
Citation: Custódio, D.; Borrego, C.;

Relvas, H. Worldwide Evaluation of

CAMS-EGG4 CO2 Data Re-Analysis

at the Surface Level. Toxics 2022, 10,

331. https://doi.org/10.3390/

toxics10060331

Academic Editor: Choong-Min

Kang

Received: 23 May 2022

Accepted: 14 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Worldwide Evaluation of CAMS-EGG4 CO2 Data Re-Analysis
at the Surface Level
Danilo Custódio 1,2,* , Carlos Borrego 3 and Hélder Relvas 3

1 Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck-Str. 1,
21502 Geesthacht, Germany

2 Max-Planck Institute for Biogeochemistry, 07747 Jena, Germany
3 CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal;

cborrego@ua.pt (C.B.); helder.relvas@ua.pt (H.R.)
* Correspondence: dcustodio@bgc-jena.mpg.de

Abstract: This study systematically examines the global uncertainties and biases in the carbon dioxide
(CO2) mixing ratio provided by the Copernicus Atmosphere Monitoring Service (CAMS). The global
greenhouse gas re-analysis (EGG4) data product from the European Centre for Medium-Range
Weather Forecasts (ECMWF) was evaluated against ground-based in situ measurements from more
than 160 of stations across the world. The evaluation shows that CO2 re-analysis can capture the
general features in the tracer distributions, including the CO2 seasonal cycle and its strength at
different latitudes, as well as the global CO2 trend. The emissions and natural fluxes of CO2 at the
surface are evaluated on a wide range of scales, from diurnal to interannual. The results highlight
re-analysis compliance, reproducing biogenic fluxes as well the observed CO2 patterns in remote
environments. CAMS consistently reproduces observations at marine and remote regions with low
CO2 fluxes and smooth variability. However, the model’s weaknesses were observed in continental
areas, regions with complex sources, transport circulations and large CO2 fluxes. A strong variation
in the accuracy and bias are displayed among those stations with different flux profiles, with the
largest uncertainties in the continental regions with high CO2 anthropogenic fluxes. Displaying
biased estimation and root-mean-square error (RMSE) ranging from values below one ppmv up
to 70 ppmv, the results reveal a poor response from re-analysis to high CO2 mixing ratio, showing
larger uncertainty of the product in the boundaries where the CAMS system misses solving sharp
flux variability. The mismatch at regions with high fluxes of anthropogenic emission indicate large
uncertainties in inventories and constrained physical parameterizations in the CO2 at boundary
conditions. The current study provides a broad uncertainty assessment for the CAMS CO2 product
worldwide, suggesting deficiencies and methods that can be used in the future to overcome failures
and uncertainties in regional CO2 mixing ratio and flux estimates.

Keywords: compliance of CO2 re-analysis data; atmospheric CO2 trend; Copernicus Atmosphere
Monitoring Service; uncertainties in CO2 data products; reducibility of anthropogenic fluxes

1. Introduction

More than ever, carbon dioxide (CO2) monitoring is at the front line of climate change
mitigation. Taking the lead in climate transition and emission control has become impera-
tive. Nonetheless, the capability of monitoring atmospheric CO2 by combining numerical
models, in situ and remote sensing observations has rapidly evolved to improve our
understanding of CO2 fluxes, sources and sinks [1,2].

The integration of earth observation data may become a critical tool in supporting poli-
cies aimed at reducing CO2 emissions, a key anthropogenic driver of climate change [2,3].
Human activities are directly responsible for most of the CO2 emissions, particularly due
to the use of fossil fuel, with emissions particularly high in urban areas. With a lifetime of
hundreds of years and well-known sources, CO2 essentially disperse after being emitted,
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and reliable data-product of such atmospheric trace gas can be critical in studies of air
pollution dispersion and source apportionment of many atmospheric trace gases [4,5]. In
addition, it can potentially provide a second option for evaluating national inventory [6].

Monitoring global CO2 emissions is highly desirable. To support and foster such a
system initiative, the ECMWF Integrated Forecasting System (IFS) provides global gridded
estimates of the atmospheric CO2 mixing ratios. In the global greenhouse gas re-analysis
dataset (EGG4), the CO2 fluxes from natural and anthropogenic sources are modeled, even
making use of a coarse time-resolution inventory (monthly). This provides CO2 fluxes in
the atmosphere in a wide range of scales, from diurnal to inter-annual.

The Greenhouse Gas re-analysis dataset from Copernicus Atmosphere Monitoring
Service, CAMS-EGG4, makes intense use of data assimilation. It combines high-resolution
global models together with in situ CO2 concentration networks across the world, as well
as satellite data. This results in a globally complete and consistent dataset using a model of
the atmosphere based on the laws of physics and chemistry.

To make CAMS-EGG4 data more reliable in understanding sources, sinks and the
transport of atmospheric CO2 from the surface into the troposphere around the globe,
the reliability of this data product should be evaluated based on fiducial observation
measurement comparison. Quantifying the quality of such data products by decomposing
the inherent uncertainty components is a challenging and key component in product
reliability and its use. The overall objective in validating and evaluating uncertainties of
earth observation data products, such as those provided by CAMS, is to explicitly answer
the question: How good is the evaluated dataset?

Hence, the study aims to explore the potential of CAMS to monitor and analyze CO2
concentrations at global scales. We attempt to compare the CAMS CO2 data at surface level
with high accurate in situ surface data.

As a contribution to the evaluation of CAMS-EGG4 CO2 re-analysis data, the atmo-
spheric concentration of CO2 provided by CAMS were compared with observational data
gathered by monitoring ground stations. The reference data used to evaluate the perfor-
mance of CO2 data from the CAMS re-analysis at surface level consist of high-resolution
in situ observations obtained from extensive CO2 measurement programs, such as Global
Atmosphere Watch (GAW), Amazon Tall Tower Observatory (ATTO) and the Global Moni-
toring Laboratory of the National Oceanic and Atmospheric Administration (NOAA).

A comprehensive validation report for the global CAMS CO2 re-analysis is reported by
Ramonet et al. [7], based on airborne observation and 23 background stations worldwide.
The aforementioned authors reported an increasing near-surface bias and regional uncer-
tainties associated with vegetation model features representing biogenic fluxes. However,
further evaluation of CAMS re-analysis seeking the main sources of errors is still needed to
understand its product compliance and misfit. In addition, such a study can bring insights
into the CO2 fluxes parametrization considered in the CAMS model.

The product strength and concerns were enhanced by understanding the differences
among observations and the product and the spatial differences. In comprehensive statistics
comparing measurement data from hundreds of stations, we assess the compliance of the re-
analyses of CO2 on a global basis. Furthermore, we discuss the re-analyses and observation
mismatches, exploiting the model constraints reproducing concentration at boundary
regions and anthropogenic fluxes.

The paper is structured as follows: Section 2 describes the data and the methodology
used. In Section 3, the main results are presented and analyzed. Section 4 is devoted to
the conclusions.

2. Datasets and Methods
2.1. Datasets

To evaluate the compliance of the CAMS CO2 product, we selected 160 worldwide
sites monitoring this trace gas. The following subsections briefly describe the datasets
considered in this study.
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2.1.1. CAMS-EGG4

The Copernicus Atmosphere Monitoring Service (CAMS) implemented by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) is one of the most advanced
global atmospheric models simulating the state of the atmosphere with accuracy similar to
what is theoretically possible using a 4D-Var method [8,9].

CAMS provides trace gas products such as greenhouse gases for downstream appli-
cations in early warning systems, environmental monitoring, health services and climate
research [10].

Known as the Integrated Forecasting System, it is a component of the Copernicus
European Earth observation program. It was originally developed through a series of
Monitoring Atmospheric Composition and Climate (MACC) research projects (MACC
I-II-III) that provide near-real-time and re-analysis systems with modelling and data as-
similation of trace gas mixing ratios and aerosol concentrations. In this study, we used
CO2 from CAMS global greenhouse gas re-analysis (EGG4) products obtained from the
Copernicus platform. The CAMS-EGG4 CO2 product evaluated refers to re-analysis model
level products downloaded in July 2021/September 2021 at the CAMS catalogue [11].
The re-analysis CO2 CAMS-EGG4 data are available at three-hour intervals (starting at
00:00 UTC) and on a regular latitude–longitude grid of 0.75◦ × 0.75◦. This study used
products retrieved at the model levels 60, 59, 58, 57, 56, 55, 54, 53 (10 m, 34 m, 71.89 m,
124.48 m, 195.85 m, 288.57 m, 404.74 m and 546.11 m) geometric altitude described at
https://confluence.ecmwf.int/display/UDOC/L60+model+level+definitions (last access
on 1 May 2022). As a global re-analysis grid, it can be interpolated to the desired location,
and its accuracy is based on the error characteristics of the assimilated data.

The CAMS makes intense use of satellite assimilation; it also assimilates atmospheric
observations from aircraft networks [12] and radiosondes [13]. CAMS-EGG4, currently
covering the period 2003–2020, uses 4DVar data assimilation in CY47R1 of ECMWF’s
Integrated Forecast System (IFS). This system is continuously improving through the
addition of new features and new model versions.

CAMS-EGG4 assimilates surface CO2 fluxes from the terrestrial biosphere directly
into the IFS using the CTESSEL carbon module [14]. Other sources and sinks of CO2 are
prescribed from different inventory sources and datasets. The CO2 fluxes are not directly
updated by the observations assimilated, but an online flux correction scheme is applied to
correct bias. Such correction is performed by comparing the modelled biogenic fluxes with
a climatology of optimized fluxes. CAMS meteorological initial conditions come from the
ECMWF operational analyses. The specific EGG4 model configuration is documented in
the listed papers below:

• Emissions for CO2 are documented in Agustí-Panareda et al. [15] and Massart et al. [16];
• Bias correction for CO2 ecosystem fluxes based on the Biogenic Flux Adjustment

Scheme is documented by Agustí-Panareda et al. [17];
• Mass fixer configuration for CO2 is documented by Agusti-Panareda et al. [18] and

Diamantakis and Agusti-Panareda [19]. The full description can be assessed in CAMS-
EGG4 data documentation [20].

2.1.2. Ground-Based Observation

To evaluate the performance of CO2 provided by the CAMS model (EGG4), we used
“ground truth” data from ground stations. We used continuous CO2 observations from
more than 160 in situ monitoring stations established in worldwide monitoring programs.

Monitoring towers for ground-based measurements facilitate the measurement of
greenhouses gases. We used data from the following: the Global Atmosphere Watch (GAW)
program of the World Meteorological Organization (WMO); the National Oceanic and At-
mospheric Administration (NOAA) in the United States, a scientific and regulatory agency;
and the Amazon Tall Tower Observatory (ATTO). In addition to Tall Tower, seven other
tower stations sampling at different altitudes were used in this study, providing observation
data up to 457 m height (agl). The ground-based monitoring system provides the physical

https://confluence.ecmwf.int/display/UDOC/L60+model+level+definitions
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and chemical references of CO2 concentration to evaluate global earth observation data
products. The GAW, NOAA and ATTO observing projects provide datasets and services
to decision-makers and the public, as well as for scientific evaluation and forewarning of
changes in the air composition that may have adverse effects on the environment [21]. The
ground stations can provide handy insights in evaluating earth observation data products
as they are spread worldwide and provide accurate high-resolution data (0.1 ppmv).

To estimate the accuracy of global CO2 re-analysis from CAMS, we selected the ground
surface stations at different locations and altitudes. The selected sites are appropriate
because they cover a long period of CAMS CO2 data availability, if not the entire period.
The location of those stations (Figure 1), and the entire site description, are shown in the
hypergraph at https://rpubs.com/danilocustodio/874276.
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Figure 1. Location of stations considered in the evaluation of re-analysis CO2 provided by CAMS.
The sta-tion name and its description can be accessed at the hypergraph link below (https://rpubs.
com/danilocustodio/874276).

The CO2 ground observations considered at this study are fairly robust since they
are derived from stable devices and a well-established validated method. Measurement
uncertainties are reported by Andreae et al. [22], Stanley et al. [23], and GAW Report N◦

255, [24].

2.2. Methods

For comparability with the re-analysis CO2 product, the observation data were aver-
aged over three-hour periods. The observation data from ground stations at a 3 h resolution
were considered valid only if they had values for at least 75% of the time.

The re-analysis (EGG4) products were downloaded at the regular latitude–longitude
grid of 0.75◦ × 0.75◦ and then interpolated to observation data colocation. Despite the

https://rpubs.com/danilocustodio/874276
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different spatial resolutions, the mean value of upper gridded earth observation products
can be used to match up with ground monitoring sites [25,26].

Based on kernel-smoothing interpolation, the CO2 data products used in the compar-
ison were interposed linearly in latitude, longitude and polynomially (second order) in
atmospheric pressure to the same height as the measurement data.

After spatiotemporal collocation of CAMS and observation could be spatiotemporally
aggregated and pairwise datasets were compared. The CAMS product and observations are
compared, analyzed and discussed at the observation correspondent position. In this study,
the temporal and spatial comparisons were performed for as long as it was conceivable
and as broadly as possible, depending on the observation data availability.

After retrieving the CO2 product from the respective observation coordinates, temporal
collocated pairwise datasets could be compared based on five metrics: The first metric is the
mean difference between product values and observations, defined as root-mean-square
error (RMSE) which shows the differences between product values and observation at
different station sites. The RMSE is defined as (Equation (1)):

RMSE =

√
1
N ∑n

n=1

(
Xproduct − Xobservation

)2
(1)

where N is the total number of observations, and Xproduct and Xobservation are the CO2
mixing ratio for the product and observation, respectively. The second metric is relative
differences (% difference) defined as the percentile difference of the product compared to
the reference (Equation (2)).

% difference = 100
1
N ∑n

n=1ABS
(Xproduct − Xobservation

Xobservation

)
(2)

The third metric is mean bias (MB), or mean bias error (Equation (3)), which display
the average bias in the CAMS-EGG4.

MB =
1
N

n

∑
n=1

(
Xproduct − Xobservation

)
(3)

The fourth adopted metric is the linear regression deployed to evaluate the conditional
probability distribution of the product’s prediction (conditional quantile). Last but not
least, kernelized temporal pattern is deployed to find and evaluate the temporal alignments
among product and observation.

2.3. Representative and Spatial Scale Issues

Despite the different spatial resolutions, the mean value of models in an amplified
grid cell is usually used to match up with ground monitoring sites [25,26].

However, it is worth highlighting two important issues when performing comparisons
between gridded data such as those from CAMS, which have a large spatial coverage,
and point-like ground-based observations: (i) a ground observing station might not be
representative of the entire concentration over a grid cell, particularly in the case of a grid
with intense sources, or in the vicinity of the sources; and (ii) the pixel-mean elevation of the
surface (in gridded data) and the actual station elevation are not necessarily representative
of the product layer.

These issues introduce errors and affect all comparative studies of this kind [27–32]. To
mitigate this, the present study includes the comparison of aggregated factors of temporal
pattern. In addition, we apply scale-height correction by interpolating the product dataset
available at different layers to the height of the “ground truth” reference data.
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3. Results and Discussion

In this section, we present the main results from the evaluation of the carbon dioxide
re-analysis data product provided by CAMS. To evaluate the compliance of CAMS-EGG4
compared to the observation, we apply mean bias, root-mean-square error (RMSE), relative
differences, regression analysis and temporal patterns. Beyond the qualitative agreement
and disagreement among the datasets, we assess the compliance strength of the CO2
product. Based on the five used metrics, we investigate the product’s misfit on the bias,
response to temporal variation and uncertainties.

3.1. Overall Performance of Re-Analysis

The root-mean-square error (RMSE), average absolute errors in percentage, mean bias
and slope regression between CAMS-EGG4 and observations are extracted from the entire
available data and are presented at https://rpubs.com/danilocustodio/874273 (Figure 2).
This hypergraph shows the data comparison between CAMS-EGG4 and observations at
different sites considered in this study. The overall RMSE (Cobservation, CCAMS-EGG4) was
17.59 ppmv, the mean bias (Cobservation, CCAMS-EGG4) was 7.46 ppmv and the slope of the
linear regression (Cobservation, CCAMS-EGG4) was 1.018.
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Figure 2. Mean bias (MB) and RMSE (in ppmv) displayed by CO2 re-analysis product provided
by CAMS-EAC4 in the comparison with worldwide in situ observation considered in this study.
The compliance metric for each station can be accessed through the hypergraph available at (https:
//rpubs.com/danilocustodio/874273).

The evaluation of the global performance of CO2 re-analysis from CAMS reveals a
lower RMSE and a lower percentage of error at stations in remote environments, such
as at the North and South Poles, in the Pacific, Atlantic and the Indian Oceans. On the
other hand, higher disagreement among the compared datasets was mainly at stations in
continental regions.

The evaluated CO2 products were low biased and statistically similar to measurements
(in 95% confidence interval in the mean) at the remote end stations, such as at the South
Pole, King George Island, Samoa, Cape Verde, Azores, Barrow, Alert, Amsterdam Island,
Macquarie Island, Ascension, Crozet, Mawson and Casey. At the aforementioned stations
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(georeferenced in https://rpubs.com/danilocustodio/874273), there is a difference of less
than 0.5% between the CAMS data and the observations. On the other hand, differences
rise above 6% at stations such as Amazon Tall Tower, Fundata, Monte Cimone, Bukit
Kototabang, Pha Din, Mt. Dodaira, Suita, Kisai, Anmyeom-do and King’s Park. Notable
differences were also observed at Farafra and Cairo stations; however, those stations have
recently raised questions regarding their data quality control.

The minimum deviation of the CAMS data, less than 1.4 ppmv, was observed at
Storhofdi (Iceland), Ascension Island (South Atlantic), Antarctic Station and Macquarie
Island (Pacific Ocean), while the maximum deviation, above 50 ppmv, was observed at
Danum Valley and Bukit Kotatabang (South Asia), Mt. Dodaria and Kisai (Japan). As
shown in Figure 2, the CAMS-EGG4 data are in good agreement with CO2 observed at
surface level in regions far from CO2 sources, indicated by a well-mixed ratio of this gas in
the atmosphere. However, the CAMS product shows concentration dependence displaying
significant bias at high CO2 concentrations (Figure 3). The average deviation between the
CAMS data and observation is 2.4% (12.8 ± 15.5 ppmv). The reason CAMS overestimates
CO2 in continental regions, as displayed in Figure 2, is likely related to different factors
such as source consideration and transport modelling parametrization in the CAMS model.
In addition, the Tall Tower data show that the differences are not vertically homogeneous;
CAMS re-analysis data exhibit a strong gradient with improved performance at higher
altitudes (Table S1, https://rpubs.com/danilocustodio/874273). The reasons for this could
be attributed to the carbon sources and sinks at the near surface combined with atmospheric
mixing, determining the spatial distribution and temporal variation of CO2 in the lower
troposphere. The higher stratification of the atmospheric boundary can lead to large CO2
gradients that are more difficult for the re-analyses to accurately capture.
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Figure 3. The conditional quantile regression plot shows the comparison between CAMS reanalysis
and observation. The observations are split up into bins according to the corresponding CAMS
value. On the left, the conditional quantiles of CAMS are displayed again worldwide ground-based
observations, which include the data from all stations considered in this study. On the right, the
regression specimen for Barrow in Alaska (top right) and South Pole (bottom right) are shown. The
median prediction line together with the 25/75th and 10/90th quantile values are plotted together
with a line showing a “perfect model”. Also presented is a histogram of CAMS values (shaded grey)
and a histogram of observed values (shown as a blue line).
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3.2. Compliance and Misfit

Figure 3 shows the conditional quantile plots where the re-analysis CO2 data are
evaluated against the ground-based observations. The aforementioned figure illustrates
the regression between re-analysis data derived from CAMS and observation at surface
level for the worldwide stations described in Figure 1. The results indicate agreement
among the dataset at more than 90% of the distribution. However, pronounced differences
are displayed on the edges of the distribution when CAMS mainly overestimates CO2
concentrations and constrains bias above the 10/90th percentile. The CAMS data shows
an increasing bias, up to 60 ppmv, at regions where potential nearby pollution sources
are present. The misfit at the continental stations is probably due to the influence of CO2
fluxes close to the station, which are not spatially well resolved by the CAMS model, as is
discussed in the next section.

As displayed at Barrow Station, CAMS could respond reasonably well at remote
regions with low concentration variation in space. Displaying compliance in the 25/75th
conditional quantile, the CAMS product could be an important reliable data source in
remote ends or regions with a homogeneous distribution of CO2 mixing ratio.

As shown in Figure 4 for two specimen stations, the re-analysis matches the obser-
vation quite closely. However, the re-analysis shows a positive bias before 2013 and an
increasing negative bias after that year. This bias and its signal break in 2013 are more easily
detectable at stations in the southern hemisphere, such as at the South Pole, thanks to the
weakness of the seasonal cycle. Still, it is present at other latitudes as is faintly displayed at
Barrow. The bias inversion in 2012/2013 corresponds to the end of data assimilation from
the SCIAMACHY instrument in 2012 and the start of assimilation of IASI-B data in 2013 [7].
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Figure 4. CO2 time series at Barrow (top) and South Pole (bottom) obtained from ground-based
observa-tion and CAMS re-analysis. Both datasets are presented at a time resolution of 3 h.

The CAMS system reproduces the CO2 atmospheric background trend and seasonality
fairly well. The performance of the re-analysis is compliant with the observed atmospheric
CO2 trend in a 99% significance interval. The seasonal variability differs significantly from
site to site. It is more pronounced in the northern hemisphere, which is explained by
different biogenic fluxes, depending on the type of ecosystem (e.g., crops or forest areas) in
the station footprint. The vegetation model in CAMS represents this well (Figure 5).
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Figure 5. The annual CO2 cycle displayed by observation and CAMS includes all northern hemisphere
sites considered at this study. The line represents the kernel average of the monthly concentration of
CO2, and the shaded area represents its variance in a 95% significance interval.

We find that the temporal profiles of CO2 from CAMS re-analysis can agree exception-
ally well with the CO2 temporal variability of ground-based observation at regions with low
anthropogenic flux. The CAMS analysis appears to capture the biogenic fluxes in oceanic
and terrestrial regions. For instance, a maximum diurnal variation of 1 ppmv was observed
for oceans and terrestrial regions with a well-mixed CO2 ratio (background regions), with
maxima at noon, when observed. Chen et al. [33] reported that the biogenic CO2 surface
fluxes are provided by an online biosphere model in the IFS system. In addition, biases are
corrected in real time throughout the forecast.

3.3. Main Sources of Error

Emissions and dynamics explain most of the differences in observation-data products
comparisons [34].

Second Hedelius et al. [34] about 25% of the differences among CO2 data product
and observation can be associated with the proximity of anthropogenic sources of CO2
combined with the basin topography that can lead to the trapping of polluted air enhancing
CO2 concentration gradient within the basin. Such events are not solved by atmospheric
models. This error is mainly associated with errors in the estimation of mixed layer height,
leading to significant errors in retrieved fluxes. Kort et al. [35] and Newman et al. [36]
attributed this phenomenon almost entirely to anthropogenic emissions.

As reported by Lian et al. [37] sources of misfits include uncertainties in the atmo-
spheric transport, in atmospheric CO2 conditions that are used at the boundaries of the
model, in the natural CO2 fluxes within the modeling domain, and in the spatial and
temporal resolution and distribution of the inventories used in the model.

Uncertainties in modeling the atmospheric transport of CO2 are exacerbated in urban
areas due to building obstacles (roughness) that generate specific mixing processes and
modify the wind speed and direction [37]. This also occurs in misestimation of urban
biogenic fluxes [38].

The uncertainties in the assumed temporal and spatial emission variations induce a
critical source of error poorly constrained by the inversions due to the lack of boundary
data [39,40]. The CAMS anthropogenic emission inventory’s spatial and temporal allocation
has a monthly spatial grid resolution of 0.1◦ x 0.1◦. The inventory accounts for emissions
from different sectors, such as the transportation, residential and energy sectors, as well as
biogenic fluxes [41]. Potential sources of CO2 not far from a station can cause variations
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in atmospheric CO2 that are not captured by the model grid cell, which are resolved in
kilometric scale.

Uncertainties in atmospheric transport of CO2 are exacerbated in areas near sources
where mixing processes and variation in wind speed and direction can significantly
take place.

The results presented in this article show systematic biases in the re-analyses at mixing
ratios above 420 ppmv. Further examination shows that most CAMS biases and high RMSE
are located in regions with intense anthropogenic sources, especially in Asia. To analyze
the errors constrained by uncertainty in anthropogenic fluxes, we evaluated the diurnal
pattern of observation and re-analysis at the different stations, such as Kisai, Mt. Dodaria,
Mikawa-Ichimomiyia and Suita in Japan, as well at stations in South Asia and Europe,
where the re-analysis displayed high miss estimation. Those stations have the highest
CO2 mixing ratios and are within or in the proximity of urban areas, potentially providing
strong signatures of anthropogenic emissions.

Figure 6 shows the diurnal variation of CO2 at selected sites with high RMSE. For
instance, the observation shows a flux of CO2 during the day. The most common pattern of
diurnal variation displays a decrease of CO2 mixing ratio at noon. This could be linked to
biogenic uptake and the sensible heat emissions at the surface that enhance vertical mixing
in urban environments with the increase in depth of the boundary layer (Lian et al., 2021).
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Figure 6. Diurnal cycle of CO2 (in ppmv) displayed by the observation (light blue) and CAMS (red).
The blue panel shows the diurnal cycle at six stations with high CO2 mixing ratios variation; toward
the left of the green panel, the diurnal variation at three remote stations with low CO2 fluxes is shown.
The smooth line represents the kernel average of the diurnal concentration of CO2, and the shaded
area represents its variance in a 95% significance interval.
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Regions with high CO2 mixing ratio, such as urban and suburban areas, have green
spaces and are surrounded by rural areas that can actively take up CO2 in the daytime
during the growing season.

Parametrization of CO2 fluxes misestimating the daytime biogenic respiration is a
significant source of modeling error during the growing season outside the city or in
regions with significant vegetation cover. The CO2 concentration is also influenced by
remote emissions and large-scale biogenic fluxes in incoming air masses when the wind
blows from green areas into urban environments [42].

The re-analysis shows a diurnal cycle amplitude quite different from the corresponding
observation at stations such as Mt. Dodoira, Kisai, Mikawa-Ichinomiya and Suita. The most
striking error is the concentration amplitude throughout the day when the observation
shows a variation in CO2, while the re-analysis misestimates such fluxes.

The impact of anthropogenic fluxes in continental conditions of high CO2 concen-
tration, where the re-analysis performance is relatively small, would be associated with
the signature of the anthropogenic emissions constrained in the IFS model, which are not
observed in reality.

Since CAMS assimilates only infrequent remote sensing XCO2 measurements from
the polar-orbiting satellite [32], the observations are likely insufficient to correct this bias.
In addition, part of the bias may be inherited from biases in the satellite retrievals and their
boundary limitation [16,43].

The good representation of annual cycle and the decrease in flux emissions during
the daytime and an increase during the nighttime, in almost all stations with well-mixed
CO2 ratio, is a strong indication that the seasonal and diurnal profile of the biogenic CO2
emissions is well represented in the IFS model in remote regions. On the other hand, the
amplitude in the diurnal profile at regions with high CO2 mixing ratios could indicate an
erroneous CO2 emission/sink in the CAMS inventory, and a flux parametrization, as an
improved diurnal pattern, is needed.

Errors in atmospheric transport also contribute to the re-analysis data misfit. The
overestimation of the daytime CO2 mixing ratio, not only at the urban sites, but also at rural
stations, is evidence of the flux parametrization deficiency. This mismatched pattern in the
fluxes can embed a difference in the re-analysis of up to 80 ppmv that can explain most of
the RMSE from the CO2 re-analysis. The IFS system may overcome these errors related to
CO2 fluxes in boundary conditions by improving anthropogenic fluxes parametrization in
urban/suburban/rural regions, as well as improving biogenic fluxes parametrization in
those regions that can be significantly constrained by vegetation uptake or influenced by
the incoming air masses from regions with large-scale biogenic fluxes. It may be addressed
by assimilating CO2 gradients in upwind–downwind background stations rather than
assimilating absolute CO2 concentrations.

4. Conclusions

This study examines biases and uncertainties in the CO2 mixing ratio from re-analysis
CAMS-EGG4 data evaluated against hundreds of stations’ data distributed worldwide that
provide long-term series of ground-based in situ measurements.

It has been found that the CAMS CO2 re-analyses agree reasonably well, into the
10/90th percentile, with the in situ measurements in regions with homogeneous CO2
distribution or in well-mixed air mass areas, and there is also a tendency to underestimate
the observations. On the other hand, CAMS re-analyses exhibit some systematic positive
biases at regions with high CO2 anthropogenic fluxes, which infer a mean bias (Cobservation,
CCAMS-EGG4) in 7.46 ppmv, especially in Asia.

The CAMS product can realistically capture the upward trend in atmospheric CO2 as
well as the biogenic CO2 fluxes throughout the seasons.

The results from towers show a substantial increase of uncertainty close to the surface. The
CAMS uncertainties tend to decrease at lower product levels in the lowermost troposphere.
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CAMS tends to overestimate the CO2 mixing ratio at regions with high CO2 concen-
tration and underestimates it at regions with low fluxes.

An important finding from the evaluation of CO2 re-analyses is the low performance
by CAMS-EGG4 in reproducing fluxes in urban and surrounding areas. This finding
implies a limited spatiotemporal coverage of the CAMS system due to limited boundary
conditions and limited resolution in the emission inventory used by the IFS model.

The current study provides an essential assessment of uncertainties in the fluxes of the
CO2 mixing ratio. In addition to better spatial coverage, the results highlight the necessary
improvement in diurnal parametrization and atmospheric transport through more refined
regional modeling and boundary consideration for CO2 flux estimation.

The results also reveal that the estimation of re-analysis uncertainties using the differ-
ences between data product and ground-based observation can be valuable as a baseline
reference. This information can be used for future improvement concerning the quantifica-
tion of regional-scale uncertainties in CO2 mixing ratio and constraints in flux estimates by
the ECMWF-IFS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10060331/s1, Table S1: Location, root-mean-squares error
(RMSE), percentile (%) differences, mean bias (MB), and the slope of the regression between obser-
vation and CAMS-EGG4 at the studied stations. * The number subscripted on the acronym of the
station refer to the height (m agl) of the observation in tower stations.
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