean values, maximum values, and minimum values of the objects, in this case, cor-
responding observations on the graph.

Critical Distances: In addition to standard distance types in the literature, we consider the
concept of domain-specific critical distances as follows. Given two graphical plots A and B, we
define a critical distance as the distance between critical regions of A and B where a critical region
represents the occurrence of a significant physical phenomenon. Each such distance is calculated
in a domain-specific manner. As examples of critical distances, we refer to the critical points on
the graph in Heat Treating (heat transfer curve) in Figure 5. These are the Leidenfrost point LF ,
the Boiling Point BP , and the Slow Cooling Point SC .

Accordingly, the Leidenfrost distance is defined as the distance between the Leidenfrost points
[57] on two heat transfer curves denoted as ΔLF . For curves A and B this is calculated as follows.

ΔLF (A,B) =

√
(AT LF − BT LF )2 + (AhLF − BhLF )2 (2)

Here, TLF is the temperature at Leidenfrost Point and hLF is the heat transfer coefficient at that
point. The explanation for the calculation in Equation (2) is that the Leidenfrost Points on curves
A and B are defined in terms of their heat transfer coefficients and temperatures, respectively.
Hence, the distance between them is based on the distances between their respective heat transfer
coefficients on the y-axis and the temperatures on the x-axis as plotted on the curves. Note that the
Leidenfrost point is crucial in the domain of Heat Treating since it is the point at which the vapor
blanket around a part breaks during quenching or rapid cooling, thus leading to the next stage
of the overall quenching process [57]. Boiling Point and Slow Cooling distances are defined and
calculated in a similar manner. Given this discussion, we now proceed to describe our proposed
technique called LearnMet to learn a domain-specific notion of distance for graphs in scientific
domains.

3.4 LearnMet: Domain-Specific Distance Metric Learning

A technique called LearnMet is designed as a solution for domain-specific distance metric learning.
The input to LearnMet is a training set with actual (true, i.e., correct) clusters of graphs provided by
domain experts. Its output is the learned distance metric for graphical plots incorporating domain
semantics, and is called the LearnMet distance. The 5 basic steps of the LearnMet technique are
stated below with details explained next.

(1) Assign an initial metric ΔL as a weighted sum of distance metrics applicable to the domain.
(2) Use that metric ΔL for clustering with an arbitrary but fixed clustering algorithm to get

predicted clusters.
(3) Evaluate clustering accuracy by comparing predicted clusters with actual clusters.
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(4) Adjust the metric ΔL based on the error between the predicted and actual clusters, and
re-execute the clustering and evaluation until error is below a threshold τ or maximum
number of epochs ε is reached.

(5) Output the final metric ΔL giving lowest error as the learned metric, i.e., LearnMet
Distance.

Note that an epoch refers to a run of all the 5 steps of LearnMet. This learning is analogous to
the fundamental principle of regression with gradient descent as typically used in a method such
as backpropagation. It is adapted to learn domain-specific notions of distance. The details of each
of these steps are explained below.

3.4.1 LearnMet Initial Metric Step. An initial distance metricΔL is selected as a weighted sum of
components, where each component is an individual distance function such as Euclidean distance
(of type position-based distance), Mean distance (of type statistical distance), Leidenfrost distance,
and Boling Point distance (of type critical distance) and so on and the weight of each component
is a numerical value denoting its relative importance. Thus, we have the following.

ΔL =

C∑
i=1

ωi Δi (3)

Here, each Δi is a component, ωi is its weight, and C is number of components. The explanation
for this Equation (3) is concerned with the relative importance of the components in the domain.
Since there are multiple components, some of them are more significant than others, and this
domain-specific significance is denoted by their respective weights. Thus, we propose this equation
to capture domain knowledge. Domain experts are asked to identify components (i.e., distance
metrics) applicable to the graphical plots that will serve as building blocks for the learning of
a new metric. (Note that this is only a one-time process since we aim to have minimal manual
intervention in our approach). If the experts have subjective notions about the relative importance
of the components, this information is used to assign initial weights. If this relative importance
is unknown then random weights are assigned to all components. Initial weights by default are
assigned on a scale of 0 to 10.

3.4.2 LearnMet Clustering Step. The domain experts provide a set of actual clusters over a
training set of graphs. To perform clustering, an arbitrary but fixed clustering algorithm such
as k-means [19] is selected. The value of k is an experimental parameter that can be obtained us-
ing well-known approaches such as the elbow method often used in k-means. Using the equation
above (Equation (3)) as the distance metric, k clusters are constructed using the selected algorithm,
where k is the number of actual clusters in the training set. These clusters obtained using metric
ΔL are the predicted clusters.

3.4.3 LearnMet Cluster Evaluation Step. The cluster evaluation involves comparing the pre-
dicted and actual clusters with each other. Examples of predicted and actual clusters of graphs are
shown in Figure 6.

Ideally, the predicted clusters should match the actual clusters perfectly. Any difference between
them is considered an error. To compute this error, we consider pairs of graphical plots and intro-
duce the following notation to depict the notion of correctness in the domain.

Notion of Correctness: Given a pair of graphs дα and дβ we postulate the following.

• (дα , дβ ) is a True Positive (TP) pair if дα and дβ are in the same actual cluster and in the
same predicted cluster
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Fig. 6. Examples of predicted and actual clusters.

• (дα , дβ ) is a True Negative (TN) pair if дα and дβ are in different actual clusters and in
different predicted clusters

• (дα , дβ ) is a False Positive (FP) pair if дα and дβ are in different actual clusters but in the
same predicted cluster

• (дα , дβ ) is a False Negative (FN) pair if дα and дβ are in the same actual cluster but in
different predicted clusters

Figure 6 includes examples of such pairs: (д1, д2) is a true positive pair; (д2, д3) is a true negative
pair; (д3, д4) is a false positive pair; and (д4, д6) is a false negative pair. The error measure of
interest to us is called Failure Rate; it is adapted from the literature [39], and defined in our context
below.

Success and Failure Rates: Let TP , TN , FP , and FN denote the number of true positive, true
negative, false positive, and false negative pairs, respectively. Also let SR denote the Success Rate
and FR denote the Failure Rate. Then, we have the following.

SR =
TP +TN

TP +TN + FP + FN
, (4)

FR = 1 − SR = FP + FN

TP +TN + FP + FN
(5)

In this problem, false positives and false negatives are equally undesirable. Hence, our calculation
above weighs them equally. Based on this, the explanation for Equations (4) and (5) is somewhat
analogous to the concept of the standard precision metric in data mining and machine learning [19,
39]. While precision considers the ratio of the true positives to the total number of positives, i.e.,
Precision = TP/(TP + FP), in our context we need to incorporate false negatives in exactly the same
manner, because both of these constitute erroneous clustering. Hence, we propose one combined
formula that measures the correctness in the clustering as defined by Success Rate. Conversely,
Failure Rate is calculated as: 1 – Success Rate.

Overfitting: To avoid overfitting in LearnMet, we proffer an approach based on the realm of
combinatorics in mathematics, often useful in machine learning [39]. Instead of using all pairs of
graphs for evaluation, we propose that a subset of pairs is used called ppe or pairs per epoch. In
each epoch, a randomly selected subset of pairs is used for evaluation and weight adjustment. Thus,
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there is significant randomization in every epoch due to multiple possible combinations. If there
are γ number of graph-pairs, we have λ number of distinct learning-pairs, calculated as follows
using the mathematical formula for combinations.

λ =

(
γ
ppe

)
=

γ !

ppe! (γ − ppe )!
(6)

The explanation for Equation (6) follows from the combinatorics realm in mathematics. The term
combination (as well known in mathematics) refers to the number of possible arrangements in a
collection such that the order of the selection does not matter. In this case, the collection is total
number of graph pairs γ from which we need to make ppe number of arrangements, i.e., we select
ppe number of pairs from the total γ number of pairs which constitutes a combination. This is
calculated using the standard formula for combinations, which gives Equation (6) in this context.

For example, if ppe = 15, then for γ = 50 graphs we get a total of λ = (50
15) which gives 50!

15!(50−15)!

distinct pairs for learning [43]. This is clearly a very high number. Thus, in each epoch, if as few as
15 randomly selected pairs are used, it still gives a large number of epochs with many distinct pairs
for learning. This incremental approach helps avoid overfitting. Additionally, the random seed is
altered in the clustering algorithm in different epochs as an additional method to avoid overfitting.

Error Threshold: A domain-specific error threshold τ is the extent of error allowed per epoch,
where error is measured by Failure Rate FR as calculated above (Equation (5)). If the error is below
threshold τ then the final distance metric is returned. However, if the error is not below threshold
in a given epoch, then the metric is adjusted based on this error as explained below.

3.4.4 LearnMet Weight Adjustment Step. In order to proceed with the details of weight adjust-
ment the following terminology related to distances is first explained. This is because the cause
of the error can be traced to certain distances between pairs of graphs in the predicted and actual
clusters.

Distance between a Pair of Graphical Plots: The distance ΔL (дα , дβ ) between a pair of
graphs дα and дβ is the weighted sum of components in the plots using metric ΔL (Equation (3)).
Given this, the concept of average distance between false positive and false negative pairs is in-
troduced next.

Average False Negative and False Positive Distances: The distances ΔFN and ΔFP are de-
fined as the average distance using the metricΔL of the false negative pairs and of the false positive
pairs, respectively. These are as follows.

ΔFN =
F N∑
j=1

ΔL (дα F N , дβ F N ). (7)

Here, (дα F N , дβ F N ) denotes each false negative pair and FN denotes the total number of false
negatives.

ΔFP =
F P∑
j=1

ΔL (дα F P , дβ F P ). (8)

Here, (дα F P , дβ F P ) denotes each false negative pair and FP denotes the total number of false
positives.

Equations (7) and (8) can be explained with respect to the example in Figure 7. Consider the
pair (д4, д6) which is an example of a false negative. The distance between this pair of graphs
is calculated using the metric ΔL , which leads to ΔL (д4, д6). Likewise, we get ΔL (д4, д5) for the
pair (д4, д5). Considering every such false negative pair in general, we get the summation of the
distances as denoted by the total ΔFN for all false negative pairs. This is captured by our proposed

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.



86:14 A. S. Varde

Fig. 7. Illustration of distances used in weight adjustment.

Equation (7). Analogous to this, we explain our proposed Equation (8). Refer to the pair (д3, д4)
which is a false positive. Here, ΔL (д3, д4) denotes the distance between this pair of graphs as
calculated by the metric ΔL , and the summation of all such distances between the false negative
pairs in general gives the total distance ΔFP as stated in Equation (8).

Given this, consider the false negative pairs shown in Figure 7, e.g., (д4, д5) and (д4, д6). These
pairs are in the same actual cluster. However, they are predicted to be in different clusters. Since
predicted clusters are obtained with the metric ΔL , the cause of the error is that the (average)
distance ΔFN between these pairs with the given metric is greater than it should be. Hence, these
pairs are incorrectly pushed far apart to be in different predicted clusters although they in reality
they should have been closely placed in the same actual cluster. Conversely, for false positive pairs
in different actual clusters but in the same predicted clusters, e.g., (д3, д4) in Figure 7, the cause of
the error is that the (average) distance ΔFP is smaller than it should be. These distances are now
used in altering weights using heuristics as follows.

Heuristics in Weight Adjustment: Consider error due to false negatives. To reduce this error,
it is desirable to decrease the distance ΔFN . In order to reduce ΔFN , weights of one or more
components in the metric used to calculate the distance in the present epoch is decreased. For this
purpose, we propose the FN Heuristic.

FN Heuristic: Decrease the weights of the components in the metric ΔL in proportion to their
contributions to the distance ΔFN . That is, for each component, new weight ωi

� is defined using
the term ΔFNi which is the average false negative distance due to any individual component Δi

alone, e.g., only Leidenfrost distance. Hence, we have the following.

ωi
� = ωi −

ΔFNi

ΔFN
(9)

The justification for this heuristic in Equation (9) is as follows. Consider examples of false negative
pairs such as (д4, д5) and (д4, д6) in Figure 7. These pairs are supposed to be in the same actual
cluster as per the domain-specific notion of correctness. However, they are incorrectly predicted to
be in different clusters. Since the predicted clusters are obtained with the given distance metric, it
can be inferred that the error is caused due to the distance ΔFN between these pairs being greater
than it should be. In other words, these pairs are incorrectly pushed far apart to be in different
predicted clusters although in reality they should have been closely placed in the same actual
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cluster. Therefore, to rectify this error it is desirable to reduce the distance ΔFN . In order to do
that, the weights of one or more components in the metric used to calculate the distance should
be reduced, and that is precisely the contribution of the FN heuristic. This is the rationale behind
the heuristic.

Conversely, consider the false positive pairs. To reduce their error, we increase ΔFP , by increas-
ing weights of one or more components in the metric using the FP Heuristic as defined in an
analogous manner next.

FP Heuristic: Increase the weights of the components in the metric ΔL in proportion to
their contributions to the distance ΔFP . Thus, for each component, new weight ωi

�� is given as
follows.

ωi
�� = ωi +

ΔFPi

ΔFP
(10)

Here, ΔFPi = average false positive distance due to component ΔL alone.
The justification for the FP heuristic in Equation (10) is analogous to that for the FN heuris-

tic. Consider examples of false positive pairs in different actual but same predicted clusters, e.g.,
(д3, д4) in Figure 7. Based on a similar reasoning as above, we can infer that the cause of the error is
that the distance ΔFP is smaller than it should be. It follows therefore that in order to rectify error
due to the FP pairs, we should increase ΔFP by increasing the weights of one or more components
in distance metric, which is achieved by using the FP Heuristic. Combining both these heuristics,
we get the final combined Weight Adjustment Heuristic below. Since this heuristic in Equation (11)
is a combination of the FN and FP heuristics, its rationale follows from the justification of these
individual heuristics.

Weight Adjustment Heuristic: For each component, its new weight is denoted as ωi
��� and is

calculated using the following formula, noting that its weight might drop down to zero. Obviously,
there are no negative weights here since the distance components can either have a significant
impact on the overall distance metric ΔL to a certain extent (denoted by positive weights) or be
absent/negligible in the metric (i.e., zero weights).

ωi
��� = max

(
0, ωi −

ΔFNi

ΔFN
+
ΔFPi

ΔFP

)
. (11)

These new weights obtained after adjustments is likely to minimize the error due to the both false
positive and false negative type pairs. Clustering in the next training epoch is performed with
these adjusted weights.

The training epochs continue with weight adjustments as needed each time. The final metric
step is reached if the error drops below the threshold τ or if the maximum number of epochs ε is
reached. Both τ and ε are experimental parameters.

3.4.5 LearnMet Final Metric Step. If the learning terminates because the error is below the
threshold then the metric in the last epoch is output as the final metric. However, if termina-
tion occurs because the maximum number of epochs is reached then the most reasonable metric
to be output is the one corresponding to the epoch with the minimum error among all epochs.
The output of LearnMet serves to provide a notion of distance for clustering the graphical plots in
the knowledge discovery process of AutoDomainMine. The distance metric output by LearnMet
after going through all its steps is called the LearnMet Distance . This is the notion of distance for
graphical plots and is used for within AutoDomainMine. Having described the LearnMet approach
to solve the sub-problem of learning domain-specific distance metrics, we outline the LearnMet
algorithm, and the clustering steps in AutoDomainMine.
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ALGORITHM 1: LearnMet Algorithm.

Input: G = number of graphs, k = number of clusters (actual clusters of graphs given as notion
of correctness), τ = error threshold, ɛ = max number of epochs, c = number of components, Δi is
each distance component
Set metric ΔL =

∑C
i=1 ωi Δi with initial components and weights

Select arbitrary but fixed clustering algorithm
Set k = number of clusters
Clustering Step:

Cluster graphs using ΔL =
∑C

i=1 ωi Δi

Set random ppe = number of pairs per epoch
Randomly select ppe pairs of graphs
Using correct actual clusters, calculate TP, TN, FP, FN values
Calculate Failure Rate FR = (FP + FN)/(TP + TN + FP + FN)
If (FR < τ ) or (#epochs > ɛ)
Return ΔL as learned metric and End
Else

Calculate distances ΔFP and ΔFN
Apply Weight Adjustment Heuristic to get new metric ΔL =

∑C
i=1 ωi

��� Δi

Go to Clustering Step
End
Output: Final Learned Metric ΔL

3.5 LearnMet Algorithm and Clustering in AutoDomainMine

On the basis of the detailed explanation herewith, the LearnMet Algorithm is now synopsized as
Algorithm 1.

Here,k, G, τ , ε, c are among the experimental input parameters that vary as per the execution of
the algorithm. This algorithm can be executed with different values of these for greater robustness.
In order to avoid overfitting, the ppe values can be adjusted here, and the seeds in the algorithm
used for clustering can be altered. The final metric obtained in LearnMet serves as the notion of
similarity for graphs and can be used while clustering as well as searching for the closest matching
graph during the estimation step in AutoDomainMine. Note that this learning is a one-time process
and the learned metric can be used recurrently to capture domain semantics during clustering and
searching for graphs.

Clustering is performed in AutoDomainMine by sending the graphs, i.e., the curves mapped
to multi-dimensional points after dimensionality reduction, to a clustering technique such as k-
means. The notion of distance used for clustering is the domain-specific distance metric learned
from LearnMet. Once the clusters are obtained for each graph, the output of the clustering needs
to be sent to the classifier. Therefore, each experiment corresponding to a particular graph that
results from it, is then stored in terms of its input conditions and cluster label. Note that these
labels only serve to identify the cluster of a particular graph and hence the respective experiment
in order to serve as the basis for learning the clustering criteria through classification. Based on this
discussion and the LearnMet algorithm, steps of clustering in AutoDomainMine are stated below.

(1) Map each 2-dimensional graph into a multi-dimensional point.
(2) Perform dimensionality reduction as needed.
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(3) Learn the domain-specific notion of distance for graphs i.e., the LearnMet distance ΔL.
(4) Cluster the graphs, i.e., multi-dimensional points using the LearnMet distance with any

suitable algorithm such as k-means.
(5) Store the output of clustering as the input conditions and cluster label corresponding to

each graph

Thereafter, classification is performed to learn the clustering criteria, as a part of knowledge
discovery.

4 DETAILS OF CLASSIFICATION IN AUTODOMAINMINE

The method proposed in AutoDomainMine for learning the clustering criteria is classification us-
ing decision trees as we justify below. As well-known in data mining, a decision tree [19] is a
structure consisting of nodes, arcs, and leaves where each internal node denotes a test on an at-
tribute, each arc leaving a node represents an outcome of the test, and leaf nodes represent classes
or class distributions.

4.1 Justification for Deployment of Decision Trees

The reasons for utilizing decision trees as classifiers in AutoDomainMine are stated below.

(1) Decision tree classification is an eager learning approach, i.e., it learns in advance based
on existing data as opposed to lazy learners that wait for a new instance to be classified.
This is useful because our knowledge discovery step in AutoDomainMine is a one-time
process executed over existing data to build a suitable hypothesis before classifying new
instances.

(2) Decision tree paths help identify relative importance of criteria used in classification. In
our context, this is helpful in determining relative importance of input conditions leading
to clusters. This is important while tracing the cluster of a new experiment to find the
most suitable match for accurate estimation.

(3) As opposed to some classifiers such as neural models with basic ANN and deep learning
with CNN that could be a black box, decision trees are more interpretable, assisting in pro-
viding reasons for the decisions. Hence, they are useful to model the reasoning processes
of domain experts.

In AutoDomainMine, any suitable decision tree algorithm such as J4.8 can be used [39]. Once
decision tree classification is executed, it serves to identify clustering criteria, i.e., conditions lead-
ing to a given cluster. This sets the stage for building representative pairs of input conditions and
graph per cluster, as the output of the classification step. Instead of randomly selecting represen-
tative pairs, there is a need for designing them.

4.2 Need for Designing Representatives

A randomly selected representative pair for each cluster does may not adequately represent the
information. Distinct combinations of conditions could lead to a cluster. Graphs in a cluster could
have variations. Different applications may need different levels of detail and may have conflicting
requirements. We present a motivating example here. Consider Example 1 with sets of conditions
ψ1toψ9 leading to a given cluster.

Example 1. Sets of Experimental Input Conditions in a Cluster

• ψ1: Quenchant Name = DurixolW72, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (70-80), Probe Type = CHTE
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• ψ2: Quenchant Name = DurixolW72, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (80-90), Probe Type = CHTE

• ψ3: Quenchant Name = DurixolV35, Part Material = ST4140, Agitation Level = High, Oxide
Layer = Any, Quenchant Temperature = (50-60), Probe Type = CHTE

• ψ4: Quenchant Name = DurixolV35, Part Material = ST4140, Agitation Level = Low, Oxide
Layer = None, Quenchant Temperature = (60-70), Probe Type = CHTE

• ψ5: Quenchant Name =MarTemp355, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (20-30), Probe Type = CHTE

• ψ6: Quenchant Name = DurixolV35, Part Material = ST4140, Agitation Level = Any, Oxide
Layer = Thin, Quenchant Temperature = (60-70), Probe Type = CHTE

• ψ7: Quenchant Name = DurixolW72, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (60-70), Probe Type = CHTE

• ψ8: Quenchant Name =MarTemp355, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (30-40) C, Probe Type = CHTE

• ψ9: Quenchant Name = DurixolW72, Part Material = SS304, Agitation Level = High, Oxide
Layer = None, Quenchant Temperature = (90-100), Probe Type = CHTE

All these sets of conditions in Example 1 above lead to a similar experimental output. Hence,
they have been assigned to the same cluster. Now, consider an application such as simulation
tools [36]. Users often run simulations of real experiments with a given set of input conditions.
These simulations are typically as time-consuming as a real experiment (about 6 hours). They are
preferred over a real experiment mainly because they save resources. Imagine that a randomly
selected set of input conditions is displayed to the user as the output of estimation. If the user runs
a simulation using this representative, the ranges of information in the cluster are not captured,
thus reducing the sample space of simulations. On the other hand, if the user runs a simulation
using a representative that conveys all the information in the cluster, it would take very long to
run. Since each simulation takes approximately 6 hours with one set of input conditions, running
it with 9 sets of conditions would take 54 hours, which is often not practical. Thus, there is a need
for a trade-off between these extremes in such applications. There are other applications where
information loss is more critical while efficiency is not an issue, and vice versa.

Likewise, for graphs in each cluster, randomly selected representatives are not always sufficient
in incorporating semantics. For example, in a particular cluster the highest heat transfer coefficient
could range from 2,000 to 2,300 Watt/m2K, the slow cooling could occur between 200 °C to 250 °C
and so forth. It is useful to know that the corresponding graphs still get placed in the same clus-
ter and that these variations do not separate the respective experiments. A randomly selected
representative does not convey this information. Also, it is important to avoid visual clutter in
displaying information, and address the interests of various users. Thus, there is a need to design
semantics-preserving representative pairs consisting of a set of input conditions and graph per
cluster in order to aid the classification of new experiments for estimating their results.

4.3 DesRept: Designing Semantics-Preserving Representatives

We propose a methodology called DesRept to design semantics-preserving cluster representatives
as the output of the classification step in AutoDomainMine. Each cluster representative is a pair
consisting of 2 parts, namely, a set of input conditions and a graph. Designing a representative of
conditions involves several issues regarding semantics. Designing a representative graph is con-
cerned with another set of issues regarding domain-specific aspects. Hence, these parts are dealt
with separately. However, the general principles behind them are similar as summarized in the
steps below.
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(1) Input the clusters of graphs, and the decision tree paths of the conditions leading to the
clusters.

(2) Define the notion of distance for the sets of conditions and for the graphs.
(3) Build candidate representatives for each cluster by using various design strategies so as

to capture the different levels of detail found in the cluster.
(4) Compare the candidate representatives with an encoding for effectiveness based on the

Minimum Description Length (MDL) principle.
(5) For each cluster return the winner, i.e., representative of conditions/graph with the lowest

encoding as the designed representative.
(6) Output the representative pair of conditions and graph for each cluster.

Based on this general description, we further divide the DesRept approach into 2 parts. The
approach of designing representatives for sets of input conditions is referred to as DesCond while
that for designing representatives for graphs is called DesGraph. The details of DesCond and Des-
Graph are discussed next.

4.3.1 DesCond: Designing Representatives for Conditions. DesCond is a component of DesRept
that designs a representative set of input conditions for each cluster. The main steps in DesCond
for the design of domain-specific cluster representatives for conditions, are mentioned below and
then elaborated further.

(1) Define a notion of distance between individual attributes (conditions).
(2) Derive the distance function for sets of conditions from decision tree paths.
(3) Obtain candidate cluster representatives showing different levels of detail.
(4) Propose an encoding to compare the candidates and find a suitable winner.

Notion of Distance for Attributes: The attributes describing the input conditions are of dif-
ferent types such as numeric, categorical, and ordinal [19]. We use the sets of conditions shown in
Example 1 in order to explain the calculation of distance for each type of attribute.

Categorical Attributes: In categorical attributes, depicting character data, the distance is con-
sidered to be 0 if the attribute values are identical and 1 if they are not identical. Formally, the
distance Δcat between categorical attributes among sets of conditions ψi and ψj is calculated as
follows where and vi and vj the respective values of the given categorical attribute.

Δcat (ψi , ψj ) =
{

0 vi = vj

1 vi � vj
(12)

For instance, considering the categorical attribute Part Material and referring to Example 1, we
calculate distance between the Part Material values asΔcat (ψ1, ψ3) = 1 andΔcat (ψ1, ψ2) = 0, since
Part Material values are not equal in the sets of conditions ψ1 and ψ3, while they are equal in ψ1

andψ2.
Numeric Attributes: In numeric attributes, distance is calculated as the absolute difference of

their attribute values. If the values are grouped into ranges as a data preprocessing step, then
we consider the difference between the mean values of the respective ranges. A suitable scal-
ing factor σ based on domain knowledge can be applied to maintain parity with other attributes.
Thus, distance Δnum for numeric attributes in sets of conditions ψi and ψj is calculated as follows
where and vi and vj the respective actual values (or mean values of ranges) of the given numeric
attribute.

Δnum (ψi , ψj ) = σ × |vi −vj |. (13)
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Fig. 8. Partial snapshot of decision tree in experiments from the heat treatment of materials.

Applying this in Example 1, for the numeric attribute Quenchant Temperature with scaling fac-
tor σ = 1/10 (given in the domain) we get distances between Quenchant Temperature values as
Δnum (ψ1, ψ3) = 2 and Δnum (ψ1, ψ2) = 1, respectively.

Ordinal Attributes: In ordinal attributes, that represent order-based data, the distance is calcu-
lated as the absolute difference between their values after they are mapped to numeric based on
their order using domain knowledge. For example, Agitation values of “High”, “Low”, and “Absent”
are mapped to 3, 2, and 1, respectively. The value “Any” implies that the attribute can take any
value. Hence, its distance is considered to be 0 from all other values. The distance Δord for ordinal
attributes in sets of conditionsψi andψj is then given as follows wherevi

� andvj
� are the numeric

values to which the respective ordinal values are mapped.

Δord (ψi , ψj ) = |vi
� −vj

� |. (14)

In Example 1, consider ordinal attribute Agitation Level. Here, the distance can be calculated as
Δord (ψ1, ψ2) where both values are “High” thus giving 3 − 3 = 0; and Δord (ψ1, ψ4) where the val-
ues are “High” and “Low”, respectively thus giving 3 − 2 = 1. This is as per the mapping based on
order explained above, i.e., High = 3, Medium = 2, and Low = 1.

Distance Function for Sets of Conditions: In order to define the distance between sets of
conditions (i.e., sets of attributes), we first propose to assign weights to attributes using reasoning
based on decision tree paths. A partial snapshot of an example decision tree appears in Figure 8.
We use the following reasoning.

(1) An attribute is considered to have a higher weight than other attributes if it is at a higher
level in the decision tree. This is because the root of the tree represents the most significant
input condition while the lower levels represent less significant conditions. Also, attributes
not identified in the decision tree represent insignificant conditions for the given data
sample.

(2) The shorter the path in which an attribute appears, the higher is the significance of that
attribute. This is because a shorter path with fewer attributes is more definite in classi-
fying the data than a longer path. An extreme of this would be one particular value of
the root leading directly to a given cluster. For example, if all data pertaining to “Quen-
chantName = T7A” belongs to Cluster C, irrespective of other attributes, then in this path
“QuenchantName” should get a higher weight than in other paths.
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(3) The greater the number of experiments in the cluster corresponding to a path, the more
important is that path and hence an attribute appearing in that path. This is because the
given path then classifies a greater amount of data.

We draw an analogy with fundamental decision tree induction algorithms such as ID3 and J4.8
[39] in this reasoning. Accordingly, a heuristic for the weights of the attributes in the decision tree
is defined next.

Decision Tree Weight Heuristic: In the DesCond approach, we apply domain knowledge and
fundamental decision tree concepts to define a decision tree weight heuristic Ω as calculated
next.

Ωa =
1

N

N∑
p=1

ηa,p

ηp
× Γp . (15)

Here,
Ωa = weight of attribute a;
N = total number of paths in the decision tree;
Γp = number of graphs in the cluster corresponding to the leaf of path p;
ηa,p = height of node for attribute a in path p; and
ηp= height of path p.

Note that height is defined as the number of nodes away from the leaf. Hence, in a given path the
leaf has a height of 0, the node immediately above the leaf has a height of 1 and so on. Thus, the
height of a path is the height of its root node.

The justification for this heuristic is based on the reasoning provided above before defining the
heuristic. Since the root of the tree represents the most significant attribute, the attributes closer
to the root are the more significant ones, i.e., those having a greater height in the tree. Hence, the
greater the height of the node for a given attribute, the greater is the weight of that attribute, as
depicted by the term ηa,p in the numerator of Equation (15). Likewise, the shorter the path in
which the attribute appears, the greater the significance of the attribute since it is more definite in
classifying the data. This is indicated by the term ηp appearing in the denominator of the equation,
i.e., the higher (longer) the path, the less significant the attribute and vice versa. Finally, the more
the number of experiments (and corresponding graphs) in the cluster of a respective path, the
greater is the importance of that path and hence an attribute within the path, due to classifying a
larger amount of data. This is portrayed by the term Γp in the numerator of the equation, i.e., the
more the data supported by the given path and its attributes, the greater their significance. This is
the rationale behind the heuristic.

This decision tree weight heuristic serves as the basis to define the notion of distance be-
tween sets of conditions in the DesCond approach. This distance Δcond is defined as follows,
where a is an attribute such that Ωa is its weight, and M is the total number of attributes.
(Note that this is analogous to Equation (3) defined for distances in graphical plots). This dis-
tance function incorporates domain semantics and can be used for the design of candidate cluster
representatives.

Δcond =

M∑
a=1

Ωa Δa . (16)

Levels of Detail: As presented in the motivating example to emphasize the need for designing
representatives, different targeted applications require different levels of detail in terms of the sets
of conditions that are estimated to achieve a desired graph. Accordingly, we consider the following
levels of detail in designing the candidate representatives that serve as the basis for estimation.
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Fig. 9. Example of “Single Conditions Representative”.

Fig. 10. Example of “Multiple Conditions Representative”.

Fig. 11. Example of “All Conditions Representative”.

Level 1: Single Conditions Representative ψSCR . This representative is chosen from the original
cluster as a single set of conditions closest to all others in the cluster. The notion of similarity
to determine this closeness is the distance function Δcond for sets of conditions (stated above).
TheψSCR for the cluster in Example 1 is shown in Figure 9. This representative is useful in appli-
cations where the user is interested in finding the most likely set of input conditions that would
give a desired nature of output.

Level 2: Multiple Conditions Representative ψMCR . This summarizes the information in the clus-
ter. It is designed by using information from the original cluster as follows. The set of conditions
in each cluster are grouped into sub-clusters based on the similarity of the conditions. The notion
of similarity for sub-clustering is the same distance function Δcond for sets of conditions. For each
sub-cluster, a representative is selected as the set of conditions closest to all the others in the sub-
cluster. Likewise, representatives are obtained for each sub-cluster. The ψMCR is an aggregation
of all sub-cluster representatives displayed in a tabular form. The ψMCR for Example 1 is shown
in Figure 10. The MCR depicts a trade-off between the amount of detail displayed to the user and
the amount of information captured within the cluster.

Level 3: All Conditions Representative ψACR . This captures all data in the cluster with no infor-
mation loss. It is constructed by retaining all the original sets of conditions and displaying them by
sorting from the most to least significant attribute. The significance of the attributes is determined
based on the distance function Δcond for sets of conditions. The values of each set of conditions
are abstracted using domain knowledge wherever possible. For example, in Heat Treating of Ma-
terials, if 3 sets of conditions are identical except that the value of Agitation Level is “Absent” for
one, “Low” for another, and “High” for the third, then this is abstracted as Agitation = “Any”, where
“Any” refers to any possible value of agitation applicable to the domain. This avoids visual clutter,
while still displaying all the information. The ψACR for Example 1 is shown in Figure 11.

Comparison of Candidates: The candidate representatives are compared to select a winner for
each cluster to be used as the designed representative for the purpose of estimation. This winner
to some extent depends on the nature of the targeted application for which the estimation will be
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performed. We propose an encoding as a measure to compare the candidates drawing an analogy
with the MDL principle. The MDL principle proposed by Rissanen [51] aims to minimize the sum
of encoding the theory and the examples using the theory. Our proposed measure based on this is
called the DesCond Encoding (or the DesRept Encoding for Conditions). It is described below.

The DesCond Encoding: This is designed to capture domain semantics while adhering to the con-
cept of measuring the goodness of a cluster in terms of its representative set of conditions. In this
context, we propose that the theory (with respect to MDL) refers to the cluster representative while
the examples refer to all the other sets of conditions in the cluster. We consider the complexity of
each representative and the information loss due to it. Complexity refers to the ease of interpreta-
tion, which is measured as the amount of data stored for the representative. Information loss, the
capacity of the representative in capturing information within the cluster, is measured as distance
of the representative from all objects (sets of conditions) in the cluster. The relative importance
attached to complexity and distance (information loss) is embedded in the encoding, based on the
interests of targeted users. This measure ϕcond is calculated as follows.

ϕcond = ζcomplexity × log2 (AV ) + ζdistance × log2

1

S

S∑
i=1

Δcond (ψr ep , ψi ) . (17)

Here,
ϕcond = measure of encoding for conditions;
ψr ep = cluster representative as a set of conditions;
A = number of attributes in the representative;
V = number of values for each attribute, i.e. number of instances in representative;
ψi = each set of conditions in the cluster;
Δcond (ρ,ψi ) = distance between representative and every set of conditions;
S = total number of sets of conditions in cluster;
ζcomplexity = percentage weight giving user bias for complexity;
ζdistance = percentage weight giving user bias for distance.

The first term in this encoding log2 (AV ) designates the complexity of the representative. This
is calculated as the number of attributes and values that need to be stored for that representative.
The second term, i.e., the distance term log2

1
S

∑S
i=1 Δcond (ψr ep ,ψi ) denotes information loss due to

the representative. It is calculated as the average distance of the representative from all the other
sets of conditions in the cluster. The terms ζcomplexity and ζdistance are the percentage weights
assigned to complexity and distance, respectively, in order to express the user bias for those terms.
Unless otherwise specified, equal weights are assigned to complexity and distance, i.e., 50% each.

Candidate cluster representatives are evaluated using the DesCond Encoding. The representa-
tive with the lowest value of the encoding measure ϕcond for the given cluster is considered the
best and is returned as its designed representative for the cluster. Hence, the DesCond approach
serves as a method to design and evaluate cluster representatives for conditions. In addition, there
is the DesGraph approach for graphs.

4.3.2 DesGraph: Designing Representatives for Graphs. DesGraph is a component within
DesRept that designs cluster representatives of graphs. The main steps in DesGraph are listed
below and discussed in the subsequent subsections.

(1) Specify a notion of distance for the graphs.
(2) Design candidate cluster representatives by design strategies: guided selection and

construction.
(3) Define an effectiveness measure to compare candidates and return the best one.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.



86:24 A. S. Varde

Fig. 12. Sample clusters of graphs.

Fig. 13. Examples of “Nearest” (left) and “Medoid” (right) Representatives (for Cluster A in Figure 12).

Notion of Distance: In DesGraph, the distance metric from the LearnMet technique is used as
the notion of distance for graphs. This is the LearnMet Distance ΔL =

∑C
i=1 ωi Δi as stated earlier.

Building Candidate Representatives: Consider the example of sample clusters of graphical
plots as shown in Figure 12. We explain design of candidate representatives based on this example.

Design by Guided Selection. In guided selection, the representative is derived as one of the objects
existing in the cluster. Two candidate representatives, Nearest Representative and Medoid Represen-
tative, are selected as follows. Examples of these are illustrated in Figure 13.

The nearest representative is derived based on the concept of nearest neighbors using pairwise
distances, as explained below in Code Snippet 1 where Γi and Γj refer to individual graphs in the
cluster, G is the total number of graphs in the cluster, Γnear est is the nearest representative graph
and ΔL is the distance between graphs using the LearnMet distance metric.

CODE SNIPPET 1: NEAREST REPRESENTATIVE GRAPH
FOR i = 1 to G

COMPUTE Sum (i) =
∑G

i=1
ΔL (Γi, Γj)

ENDFOR
RETURN Γnearest = Argmin (Sum (i))

Note that we use sum here and not sum of squares because the assumption is that squared
distances are already incorporated in the metric. This representative, the nearest graph, depicts
the member of the cluster that is nearest to the others using the given distance metric. Since the
metric incorporates domain semantics this representative conveys nearness with respect to relative
importance of regions on graphs.

The medoid representative is derived as an existing graph in the cluster closest to the value of
its computed centroid or mean, as mentioned below in Code Snippet 2 where Γi refers to each
graph, G is the number of graphs in the cluster, μ is the cluster centroid (mean value), and ΔL is
the distance metric, i.e., LearnMet distance. The assumption is that the x-coordinates for all graphs
are the same. Hence, in computing the centroid, we take the mean of the y-coordinates only. This
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Fig. 14. Examples of “Summarized” (left) and “Combined” (right) Representatives (Cluster A in Figure 12).

medoid representative graph i.e., Γmedoid , helps to visualize the object in the cluster closest to the
average behavior of the dependent variable on the graphs.

CODE SNIPPET 2: MEDOID REPRESENTATIVE GRAPH

COMPUTE μ = 1
G

∑G

i=1
Γi

FOR i = 1toG

COMPUTE Δ (i) =
∑G

i=1
ΔL (μ, Γi)

ENDFOR
RETURNΓmedoid = Argmin ((Δ (i)))

Design by Construction. In construction, the representative is a new object derived using data
in the cluster. We derive two such representatives, the Summarized Representative and Combined
Representative. Examples of these are depicted in Figure 14. Note that the callouts around the rep-
resentatives in the figure symbolize construction (as opposed to regular shapes depicting selection
for the Nearest and Medoid representatives).

The summarized representative proffers a summary of information in the cluster. It is derived by
constructing 3 (potentially new) graphs: an average of graphs in the cluster and graphs depicting
domain-specific upper and lower prediction limits. The average graph is computed as the cluster
centroid or mean value (which may not be any graph in the original cluster) while graphs for pre-
diction limits are computed using percentage values of upper and lower domain-specific thresholds
added and subtracted from the average, respectively. This is derived as follows in Code Snippet 3.
Here, Γi refers to each graph, Γi (y) is its y-coordinate at a given x-coordinate, n is the total num-
ber of x-coordinates, G is the number of graphs in the cluster, Γav , Γup , Γlow are the constructed
average graph, upper limit graph, and lower limit graph, respectively, Γav (y), Γup (y), Γlow (y) are
their respective y-coordinates at the given x-coordinates, τU and τL are percentage thresholds
for upper and lower limits, respectively, and Γsummarized denotes the summarized representative
graph derived here. Since x-coordinates are identical (see Figure 14), we compute values only for
the y-coordinates of the respective graphs. This representative, namely, the average graph with
prediction limits, is a complex object consisting of 3 curves.

CODE SNIPPET 3: SUMMARIZED REPRESENTATIVE GRAPH
FOR y = 1 to n

COMPUTE Γav (y) = 1
G

∑G

i=1
Γi (j)

COMPUTE Γup (y) = Γav (j) + τU × Γav (j)
COMPUTE Γlow (y) = Γav (j) − τL × Γav (j)

ENDFOR
RETUEN Γsummarized = Γav, Γup, Γlow with x coordinates

The combined representative is constructed by superimposing all the graphs in a given cluster
on each other. It is derived as follows in Code Snippet 4 where Γi refers to each graph, Γi (y) is its
y-coordinate at a given x-coordinate, n is the number of x-coordinates, G is the number of graphs
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in the cluster, and Γcombined denotes the combined representative graph. This representative is a
complex object composed of curves. It illustrates the whole cluster with no information loss and
depicts possible subtleties, e.g., the combined representative in Figure 14 shows that maximum heat
transfer occurs at around the same temperature for all graphs in the cluster. This is also called the
superimposed graph since it is constructed by superimposing all graphs in the cluster.

CODE SNIPPET 4: COMBINED REPRESENTATIVE GRAPH
FOR y = 1 to n

FOR i = 1 to G
COMPUTE vari (y) = Γi (y)

ENDFOR
ENDFOR
RETURN Γcombined = vari {i = 1 to G} with x coordinates

Effectiveness Measure for Representative Graphs: We propose an effectiveness measure
called the DesGraph Encoding or DesRept Encoding for Graphs for evaluating the representative
graphs, analogous to the DesCond Encoding for Conditions. The DesGraph Encoding is also based
on the MDL principle [51], and is given below.

The DesGraph Encoding: This encoding is designed to assess the effectiveness of cluster represen-
tative graphs to preserve the semantics of the given domain. Analogous to the DesCond encoding
for conditions, this follows the MDL principle of minimizing the sum of coding of the theory itself
and the examples using the theory. Here we state that the theory refers to the cluster representa-
tive graphs while the examples refer to all the other objects (graphs) in the cluster. Likewise, we
incorporate the complexity of each representative and the information loss due to it. The complex-
ity is measured as the total amount of data stored for the coding the representative graph while
the information loss is measured as the distance of the representative graph from all the other
graphs in the cluster. The relative importance attached to the terms of complexity and distance
(information loss) is accommodated in the encoding, based on the interests of targeted users. This
measure ϕдr aph is calculated as follows.

ϕдr aph = ζcomplexity × log2 (Nr ep ) + ζdistance × log2

1

G

G∑
i=1

ΔL (Γr ep , Γi ). (18)

Here,
ϕдr aph = measure of encoding for graphs;
Γr ep = cluster representative graph;
Nr ep = number of data points to store the representative graph;
Γi = each individual graph in cluster;
ΔL (ρ,ψi ) = distance between representative and every other graph;
G = total number of graphs in the cluster;
ζcomplexity = percentage weight giving user bias for complexity;
ζdistance = percentage weight giving user bias for distance.

The first term in this encoding log2 (Nr ep ) pertains to the complexity of the representative. This
is calculated as the number of data points that need to be stored for that representative. The sec-
ond term, i.e., the distance term log2

1
G

∑G
i=1 ΔL (Γr ep , Γi ) is the average distance of each graph in

the cluster from the representative. This distance gives the information loss with respect to do-
main semantics because it is computed using the given distance metric. The terms ζcomplexity and
ζdistance are the percentage weights assigned to the complexity and distance terms respectively
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in order to express the user bias for those terms. Unless otherwise specified, equal weights are
assigned to complexity and distance, i.e., 50% each. In some situations, users are interested in cap-
turing more information in the cluster and do not attach much significance to the complexity of
the representative care about how complex the representative is. Thus, complexity gets a lower
weight. Some categories of users give high importance to complexity for reasons such as storage
and ease of display. Hence, complexity gets a higher weight. Using this encoding ϕдr aph , candi-
dates are compared. The candidate with the lowest encoding is the winner for that cluster, serving
as its representative. Having thus explained the design of representatives, we now summarize this
process via the DesRept algorithm to design representatives for conditions and graphs capturing
domain semantics. These designed representatives constitute form the output of the classification
in AutoDomainMine.

4.4 DesRept Algorithm to Design Representatives as the Output of Classification

The DesRept algorithm encompasses the DesCond and DesGraph approaches to design represen-
tatives for conditions and graphs, respectively. Using the corresponding encodings, the best can-
didate representatives, one each for conditions and graphs, are selected for each cluster to form its
representative pair. The DesRept Algorithm is synopsized herewith as Algorithm 2 on the basis of
the explanation above.

While there are many parameters in the overall framework here, it is to be noted that there is
no specific “optimal” choice. The type of representative depends on the needs of the targeted ap-
plications. In some applications, it is more important to capture intricate levels of detail; in other
situations, brevity may be highly desirable. The relative importance of the parameters ζcomplexity

and ζdistance is user-defined based on the significance users attach to the complexity of the rep-
resentative and the information loss (as measured by the distance parameter), respectively. In a
default scenario, both these parameters would be given equal weight. Regarding the needs of tar-
geted applications, there is more information in the evaluation section. Much of this is based on
the respective domain and users.

We have hereby presented the of the overall DesRept methodology that is meant for designing
cluster representatives of conditions and graphs in order to serve as the classification outputs in
the knowledge discovery step of the AutoDomainMine approach. These designed representatives
as the output of classification are used for estimation in AutoDomainMine.

5 DETAILS OF ESTIMATION IN AUTODOMAINMINE

5.1 Estimating the Graph, Given the Conditions

In order to estimate the graph for a new experiment, some or all of the conditions of the experiment
are entered by the user as the input to AutoDomainMine. The estimation process of AutoDomain-
Mine compares these conditions with the decision tree paths to find the closest matching path
leading to the cluster in which the new experiment would best be placed. The Decision Tree Weight
Heuristic, which is learned in the DesCond component of DesRept, is used while making this com-
parison in order to preserve semantics. The designed representative graph of the closest matching
cluster is output as the estimated graph. If there is a total match of decision tree paths, the potential
cluster of the new experiment is obvious, hence that representative graph is clearly offered as the
estimated output. We now describe what occurs in the event of approximate matches.

The relative importance of the input conditions learned through decision tree classification helps
to make an educated guess about the closest matching cluster for the user-submitted input con-
ditions, if there is no total match. Hence, if more important conditions as identified by the higher
levels of the tree do not match, this is considered insufficient to provide an estimate. However, if
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ALGORITHM 2: DesRept Algorithm

I. The DesCond Procedure
Input: clusters of conditions, distance metric Δcond , user bias for complexity, distance as
ζcomplexity , ζdistance

1. Design candidate cluster representatives for conditions as:
a. Single Conditions Representative ψSCR

b. Multiple Conditions Representative ψMCR

c. All Conditions Representative ψACR

2. Use DesCond encoding measure ϕcond to compare effectiveness of candidates
3. Returnψr ep = Arдmin(ϕcond {ψSCR , ψMCR , ψACR })
Output: Designed representative set of conditions asψr ep

II. The DesGraph Procedure
Input: clusters of graphs, distance metric ΔL , user bias for complexity, distance as ζcomplexity ,
ζdistance

1. Design candidate cluster representatives for graphs by:
a. Guided Selection as:

i. Nearest Representative Graph Γnear est

ii. Medoid Representative Graph Γmedoid

b. Construction as:
iii. Summarized Representative Graph Γsummarized

iv. Combined Representative Graph Γcombined

2. Use DesGraph encoding measure ϕдr aph to compare effectiveness of candidates
3. Return Γr ep = Arдmin(ϕдr aph {Γnear est , Γmedoid , Γsummarized , Γcombined })
Output: Designed representative graph as Γr ep

no complete match is found due to lower level discrepancies, then it is considered acceptable to
give an estimate based on an approximate match. The distinction between high and low levels is
made depending on the height of the tree and the requirements of accuracy. Accordingly, using
the Decision Tree Weight Heuristic, the levels at or above half the depth of the tree are considered
as high, and those below are half the depth as low. If multiple paths match partially, to the same
extent, then the cluster with the greatest number of graphs is considered as the matching clus-
ter, and its representative graph is offered as the estimated output. This concept of selecting the
cluster with the greatest number of graphs in a partial match is analogous to using the majority
class in classifiers [39]. Based on this, the process of estimating the graph given the conditions in
AutoDomainMine, has the following steps.

(1) Accept the given input conditions from the user.
(2) Compare each path of the decision tree with the given input conditions.
(3) If a complete path matches, the designed representative graph of that cluster is the esti-

mated graph.
(4) If one or more partial paths match greater than half the height of the tree, the designed

representative graph of the cluster with the maximum number of experiments is the esti-
mated graph.

(5) If one or more partial paths match up to less than or equal to half the height of the tree,
convey that the graph cannot be estimated.
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5.2 Estimating the Conditions, Given the Graph

The process of estimating the input conditions, given a desired graph is as follows. A sample graph
or ranges of its features are entered by the user as a desired result, for AutoDomainMine to estimate
the experimental conditions to achieve such a result. The estimation process in AutoDomainMine
compares this graph with the designed representative graphs in the clusters using the domain-
specific notion of distance from LearnMet. Accordingly, the graph with the closest match within
a threshold (discussed next) is found. The designed representative conditions of the cluster of the
closest matching graph, are conveyed as the estimated conditions.

We define a similarity threshold for graphs in a domain-specific manner. If no match is found
within the given threshold, then the desired graph cannot be obtained based on knowledge dis-
covered from existing experimental data. Thus, it is conveyed to the user that the conditions to
obtain this graph cannot be estimated. This is in order to adhere to the requirements of accuracy.
If only one representative graph matches the desired graph within the threshold, then the corre-
sponding representative conditions are clearly the estimated conditions. If several representative
graphs match within the given threshold, we obviously select the closest match. However, if mul-
tiple representative graphs match to a similar extent then we offer the representative conditions
of the cluster with the greatest number of experiments as the estimated conditions. This is again
analogous to the concept of majority class in classifiers [39]. Considering the explanation above,
the process of estimating the conditions, given the graph in AutoDomainMine has the following
steps.

(1) Accept the given graph from the user.
(2) Compare the graph with designed representative graphs of each cluster (as per tree paths).
(3) If no match is found within the threshold then convey that the conditions cannot be

estimated.
(4) If only one representative graph matches within the threshold, then the representative

conditions of that cluster are the estimated conditions.
(5) If more than one graph matches within the threshold, then representative conditions of

the cluster with the closest matching graph are the estimated conditions.
(6) If multiple graphs match to a similar extent, then the representative conditions of the

cluster with the greatest number of experiments are the estimated conditions.

5.3 The AutoDomainMine Algorithm for Computational Estimation

In this subsection, we have outlined the AutoDomainMine algorithm that combines all its parts.
This encompasses the one-time process of knowledge discovery through distance metric learn-
ing, clustering, classification, and representative design; followed by the recurrent process of us-
ing the discovered knowledge for estimation. This AutoDomainMine algorithm is presented as
Algorithm 3 herewith.

This describes the AutoDomainMine approach on the whole. Note that in the one-time process
of knowledge discovery, parameters such as clustering seeds, number of clusters, stopping criteria
for decision trees, and so on are altered for greater robustness. We have addressed this in our
implementation. Evaluation is described next.

6 EVALUATION OF THE AUTODOMAINMINE SYSTEM

The AutoDomainMine approach has been implemented as a software system and has been sub-
jected to rigorous experimental evaluation, a synopsis of which is presented next. The Learn-
Met technique, the DesRept methodology and the overall AutoDomainMine system incorporating
these, are evaluated separately. Comparative studies are attempted with other possible approaches
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ALGORITHM 3: AutoDomainMine Algorithm

I. Knowle dge Discovery Step (One-Time Process)
Input: experiments with sets of conditions ψi and graphs Γi ,
1. Learn domain-specific distance for graphs ΔL via LearnMet
2. Cluster experiments based on graphs using ΔL with any algorithm such as k-means
3. Build decision tree classifiers to learn causes of similarities and differences between clusters
4. Develop representative pairs (ψr ep , Γr ep ) for each cluster via DesRept
5. Store decision tree paths Pi and representative pairs Pi ( ψr ep , Γr ep ) as discovered knowledge
II. Estimation of Graph (Recurrent Process)
Input: experimental set of conditions ψE

Given: decision tree paths Pi with cluster representatives, number of experiments #E in clusters of
each path, distance metric Δcond

Define: Hi = Heiдht (Pi ); partial-match asmatch(ψE , Pi ) > Hi

2 ; no-match asmatch(ψE , Pi ) ≤ Hi

2
1. Compare ψE with each decision tree path Pi

2. If ∃Pi where full-match (ψE , Pi ) then ΓE = Pi (Γr ep ) \\ complete tree path matches given
conditions

3. If ∃Pi where partial-match (ψE , Pi ) then ΓE = Pi (Γr ep ) where Pi �→ Arдmax (Pi {#E})
4. If ∀Pi no-match (ψE , Pi ) then ΓE = null \\ no estimation based on existing data
Output: estimated graph ΓE

III. Estimation of Conditions (Recurrent Process)
Input: experimental graph ΓE

Given: decision tree paths Pi with cluster representatives, number of experiments #E in clusters
of each path, graph matching distance threshold θ , distance metric ΔL

1. Compare ΓE with representative graphs Pi (Γr ep ) for cluster of each tree path Pi

2. If ∀Pi ΔL (ΓE , Pi (Γr ep )) > θ then ψE = null \\ no estimation based on existing data
3. If ∃Pi ΔL (ΓE , Pi (Γr ep )) ≤ θ then

If number-of-matches = 1 then ψE = Pi (ψr ep )
If number-of-matches > 1 then ψE = Pi (ψr ep )

where Pi �→ (Arдmax (Pi {ΔL (ΓE , Γr ep )}) ∧Arдmax (Pi {#E}))
Output: estimated set of conditions ψE

that could potentially useful for computational estimation. Extension to other domains is discussed
besides the example domain of Materials Science that motivated this work. Impacts of our work
are discussed with respect to usefulness in other research.

6.1 Evaluation of LearnMet and DesRept Techniques

6.1.1 LearnMet Evaluation. We conduct evaluation with the LearnMet technique using experi-
mental conditions and graphs from the Heat Treating of Materials. A few excerpts from evaluation
are presented.

We first consider the impact of the components in learning the distance metric ΔL . Approxi-
mately 100 executions are conducted, excerpts from which appear here. Number of graphs in the
training set is G = 25 from which 300 pairs of graphs are obtained. We use k-means for clustering
with k = 5 as the value obtained from actual clusters (given by experts) in the training set. We
alter clustering seeds for randomization. Error threshold is τ = 0.01 and maximum number of
epochs is ε = 1,000. The Number of components is altered in each execution. Possible components
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Table 1. Various Components in Executions of Distance Metric Learning

Execution Number Distance Components

Ex1 Δsc

Ex2 ΔEuclidean

Ex3 ΔMin

Ex4 ΔMean

Ex5 ΔMax

Ex6 ΔLF

Ex7 ΔBP

Ex8 ΔEuclidean , ΔMax

Ex9 ΔEuclidean , ΔMax , ΔBP

Ex10 ΔEuclidean , ΔMax , ΔBP , ΔLF

Ex11 ΔEuclidean , ΔMax , ΔBP , ΔLF , ΔMean

Ex12 ΔEuclidean , ΔMax , ΔBP , ΔLF , ΔMean , Δsc

Ex13 ΔEuclidean , ΔMax , ΔBP , ΔLF , ΔMean , Δsc , ΔMin

Fig. 15. Accuracy for executions with various distance components (from Table 1).

are ΔEuclidean , ΔMax , ΔMean , ΔMin , ΔLF , ΔBP , and Δsc that depict position-based Euclidean
distance, statistical distances of Maximum, Mean, and Minimum distance, and critical distances
of Leidenfrost distance, Boiling Point distance, and Slow Cooling distance, respectively. These are
obtained from the literature. Our executions with different components are listed in Table 1 while
accuracy (Success Rate as per Equation (4)) is plotted in Figure 15. Note that accuracy is measured
over a distinct test set. It is observed herewith that the highest is accuracy is in the range of 95%,
approximately. The simplest metric giving this accuracy has 4 components: Euclidean distance,
Maximum distance, Leidenfrost distance, and Boiling Point distance (Ex10). Hence, if we have a
preference for prefer simpler metrics, the learned metric has these 4 components. They are used
in subsequent executions to learn the effect of weights, ppe values, and so on.

We consider the effect of weights next. We consider 5 different combinations of initial weights,
including 2 different combinations given by 2 domain experts, a combination with all components
having the same initial weight, and 2 random combinations. The final learned weights correspond-
ing to these initial metrics are presented in Table 2 where DE1, DE2 are the executions with learned
metrics obtained based on the initial weights given by the 2 experts, EQU represents the learned
metric with random initial weights, and RND1, RND2 pertain to the learned metrics with random
initial weights. The clustering accuracy (Success Rate) obtained with these respective learned met-
rics over a test set appears in Figure 16 while the learning efficiency from initial to final weights
is depicted in Figure 17 for all these combinations.
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Table 2. Final Learned Metrics for Different Combinations

Execution Number Learned Distance Metric

DE1 4.1382 ΔEuclidean + 2.7315 ΔMax +1.8739 ΔLF + 3.1023 ΔBP

DE2 4.2099 ΔEuclidean + 2.8784 ΔMax +2.1665 ΔLF + 2.8995 ΔBP

EQU 4.0983 ΔEuclidean + 2.6997 ΔMax +2.2321 ΔLF + 2.9589 ΔBP

RND1 4.0898 ΔEuclidean + 2.7228 ΔMax +2.0093 ΔLF + 3.0955 ΔBP

RND2 4.2008 ΔEuclidean + 2.6981 ΔMax +1.9976 ΔLF + 3.1328 ΔBP

Fig. 16. Accuracy for executions with different combinations of learned metrics (from Table 2).

Fig. 17. Learning efficiency to obtain different combinations of learned metrics (from Table 2).

The observations from these different combinations reveal that convergence to error below
threshold occurs in all the executions, however, the experiments with initial metrics provided
by experts converge faster. The accuracy obtained from all the learned metrics is high, i.e., in the
95% range. An important fact to note is that all the executions converge to approximately the
same learned metrics, thus proving the effectiveness of the LearnMet technique in learning a good
distance metric, regardless of the initial combination selected.

Among other executions conducted, we present those for ppe values, i.e., effect of number of
pairs (of graphs) per epoch on the learning. We dwell on these since they are significant in the
context of big data. It is interesting to note the selection of pairs per epoch for randomness and
learning efficiency. There are 200 executions conducted on ppe values with different data sets and
clustering seeds. The training set has G = 40 graphical plots with number of clusters k = 7. The
error threshold is 0.01. The clustering accuracy (Success Rate) on the test set and behavior during
convergence on the training set are illustrated in Figures 18 and 19, respectively.

Based on these executions, it is noticed that low ppe values, e.g., ppe < G may converge faster
but the learned metrics give relatively lower accuracy over the test set. Moreover, some executions
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Fig. 18. Accuracy with different values of “ppe”.

Fig. 19. Training behavior with different ranges of “ppe”.

with low ppe values may take as long to converge as ppe gets close to G. This probably depends on
which ppe pairs get selected in each epoch. Middle range ppe values take longer to converge but
give the best accuracy over the test set. High ppe values close take still longer to converge and give
accuracy over test set less than middle range values. Another observation is that the Failure Rate (as
per Equation (5)) decreases monotonously for high ppe values but oscillates for lower ppe values.
This could potentially be because for low ppe values, a distinctly different set of pairs get used in
each epoch for learning, so the metric is learned over a different set of pairs each time. For higher
ppe values, almost the same pairs get selected in each epoch, thus causing a uniform decrease in
Failure Rate. As data gets bigger, this might be a useful takeaway in other contexts as well.

6.1.2 DesRept Evaluation. The effectiveness of designed representatives in DesRept is assessed
with respect to their usefulness in providing the AutoDomainMine estimation. Since the represen-
tatives are designed such that they should appeal to users, the assessment of DesRept is achieved
through formal surveys conducted by the users of this system. Users execute tests comparing
the AutoDomainMine estimation with the results of real laboratory experiments (from data not
used for training, i.e., test data). In each test executed by users, the designed representatives are
compared in terms of how effective they are in displaying information in various targeted ap-
plications of AutoDomainMine. The applications include parameter selection, simulation tools,
intelligent tutors, and expert systems. In order to perform this assessment, the estimated output
of AutoDomainMine is displayed to the users in different levels of detail, as the Single Conditions
Representative, Multiple Conditions Representative, and All Conditions Representative, respec-
tively, for conditions; and the Nearest Representative, Medoid Representative, Summarized Rep-
resentative, and Combined Representative, respectively, for graphs. Note that the names of the
representatives are obviously not shown to the users, only the corresponding visual displays are
presented. Different categories of users are asked to choose which display (designed representa-
tive) best meets their needs, i.e., “wins” with respect to the given application. We show survey
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Table 3. Winning Representatives from DesRept in the Application of
Parameter Selection

Winner for Conditions Percentage Winner for Graphs Percentage

SCR Wins 45% Nearest/Medoid Wins 43%
MCR Wins 28% Summarized Wins 24%
ACR Wins 21% Combined Wins 27%
None Wins 6% None Wins 6%

Table 4. Winning Representatives from DesRept in the Application of Simulation Tools

Winner for Conditions Percentage Winner for Graphs Percentage

SCR Wins 18% Nearest/Medoid Wins 15%
MCR Wins 47% Summarized Wins 49%
ACR Wins 30% Combined Wins 33%
None Wins 5% None Wins 3%

results in different targeted applications. In these surveys, when users indicate “none wins”, no
representative is adequate, i.e., the estimation itself does not seem acceptable to users (compared
to results of lab experiments) and is considered inaccurate. DesRept survey results are summarized
here (values rounded off to the nearest percentage).

Parameter Selection: In the applications of parameter selection, the computational estimation
provided as the output of AutoDomainMine is used to select process parameters in industry, e.g.,
[37]. The users have conducted 53 tests in this category. Winners in these applications are depicted
in Table 3. As observed here, the “none wins” region is much smaller than the others indicating
that very few tests resulted in inaccurate estimation. It is seen that the Nearest or Medoid Repre-
sentatives for graphs and Single Conditions Representatives (SCR) for conditions are winners
for most tests (italicized in the table). The reason is possibly that in parameter selection, typically
most users want one right answer that is displayed in a concise manner.

Simulation Tools: In simulation tool applications, users run computer simulations of real lab-
oratory experiments using results of the AutoDomainMine estimation, e.g., [36]. The simulation
users have conducted 62 tests with AutoDomainMine. Table 4 portrays the winning displays in
simulation tools. Again, we notice high estimation accuracy. Here, the Multiple Conditions Rep-

resentatives (MCR) for conditions and the Summarized Representatives for graphs are winners
in most tests (shown in italics). This is probably because simulation tool users generally want to
use ranges of information to increase sample space of the simulations, but they also care about
complexity since the simulations are time-consuming. Hence, there is a trade-off here.

Intelligent Tutors: Intelligent tutoring systems are designed to play the role of a real human
tutor in a given subject via a computerized environment, e.g., [15]. In many scientific domains,
they can be used to study in detail the behavior of processes. Hence, the computational estimation
provided by AutoDomainMine serves as a means to provide computer-based tutoring in the given
domain. Totally, 37 tests have been conducted by users in this category. Table 5 indicates what
type of display was found the best by the users of these applications. From here it is clear that
in most cases the All Conditions Representatives (ACR) are winners for conditions and the
Combined Representatives are winners for graphs (italicized herewith). This is most likely due to
the fact that in most intelligent tutoring applications, users are interested in learning more details
about the system and are possibly not much concerned about complexity. Therefore, more detail
is appreciated. It is also observed here that the estimation is found to be accurate for most tests.
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Table 5. Winning Representatives from DesRept in the Application of Intelligent Tutors

Winner for Conditions Percentage Winner for Graphs Percentage

SCR Wins 17% Nearest/Medoid Wins 12%
MCR Wins 24% Summarized Wins 34%
ACR Wins 52% Combined Wins 50%
None Wins 7% None Wins 4%

Table 6. Winning Representatives from DesRept in the Application of Expert Systems

Winner for Conditions Percentage Winner for Graphs Percentage

SCR Wins 28% Nearest/Medoid Wins 31%
MCR Wins 36% Summarized Wins 30%
ACR Wins 32% Combined Wins 34%
None Wins 4% None Wins 5%

Expert Systems: In expert systems, e.g., [61], AutoDomainMine performs the task of an expert
in giving advice/providing consultation based on the computational estimation. We have had 44
tests conducted by users in this category. The distribution of winning displays in expert systems
is illustrated in Table 6 for conditions and graphs, respectively. As in other applications, we find
high estimation accuracy. It is observed that there is a fairly good mix of winners in these appli-
cations. This could be because different users of expert systems seem to be interested in different
levels of detail. In expert systems for high-level business decision-making, at-a-glance retrieval of
information is important without much emphasis on detail. Some expert system users, however,
focus on process optimization and need to scrutinize the information in much more detail. Hence,
on the whole, we derive the recommendation that it is desirable to retain all the representatives in
such applications, and to display information in increasing levels of detail.

Thus, in general it is observed that representatives designed by DesRept are found suitable in
targeted applications as per user evaluation. This is a significant manner of assessment since the
purpose of designing representatives is to present the output of the estimation in a suitable fash-
ion, paying sufficient attention to detail while also avoiding visual clutter, and thus catering to
user appeal. This caters to the interpretability aspect of AutoDomainMine, important in our prob-
lem definition and goals. Having hereby presented the evaluation of the LearnMet and DesRept
techniques within the context of AutoDomainMine, we now focus on assessing the performance
of AutoDomainMine as a whole with some pertinent aspects.

6.2 AutoDomainMine Performance Assessment and Discussion

6.2.1 Assessment of the AutoDomainMine System.

User Surveys: An important method of assessing the performance of the AutoDomainMine
system is through user surveys. Many users here are the participants of biannual seminars con-
ducted in Massachusetts by the Center for Heat Treating Excellence (CHTE), an international
industry-university consortium. Users are presented with the results of the AutoDomainMine esti-
mation and are asked to compare it with the results obtained from real laboratory experiments that
have not been used during the knowledge discovery process in AutoDomainMine. If the users indi-
cate via the survey questionnaire that the estimation is acceptable as per their satisfaction to such
an extent that they would use it within a real industrial process, it is considered correct, else incor-
rect. Accuracy is thus reported as the percentage of the correct estimations over all the estimations
assessed. The results are collected with respect to the targeted applications of AutoDomainMine
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Fig. 20. Accuracy of autodomainmine in targeted applications.

Table 7. Assessment of AutoDomainMine using the Holdout Strategy

Holdout

Size

Conditions Estimation

Accuracy %

Graph Estimation

Accuracy %

Response Time

(seconds)

25 95.8% 94.6% 0.11
50 94.1% 96.3% 0.12
75 95.2% 93.7% 0.14
100 93.2% 95.4% 0.13
125 94.8% 92.5% 0.11
150 92.4% 93.1% 0.14

as described earlier, i.e., parameter selection, simulation tools, intelligent tutors, and expert sys-
tems. In addition, the general category of computational estimation is also considered based on its
use for miscellaneous purposes. We have a total of more than 200 survey results. These are sum-
marized in Figure 20 below for estimation of conditions and graphs. As seen here the accuracy
is in the 92%–96% range for different categories. This indicates the domain-specific usefulness of
AutoDomainMine with respect to effectiveness in targeted applications.

Holdout Strategy: We conduct evaluations of AutoDomainMine using the holdout strategy.
Thus, we set aside a certain number of samples for testing that are not used for training, and
vary the number of samples for different evaluations. The samples here are the real laboratory ex-
periments used for learning in AutoDomainMine. The dataset consituting these laboratory experi-
ments is designed using Taguchi methods often acclaimed in STEM fields [40]. Hence, the effective
sample space represented by the experiments is 3 times the number of experiments themselves.
We use a dataset with 500 laboratory experiments here that effectively represent a sample space of
1,500 experiments. Similar arguments can be applied to other scientific domains where conducting
an experiment consumes huge time and resources. In this evaluation, we use the holdout strategy
to alter the number of samples held out for testing and observe the accuracy accordingly. Besides
accuracy, the response time to perform an estimation is also recorded in seconds. This is in order
to assess the efficiency of AutoDomainMine. The observations from these evaluations are depicted
in Table 7 herewith. As seen here, the estimation accuracy for both conditions and graph remains
in the 92%–96% range regardless of the number of samples set aside for testing in the holdout
strategy. For example, in the 1st row, the holdout size is 25, i.e., 25 samples for testing and 475
for training, which gives an estimation accuracy of around 95%; while in the last row the holdout
size is 150, i.e., 350 samples for training and 150 for testing, and the estimation accuracy is ap-
proximately 93% here. Thus, even if we use fewer samples for training, it leads to high accuracy in
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Table 8. Comparative Evaluation of AutoDomainMine

Category

Similarity

Search

Mathematical

Modeling AutoDomainMine

Conditions Estimation Accuracy (%) 67.5% 85.7% 93.8%
Graph Estimation Accuracy (%) 69.2% 87.3% 94.6%
Conditions Estimation Time (seconds) 0.34 550 0.12
Graph Estimation Time (seconds) 0.32 525 0.15

estimation. The response time is around 0.1 second for each estimation, which is fairly consistent.
Since this is speedy, it indicates the high efficiency of the AutoDomainMine system.

Comparative Studies: There are comparative studies attempted with AutoDomainMine and
techniques such as naïve similarity search, domain-specific mathematical modeling, neural net-
works, and Bayesian classifiers. AutoDomainMine outperforms similarity search and mathemati-
cal modeling for estimation of graphs as well as conditions as seen in Table 8. These numbers are
averages obtained after more than 10 executions.

Regarding Bayesian classifiers, there is lack of prior information on probability estimates re-
quired therein due to which it is not feasible to proceed further with comparative evaluation.
Obtaining such data would entail another piece of contribution per se. Neural networks present a
black box due to which we cannot obtain paths for reasoning in order to conduct the estimation.
The same argument can be applied for deep learning based on neural models. In general, symbolic
approaches present some advantages over neural models and vice versa based on the nature of the
application. These are discussed in an ACM WSDM 2021 tutorial [50] where knowledge bases are
addressed in addition to deep learning. Our research in this article falls under the paradigm of sym-
bolic approaches that are more suitable when comprehensibility and explicability are desirable.

A brief discussion on the computational complexity of AutoDomainMine is presented herewith.
It incurs a one-time process of knowledge discovery that entails an integration of clustering and
classification, as well as a recurrent process of estimation that involves finding the closest match
with decision tree paths (for estimation of the graph, given the conditions), and finding the closest
match with representative graphs of clusters (for estimation of the conditions, given the graph).
Hence, these steps have complexities as follows.

Knowledдe Discovery (KD), one − time : KD Complexity = O (dkI ) +O (dloд2d ) (19)

Estimation o f Graph (EG ), recurrent : EGComplexity = O (H ), (20)

Estimation o f Conditions (EC ), recurrent : ECComplexity = O (k ), (21)

Complexity o f AutoDomainMine (ADM ) : ADMComplexity = O (dkI ) +O (dloд2d )

+R1 ×O (H ) + R2 ×O (k ). (22)

Here, d is the number of data samples, k is the number of clusters, I is the number of iterations
in clustering, H is the height of the decision tree, whereas R1 and R2 are the number of times the
graphs and conditions are estimated, respectively. In the knowledge discovery step, the complexity
of clustering is the standard value of O (dkI ) using a clustering algorithm such as k-means, while
the complexity of classification is another standard value O (dloд2d ) using decision tree induction
with an algorithm such as J4.8 or equivalent [39]. These add up to the complexity shown in
Equation (19). In the estimation of graphs, the tree path matching involves the complexity of
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searching the decision tree which is typically proportional to the depth (or height) of the tree,
i.e., H in this context as presented in Equation (20). In the estimation of conditions, the number of
graph comparisons is proportional to the number of clusters, which is equal to k here as in Equa-
tion (21). If R1 is the number of times the estimation of graphs is performed while R2 is the number
of the estimation of conditions is performed, that gives a total complexity of AutoDomainMine
as depicted in Equation (22). Here R1 and R2 are simple numbers that would maintain the same
complexity with respect to the order of magnitude O . Hence, on the whole, the complexity of
AutoDomainMine is linear/logarithmic. It does not attain quadratic or higher order complexity.

This is further corroborated by the fact that the estimation time values shown in Table 8 for
AutoDomainMine are very low. They are somewhat lower than those of Similarity Search (1/3 to
1/2 times lower) and distinctly lower than those of Mathematical Modeling (approximately 4,500
to 3,500 times lower). Hence, the complexity and efficiency of the AutoDomainMine framework
is commendable. Comparative studies are conducted with these 2 techniques as synopsized here.
Any more work on comparison could be a matter of future research.

There are studies conducted in the literature on real networks, some of which may seem
potentially relevant to this entire realm of scientific data mining. For example, considering
applications in domains such as Biology and Physics, Squartini et al. [56] propose an efficient
analytical approach based on maximum entropy to discover patterns in real networks. They
put forth a fast technique for procuring expectation values as well as standard deviations of
topological properties for binary, weighted networks that could be directed or undirected, without
requiring randomized variants of the real network to be produced. They conduct experiments
with H. pylori’s protein network, small-size directed food webs, geospatial systems such as
airport networks and interbank webs and so on. Their results indicate that maximally random
networks depict varied behaviors that can be rather sensitive to certain constraints. This research
aids identification of pertinent data in real networks. In more recent work, Liu et al. [35] develop
a generalized mechanics model (GMM) that can be useful to recognize the significance of
nodes in multi-faceted real networks. Their research stands out by harnessing local and global
data for effectively distinguishing vital nodes, such that it can be beneficial in several applications
spanning scientific domains. In their work, a novel approach is propounded that encompasses
network-based quality evaluation in an empirical manner in order to assess the technique of
spotting crucial nodes in real networks that can be highly complex. While such research on
real networks is deemed to be highly useful in various contexts, it does not appear directly
relevant to the specific problem we discuss in this article. Hence, we do not conduct comparative
studies with such approaches though they provide significant contributions. As stated earlier, any
further extensions and comparisons with respect to our research in this article can potentially be
addressed in future work as needed, based on further issues emanating from our research.

6.2.2 Impacts and Extensions. The AutoDomainMine approach along with its components of
LearnMet and DesRept have aroused interest among other researchers. Ever since some part of
this work has been published [63–67], it has received attention as evident from some publications.
We mention a few examples of the impacts here.

LearnMet Impacts: The fairly recent work of Eker [11] deals with clustering methodologies
in the area of material selections with a focus on quality. In this regard, they find the work on
LearnMet [65] useful since it proposes a technique for learning a domain-specific notion of dis-
tance useful in clustering by capturing adequate semantics. This is particularly important when
the quality of the clustering is critical as per the requirements of the domain. Hence, LearnMet
is interesting here in assisting with the application of material selection via its contributions to
clustering by distance-metric learning.
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Another piece of research that finds LearnMet worthy of mention is by Lei [30]. This research
is in the paradigm of big data in general with specific focus on recurring query processing. It
proposes a novel scalable framework called Redoop for recurring querying on big evolving data.
Among the many Vs of big data, the LearnMet technique touches upon the variety aspect and
arouses curiosity in works such as these.

Xiang et al. [69] cite LearnMet in their work on distance-metric learning in the generic Maha-
lanobis family of distances. Their research published in the Pattern Recognition journal proposes
a technique to learn such a metric for the purpose of clustering and classification. Since LearnMet
delves into different types of distance metrics including position-based, statistical and critical dis-
tances, and asserts the fact that the learned metric is useful as a notion of similarity in clustering,
it is found worthy of citation in this journal article that addresses Mahalanobis distance metric
learning.

DesRept Impacts: Arcas et al. [3] focus on research pertaining to acquiring general concepts
that depict a set of objects via the deployment of ontologies helpful in intelligent systems. They
find the DesRept approach interesting with respect to its DesCond component [64] that designs
representatives for sets of conditions in scientific experiments so as to preserve semantics with
different levels of detail. There can be an analogy drawn between DesCond and the entire concept
of ontology derivation and usage, significant in numerous applications within intelligent systems.
Researchers Martinez et al. [38] find the DesCond technique significant as well. They mention
it in their work in the Knowledge-Based Systems journal pertaining to centroid construction for
data with textual parameters emphasizing on semantically-grounded development. Since DesCond
deals with some plain text from input conditions of experiments and focuses on harnessing seman-
tics therein for constructing suitable representatives, it is cited in the given journal article addresses
textual data for building centroids.

Likewise, Chandra Shekar et al. [8] find DesRept useful in terms of its DesGraph component
[66]. They address the issue of knowledge discovery in the context of conducting computational
estimation in the domain of mechatronics taking into account with respect to aluminum alloys. In
their research, they address domain-specific mechatronics perspectives as well as graphical data.
Our work on representative design for graphical plots emerging from scientific experiments pro-
vides significant foundations here serve as the basis for data mining over the concerned graphical
data and deriving useful inferences for estimation in mechatronics.

AutoDomainMine Overall Impacts: Haris et al. [20] present interesting research in the over-
all area of optimization and data mining with the goal of decision-making as applicable to computer
applications and information systems in general. They refer to our work on the AutoDomainMine
system demonstration [67] where we present this as a tool for computational estimation based
on graphical data mining with its objectives entailing process optimization. For example, the es-
timation performed by AutoDomainMine can be useful in predicting concerned experimental pa-
rameters in advance so as to enhance the overall processes. Hence, our work is found useful in
decision-making to support process optimization.

It is notable that the AutoDomainMine system demo [67] has been cited in the Encyclopedia
of Iron, Steel, and Their Alloys published by Taylor and Francis [24]. This is edited by Totten et
al., author of a classic textbook useful in the overall Mechanical Engineering area [57]. The spe-
cific chapter that cites AutoDomainMine in this encyclopedia is by Hernández-Morales [24] and
focuses on the detailed analysis of scientific plots or curves obtained as the results from laboratory
experiments. In this respect, the AutoDomainMine system that actually uses such scientific plots
for conducting analyses in order to draw inferences to perform computational estimation is con-
sidered beneficial. Hence, we notice that AutoDomainMine is deemed impactful enough to receive
a mention in an encyclopedia.
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There is recent research in the realm of spatial clustering within the area of hierarchical mod-
eling by Khairullah et al. [28] at KU Leuven Belgium (among the top 50 universities world-
wide). This piece of research cites the overall AutoDomainMine approach from its initial AAAI
publication [63]. Our short paper therein attracts attention in terms of the manner in which it pro-
poses the harnessing of clustering and classification to automate learning strategies of scientists
with the aim of estimating process variables. Accordingly, it is advantageous in the broad realm
of spatial clustering with specific reference to data modeling for plasticity as mentioned in this
recent work [28]. These are some works that refer to AutoDomainMine and its components.

Discussion and Applications: Considering the above examples, it can be claimed that
AutoDomainMine and its components LearnMet and DesRept have received attention among
researchers in Computer Science as well as other domains. Consequently, our current journal
article narrates the big picture of AutoDomainMine along with the specific details of the con-
cerned techniques and their evaluation. This is the first journal article describing AutoDomain-
Mine elaborately, motivated by its overall reception and the impacts after its inception. We antici-
pate that this would be useful to numerous researchers and practitioners. It can serve as the basis
for the development of customized tools and applications in specific domains. It can also be use-
ful in fostering further multi-disciplinary research with contributions to data mining and related
fields.

Furthermore, studies in this area are ongoing including the development of suitable methodolo-
gies inspired by AutoDomainMine and its components. Regarding adaptation, techniques drawing
parallels with LearnMet have been designed by us in some interesting works. The FeaturesRank
method [62] has been proposed for learning to rank significant features from scientific images in
domains such as Nanotechnology and Bioinformatics and has been found beneficial to researchers
from departments such as Electrical Engineering and Biology. In recent research [10], we have
developed a technique known as MetChar for handwritten Chinese character recognition that ad-
dresses the interpretability aspect of distance metric learning among others. Analogous to Learn-
Met in graphical plots from scientific experiments, the MetChar approach builds upon components.
It addresses components in Chinese handwriting pertaining to aspects such as the longest vertical
stroke, the longest horizontal stroke, and so on in the writing of a character without requiring
additional details on its pinyin and English equivalents. The relative importance of components
is learned with different methods including classical greedy and exhaustive approaches as well as
a hybrid approach stated therein. This work makes contributions to Optical Character Recog-

nition (OCR) in an interpretable manner. It can be used for handwriting detection in scientific
fields as well as others involving calligraphic textual data that entails pictorial writing. Note that
Romanization via pinyin is not needed, and interpretability is facilitated.

Potential applications in various domains involving graphical plots and scientific images can
be considered based on suitable problem definitions, availability of data and needs of researchers.
Graphs analogous to those in AutoDomainMine are found in various fields. Examples are illus-
trated in Figure 21 herewith [2]. These are from Geoscience, depicting distance-time plots with
domain-specific aspects. Since we have ongoing research with colleagues in Earth and Environ-
mental Science, such data can provide inputs for investigatory studies on computational estima-
tion, modeling/simulation, data visualization, and mobile application (app) development. Other
examples of such graphs are in Figure 22 from the domain of Biology [18]. Such graphs contain
much semantics as evident from the plots and the associated captions. Techniques such as Learn-
Met can be suitably adapted here for preserving the semantics in simulation studies, pedagogical
systems, app development, and so on.

The impacts of our proposed framework can thus be further explored in such targeted appli-
cations. This would be in line with our erstwhile research collaborations that have already led
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Fig. 21. Examples of graphical plots in the domain of Geoscience [2].

Fig. 22. Left – Post Prandial Glycemic Response (PPGR) as defined by iAUC (incremental Area Under Curve)
with respect to blood glucose; Right – Categorization of medicines using fold change (a term describes how
much a quantity changes between an original and a subsequent measurement) in different conditions [18].
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to successful outcomes e.g., [25, 48]. Likewise, we are planning on working with colleagues in
Nanotechnology on related problems that stem from the research proposed in this article. One
such problem involves studying the nanostructure of titanium alloys based on machine learning
models [70]. In this process, approaches such as LearnMet that are used to learn domain-specific
notions of distance from graphical plots can be further adapted to learn notions of similarity for
images involving nanostructures. Some of this has been addressed by us in our approach Features-
Rank [62] mentioned herewith. Furthermore work in such area can lead to interesting applications
with real-world impacts including selection of lightweight alloys for dental implants, kneecaps,
and other applications. Such avenues of research constitute our ongoing work.

The overall usefulness of the proposed framework AutoDomainMine and its facets of LearnMet
and DesRept have already been noticed through citations of the work in the previous subsection
on “Impacts and Extensions”. We can summarize the following applications there.

• Clustering methods while choosing materials, e.g., [11].
• Query processing in a recurrent manner, e.g., [30].
• Distance-metric learning, e.g., [69].
• Ontology usage in intelligent systems, e.g., [3].
• Centroid construction for data, e.g., [38].
• Computational estimation in mechatronics, e.g., [8].
• Optimization in decision support, e.g., [20].
• Analysis of scientific plots, e.g., [2].
• Spatial clustering in data modeling, e.g., [28].

In general, we can list application areas for our own ongoing work based on the contributions of
this article. Some of this work can be pursued with colleagues in Earth and Environmental Science
analogous to [25, 48], and with researchers in Nanotechnology as in [70]. These application areas
are as follows.

• Parameter selection.
• Simulation tools.
• Intelligent tutors.
• Expert systems.
• Data visualization.
• App development.

Note, however, that we make a clear disclaimer here: the proposed framework can only be used
to guide applications such parameter selection, expert systems, and so on. The learning is clearly
heuristic and is not based on formulas that are guaranteed to work. The entire paradigm in this
work is heuristic. The word heuristic has Greek roots. It is derived from the word “heuriskein”
that somewhat translates as “to find out”. It is believed that Archimedes actually said “Heureka”
when he discovered the principle of flotation, and this later became the popular expression “Eu-
reka!” which means “I have found it”. Hence, heuristic paradigm typically refers to experience-
based techniques for problem-solving, learning, and discovery [39]. It is not always accompanied
by theorems and proofs. We do not provide theorems and proofs in this work. Yet, in the real
world, heuristics are often found to solve problems well and are often used in practice. This has
been found in our research in this article and in other works by our research teams. There are
indeed advantages and disadvantages of heuristic-based approaches, some of which are discussed
in the article [60] that addresses comparisons between mathematical and heuristic approaches for
scientific data analysis.
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7 RELATED WORK

7.1 Data Mining Techniques and their Integration with Suitable Applications

Rule-Based and Case-Based Approaches: Some domain-specific problems have been solved
by integrating rule-based and case-based approaches. For example, in the domain of law [44], rules
are laid down by the constitution and legal cases solved in the past are typically documented. In
dealing with a new case, a legal expert system works as follows. It applies rules relevant to the new
case and retrieves similar cases in the past to learn from experience. These approaches combined
can predict a more accurate solution to the new case, than either approach individually [44]. They
have been used for cases that involve text-based documents which is common in domains such as
law. However, it is not feasible to apply these to graphs found in our context. If for example, one
input condition differs between the old and the new case, then the knowledge about the differ-
ence of conditions is not sufficient to modify a graph from the old case as a solution for the new
one.

Classification and Association Rule Mining: Liu et al. propose an integrated framework
called associative classification that combines classification and association rule mining [34]. Clas-
sification aims to discover rules in the database that form a classifier. Association rule mining finds
all rules in the database with minimum support and confidence constraints. The proposed frame-
work focuses on mining a special subset of association rules called Class Association Rules

(CARs) [34]. This is useful in quantitative and categorical applications. However, in our context
since graphs are involved, the data is more complex and it does not seem feasible to apply associa-
tion rules considering frequent itemsets, minimum confidence, and minimum support. Clustering
is a more intuitive method of dealing with graphs because it groups them based on their similarity.

Association Rules and Clustering: An Association Rule Clustering System (ARCS) is
proposed which clusters 2-dimensional association rules in large databases [53]. It clusters asso-
ciation rules of the form A∧B ⇒ X where Left Hand Side (A,B) are quantitative and Right Hand
Side (X) categorical, e.g., (age = 40) ⇒ (ownHome = yes) and (age = 41) ⇒ (ownHome = yes)
are clustered as: (40 ≤ age ≤ 42) ⇒ (ownHome = yes). They define segmentation as the collec-
tion of all clustered association rules for a specific value X. Their goal is to find the smallest num-
ber of clusters that cover association rules in a segmentation. However, their requirements are
that the LHS is numeric and the RHS is categorical. These are not applicable to our problem which
involves a significant amount of graphical data.

Deep Learning and Transfer Learning: The paradigm of deep learning with neural models
such as CNN and others [17, 29] is sometimes integrated with transfer learning where knowledge
discovered from one data set can be transferred to another often bigger data set, typically bigger
than the original. Computer vision models such as VGG-16, VGG-19 [54], and ResNet-101 [21]
are often utilized with transfer learning in applications involving imagery. For example, classifica-
tion of COVID-19 versus pneumonia symptoms from online chest X-ray data to distinguish them
from X-rays of healthy patients is conducted [26] with high detection accuracy using a few images
from big data in a benchmark open source. Other computer vision models are used for studies in
pathological brain image classification [14] to aid medical diagnosis with successful results. Deep
learning resonates with biological foundations of our brain and has a plethora of applications
spanning numerous domains with research on advancing its capabilities [12, 16, 42, 46]. However,
in our work in this article, the fundamental concept of neural models itself is not quite the best
choice since it is important for us to reason about causes of similarities and differences among the
concerned images (graphs) whereas a neural network is typically a black box. Reasoning in our
work is achieved more appropriately via decision trees having clear paths for comprehensibility,
hence leading to the estimation of graphical plots and experimental conditions as per the problem
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requirements. In fact, the advantages of symbolic models over neural models and vice versa are
surveyed in a recent tutorial addressing deep learning as well as knowledge bases [50]. Aspects
such as explicability are mentioned here as advantages of symbolic models. As regards transfer
learning, we consider that to be future work. Knowledge discovered from our work here can po-
tentially be transferred to other tasks of a similar nature. While some of this work has been found
useful by others already, there is scope for further research.

Similarity Search, Regression, and Bayesian Classifiers: A simple similarity search can
potentially be executed on any data to obtain results useful in predictive analytics. Methods
such as nearest neighbors in high-dimensional spaces [22] can be used in similarity search over
graphical plots and other data. Techniques in the area of mathematics and statistics, such as lin-
ear/polynomial regression can be used for estimation [43]. Some of these encompass classical
paradigms in use for several years [19, 39]. In our work, we follow the fundamental concept of
similarity search and regression-based learning in some of our sub-processes since much of our
data can be mapped to numeric variables. This can also be considered analogous to the fundamen-
tals of backpropagation learning in ANN [52]. However, we step beyond such work in order to
adequately design methodologies specific to scientific domains involving graphical data in experi-
ments. We address several concepts such as harnessing domain semantics in clustering, capturing
appropriate cluster representatives for classification, and automating learning methods of scien-
tists in areas potentially relevant to estimation [2, 37, 55, 57, 59]. Likewise, models based on the
fundamental notion of Bayes Theorem with probabilistic concepts could perhaps be used in such
type of work [39]. However, these would require the calculation of probability values for the re-
spective instances and we do not have prior data on that due to which such models alone would
not be feasible. Furthermore, research on Bayesian classifiers in this context would entail a dif-
ferent set of contributions. Similar arguments may be applicable to other techniques that arouse
the readers’ interests. Upon a detailed study of various techniques, we found it viable to propose
a method based on the integration of clustering and decision tree classification in such a manner
as to automate learning strategies of scientists for computational estimation in scientific domains.
This unique method of automation to mimic scientists’ learning strategies along with related is-
sues such as domain semantics has been found interesting in the Artificial Intelligence and Data
Science communities [63–67].

Dynamical Clustering: A novel dynamical approach has been recently proposed by Li et al.
[31] for clusters of complex networks so as to ascertain optimal cluster configuration convergence
by detecting configurations promoted by key leaders in communities. Considering the optimiza-
tion of a quality function, nodes are allotted to clusters driven by some precomputed leaders that
are determined by analyzing a 2-stage game in which leader group members make contributions
to the follower group. This quality optimization serves the purpose of convergence to the optimal
situation within a limited number of iterations. Their proposed approach achieves high efficiency,
in particular for sparse networks, such that its complexity is almost linear. This approach is found
to be highly useful in e-commerce to detect important clusters and optimize the behaviors. How-
ever, based on the experimentation and applications discussed in this work, it seems to be mainly
relevant to social networks and e-commerce, e.g., users buy products since these were promoted
by their friends and hence it is beneficial to investigate the hidden user relationships in order to
foster e-commerce. It would be useful for clusters or communities in Amazon, Facebook, Twit-
ter, and so on. Our work in this article relates more specifically to scientific data mining where
we do not have such communities based on leaders and followers. Hence, these specific tech-
niques, though very interesting, would not be highly feasible in our context. We propose other
methods.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.



Computational Estimation by Scientific Data Mining with Classical Methods 86:45

7.2 Distance Metric Learning and Feature Selection for Complex Data

Metrics for Graphical and Multi-media Data: An Approximate Neighborhood Function

(ANF) for comparison is proposed by researchers [45] such that it focuses on a very fast scal-
able method for mining, however, compromising somewhat on accuracy. For our goals, accuracy
is very important. Chen and Ozsu [7] compare different metrics for similarity-based retrieval of
time-series data. However, they do not emphasize domain semantics, and do not learn a combined
metric involving several individual metrics. During our early studies in this area prior to propos-
ing LearnMet, we conducted baseline experiments with similarity-based retrieval. Upon discussion
with domain experts we found that there were anomalies in clustering, e.g., an experiment with
and without a certain critical region were placed in the same cluster [55, 65]. This had adverse ef-
fects on accuracy and interpretability. Hence, we devised a technique for domain-specific distance
metric learning.

Keim et al. [27] present an overview of various distance metrics for similarity search useful
in multi-media databases. They focus on the content-based retrieval of similar objects. However,
they do not propose the learning of a single distance metric that combines various components.
Nor do they define the concept of critical distance that is extremely important in our targeted
domains. Our focus is on the detailed analysis of specific graphs, as opposed to a general search
over different categories of data.

Neural Networks, SVM, and Ensemble Learning: Neural networks could possibly be used
for distance metric learning [39, 52]. However, our data is such that the distance between pairs
of plots is not known in advance for supervised learning due to which we prefer to go with a
clustering-based approach (unsupervised learning) in order to learn a suitable distance metric.
Similar issues hold for other learning techniques such as SVM, i.e., Support Vector Machines

(SVM) [39] since we do not have positive and negative training samples available in advance as
required for learning. Zhou et al. [71] propose an approach for ensemble neural networks. They
train a number of neural networks at first, then assign random weights to them and employ a
genetic algorithm to evolve the weights to characterize the fitness of the neural network in consti-
tuting an ensemble. Although, we do not use neural networks, each distance metric in our problem
could possibly be viewed as a learner, thus in combining them we get an ensemble. We can thus
draw some analogy here in our process of distance metric learning in LearnMet. There may be
scope for potential improvements during the adaptation of our approaches in other domains. This
could leverage the use of deep unsupervised learning methods that we have not heretofore ex-
plored. This is an aspect of future work that calls for further study as needed.

Dimensionality Reduction in Complex Data: There is a vast body of research in the area
of dimensionality reduction especially as data heads towards big data. In addition to classical ap-
proaches such as Principal Components Analysis and Singular Value Decomposition [19, 39], re-
cent deep learning advances such as Autoencoders [17, 29] can be useful in dimensionality reduc-
tion. Other works include Chernoff dimensionality reduction where Fischer and Fukunaga Koontz
transforms can be harnessed [49]. In our work in this article, we have deployed a fundamental
approach for dimensionality reduction via Fourier transforms as found useful in some applica-
tions in the literature [1]. This has been considered suitable in our work with respect to our early
experiments conducted. However, if any other concerned domain of deployment has bigger data
or entails data of different types, the adequate dimensionality reduction method can be selected
accordingly. This can be dealt with in an application-oriented manner, addressing the respective Vs
of the big data such as volume, velocity, variety, and veracity. If the data in the concerned domain
is small data, there may not be the need for dimensionality reduction. Hence, this is applicable
with reference to context.
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Streaming Feature Selection for Multi-Label Data: Recently, streaming feature selection
methods have been devised by Paul et al. [47] for multi-label data such that the multiple labels
therein are reduced to a lower dimensional space. In this approach, the authors first categorize
similar labels together and thereafter conduct the selection in order to improve the quality as well
as efficiency. They deploy a multi-objective rendering of the cuckoo search approach in order to
choose the optimal feature set by proposing a new objective function, and propound 2 adaptations
of the streaming feature selection method. One of these is applicable to the features appearing
individually while the other one is suitable when the features are found to be entering as a batch.
In order to enhance the efficacy of attaining feature-relevance as per the class labels, they harness
label co-relation to categorize related labels. They utilize different multi-label datasets including
those from biology, audio, and social media for testing their streaming feature selection methods,
and obtain effective results. While this work is impressive, it is mainly pertinent to multi-label
streaming data. In our work, the data is not of that nature. Hence, we do not require these methods.
Yet, they are notable advances in the field and are worthy of mention.

Feature Level Data Fusion: There is an interesting concept known as feature level fusion,
whereby feature sets that are produced from various algorithms on either one common dataset or
multiple datasets are joined or fused together such that they depict the concerned data. In this area,
there has been contemporary research on linear fusion of numerous signal matrices encompassing
noise wherein the given features can be stored as eigenvectors. An algorithm called EigFuse [32]
is proposed that helps to accurately predict the latent signal eigenspace. This enables optimization
despite various noise levels. The authors encapsulate random matrix theory within their solution
and thereby obtain outputs based on the product of features from multiple matrices. They achieve
high efficiency in this process as corroborated by their experiments comparing their work with
other approaches in the literature that deal with several noise levels. This research is very useful
in cases where such fusion is advisable, as shown in the experimentation across a variety of fields
including health monitoring, human activity detection, remote sensing, and image segmentation.
With respect to our work, we do not deem such fusion as being imperative so far, given our overall
problem definition, data sources and the targeted applications. At a later juncture, if we require this
type of fusion while addressing some future issues emerging from our work, we would certainly
consider the potential deployment of such approaches.

7.3 Designing Suitable Representatives in Various Contexts

Design of Representative Objects for Databases and Web Information: Some researchers
[4] address similarity search in database systems by visualizing hierarchical clustering structure of
a database of objects to speed up the search. They consider reachability plots to extract significant
clusters in hierarchical manner along with suitable cluster representatives. Their constraint is that
the representative must be a real object of the data set. We do not have this constraint, thus giving
us the freedom to consider alternative design strategies.

Other interesting work [23] involves building representatives for web information. They have
user-interfaces for web-based applications. They use an approach of image rating based on data
quality in terms of color, clarity, and frequency of access by targeted users. The image with the
highest rating is the representative image for a given group. They employ manual selection of
representatives by groups of targeted users. Their methods involve considerable user-intervention
while actually building the representatives which is not desirable in our problem. Moreover, in our
work the data quality per se of individual graphs in the cluster is quite similar.

Evaluation of Measures for Summarization and Clustering: Nomoto et al. propose text
summarization based on exploiting diversity concepts in text [41]. They propose an information-
centric approach where text summaries are judged by how well they represent source documents
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in retrieval and text categorization. They use the MDL principle [51] to determine the number
of clusters needed for text summarization. Their MDL encoding takes into account captures the
probability of occurrence of words, the number of parameters, and the number of data objects.
However, they neither construct nor evaluate different types of representatives.

Another piece of research [5] utilizes the MDL principle to evaluate how a clustering al-
gorithm aids a classification algorithm. They consider a distribution over (X ,Y ) where X is
the input and Y is a hidden label. The assumption is that Y can take one of L possible values
where L > 1. If c is the number of clusters, r is the number of initializations of the clustering al-
gorithm, and s is the number of clustering algorithms considered, the MDL encoding is given by:
Lenдth = c logL + log r + log((c − 1)c ) + log s . Minimizing this length gives the best set of clus-
ters. However, they only evaluate clustering in the context of classification. They do not actually
design cluster representatives and choose the best one for each cluster to aid classification through
proposing objective evaluation measures capturing subjectivity in domain-specific contexts.

Similarity Measures for Categorical Data: An algorithm called Iterated Contextual Dis-

tances (ICD) is proposed to learn distances between attributes based on such inter-dependencies
[9]. The ICD algorithm starts with an arbitrary distance function between attributes to derive a
vector representation for rows, which gives a vector representation for sub-relations. The sub-
relation distance function is used to get a new distance value for attributes. Starting with random
initial values, ICD converges to stable distances between attributes. However, the type of inter-
dependencies that they define do not exist in our datasets.

Learnable similarity measures for strings are presented [6] based on SVM and Expectation

Maximization (EM). These measures are applied for duplicate detection. They deal with natu-
ral language text strings and the involved semantics, while our data is different. We work with
domain-specific input conditions that involve a mixture of attributes such as numeric, categorical,
and ordinal. We do not deal with strings of text whose meaning has to be interpreted in a broader
natural language context. Moreover, in our context domain knowledge has already been derived
from decision trees and can directly be applied.

Communities for Partially Observable Data: Community structures can often represent
significant parts of networks since they help to understand the topology and functions of the
concerned networks. The detection of such representative communities can be rather challenging
when the data is only partially observable, e.g., when social network data is built from missing
nodes and edges (which occurs frequently). Tran et al. [58] focus on the problem of finding over-
lapping community structures in such incomplete networks such that these communities can ad-
equately represent the network topology and functions. A novel approach called KroMFac [58] is
proposed to perform community detection through regularized nonnegative matrix factorization
via the adaption of the Kronecker graph model. In their approach, they predict the missing part
of the network, typify and choose influential nodes by ranking, insert them within the prevailing
graph, and then unveil the community structures by likelihood maximization of the given graph,
thus achieving optimization. KroMFac is evaluated over real as well as synthetic networks, and
proves to be highly effective compared to the state-of-the-art. This approach seems really feasible
in cases where there is missing, hidden, and partially observable data. In our research within this
article, the data is fully observable. Hence, such approaches are not essential for our work. Such
work stands out in the context of the overall literature in the area, due to which we mention it
herewith.

Likewise, there is much research in the areas pertaining to our article and the body of research
is ever-growing with the demands of big data, deep learning, and domain-specific applications. We
have hereby abridged a few pertinent studies as broadly applicable to our work with the disclaimer
that there might be other works potentially relevant, and that any technique explored or surveyed
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herewith probably arouses curiosity in the area of another technique. More work in related areas
is ongoing with further research and is expected to provide even better advances in the near future
and in the long run.

8 CONCLUSIONS

This research entails a computational estimation approach for scientific domains called
AutoDomainMine based on a framework that integrates clustering and classification to automate
a typical learning strategy of scientists. AutoDomainMine performs clustering followed by clas-
sification to discover knowledge from existing scientific experimental data. Graphs from existing
experiments are clustered using a suitable clustering algorithm. Decision tree classification is used
to learn clustering criteria from which a representative pair of input conditions and graph is de-
signed per cluster. Decision trees and representative pairs are the knowledge discovered from
existing experiments, used for estimation. Given the input conditions of a new experiment, the
closest path of the decision tree is traced to estimate its cluster. The representative graph of that
cluster is proffered as the estimated graph for the experiment. Given a desired graph, the clos-
est matching representative graph is found and the corresponding conditions are tendered as the
estimated conditions to obtain the given graph.

AutoDomainMine has been evaluated rigorously using real data with the holdout strategy as
well as user surveys. It gives estimation accuracy of around in the range of 92%–96%, approxi-
mately. It performs the estimation in distinctly less time than a laboratory experiment, does not
require manual intervention during estimation, and adheres well to the needs of interpretability
and explicability. Applications of AutoDomainMine include parameter selection, simulation tools,
intelligent tutors, and expert systems. The main contributions of this work are as follows.

(1) The AutoDomainMine Learning Strategy for Computational Estimation
• Proposing an integrated framework of clustering and decision tree classification for

estimation, thereby automating learning methods of scientists.
• Suitably adapting clustering techniques originally developed for points to graphical

curves.
• Developing search methods for approximate matching over decision trees for

estimation.
• Implementing a system for computational estimation using the AutoDomainMine

approach.
• Conducting evaluations with real data catering to various targeted applications.

(2) LearnMet for Domain-Specific Distance Metric Learning
• Assigning distance components with basic domain knowledge.
• Defining a suitable notion of error for graphs.
• Proposing appropriate weight adjustment heuristics.

(3) DesRept for Designing Semantics-Preserving Representatives
• Deriving a notion of distance for sets of conditions.
• Developing strategies to design candidate representatives.
• Proposing encodings for comparison of candidates to find winners.

As the contributions of this work are listed, it is important to make a disclaimer here. The
research presented in this article models a type of hypothesis generation and “learning” that sci-
entists often accomplish, however, it does not attempt to truly mimic the creative human task of
generating new explanatory knowledge. In other words, the proposed techniques here certainly do
not automate scientific discovery. The essence of scientific discovery entails deeply human creative
tasks. The work in this article therefore does not enter the domain of AGI, i.e., Artificial General
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Intelligence. Instead, it simply provides useful insights into learning methods already used by sci-
entists and thereby helps to achieve computational estimation via predictive analysis. Note that
while there are many advances in related fields, our research described in this article provides the
2 cents to the area of computational estimation in scientific domains by automating some learning
methods of scientists via an integrated framework based on data mining techniques.

While the advantages of this research have been touched upon at various places within this
article, it is also important to briefly dwell upon its disadvantages and limitations. One of the main
issues is the fact that AutoDomainMine needs data from real laboratory experiments in order to
proceed with the knowledge discovery and estimation. In the absence of such data, the computa-
tional estimation cannot be performed. This is in contrast with mathematical models where simu-
lations can be conducted using the formulas available to model the concerned processes. This is one
of the advantages of mathematical modeling over AutoDomainMine. However, the mathematical
models needed to perform simulations may not always be available, and in many cases, they take
too long to execute. In such situations, the heuristic estimations provided by AutoDomainMine
would be useful. Another limitation of this work is that some interaction with domain experts is
needed, e.g., in the process of assigning suitable components to distance metrics for the graphi-
cal plots, and in conducting the evaluation with respect to targeted applications to ascertain the
effectiveness of the framework in order to release it for usage. This is in contrast with similarity
search that can proceed without any domain expert intervention, and hence that is an advantage of
similarity search over AutoDomainMine. However, much of this interaction in AutoDomainMine
is just a one-time process, not required recurrently for performing computational estimation. One
more disadvantage of this overall work is that we have conducted comparative evaluations with
just a few techniques such as similarity search and mathematical modeling. This is done since
they are deemed the most relevant techniques with respect to the specific problem defined in our
research. Moreover, since the AutoDomainMine framework has been evaluated in the context of
targeted applications and has lived up to user expectations, this is considered sufficient as of now.
Furthermore, the impacts of the work given its current state of evaluations are already seen in
the subsection on “Impacts and Extensions”. As this work is extended further, we would consider
including further comparative studies on our roadmap as needed.

This research has tremendous potential for future work. Some of the specific issues we would
address in further research are as follows:

• We aim to investigate the specific adaptation of AutoDomainMine, LearnMet, and DesRept
in other domains such as Geoscience [2], Nanotechnology [33, 70], and Electrical Engi-
neering where estimation techniques in general [59] are useful. We have interacted with
scientists with respect to outlining sub-problems where some of our research would be
beneficial.

• We would consider developing customized tools to address some targeted applications here,
e.g., Expert Systems and Intelligent Tutors. One such system called QuenchMiner [61] has
already been developed as an Expert System in the Heat Treating of Materials. Likewise,
other tools can be developed that would cater to the specific needs of users for other applica-
tions. Pedagogy would be an important aspect here that we would address while developing
Intelligent Tutors.

• We could potentially explore neural networks and deep learning [17, 29, 54] in this context,
especially in domains where there is a huge amount of training data available as required
for such learning. Since these paradigms are used in several data mining studies, it would
be interesting to investigate them with respect to the research sub-problems such as those
outlined in this article.
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• We can probably head towards expanding this general avenue by building knowledge bases
that integrate commonsense knowledge [50] along with domain-specific knowledge, and
consider potential use cases in the context of the overall research here.

Other future work includes possibly investigating transfer learning with respect to our research,
considering the development of mobile applications (apps) that disseminate our findings, interact-
ing with other professionals to build customized tools based on pertinent work here, and pursuing
cross-disciplinary avenues indulging in educational goals. The AutoDomainMine approach and its
components can be usable and adaptable in various domains that involve graphical data, especially
scientific fields. This article can be of interest to the scientific databases, data mining, and machine
learning communities, as well as multi-disciplinary professionals working on R&D and education
in facets of computational science.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami. 1983. Efficient similarity search in sequence databases. In Proceedings of the

4th International Conference on Foundations of Data Organization and Algorithms. 69–84.

[2] W. Anderson, J. Lorenzo-Trueba, and V. Voller. 2019. A geomorphic enthalpy method: Description and application to

the evolution of fluvial-deltas under sea-level cycles. Computers & Geosciences Journal 130, (2019), 1–10.

[3] F. M. Arcas. 2012. Obtaining General Concepts that Represent a Set of Objects using Ontologies. Master’s Thesis. Master

on Computer Security and Intelligent Systems, Universitat Rovira i Virgili, Catalan, Spain.

[4] S. Brecheisen, H. Kriegel, P. Kroger, M. Pfeifle, and M. Viermetz. 2003. Representatives for visually analyzing cluster

hierarchies. In Proceedings of the 4th International Workshop on Multimedia Data Mining.

[5] A. Banerjee and J. Langford. 2004. An objective evaluation criterion for clustering. In Proceedings of the 10th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 515–520.

[6] M. Blenko and R. Mooney. 2003. Adaptive duplicate detection using learnable string similarity measures. In Proceed-

ings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 39–48.

[7] L. Chen and M. Tamer Ozsu. 2003. Similarity-based Retrieval of Time-Series Data using Multi-Scale Histograms. Tech-

nical Report CS-20003-31. University of Waterloo, Canada.

[8] D. V. Chandra Shekar, V. Sesha Srinivas, and J. Pratap Reddy. 2010. Graphical data mining and knowledge discovery

for computational estimation in AI alloys. International Journal of Mechatronics and Manufacturing Systems 3, 1–2

(2010), 131–143. DOI:https://doi.org/10.1504/IJMMS.2010.029885

[9] G. Das and H. Mannila. 2000. Context-based similarity measures for categorical databases. In Proceedings of the Eu-

ropean Conference on Principles of Data Mining and Knowledge Discovery. 201–210.

[10] B. Dong, A. S. Varde, D. Stevanovic, J. Wang, and L. Zhao. 2019. Interpretable distance metric learning for handwritten

chinese character recognition. IEEE DaraCom. arXiv:2103.09714.

[11] A. A. Eker. 2015. Clustering techniques for material selections. In Proceedings of the International Quality Conference.

77–80.

[12] D. Garcia-Gasulla, F. Parés, A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta, U. Cortés, and T. Suzumura. 2018. On the

behavior of convolutional nets for feature extraction. Journal of Artificial Intelligence Research 61, 1 (2018), 563–592.

[13] M. Gangopadhyaya, P. Mukherjee, and B. Gupta. 2009. The resonant frequency optimization of aperture-coupled

microstrip antenna using particle swarm optimization algorithm. In Proceedings of the Applied Electromagnetics Con-

ference. 1–4.

[14] T. K. Gandhi. 2019. Automated brain image classification based on VGG16 and transfer learning. In Proceedings of the

International Conference on Information Technology. 94–98.

[15] R. Gheorghiu and K. Van Lehn. 2008. XTutor: An intelligent tutor system for science and math based on excel. In Pro-

ceedings of the International Conference on Intelligent Tutoring Systems. Lecture Notes in Computer Science, Springer,

Berlin. 5091. DOI:https://doi.org/10.1007/978-3-540-69132-7_98

[16] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. 2016. Region-based convolutional networks for accurate object

detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 1 (2016), 142–158.

[17] I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep learning. MIT Press. ISBN 978–026203561.

[18] A. Gupta, P. Gautam, K. Wennerberg, and T. Aittokallio. 2020. A normalized drug response metric improves accuracy

and consistency of anticancer drug sensitivity quantification in cell-based screening. Communications Biology 3, 1

(2020), 1–12.

[19] J. Han and M. Kamber. 2001. Data mining: Concepts and techniques. Morgan Kaufman Publishers, San Francisco,

California.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.

https://doi.org/10.1504/IJMMS.2010.029885
https://doi.org/10.1007/978-3-540-69132-7_98


Computational Estimation by Scientific Data Mining with Classical Methods 86:51

[20] N. A. Haris, M. Abdullah, A. T. Othman, and F. A. Rahman. 2014. Optimization and data mining for decision making.

In Proceedings of the 2014 World Congress on Computer Applications and Information Systems. 1–4. DOI:https://doi.

org/10.1109/WCCAIS.2014.6916587

[21] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the 2016

IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[22] A. Hinneburg, C. Aggarwal, and D. Keim. 2000. What is the nearest neighbor in high dimensional spaces. In Proceed-

ings of the 26th International Conference on Very Large Data Bases. 506–515.

[23] J. Helfman and J. Hollan. 2001. Image representations for accessing and organizing web information. In Proceedings

of the SPIE International Society for Optical Engineering Internet Imaging II Conference. 91–101.

[24] B. Hernández-Morales. 2012. Cooling: Curve Analysis. Encyclopedia of Iron, Steel, and Their Alloys. (Eds.). R. Colás, G.

E. Totten, Taylor & Francis Group, 1st edition. CRC Press. Boca Raton, FL.

[25] D. Karthikeyan, S. Shah, A. S. Varde, and C. Alo. 2020. Interactive visualization and app development for precipitation

data in Sub-Saharan Africa. In Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference.

302–308.

[26] D. Karthikeyan, A. S. Varde, and W. Wang. 2020. Transfer learning for decision support in Covid-19 detection from a

few images in Big Data. In Proceedings of the IEEE International Conference on Big Data 2020. 4873–4881.

[27] D. Keim and B. Bustos. 2004. Similarity search in multimedia databases. In Proceedings of the 20th International Con-

ference on Data Engineering. 873–874.

[28] M. Khairullah, J. Gawad, D. Roose, and A. Van Bael. 2017. Spatial clustering strategies for hierarchical multi-scale

modelling of metal plasticity. Modelling & Simulation in Materials Science & Engineering Journal 25, 07 (2017), 4003.

[29] Y. LeCun, Y. Bengio, and G. E. Hinton. 2015. Deep learning. Nature Journal 521, 7553 (2015), 436–444.

[30] C. Lei. 2015. Recurring Query Processing on Big Data. PhD Thesis. Department of Computer Science, WPI. MA.

[31] H. J. Li, Z. Bu, Z. Wang, and J. Cao. 2020. Dynamical Clustering in Electronic Commerce Systems via Optimization

and Leadership Expansion. IEEE Transactions on Industrial Informatics 16, 8 (2020), 5327–5334.

[32] H. J. Li, Z. Wang, J. Cao, J. Pei, and Y. Shi. 2020. Optimal estimation of low-rank factors via feature level data fusion of

multiplex signal systems. IEEE Transactions on Knowledge and Data Engineering. TKDE. DOI:https://doi.org/10.1109/

TKDE.2020.3015914.

[33] Y. Li, X. Wang, J. Liang, K. Wu, L. Xu, and J. Wang. 2020. Design of a high performance zeolite/polyimide composite

separator for lithium-ion batteries. Polymers 12, 4 (2020), 764. DOI:http://dx.doi.org/10.3390/polym12040764

[34] B. Liu, W. Hsu, and Y. Ma.1998. Integrating classification and association rule mining. In Proceedings of the 4th Inter-

national Conference on Knowledge Discovery and Data Mining. 80–86.

[35] F. Liu, Z. Wang, and Y. Deng. 2020. GMM: A generalized mechanics model for identifying the importance of nodes in

complex networks. Knowledge Based Systems 193, C (2020), 105464.

[36] Q. Lu, R. Vader, J. Kang, and Y. Rong. 2002. Development of a computer-aided heat treatment planning system. Heat

Treatment of Metals 29, 3 (2002), 65–70.

[37] M. Maniruzzaman, J. Chaves, C. McGee, S. Ma, and R. Sisson Jr. 2002. CHTE quench probe system: A new Quenchant

characterization system. In Proceedings of the International Conference on Frontiers in Design and Manufacturing. 13–

17.

[38] S. Martinez, A. Valls, and D. Sánchez. 2012. Semantically-grounded construction of centroids for datasets with textual

attributes. Knowledge-Based Systems 35, (2012), 160–172.

[39] T. Mitchell. 1997. Machine Learning. WCB McGraw Hill.

[40] V. N. Nair. 1992. Taguchi’s parameter design: A panel discussion. Technometrics 34, 2 (1992), 127–161.

[41] T. Nomoto and Y. Matsumoto. 2001. A new approach to unsupervised text summarization. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 26–34.

[42] S. Ogden, X. Kong, and T. Guo. 2021. PieSlicer: Dynamically improving response time for cloud-based CNN inference.

In Proceedings of the ACM/SPEC International Conference on Performance Engineering. 249–256.

[43] J. Petrucelli, B. Nandram, and M. Chen. 1989. Applied Statistics for Engineers and Scientists. Prentice Hall.

[44] K. Pal and J. Campbell. 1997. An application of rule-based and case-based reasoning within a single legal knowledge-

based system. The Data Base for Advances in Information Systems 28, 4 (1997), 48–63.

[45] C. Palmer, P. Gibbons, and C. Faloustos. 2002. ANF: A fast and scalable tool for data mining in massive graphs. In

Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[46] G. Pang, L. Cao, and C. Aggarwal. 2021. Deep learning for anomaly detection: Challenges, methods, and opportunities.

In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 1127–1130.

[47] D. Paul, R. Kumar, S. Saha, and J. Mathew. 2021. Multi-objective cuckoo search-based streaming feature selection for

multi-label dataset. ACM Transactions on Knowledge Discovery from Data 15, 6 (2021), Article No. 93, 1–24.

[48] M. Pawlish, A. Varde, S. Robila, and A. Ranganathan. 2014. A call for energy efficiency in data centers. SIGMOD Record

43, 1 (2014), 45–51.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.

https://doi.org/10.1109/WCCAIS.2014.6916587
https://doi.org/10.1109/WCCAIS.2014.6916587
https://doi.org/10.1109/TKDE.2020.3015914
https://doi.org/10.1109/TKDE.2020.3015914
http://dx.doi.org/10.3390/polym12040764


86:52 A. S. Varde

[49] J. Peng, G. Seetharaman, W. Fan, and A. Varde. 2013. Exploiting fisher and fukunaga-koontz transforms in chernoff

dimensionality reduction. ACM Transactions on Knowledge Discovery in Data 7, 2 (2013), 1–25.

[50] S. Razniewski, N. Tandon, and A. Varde. 2021. Information to Wisdom: Commonsense knowledge extraction and

compilation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 1143–1146.

Retrieved from https://dl.acm.org/doi/10.1145/3437963.3441664.

[51] J. Rissanen. 1987. Stochastic complexity and the MDL principle. Econometric Reviews 6, 1 (1987), 85–102.

[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Parallel distributed processing: Explorations in the microstruc-

ture of cognition, Vol. 1. Learning Internal Representations by Error Propagation. MIT Press, Cambridge, MA. 318–362.

[53] A. Swami, B. Lent, and J. Widom. 1997. Clustering association rules. In Proceedings of the 13th International Conference

on IEEE ICDE, 220–231.

[54] K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. ICLR.

arXiv:1409.1556.

[55] R. Sisson, Jr. M. Maniruzzaman, and S. Ma. 2004. Quenching: Understanding, controlling and optimizing the process.

In Proceedings of the International Seminar of the Center for Heat Treating Excellence. Metal Processing Institute, MA.

[56] T. Squartini and D. Garlaschelli. 2011. Analytical maximum-likelihood method to detect patterns in real networks.

New Journal of Physics 13, 8 (2011), 083001.

[57] G. Totten, C. Bates, and N. Clinton. 1993. Handbook of Quenchants and Quenching Technology. ASM International.

[58] C. Tran, W. Y. Shin, and A. Spitz. 2022. Community detection in partially observable social networks. ACM Transac-

tions on Knowledge Discovery from Data 16, 2 (2022), Article No. 22, 1–24.

[59] G. A. Tsihrintzis and C. L. Nikias. 1996. Fast estimation of the parameters of alpha-stable impulsive interference. IEEE

Transactions on Signal Processing 44, 6 (1996), 1492–1503.

[60] A. S. Varde, S. Ma, M. Maniruzzaman, D. C. Brown, E. A. Rundensteiner, and R. D. Sisson Jr. 2008. Comparing math-

ematical and heuristic approaches for scientific data analysis. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing 22, 1 (2008), 53–69.

[61] A. Varde, M. Maniruzzaman, E. Rundensteiner, and R. Sisson Jr. 2003. The QuenchMiner expert system for quenching

and distortion control. In Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface

Engineering Congress. 174–183.

[62] A. Varde, E. Rundensteiner, G. Javidi, E. Sheybani, and J. Liang. 2007. Learning the relative importance of features in

image data. In Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop. 237–244.

[63] A. Varde, E. Rundensteiner, C. Ruiz, D. Brown, M. Maniruzzaman, and R. Sisson Jr. 2006. Integrating clustering and

classification for estimating process variables in materials science. In Proceedings of the 21st National Conference on

Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference.

[64] A. Varde, E. Rundensteiner, C. Ruiz, D. Brown, M. Maniruzzaman, and R. Sisson Jr. 2006. Designing semantics-

preserving cluster representatives for scientific input conditions. In Proceedings of the 2006 ACM CIKM International

Conference on Information and Knowledge Management. 706–717.

[65] A. Varde, E. Rundensteiner, C. Ruiz, M. Maniruzzaman, and R. Sisson Jr. 2005. Learning semantics-preserving distance

metrics for clustering graphical data. In Proceedings of the 6th International Workshop on Multimedia Data Mining.

107–112.

[66] A. Varde, E. Rundensteiner, C. Ruiz, M. Maniruzzaman, and R. Sisson Jr. 2005. Effectiveness of domain-specific cluster

representatives for graphical plots. In Proceedings of the ACM SIGMOD Conference,on IQIS Workshop.

[67] A. Varde, E. Rundensteiner, and R. Sisson Jr. 2007. AutoDomainMine: A graphical data mining system for computa-

tional estimation. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. 1103–

1105.

[68] Q. C. Vega, C. A. Worby, M. S. Lechner, J. E. Dixon, and G. R. Dressler. 1996. Glial cell line-derived neurotrophic factor

activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. National Academy of Sciences 93, 20

(1996), 10657–10661.

[69] S. Xiang, F. Nie, and C. Zhang. 2008. Learning a Mahalanobis distance metric for data clustering and classification.

Pattern Recognition Journal 41, 12 (2008), 3600–3612.

[70] Z. Yang. 2021. Developing Machine Learning Models to Predict Influence of Heat Treatments on the Tensile Properties of

Ti6Al4V Parts Prepared by Selective Laser Melting. PhD Thesis, WPI, Massachusetts.

[71] Z. Zhou, J. Wu, and W. Tang. 2002. Ensembling neural networks: Many could be better than all. Artificial Intelligence

137, 1–2 (2002), 239–263.

Received July 2021; revised November 2021; accepted November 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 86. Publication date: March 2022.

https://dl.acm.org/doi/10.1145/3437963.3441664

