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We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT)
scheme for the calculation of electronic coupling values. We discuss the characteristics of different
possible formulations or “flavors” of the scheme which differ by the number of electrons in the
calculation of the fragments and the construction of the Hamiltonian. In addition to two previously
described variants based on neutral fragments, we present a third version taking a different route to the
approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT
flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer), we find
that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative
signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean
relative signed error). A systematic investigation of the influence of exact exchange on the electronic
coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the
electronic couplings, giving values close to or even better than more sophisticated constrained DFT
calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules
to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-
fragment calculations performs best, while numerically more efficient at reasonable accuracy is the
variant with neutral fragments. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940920]

I. INTRODUCTION

Charge transfer processes involving electrons or electron-
holes are an integral part of many ubiquitous reactions, ranging
from biological systems1–3 and heterogenous catalysis4 to
organic electronics5–12 and many more. The theoretical
description of such processes is commonly based on a diabatic
picture of charge-localised initial and final states.13,14 In this
picture, one of the key factors determining the transport
efficiency is the electronic coupling Hab, also known as
diabatic coupling or transfer integral. For two diabatic states
a and b, it is defined as

Hab = ⟨Ψa |Ĥ |Ψb⟩, (1)

where Ĥ denotes the Hamiltonian of the system. Regardless
of the actual model for charge transfer employed, such as small
polaron hopping,15–18 (coherent) band,19,20 or polaronic band
transport21 — see Ref. 22 for a detailed review — the coupling
elements contain most of the microscopic information such
as, e.g., the relative geometry of molecular frontier orbitals
partaking in the charge transfer. Although there are —
depending on the exact charge transport mechanism — a
number of other parameters influencing the process, electronic
couplings often serve as a first descriptor for gauging the
charge transfer efficiency, especially in the field of organic
electronics.23–26 An accurate estimate of Hab is thus of great
importance for the theoretical study of electron or hole transfer
reactions.

a)Electronic mail: harald.oberhofer@ch.tum.de

In the literature, there are many methods to calculate
electronic coupling values, with various degrees of accuracy
and numerical efficiency. While very accurate electronic
couplings can be evaluated using high-level quantum chemical
calculations,27,28 their computational cost presently limits the
role of these methods to benchmark calculations and small
systems. In order to treat realistic systems, a number of mainly
density-functional theory (DFT) based methods have been
developed. Prominent examples here are constrained density-
functional theory (cDFT),13,29–31 frozen-density embedding,32

and the fragment-orbital (FO) methods.16,33 Applications of
these schemes range from biological systems,33–35 metal-
oxides36,37 to the broad field of organic electronics, with
organic solar cells,16,18,38 organic light emitting transistors,39

and organic field effect transistors.21,23,40–43 Among the more
efficient schemes, the FO approximation is by far the
most popular, usually based on DFT21,23,41–43 or even semi-
empirical methods.44–47

In the fragment (molecular) orbital method, charge-
localised diabatic states are constructed from non-interacting
fragment densities. The fragments here correspond to donor
and acceptor of the charge transfer process and ideally are
separate molecular entities, such as, for example, neighboring
molecules in a molecular crystal. Due to this simple approach,
the method is easily incorporated in many modern electronic
structure codes. While neglecting interactions between donor
and acceptor sites during the calculation of the reference
densities is of course a huge simplification and not feasible
for all systems, it has been shown to work remarkably well
for many applications in the field of organic electronics,16,44,48
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where charge transfer sites are typically weakly interacting
organic molecules. The method’s efficiency makes it possible
to investigate systems with many hundreds or thousands of
different electronic coupling values.16

Yet, due to the approximations involved, the FO-DFT
method should not be considered as a single method, but rather
a family of methods. The basic steps are always the calculation
of the fragment electron densities and the subsequent
construction of the Hamiltonian from the superposition of
the fragment densities. One of us has previously shown that in
the original formulation of the method, the number of electrons
contributing to the Hamiltonian is wrong and corrected this
by setting the occupation of the highest-occupied molecular
orbital (HOMO) to zero in a second calculation step.31 This
method became known as FO-DFT(2n − 1), in contrast to
the original FO-DFT(2n) implementation. The performance
of these methods for hole and electron transfer systems (the
HAB11+HAB7 data sets, respectively) was investigated in
two recent studies.44,48 There, FO-DFT was compared to cDFT
and benchmark data gained with the generalized Mulliken-
Hush method based on Davidson corrected multi-reference
configuration interaction (MRCI+Q), n-electron valence state
perturbation theory (NEVPT2) and spin component scaled
coupled cluster calculations (SCS-CC2). In this work, we
present another approach to consider the correct charge
state in FO-DFT based on the calculation of appropriately
charged fragments. This constitutes a third variant of FO-
DFT which takes a slightly different route to arrive at the
final approximation of the charge-separated diabatic states.
All three methods have been implemented in the FHI-
aims49 program, allowing us to rule out any influences of
different implementations and technical settings such as the
choice of the basis set and enabling us to focus solely on
the methodological differences in the schemes. We present
results of systematic DFT calculations for all molecules in the
references data sets (HAB11+HAB7) for all flavors of FO-
DFT. To address the question of the accuracy of the methods,
we also compare electronic coupling values using gradient-
corrected (GGA) and hybrid DFT functionals and analyze
the effect of the exact exchange fraction in the construction
of the Hamiltonian. In addition, we implemented a simple
embedding approach to test the common interpretation that the
neglected polarization of the reference densities in FO-DFT
is responsible for the underestimation of electronic couplings.
By analyzing this rich set of data, we gain a thorough insight
into the accuracy and the computational efficiency of the
different flavors of FO-DFT, allowing us to present guiding
principles to select the best method depending on the desired
accuracy and efficiency, for both hole and electron transfer
electronic couplings.

The present work is organized as follows: First, we
review the theoretical background of the FO-DFT method
and its variants, where we also introduce our new version
which is based on charged-fragment calculations. Thereafter,
we present our results for all three FO-DFT versions for
the HAB11 and HAB7 test sets for hole and electron
transfers, respectively. We end with a critical discussion
of the merits and downsides of the different FO-DFT
approaches both with GGA and hybrid level DFT, as well

as the influence of neglecting inter-molecular polarization
effects.

II. FRAGMENT-ORBITAL DFT

In order to assess the different FO-DFT schemes, it is
first necessary to review the theoretical background of the
method. Special emphasis has to be put on the approximations
underlying FO-DFT, as these give rise to a number of different
formulations of this method.

The basic idea behind FO-DFT is to construct the charge
localized diabatic states from the isolated donor and acceptor
fragments. In the following, we exemplify this by a hole
transfer between a donor D+ and an acceptor A, with n − 1
and n electrons, respectively. Although not discussed here
explicitly, electron transfer reactions, D− + A → D + A−, can
be treated in an entirely analogous manner. Furthermore, for
clarity, we restrict our derivation to symmetric cases where D
and A are identical, but again, the derivation for asymmetric
sites follows the same pattern.

A. Kohn-Sham determinants

Starting from the initial and final diabatic state single
determinant wave functions,

Ψa =
1

(2n − 1)! det
�
φ1
a, . . . , φ

2n−1
a

�
, (2a)

Ψb =
1

(2n − 1)! det
�
φ1
b, . . . , φ

2n−1
b

�
, (2b)

the first step is to approximate the wave functions by the
Kohn-Sham determinants of the isolated fragments,

Ψa ≈ ΨD+A
a = |ÂφD, . . . , φ

n−1
D , φA, . . . , φ

n−1
A , φn

A⟩,
(3a)

Ψb ≈ ΨDA+

b = |ÂφD, . . . , φ
n−1
D , φn

D, φA, . . . , φ
n−1
A ⟩,

(3b)

with the antisymmetrising operator Â. Approximating the
wave function as a Kohn-Sham determinant indeed seems a
severe approximation which nevertheless has yielded good
estimates for the electronic coupling in many DFT based
studies.13,16,30–33 Additionally, the accuracy achievable with
this approximation is one of the subjects of this work. In
constructing initial and final wave function from identical
orbitals φ

{1, ...,n−1}
D,A , one also assumes that only the frontier

orbitals of the fragments differ, while all other orbitals
are unchanged. Since neither sets of Kohn-Sham orbitals
are eigenstates of the combined system’s ground state
Hamiltonian, they are generally not orthogonal. Therefore, in
order to more closely resemble the charge separated diabatic
states, the two sets of orbitals are orthogonalized, e.g., with
Löwdin’s symmetric scheme.50 Also, there are, in general, two
distinct coupling elements, one for the forward and one for the
backward reaction. Denoting by Ĥa and Ĥb, the Hamiltonians
which give rise to the respective diabatic states — which in
FO-DFT are simply constructed from the respective fragment
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densities — these coupling elements are

Hab = ⟨Ψa |Ĥb |Ψb⟩ (4a)

and

Hba = ⟨Ψb |Ĥa |Ψa⟩. (4b)

If donor and acceptor molecules are identical, Hab = Hba due
to the symmetry of the system.

By applying the Slater-Condon rules (see Appendix A
for a detailed derivation), the Kohn-Sham-determinant wave
functions in Eqs. (3) are simplified to

Ψa ≈ ΨD+A
a = |✭✭✭✭✭✭✭ÂφD, . . . , φ

n−1
D , ✘✘✘✘✘✘

φA, . . . , φ
n−1
A , φn

A⟩,
(5a)

Ψb ≈ ΨDA+

b = |✭✭✭✭✭✭✭ÂφD, . . . , φ
n−1
D , φn

D,✘✘✘✘✘✘
φA, . . . , φ

n−1
A ⟩.

(5b)

This reduces the calculation of electronic coupling elements
to an integral between Kohn-Sham-orbitals

Hab = ⟨φn
A|ĥb |φn

D⟩, (6)

with the single-particle Kohn-Sham Hamiltonian ĥb. Note
that now Hab is determined for a pair of Kohn-Sham orbitals
instead of the full Kohn-Sham wave function in Eq. (4a). We
want to stress that this is a direct consequence of the previous
approximation (Eqs. (3a) and (3b)) to the diabatic states and
therefore exact within this representation.

B. Summary of approximations

Up to this point, we derived the general equations
behind the FO idea. Before discussing the different flavors
in which this method can be implemented, we summarize the
approximations made so far.

I: The charge localized diabatic wave functions are
approximated by Kohn-Sham determinants.

II: The Kohn-Sham determinants are constructed using
reference densities calculated for isolated fragments,
neglecting any interactions between the fragments that
would result in a change of the self-consistent electron
density and assuming that only the frontier orbitals change
with the transferring charge.

III: The resulting charge localized Kohn-Sham wave func-
tions are orthogonalized to resemble the diabatic state.

Electronic couplings according to Eq. (6) depend on
the Kohn-Sham orbitals φn

D and φn
A, the HOMOs of the

neutral hole transfer sites. In addition, one needs to determine
the Hamiltonian ĥb for the diabatic state D+A, that is, for
a wave function constructed from the Kohn-Sham orbitals
φD, . . . , φ

n−1
D and φA, . . . , φ

n
A. As within the FO-DFT approach

either the neutral fragment or the charged diabatic state is
available, this necessitates the introduction of an additional
approximation. Either the Hamiltonian ĥb or the (frontier)
orbitals φn

D and φn
A need to be approximated. This fundamental

choice gives rise to the different formulations or “flavors” of
FO-DFT known in the literature.

C. Flavors of FO-DFT

To allow a clear distinction between the different FO
schemes, we introduce the notation Hm@DpAq, where m is
the number of electrons used to construct the Hamiltonian
and p,q ∈ {+,−} are the charges of donor and acceptor
fragments, respectively. The original version of FO-DFT33

using uncharged-fragment calculations and the subsequent
2n-Hamiltonian is thus denoted asH 2n@DA in this notation.
The number of electrons in the construction of the Hamiltonian
is always given with respect to the number of electrons n of a
single neutral fragment.

1. H 2n@DA

The original implementation by Senthilkumar et al.33

within the ADF framework32 made use of the ability of ADF
to use molecular orbitals as basis set in the subsequent dimer
calculation. The Hamiltonian ĥb constructed this way is based
on neutral fragments and 2n electrons. This means that while
the orbitals φD and φA for the calculation of Hab are correct
(within the approximation), the Hamiltonian is not.44 This
approach is very simple to implement in most electronic
structure codes and therefore widely used.26,31,43,51–53

2. H 2n−1@DA/H 2n+1@D−A−

In our previous implementation16 of the method in
the CPMD program,54 neutral fragments are used as well,
but in the subsequent construction of the Hamiltonian, the
occupation number of the φn

D orbital is set to zero. This
mimicks the correct charge in the diabatic states Ψa,b, and
therefore, the resulting Hamiltonian is based on the correct
number of 2n − 1 electrons. The electronic coupling is then
calculated between the LUMO of the donor and the HOMO
of the acceptor.

3. H 2n−1@D+A/H 2n+1@D−A

In addition to the two hitherto proposed methods, there
is also a third possibility to construct reference states
and Hamiltonian within FO-DFT. Instead of adjusting the
occupation numbers in the Kohn-Sham orbitals in the second
calculation step to get the correct number of electrons in
the Hamiltonian, we here explicitly perform a SCF cycle on
charged fragments. This has the advantage that the constructed
Hamiltonian more closely resembles the correct Hamiltonian
Ĥb (as our constructed diabatic state is ΨD+A, in contrast to
ΨDA in the other approaches). While the Hamiltonian is now
correct, the frontier orbitals in Eq. (6) differ by

H ′ab = ⟨φn
A|Ĥ |φn+

D ⟩, (7)

with φn+
D being the LUMO of the calculated charged donor

fragment D+. As a consequence, the HOMO of the neutral
donor D is approximated by the LUMO of the charged
fragment, D+. While these can differ, we will show in
Section IV A later that for typical organic charge-transfer
systems this approximation is less severe than approximating
the correct diabatic Hamiltonian with neutral fragments.
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D. Polarisation effects between fragments

Due to the separation of the complete system into donor
and acceptor fragments, any polarization of the electron
density of one fragment by the other, as it would occur, for
example, in a cDFT calculation, is neglected in FO-DFT. Only
in the final, non-self-consistent calculation step, where the
Hamiltonian is constructed based on the combined reference
densities, the full exchange, correlation, and electrostatic
interactions are incorporated. To investigate the influence
this has on the electronic couplings, we implement a simple
embedding approach. We here focus on the polarization due
to Coulomb interactions between the fragments, as this should
be the dominant effect in charged systems. For this, we add
to the wave function optimization of one fragment the full
local potential (Vlocal) of the respective other fragment as an
external potential. To achieve this, V D+

local = V D+
core + V D+

elec, the
local potential of the donor D+, is added to the potential of
the acceptor calculation A,

V Aδ+

local = V A
core + V A

elec + V D+
local. (8)

This polarized variant of FO-DFT will be labeled δ+-FO-DFT.
Here, only the neutral fragment is embedded into the local
potential of the charged reaction partner, while, in principle,
also the charged fragment is influenced through the presence
of the neutral one. Yet, concentrating on electrostatic effects,
such influences are minute and are therefore omitted.

III. COMPUTATIONAL DETAILS

All calculations were performed with the FHI-aims
package,49,55 where we implemented all three variants of
FO-DFT and the embedded FO-DFT version. Electronic wave
functions were expanded in a tier-2 numeric atomic orbital
basis and tight integration grids, if not indicated otherwise.
All dimer geometries were taken from the supplementary
material of the HAB748 and the HAB1144 papers, respectively,
and were used without further optimization, in order to pre-
empt possible structural influences on the couplings. Total
energies and coupling elements are calculated using the
generalized gradient functional as proposed by Perdew, Burke
and Ernzerhof (PBE)56 and the Becke exchange functional in
combination with the correlation functional by Lee, Yang, and
Parr (BLYP).57,58 In addition, the modified BLYP functional
with a mixture of Hartree-Fock exact exchange, B3LYP59,60

(using the RPA version of the Vosko–Wilk–Nusair local
density approximation), the PBE0 functional by Adamo and
Barone,61 and the HSE06 functional by Heyd, Scuseria and
Ernzerhof62–64 were tested.

Orthogonalization of the combined reference wave
functions was achieved using the symmetric orthogonalization
scheme by Löwdin.50 As already noted in earlier work,16,44,48

special care has to be taken when calculating electronic
couplings for degenerate states.

To characterize the dependence of the electronic coupling
on the donor-acceptor center to center distance d, the
exponential decay β,

Hab = A · exp (−βd/2) , (9)

is calculated for each system. To avoid an overvaluation of the
small couplings due to the exponential function, we employed
a linear regression on the logarithmized equation.

To exploit the symmetry between fragments within FO-
DFT in FHI-aims, we implemented the rotation of wave
functions using Wigner D matrices.65 This allows us to re-
use a once calculated density for all symmetrically identical
fragments, thereby greatly reducing the computational cost of
determining matrix elements for many different geometries
(e.g., in amorphous phases or organic crystals). While different
schemes for real spherical harmonics are available (see,
for example, Lessig et al.,66 Aubert,67 Blanco et al.68), we
construct our rotation matrices for different l starting from the
complex Wigner D matrices via a transformation matrix Cl.
Using this approach, it is easy to account for different sign
conventions in the real Ylms employed by FHI-aims. The real
rotation matrix ∆l(R) is then obtained via

∆
l(R) = �

Cl
�∗Dl(R)�Cl

�t
(10)

and is used to obtain the rotated coefficients c′ for each l,m
for each basis function in the system. This rotated Kohn-Sham
wave function is then used for the new fragment geometry.
The details of this method in the context of the FHI-aims code
are further described in Appendix B.

IV. RESULTS

A. Electron/hole couplings (HAB7 and HAB11)

In order to rule out errors in our implementation and
fluctuations due to differing basis sets and integration grids,
we first compare the electronic coupling values for both test
sets with their respective published values computed with the
ADF and CPMD programs.44,48 For the HAB11 data set, this
is shown in Fig. 1, while the numeric values are compiled
in Table S1 in the supplementary material.69 The comparison
for the HAB7 electron transfer data set is shown in Fig. 2,
with the numeric results in Table S2 of the supplementary
material.69 Although computed with three different electronic
structure codes (using plane waves, Slater-type orbitals, and

FIG. 1. Comparison of electronic coupling values (Hab/meV) of the HAB11
test set computed with different electronic structure codes (FHI-aims, CPMD,
ADF) against reference values published in Ref. 44. The large deviation in the
value for phenol when calculated with the CPMD program has been noted
before.44 All couplings shown are for the H2n@DA variant of FO-DFT.
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FIG. 2. Comparison of electronic coupling values (Hab/meV) of the HAB7
test set computed with different electronic structure codes (FHI-aims, CPMD,
ADF) against reference values published in Ref. 48. For each system the
results for the H2n@DA and the H2n+1@D−A− flavor of FO-DFT are
shown.

numeric atomic orbitals as basis sets), the coupling values
differ by less than 2% — viz., (1.91 ± 1.0)% and (1.30
± 1.4)% — for the HAB11 and HAB7 sets, respectively. The
values for phenol calculated with CPMD have been omitted
for the HAB11 set due to their known inaccuracy.44

Having established the consistency of our FHI-aims
implementation with previous implementations in other DFT
codes, we now assess the performance of the different flavors
of FO-DFT presented in Sec. II C. As a reference, we compare
our results with the high-quality (ab initio) benchmark data
obtained by Kubas and co-workers.44,48 The correlation of
our calculated electronic couplings for the HAB11 hole
transfer database with the reference values is shown in Fig. 3,
while all numerical values are compiled in Table S3 in the
supplementary material.69 Consistent with previous results,44

we find that all flavors of FO-DFT using GGA functionals
underestimate the electronic couplings. The mean relative
signed errors (MRSEs) for this model lie between −37.7%
(H2n−1@DA) and −22.4% (H2n−1@D+A) for the BLYP
functional, with equivalent findings for the PBE functional. A
comprehensive overview of the methods’ accuracy is given in
Table I. Note that the new flavor based on charged-fragment

FIG. 3. Correlation of electronic coupling values (Hab/meV) for the HAB11
data set with their ab initio reference values for the different FO-DFT flavors
at the GGA (BLYP) level and for the new flavor with charged-fragments
additionally at the hybrid (B3LYP) level of theory.

calculations yields a significant improvement (−22.4% vs
−37.7% at BLYP level of theory) over the uncharged variants
of FO-DFT. This effect consistently occurs for all 11 systems
of the test set. In addition, we also determined the decay of Hab
with increasing donor-acceptor separation. Results included
in Table I show that the H2n−1@D+A scheme also yields an
improved decay constant β compared to the other variants
and the ab initio reference value.

The accuracy of all three methods with respect to electron
transfer was determined by means of the HAB7 test set, again
referencing to high level ab initio results (Table II). The
correlation of the different flavors and functionals with the
reference values is summarized in Fig. 4 with the numerical
results compiled in Table S4 in the supplementary material.69

As was the case for the HAB11 test set, the new flavor based
on charged fragments performs very well, with a MRSE of
−22.9%, compared to −22.4% and −27.1% for the H2n@DA
and H2n+1@D−A− schemes, respectively.

In order to gauge the influence of functional accuracy
on calculated coupling values, we additionally computed all
couplings with the hybrid functional B3LYP. Here, further
improvements towards the reference values can be found for
both test sets. In the case of hole transfer (HAB11), the
MRSE for B3LYP is −7.3%, which is comparable to the

TABLE I. Compilation of the mean unsigned error (MUE=
(

n |H calc
ab
−H ref

ab
|) /n), the mean rel-

ative signed error (MRSE=
(

n

(
H calc

ab
−H ref

ab

)
/H ref

ab

)
/n), the mean relative unsigned error (MRUE

=
(

n |H calc
ab
−H ref

ab
|/H ref

ab

)
/n), and the highest single absolute error (MAX=max |H calc

ab
−H ref

ab
|) for all elec-

tronic coupling values (|Hab |) and for the distance decay constants (β) for the HAB11 data set.

H2n@DA H2n−1@DA H2n−1@D+A

BLYP BLYP BLYP B3LYP BLYP@B3LYP B3LYP@BLYP

|Hab | MUE/meV 51.7 69.6 43.7 12.4 45.7 6.6
MRSE/% −24.6 −37.7 −22.4 −7.3 −23.5 2.0
MRUE/% 24.6 37.7 22.4 7.4 23.5 4.4

MAX/meV 139.7 165.2 103.9 37.1 107.9 22.2

β MUE/1/Å 0.06 0.42 0.12 0.10 0.14 0.10
MRSE/% 0.2 14.9 4.3 3.2 4.8 −3.1
MRUE/% 2.2 14.9 4.3 3.5 4.8 3.4
MAX/1/Å 0.12 0.77 0.21 0.17 0.24 0.23
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TABLE II. Same as Table I for the HAB7 data set.

H2n@DA H2n−1@DA H2n−1@D+A

BLYP BLYP BLYP B3LYP BLYP@B3LYP B3LYP@BLYP

|Hab | MUE/meV 39.4 47.8 41.6 10.4 43.1 9.6
MRSE/% −22.4 −27.1 −22.9 11.8 −23.7 11.0
MRUE/% 22.4 27.1 22.9 12.6 23.7 11.8

MAX/meV 86.9 114.4 96.7 14.3 103.1 14.5

β MUE/1/Å 0.09 0.10 0.09 0.34 0.08 0.33
MRSE/% 1.3 1.6 −0.7 −11.4 −0.1 −11.1
MRUE/% 3.3 3.3 3.1 11.4 2.8 11.1
MAX/1/Å 0.18 0.19 0.17 0.51 0.15 0.50

FIG. 4. Correlation of electronic coupling values (Hab/meV) for the HAB7
data set with their ab initio reference values for the different FO-DFT flavors
at the GGA (BLYP) level and for the new flavor with charged-fragments
additionally at the hybrid (B3LYP) level of theory.

value obtained by the more sophisticated cDFT scheme with
exact exchange (13.8%).44 To verify the generality of this
effect, we also calculated electronic couplings for HAB11
with different hybrid functionals (PBE0, HSE06), obtaining
the same overall trend. Exemplary values for furane are
compiled in Table III. In the case of electron transfer (HAB7),
the MRSE for B3LYP is 11.8%, even improving on earlier
PBE0-cDFT results with a MRSE of 30.7%.48 In contrast to
the HAB11 data set, the B3LYP values slightly overestimate
the electronic couplings.

B. Hybrid FO-DFT on GGA densities

To further investigate the influence of the functional
on calculated FO-DFT couplings, specifically the source of

TABLE III. Electronic coupling values for furane at different dimer distances
calculated with the B3LYP, PBE0, and HSE06 functionals. GGA-BLYP val-
ues are shown for comparison. All values in meV.

BLYP B3LYP PBE0 HSE06

5.0 Å 36.8 43.8 44.4 41.7
4.5 Å 79.1 94.1 95.1 89.9
4.0 Å 166.7 197.7 200.6 191.6
3.5 Å 347.7 409.9 420.2 406.9

the improvement we see in the hybrid-level calculations,
we also determine Hab using a hybrid-GGA crossover
approach. As discussed above, there are essentially two
parts to a FO-DFT calculation: the construction of the
reference diabatic states and densities and the subsequent
generation of the diabatic states’ Hamiltonian. To disentangle
the influence of exact exchange on both parts, we determine
the couplings using GGA-BLYP densities in the construction
of a B3LYP Hamiltonian (B3LYP@BLYP) and vice versa
(BLYP@B3LYP).

In our FO-DFT calculation using the hybrid-functional
reference density (BLYP@B3LYP), we see lower couplings
due to a reduced wave function overlap. This is expected
as hybrid functionals generally yield a higher degree of
localization of the electron density.70 Compared to the pure
GGA results, the values decrease on average by 1.39% and
1.08% for the HAB11 and HAB7 data set, respectively. The
inverse procedure, with the Hamiltonian constructed at the
B3LYP level, but based on the GGA-BLYP densities, on the
other hand, yields largely improved electronic couplings, with
an average increase of the couplings by 31.8% and 43.8%
for HAB11 and HAB7, respectively, as compared to the pure
GGA results. The resulting values are then very close to the
pure hybrid results. This is shown in Fig. 5 for the HAB11
data set and in Fig. 6 for the HAB7 set.

FIG. 5. Correlation between calculated and reference electronic coupling
values for the HAB11 data set. The BLYP and B3LYP values show couplings
calculated with the same functional for the self-consistent fragment density
and the dimer Hamiltonian, while BLYP@B3LYP and B3LYP@BLYP refer
to the hybrid-GGA crossover schemes, see text.
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FIG. 6. Correlation between calculated and reference electronic coupling
values for the HAB7 data set. The BLYP and B3LYP values show couplings
calculated with the same functional for the self-consistent fragment density
and the dimer Hamiltonian, while BLYP@B3LYP and B3LYP@BLYP refer
to the hybrid-GGA crossover schemes, see text.

C. Polarized FO-DFT (δ+-FO-DFT)

As outlined above, a frequently suspected reason for the
underestimation of couplings in FO-DFT is the neglect of
polarization of the fragment densities. To estimate the effect
this really has on the couplings, we perform calculations with
the local-potential embedding scheme outlined in Section II D.
In Fig. 7, we illustrate the fragment polarization through

FIG. 7. (a) Total electron density for a Zn+2 -dimer (distance 5 Å) calculated
with cDFT. ((b)-(d)) Density difference between the free atom density for
Zn and the calculated total density with monopole, cDFT and electrostatic
potential embedding, respectively. For each method, the electron density
distorts from the free atom density as a consequence of the nearby positive
charge. The comparison reveals good agreement between the cDFT and the
embedding result, while the distortion due to the monopole is slightly more
pronounced towards the positive charge and carries the danger of electron
spill-out.71

FIG. 8. Comparison of electronic couplings (Hab/meV) calculated with
the plain FO-DFT method and with polarized δ+-FODFT. All couplings
are calculated with the BLYP functional and the H2n−1@D+A variant of
FO-DFT.

electrostatic potential embedding for the example of a zinc
dimer and compare it to other approaches. Once, the Zn+ atom
is replaced by a positive point charge at the position of the
nucleus, and once the positive charge is constrained to the
atom using cDFT. The effect of the prior pure electrostatic
embedding on the density is very similar to the constrained
DFT density, showing that it is, in principle, possible to
approximately include polarization effects in the fragment
calculation.

Applied to the HAB11 data set, we find that using
polarized fragment densities has only a small influence on the
coupling values. The average change in electronic couplings
for all systems is only 1.65%, with the highest single change
being 3.2% (cf. Fig. 8).

V. DISCUSSION

A. The effect of charged-fragment calculations

Our new variation of the FO-DFT scheme, which is based
on charged-fragment calculations (cf. Section II), yields much
improved electronic couplings for the HAB11 hole transfer test
set. In order to understand why, we again turn to the two steps
of FO-DFT: (1) the approximation of the frontier orbitals of the
diabatic charge transfer states and (2) the construction of the
diabatic Hamiltonian. The {H2n/H2n−1}@DA variants share
the correct (neutral) frontier orbitals and both approximate
the Hamiltonian to some extent. The 2n − 1 scheme used in
the CPMD implementation allows for the correct number of
electrons in the Hamiltonian, while the 2n scheme always uses
the neutral dimer as reference system. Although electronic
couplings obtained with the 2n scheme show better agreement
with the reference, it has been shown that this is due to
fortunate error compensation.44

The H2n-1@D+A scheme, on the other hand, has the
correct number of 2n − 1 electrons by construction — due to
the charged fragment calculation, but approximates the neutral
frontier orbital by the LUMO, i.e., the unoccupied minority
spin orbital of a singly occupied molecular orbital. Since the
electronic coupling is then calculated between the unoccupied
minority spin orbital χn/2 of (the charged) fragment 1 and the
occupied minority spin orbital χn/2 of (the neutral) fragment
2, this approximation is small. This results in the improved
coupling values obtained above.
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In the case of electron transfer, the correct frontier orbitals
according to the nomenclature used in Eqs. (5) and (6) are
φ2n+1
D and φ2n+1

A , that is, the anionic species of both fragments.
For the H2n@DA scheme, this means that coupling values are
calculated between the LUMOs of both fragments, while in
the 2n + 1-schemes, the coupling is again calculated between
occupied and unoccupied orbitals. For the HAB7 data set,
the accuracy of the H2n@DA flavor is best, with a MRSE
of −22.4%. It is closely followed by the new H2n+1@D−A
method (MRSE −22.9%), while the H2n+1@D−A− variant
shows the worst performance (MRSE −27.1%).

Interpretation of these results is much less straightforward
than in the cationic case. Especially for anionic species,
uncompensated self-interaction effects can be expected to
lead to an over-delocalization of the electrons.70 Due to
these known challenges,72–74 one would expect the original
H2n@DA approach — which does not include any charged
calculations by construction — to perform best, while the
H2n+1@D−A− method should perform worst due to being
based on two anionic calculations. Following this argument,
the H2n+1@D−A scheme would lie somewhere in the middle.
This is at first indeed confirmed by our results. Yet, the fact
that the original method and our new method here show
almost identical performance suggests that this error is at least
partially compensated by the less approximate Hamiltonian
in the new H2n+1@D−A FO-DFT variant. Furthermore, we
performed hybrid DFT calculations — which are known to
attenuate the charge delocalization error — to gauge this
effect. For a detailed discussion, see Section V C.

B. Importance of fragment polarization

In Section II, we explained that by using the superposition
of isolated fragments, any interactions naturally affecting
the molecules in the fragment calculation are neglected.
One such interaction is the polarization of a fragment’s
electron density due to the presence of the other. Yet, the
severity of this approximation is dependent on the system in
question. In Fig. 8, the comparison between polarized and
non-polarized fragment calculations for the HAB11 database
showed no significant difference in the estimated couplings
(between −2.3% and +3.2%). While there certainly is a
distortion of the neutral electron density — as demonstrated
in Fig. 7, neglecting polarization cannot alone account for
the underestimation of electronic coupling values in the
investigated systems.

C. The influence of exact exchange

When calculating electronic couplings with the B3LYP
functional, the MRSE compared to calculations at the BLYP
level is reduced from −22.4% to −7.3% (−22.9% to +11.8%)
for the HAB11 (HAB7) database. This improvement of all
electronic couplings, for both hole and electron transfers,
computed with hybrid functionals is very remarkable. In
particular, since the electronic coupling is proportional to
the wave function overlap and the density is more localized
(=compact) in hybrid-level calculations, such an increase in
coupling values is at first counterintuitive. However, it may

again be explained considering the structure of a FO-DFT
calculation. Our calculations in Section IV B, using hybrid-
level electron densities, but constructing the Hamiltonian with
a GGA functional, indeed, show the expected (slight) decrease
in the coupling values. However, the effect of a Hamiltonian
constructed with a hybrid functional based on GGA densities
far outweighs this small reduction due to the more localized
electron density. In this case, the electronic couplings are
increased by an average of 31.8% ± 8.8% (43.8% ± 12.6%)
compared to the GGA reference. We consistently see this
behavior for the B3LYP, PBE0, and HSE06 hybrid functionals,
all with similar improvements (see Table III). This effect can
thus solely originate in the exact exchange part, since any
effects on the charge density are excluded in this approach by
using the GGA density.

It is important to point out the different performance with
respect to anionic and cationic species here. While for hybrid
calculations of the cationic species in the HAB11 set both the
absolute Hab values and the distance decay behavior β are
improved, this is not the case for the anionic species in the
HAB7 set. The distance decay factor β is a sensitive indicator
for the distance-dependent error. In the case of B3LYP and
HAB7, the accuracy of the electronic couplings varies with
the distance, as shown in Fig. 9. This causes the observed
inaccuracy in β, while still retaining a good overall accuracy
on the absolute coupling values.

D. Computational efficiency versus accuracy

One of the important advantages of FO-DFT over other
methods is its high computational efficiency. Considering
a charge transfer dimer of molecules, only the isolated
molecules need to be computed in a self-consistency cycle,
while for the combined (larger) system, only a single
evaluation of the Kohn-Sham matrix is necessary. Especially
in screening studies or disordered systems, where it may
be necessary to calculate hundreds or even thousands of
electronic coupling values, FO approaches — sometimes
even based on semi-empirical ZINDO46,47 or DFTB44,75 —
are correspondingly often the method of choice. It is therefore
important to point out that the different flavors of FO-DFT not

FIG. 9. Distance-dependent MRSE for the HAB11 and HAB7 test set. The
errors are shown for the BLYP and B3lYP functionals, respectively. The
variation in the error is largest for B3LYP in the HAB7 set, while the others
change less with the distance.
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TABLE IV. Compilation of the accuracy of the different FO-DFT flavors in
terms of their MRSE for the HAB11 and HAB7 database. The efficiencies
of the methods are characterized by the number of full DFT calculations
necessary, differentiating between homo- and hetero-dimers. Values for the
B3LYP@BLYP crossover scheme are titled B3@B.

MRSE/%


calculation

HAB11 HAB7 Homo Hetero

H2n@DA −24.6 −22.4 1 2
H2n±1@DA/D−A− −37.7 −27.1 1 2
H2n±1@D±A −22.4 −22.9 2 4

H2n±1@D±A (B3LYP) −7.3 11.8 2a 4a

H2n±1@D±A (B3@B) 2.0 11.0 2b 4b

aFull hybrid DFT calculations.
bOnly hybrid DFT Hamiltonian in dimer step.

only have different levels of accuracy, but that this accuracy
also comes at different computational cost in terms of the
number of self-consistency cycles necessary (see Table IV).

Here, it is important to differentiate between homo-
dimers (e.g., in ideal organic crystals) and hetero-dimers
(such as in polymers or finite-temperature organic crystals) as
well as between hole- and electron-transfer systems. For
hole transfer, the best possible accuracy within the FO-
DFT approximation is achieved with the charged-fragment
scheme (H2n+1@D+A). This comes at the cost of twice
as many DFT calculations as for the other schemes. If
speed matters most, the original H2n@DA or H2n+1@DA
flavors may thus still be more appealing. A word of caution
is nevertheless necessary regarding the performance of the
H2n@DA method: As emphasized before,44 the electronic
coupling is artificially increased towards the reference value
by the spurious excess electron in the Hamiltonian. Since
there is no guarantee that this effect does not cause a large
overestimation in particular systems, it may be advisable to
verify the results against high-level reference data or one of
the other FO-DFT schemes. In the case of electron transfer
(i.e., anionic species), the best accuracy is obtained with
the H2n@DA method, closely followed by the new charged-
fragment method (H2n+1@D−A). The H2n+1@D−A− variant
has the worst performance for these systems.

The introduction of exact exchange via a hybrid DFT
functional such as B3LYP yields for both test sets the most
accurate electronic couplings attainable with the FO-DFT
scheme, yet at a much higher computational cost. A way
to reduce this cost and still obtain high-quality electronic
couplings may therefore be to use the hybrid-GGA crossover
scheme. The most expensive part of the FO-DFT calculation,
namely, the self-consistent calculation of the fragments, is
still done on the less demanding GGA level, while only for
the final construction of the Hamiltonian, the hybrid DFT
functional is used.

VI. CONCLUSIONS

In this work, we presented a comprehensive evaluation
of electronic couplings calculated with different flavors of the
efficient fragment orbital scheme. In addition to two previously

described variants of FO-DFT, we introduced a new scheme
resting on slightly different approximations, which lead to an
improved description of the diabatic state Hamiltonian. All
values were calculated with the same computational settings
within the FHI-aims framework, allowing us to rule out any
influences of different implementations and technical settings.
We compared all calculated values to the high-level ab initio
reference values for the previously introduced HAB7 and
HAB11 data sets.44,48 In accordance with the previous work,
we find that the agreement between values calculated with
various DFT frameworks is very good, with differences of
typically less than 3% — given the same variant of the
FO-DFT scheme.

Contrary to earlier expectations,44 we find that hybrid
functionals such as PBE0 or B3LYP yield largely improved
coupling values for all tested systems. For the new
H2n±1@D±A method and B3LYP, the MRSE is decreased
by 15.1% and 11.1% for the HAB11 and HAB7 data
sets, respectively. This accuracy is then similar to the
less approximate constrained DFT approach using hybrid
functionals with a tuned exact exchange ratio.44,48

We further find that omitting polarization between the
fragment densities as common to all fragment orbital schemes
has a negligible influence on the electronic coupling value.
Overall, the accuracy and performance of the FO-DFT
method for systems with weak interactions between the
charge transfer sites as often encountered in, e.g., organic
semiconductors is thus comparable to more expensive methods
such as constrained DFT. This is especially true if the new
H2n±1@D±A scheme together with a hybrid DFT functional
is used which still shows a more favorable computational
cost than a full-fledged hybrid-level constrained DFT
calculation.

Based on these results, we recommend the following
best practice when calculating electronic couplings for
hole or electron transfer using FO-DFT: For hole transfer,
i.e., cationic species, the best accuracy is obtained with our
new H2n−1@D+A variant, with a MRSE of only −22.4%
for BLYP. If computational efficiency is most important,
the classical H2n@DA scheme with a MRSE of −24.6% at
GGA-BLYP level performs well. Although it should be noted
that part of the improved performance when compared to
the similarly effective H2n−1@DA (MRSE −37.7%) scheme
stems from fortunate error compensation. For electron transfer
in anionic species, we find a different hierarchy. Here, our
new charged fragment scheme has similar accuracy (MRSE
−22.9% at GGA-BLYP level) as the original H2n@DA
scheme (MRSE −22.4%), while the H2n+1@D−A− is least
accurate (MRSE −27.1%). Again, if efficiency is crucial, the
H2n@DA scheme seems to offer the best compromise between
accuracy and efficiency. If the intention is instead to obtain the
best possible couplings within the FO-DFT approximation, the
H2n±1@D±A method together with a hybrid DFT functional
is always the best choice.
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APPENDIX A: APPLYING THE SLATER-CONDON
RULES

The step from Eq. (4a) to Eq. (6) seems to be large,
but it can be analytically derived by applying the Slater-
Condon rules. The expression for the coupling matrix element
⟨Ψa |Ĥ |Ψb⟩,

Hab = ⟨ÂφD, . . . , φ
n−1
D , φA, . . . , φ

n−1
A , φn

A|H
× |ÂφD, . . . , φ

n−1
D , φn

D, φA, . . . , φ
n−1
A ⟩, (A1)

with the antisymmetrizing operator Â2 =
√

N!Â, can be
rewritten as

Hab =
√

N!⟨ÂφD, . . . , φ
n−1
D , φA, . . . , φ

n−1
A , φn

A|H
× |φD, . . . , φ

n−1
D , φn

D, φA, . . . , φ
n−1
A ⟩. (A2)

If we now replace the exact Hamiltonian with the sum of the
Kohn-Sham one-electron Hamiltonians

Ĥb =

2n−1
i

hi
b, (A3)

one can show that of all N! permutations exactly one
permutation has a non-zero contribution. Only in one case
of Pn,

Hab = ⟨φ1
D, . . . , φ

n−1
D , φn

A, φ
1
A, . . . , φ

n−1
A |H |

× φ1
D, . . . , φ

n−1
D , φn

D, φA, . . . , φ
n−1
A ⟩, (A4)

not all summands are zero,

⟨φ1
D|h1

b |φ1
D⟩                

=ϵ1

. . . ⟨φn−1
D |φn−1

D ⟩                
=1

⟨φn
A|φn

D⟩      
=0(orthogonalized!)

· ⟨φ1
A|φ1

A⟩      
=1

. . . ⟨φn−1
A |φn−1

A ⟩                
=1

+ ⟨φ1
D|φ1

D⟩        
1

. . . ⟨φn−1
D |hn−1

b |φn−1
D ⟩                              

=ϵn−1

· ⟨φn
A|φn

D⟩      
=0

· ⟨φ1
A|φ1

A⟩      
=1

. . . ⟨φn−1
A |φn−1

A ⟩                
=1

+ ⟨φ1
D|φ1

D⟩        
=1

. . . ⟨φn−1
D |φn−1

D ⟩                
1

· ⟨φn
A|hn

b |φn
D⟩                

=hab

· ⟨φA|φA⟩      
=1

. . . ⟨φn−1
A |φn−1

A ⟩                
=1

. (A5)

This leads to a simplified representation of the diabatic
states,

Ψa ≈ ΨD+A
a = |✭✭✭✭✭✭✭ÂφD, . . . , φ

n−1
D , ✘✘✘✘✘✘

φA, . . . , φ
n−1
A , φn

A⟩,
(A6)

Ψb ≈ ΨDA+

b = |✭✭✭✭✭✭✭ÂφD, . . . , φ
n−1
D , φn

D,✘✘✘✘✘✘
φA, . . . , φ

n−1
A ⟩,

(A7)

and the coupling matrix elements

Hab = ⟨φn
A|ĥb |φn

D⟩. (A8)

APPENDIX B: ROTATION OF WAVE FUNCTIONS
IN FHI-AIMS

In FHI-aims,49 a (numeric atom centered) basis function
is defined by

Φi,lm =
ui(r)

r
· Sl,m(θ,φ), (B1)

with a numerically defined function ui(r) and real-valued
spherical harmonics Sl,m(θ,φ). These are obtained from the
complex spherical harmonics Ylm via

Sl,m(θ,φ) =



(−1)m√
(2) (Ylm + Y ∗

lm
) m > 0

Yl0 m = 0
(−1)m
i
√

(2) (Yl |m | − Y ∗
l |m |) m < 0

, (B2)

even though employing a non-standard sign convention. With
the well-known linear combination of atomic orbitals (LCAO)
approach,

Ψk(r) =
n_basis
i=1

cki Φi(r), (B3)

one then gets a set of coefficients cki for each wave function.
A rotation of a molecule (with a rotation matrix R) leads to
the same set of Ylms (as they are fixed with respect to the x y z-
coordinate system), but with different coefficients c. While
different schemes for real spherical harmonics are available
(see, for example, Lessig et al.,66 Aubert,67 Blanco et al.68),
we construct our rotation matrices for different l starting from
the complex Wigner D matrices via a transformation matrix
Cl. Using this approach, it is easy to account for the different
sign convention of FHI-aims in the real spherical harmonics,

Sl,m = ClYl,m. (B4)

The matrix C is constructed according to Blanco et al.68 with
the constraint of the different sign convention in FHI-aims.
With this, the real rotation matrix ∆l(R) is calculated as

∆
l(R) = �

Cl
�∗Dl(R)�Cl

�t
. (B5)
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