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ABSTRACT
A challenging case in web search and question answering are count
queries, such as “number of songs by John Lennon”. Prior methods
merely answer these with a single, and sometimes puzzling num-
ber or return a ranked list of text snippets with different numbers.
This paper proposes a methodology for answering count queries
with inference, contextualization and explanatory evidence. Unlike
previous systems, our method infers final answers frommultiple ob-
servations, supports semantic qualifiers for the counts, and provides
evidence by enumerating representative instances. Experiments
with a wide variety of queries show the benefits of our method. To
promote further research on this underexplored topic, we release
an annotated dataset of 5k queries with 200k relevant text spans.
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1 INTRODUCTION
Motivation and Problem. Question answering (QA) and web
searchwith telegraphic queries have been greatly advanced over the
last decade [1, 3, 8, 22]. Nevertheless, queries that can have multiple
correct answers due to variance in semantic qualifiers (“top 10
albums”, “singles albums”, “remastered albums”) and alternative
representations through instances remain underexplored and pose
open challenges. This paper addresses the class of count queries,
to return the number of instances that have a certain property.
Examples are:

• How many songs did John Lennon write for the Beatles?
• How many languages are spoken in Indonesia?
• How many unicorn companies are there?
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Count queries are frequent in search engine logs as well as QA
benchmarks [6, 13, 16, 23]. If the required data is in a structured
knowledge base (KB) such as Wikidata [24], then answering is
relatively straightforward. However, KBs are limited not only by
their sparsity, but also by the lack of direct links between instances
and explicit counts when both are present. Besides, evaluating the
additional condition “for the Beatles” (i.e., a subset of his songs) is
beyond their scope.

Search engines handle popular cases reasonably well, but also
fail on semantically refined requests (e.g., “for the Beatles” ), merely
returning either a number without explanatory evidence ormultiple
candidate answers with high variance.

Answering count queries from web contents thus poses several
challenges:
1. Aggregation and inference:

Returning just a single number from the highest-ranked page
can easily go wrong. Instead, joint inference over a set of candi-
dates, with an awareness of the distribution and other signals,
is necessary for a high-confidence answer.

2. Contextualization: Counts in texts often come with contexts
on the relevant instance set. For example, John Lennon co-
wrote about 180 songs for the Beatles, 150 as a solo artist, etc.
For correct answers it is crucial to capture context from the
underlying web pages and properly evaluate these kinds of
semantic qualifiers.

3. Explanatory Evidence: A numeric answer alone, such as “180”
for the Beatles songs by Lennon, is often unsatisfactory. The
user may even perceive this as non-credible, and think that it
is too high as she may have only popular songs in mind. It is,
therefore, crucial to provide users with explanatory evidence.

Approach andContribution. This paper presents CoQEx, Count
Question answering with Explanatory evidence, which answers
count queries via three components: i) answer inference ii) answer
contextualization and, iii) answer explanation.

Given a full-fledged question or telegraphic query and relevant
text passages, CoQEx applies joint inference to compute a high-
confidence answer for the count itself. It provides contextualization
of the returned count answer, through semantic qualifiers into
equivalent or subclass categories, and extracts a set of representa-
tive instances as explanatory evidence, exemplifying the returned
number for enhanced credibility and user comprehension.
Novel contributions of this work are:
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1. introducing the problem of count query answering with ex-
planatory evidence;

2. developing a method for inferring high-confidence counts from
noisy candidate sets;

3. developing techniques to provide answer contextualization and
explanations;

4. evaluating CoQEx against state-of-the-art baselines on a variety
of test queries;

5. releasing an annotated data resource with 5k count queries and
200k text passages, with preliminary access for reviewing at
https://tinyurl.com/countqueryappendix.

2 RELATEDWORK
Where structured data is available in KBs, structured QA is the
method of choice. However, for many topics, no relevant count
information can be found in KBs. For example, Wikidata contains
217 songs attributed to John Lennon1, but is incomplete in indi-
cating whether these written for the Beatles or otherwise. In the
KB-QA domain, systems like QAnswer [4] tackle count queries by
aggregating instances using the SPARQL count modifier. This is
liable to incorrect answers, when instance relations are incomplete.

State-of-the-art systems typically approach QA via the machine
reading paradigm [2, 5, 9, 11, 20], where the systems find the best
answer in a given passage. The retriever-reader approach in open-
domain QA uses several text segments to return either a single best
answer [2, 25] or a ranked list of documents with the best answer
per document [11]. The DPR system [11]2 returns “approximately
180” from its rank-1 text passage to both, the simple John Lennon
query, and the refined variant with “. . . for the Beatles”. The other top-
10 snippets include false results such as “five” and contradictory
information such as “180 jointly credited” (as if Lennon had not
written any songs alone). Thus, QA systems are not robust (yet)
and lack explanatory evidence beyond merely returning the top-
ranked text snippet.

Attempts have also been made to improve recall by hybrid QA
over text and KB, yet without specific consideration of counts [15,
26]. Search engines can answer simple count queries from their
underlying KBs, if present, a trait which we exploit to create our
CoQuAD dataset (Section. 4). But more often they return infor-
mative text snippets, similar to QA-over-text systems. The basic
Lennon query has a highest-ranked Google snippet with “more than
150” when given the telegraphic input “number of songs by John
Lennon” and “almost 200” when given the full-fledged question
“how many songs did John Lennon write”. For the latter case, the
top-ranked snippet talks about the composer duo “John Lennon
and Paul McCartney”. When refining the query by qualifiers, this
already puzzling situation becomes even more complex with “84.55
of 209 songs” being ranked first followed by varying counts such as
“18 Beatles songs” (co-written with McCartney) and “61” (written
separately). Because of the lack of consolidation, the onus is on the
user to decide whether there are multiple correct answers across
text segments.

1https://w.wiki/4XVq
2http://qa.cs.washington.edu:2020
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Figure 1: System overview of CoQEx.

It is recognized that just literally answering questions is often
not sufficient for use cases. One line of work tackles this by return-
ing comprehensive answer in full sentences, using templates [10].
Another line concerns long form question answering, where the
QA model retrieves multiple relevant documents to generate a
whole answer paragraph [12]. The ELI5 dataset [7] contains diverse
open-ended queries with supporting information from relevant web
sources. While the setting is related, long form QA is concerned
with generating textual answers evidenced on multiple documents,
while we focus on answering count queries by consolidating counts
and grounding them in instances.

3 METHODOLOGY
We approach count question answering by a combination of per-
document answer span prediction, context extraction, and consoli-
dation of counts and instances across documents. Fig. 1 gives the
overview of CoQEx. We consider as input a query that asks for the
count of named entities that stand in relation with a subject, for
instance full queries like “How many songs did John Lennon write
for the Beatles”, or a keyword query like “songs by lennon”.

We further assume that relevant documents or passages are given.
This could be the result of a standard keyword/neural embedding-
based IR procedure over a larger (locally indexed) background
corpus, like Wikipedia or the Web. We focus on extracting counts
and instances (entity-mentions) from the text segments so as to i)
consolidate the counts to present the best answer, ii) present con-
textualization as a means to semantically qualifying the predicted
count, and iii) ground the count in instances.

Answer Inference. For obtaining answer candidates, we use
the popular SpanBERT model [9], trained on the CoQuAD train
split for candidate generation. Span prediction models return gen-
eral text spans, which may contain worded answers (five children,
Conf = 0.8), modifier words and other context (17 regional lan-
guages, Conf = 0.75). These answer spans have two components -
the count itself and qualifiers, which we separate with the help of
the CogComp Quantifier [19]. To consolidate the resulting candi-
date counts, we compare four methods:
1. Most confident: The candidate given the highest confidence by

the neural model. This is commonly used in textual QA [2, 25].
2. Most frequent: A natural alternative is to rank answers by fre-

quency, and prefer the ones returned most often.

https://tinyurl.com/countqueryappendix
https://w.wiki/4XVq
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While most confident may be susceptible to single outliers, most
frequent breaks down in cases where there are few answer candi-
dates. But unlike textual answers, numbers allow further statistical
aggregation:
3. Median: The midpoint in the ordered list of candidates.
4. Weighted Median: The median can be further adapted by weigh-

ing each candidate with the model’s score.

Answer Contextualization. The answer candidates from the
previous module often contain nouns with phrasal modifiers, such
as 17 regional languages. We call these count-modified noun phrases
(CNPs). These CNPs stand in some relation with the predicted count
from the answer inferencemodule. The representative CNP, CNPrep,
which best accompanies the predicted count is first chosen and then
compared with the remaining CNPs. Since answer inference uses a
consolidation strategy, we select the CNP with count within ±𝛼 of
the predicted count having the highest confidence as CNPrep, where
𝛼 is between 0 and 100%, 0 being most restrictive. The remaining
CNPs are categorized as follows:
1. Subgroups: CNPs which are semantically more specific than

CNPrep, and are expected to count only a subset of the instances
counted by CNPrep.

2. Synonyms: CNPs, whose meaning is highly similar to CNPrep.
3. Incomparable: CNPs which count instances of a completely

different type.
We assign these categories based on (textual) semantic relatedness
of the phrasal modifier, and numeric proximity of the count. For
example, regional languages is likely a subgroup of 700 languages,
especially if it occurs with counts ⟨23, 17, 42⟩. tongue is likely a
synonym, especially if it occurs with counts ⟨530, 810, 600⟩. Speakers
is most likely incomparable, especially if it co-occurs with counts in
the millions. CNPs with embedding-cosine similarity [17] less than
zero are categorized as incomparable, while from the remainder,
those with a count within ±𝛼 are considered synonyms, lower
count CNPs are categorized as subgroups, and higher count CNPs
as incomparable.

For instance, for the query “How many languages are spoken in
Indonesia”, with a prediction 700, estimated 700 languages would
be the CNPrep, {700 languages, 750 dialects} would be classified as
synonyms, {27 major regional languages, 5 official languages} as
subgroups and {2000 ethnic groups, 85 million native speakers} as
incomparables.

Answer Explanation. Beyond classifying count answer contexts,
showing relevant sample instances is an important step towards
explainability. To this end, we aim to identify entities that are among
the ones counted in the query. We again use the SpanBERTmodel to
obtain candidates, this time with a modified query, replacing "how
many" in the query with "which" (or adding it), so as to not confuse
the model on the answer type. We extract named entities from
the answer spans and rank them using the following alternative
approaches:
1. QA w/o Consolidation. In the spirit of conventional QA, where

results come from a single document, we return instances from
the document with the most confident answer span.

2. QA + Context Frequency. The instances are ranked by their
frequency.

3. QA + Summed Confidence.We rank the instances based on the
summed confidence of all answer spans that contain them.

4. QA + Type Compatibility. Here instances are ranked by their
compatibility with the query’s answer type, extracted via the
dependency parse tree. We form a hypothesis “(instance) is a
(answer type)” and use the probability of its entailment from
the parent sentence in the context from which the instance was
extracted to measure type compatibility. We use [14] to obtain
entailment scores, which are again summed over all containing
answer spans.

4 THE CoQuAD DATASET
Dataset construction. Existing QA datasets only incidentally
contain count queries; we leverage search engine autocomplete
suggestions to automatically compile count queries that reflect
real user queries [21]. We provide the Google search engine with
iterative query prefixes of the form “How many X”, where 𝑋 ∈
{𝑎, 𝑎𝑎, . . . , 𝑧𝑧𝑧}, similar to the candidate generation from patterns
used in [18], and collect all autocomplete suggestions via SERP
API3. We keep those with at least one named-entity (to avoid too
general queries) and no measurement term (to avoid non-entity
answer types). This gives us 11.3k count queries.

We automatically obtain count ground truth by collecting struc-
tured answers from the same search engine. Executing each query
on Google, we scrape knowledge graph (KG) answers and featured
snippets, using an off-the-shelf QA extraction model [20] to obtain
best answers from the latter. This gives us KG ground truth for 131
queries, and ground truth from featured snippets for 6.7k queries.
We again discard queries whose automated ground truth answer
contains a measurement term, and manually annotate 100 queries
from those without automated ground truth.

We next scrape the top-50 snippets per query from Bing, and
obtain text segment ground truth by labelling answer spans returned
by the count extractor [19] as positive when the count lies within
±10% from the ground truth. There are around 800 queries with
no positive snippets, which we do not discard, so the system is
not forced to generate an answer. In the end we have 5162 count
queries with automated ground truth, and an average of 40 anno-
tated text segments per query. We use 80% of the count queries
with automated ground truth for training. The test set contains
50 count queries with KG ground truth, 100 with ground truths
from featured snippets, and 100 with manually annotated ground
truth for quantitative and qualitative analysis. We also manually
annotate 75 queries with at least top-5 prominent instances for
evaluating answer explanations.
Dataset Characteristics. Queries in CoQuAD cover a range of
topics, notably entertainment (27%), social topics (20%), organiza-
tions (12%), technology (8%) and politics (7%). We find that 20% of
query results are fully stable (a company’s founders, casts in pro-
duced movies), 55% are low-volatile (lakes in a region, band mem-
bers of an established but active band), 25% are near-continuous
(employment numbers, COVID cases). Most queries count entities
in a simple relation to one named entity, i.e., the avg. query length
is 6.40 words, with an average of 1.08 named entities per query.

3https://serpapi.com
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Research access to the data is at https://tinyurl.com/countqueryappendix.

5 EVALUATION
Component analysis of CoQEx. We evaluate the CoQEx com-
ponents to determine the best configurations for answer inference,
consolidation and explanation. While we can use regular IR metrics
of precision and recall for evaluating answer explanations (Preci-
sion@k, Recall@k, Hit@k and MRR) and accuracy of classification
for evaluating count context categories, we need a new metric
for counts. We use Relaxed Precision (RP), which is the fraction of
queries where the prediction lies within ±10% of the gold answer.
We also report Coverage, which measures the fraction of queries
that a systems returns an answer for.

We test the candidate generator for count spans on SpanBERT [9]
finetuned on i) CoQuAD and, ii) the popular general QA dataset
SQuAD [16]. Fine-tuning on SQuAD gives slightly higher precision
scores (29.8% vs. 27.4% RP), but CoQuAD gives a higher coverage
(82% vs. 73.8%) resulting in overall more correctly answered queries.

For answer inference, the frequent and weighted median con-
solidation schemes outperform the others, with weighted median
achieving 27.4% RP just 0.6% ahead of frequent. Thus, for queries
backed by less variant data, frequent is good enough, but to have
an edge in more variant data weighted median is the way to go.

We assess the classification accuracy of CNPs for a manually
labelled sample of 294 CNPs for 64 queries. While a strict thresh-
old of 10% ensures a high accuracy of 90% for Synonyms, which
only decreases with increasing 𝛼 , the accuracy of Subgroups and
Incomparables is initially low (at or less than 50%), and peaks only
at a much higher 𝛼 . A weighted optimum is reached at 𝛼 = 30%,
where the accuracy of the Synonyms does not degrade much (89%),
and the accuracy of Subgroups and Incomparables is both above 60%
(61% and 62% respectively).

In answer explanation, QA + context frequency consolidation per-
forms consistently well. While QA w/o consolidation has highest
P (11.5%) and R (2.3%) at rank 1, its performance decreases subse-
quently to only 2.7% P and 5.1% R at rank 10, compared to 10.8%
P and 18.2% R of QA + context frequency. This indicates that the
QA model is tailored to the typical setting QA of a single correct
answer, and that consolidation helps beyond that.
Comparing CoEx with baselines. We compare our proposed
system with two complementary paradigms.
1. Knowledge-base question answering: QAnswer [4].
2. Commercial search engine QA: Google Search Direct Answers

(GoogleSDA).
For fairness to QAnswer, we post-processed the results to extract
count and instances. For evaluating instances by GoogleSDA, we
post-processed knowledge graph and featured snippet of the search
engine result page, keeping items from list-like structures as in-
stances ranked in their order of appearance.

For answer inference, Table 1 compares the three systems on the
250 annotated test CoQuAD queries. We also present the perfor-
mances on 100 count queries from an existing dataset LCQuAD [6],
and a manually curated dataset of 100 challenging count queries
called Stresstest. While GoogleSDA has a high precision on CoQuAD
(consisting 150 KG and snippet answerable queries), CoQEx not only
provides high coverage but a decent RP. On LCQuAD, a dataset

Table 1: Comparing answer inference results (in percent-
ages).

System CoQuAD LCQuADcount Stresstest
RP Cov RP Cov RP Cov

QAnswer [4] 6.6 95.6 29.8 50.0 3.0 45.0
GoogleSDA 84.6 60.0 5.7 10.5 22.0 37.0
CoQEx 27.4 82.0 6.7 45.2 38.6 88.3

Table 2: Precision@k (P@k), Recall@k (R@k), Hit10 and
MRR for the answer explanations of CoQEx and baselines.

System P@1 P@5 P@10 R@1 R@5 R@10 Hit10 MRR
QAnswer [4] 4.7 4.5 3.7 2.1 0.8 1.1 12.8 0.064
GoogleSDA 7.7 14.2 21.7 1.3 2.2 3.2 12.8 0.089
CoQEx 6.4 12.8 10.8 1.3 11.7 18.2 55.1 0.218
Table 3: Extrinsic user study (precision in percent).
Class Only Count +Instances +CNPs +Snippet All
Correct 73 63 78 75 88
Incorrect 28 45 40 53 45
Both 55 56 63 66 71

designed specifically for KG queries, CoQEx loses to LCQuAD
while still maintaining a better coverage and RP score compared to
GoogleSDA. The results indicate that reliance on structured KBs
(QAnswer) is not sufficient for general queries, and robust consoli-
dation from crisper text segments is necessary.

For answer explanation, the comparison results on the 75 instance-
annotated CoQuAD queries are in Table 2. CoQEx provides more R
than the baselines, with competitive P at rank 1, and better at ranks
5 and 10. CoQEx performs consistently better at hits@k and MRR,
losing only slightly in precision at ranks 1 and 5. Both baselines
answer less than 25 queries at rank 5, and at rank 10 less than 20
queries, and QAnswer performs poorly in the returned answers.
GoogleSDA operates extremely conservative, thus maintaining pre-
cision at lower ranks, at the cost of tiny recall.

Qualitative Comparison. We looked further into the 250 queries
(50 KG answerable, 100 snippet answerable and 100 with ranked
snippets) for understanding how baselines tackle progressively
difficult queries. As explained in the CoQuAD dataset creation, we
encountered three ways in which Google answers count queries.
Around 1% of the answers came from the Google KG, 59% through
featured snippets, 40% through page results. Besides these high-level
categories, answers can be categorized by the following aspects:
1. Listing only instances (e.g., for “mayors of New York”),
2. Listing only counts (e.g., for “employees of NHS”),
3. Listing both instances and counts, or
4. Listing counts refined with semantic qualifiers (e.g., “7 official

languages and 30 regional languagues”).
On the above 250 queries, QAnswer returns mostly counts (95.6%)
and rarely instances (2%) or no answers (2.4%). Among the KG-
based answers, GoogleSDA returns both counts and instances for
90% of the queries, and only counts for the remaining 10%. Among
the featured-snippets-based answers, 85% contain only counts, and
just 15% contain both counts and instances. Semantic qualifiers are
common in featured snippets, coming up for 73% of queries. While
semantic qualifiers can be expressed in KG answers (“volcanic is-
lands in Hawaii”⇒islands→Hawaii→volcanoes), this rarely shows
up, unless the queried entity and the qualifier are extremely popular.
User Studies. We asked 120 MTurk users for pairwise prefer-
ences between answer pages that reported bare counts, and counts

https://tinyurl.com/countqueryappendix
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enhanced by either of the explanation types. 50% of participants
preferred interfaces with CNPs, 80% with a snippet, 73% with in-
stances, 63% preferred an interface with all three enabled (remaining
percentage: prefer bare count answer/same/cannot decide). While
snippets are already in use in search engines, the results indicate
that CNPs and instances are considered valuable, too.

We also validated the merit of explanations extrinsically. We
took 5 queries with correct count results, 5 with incorrect results,
and presented the system output under the 5 explanation settings
to 500 users. The users’ task was to judge the count as correct or
not based on the explanations present. The measured precisions are
in Table 3. All explanation had a positive effect on overall annotator
precision, especially for incorrect counts.

6 CONCLUSION
We address the gap in distribution-aware prediction, assimilating
semantic qualifiers from web contents and providing explanations
through instances for the class of count queries. To foster further
research, we release all datasets4. A web demonstrator is also de-
ployed at [anonymized].
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