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We perform full-potential screened-hybrid density-functional theory calculations to compare the thermody-
namic stability of neutral and charged states of the surface oxygen vacancy at the rutile TiO2(110) surface. Solid-
state (QM/MM) embedded-cluster calculations are employed to account for the strong TiO2 polarization response
to the charged defect states. Similarly to the situation for the bulk O vacancy, the +2 charge state V2+

O is found to
be energetically by far the most stable. Only for Fermi-level positions very close to the conduction band, small
polarons may at best be trapped by the charged vacancy. The large decrease in the V2+

O formation energy with de-
creasing Fermi-level position indicates strongly enhanced surface O vacancy concentrations for p-doped samples.
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I. INTRODUCTION

Its seemingly endless range of applications [1–5] has made
TiO2 one of the most studied transition metal oxides to date.
Much of this material’s functionality in corresponding (opto-)
electronic, (photo-)catalytic, or photovoltaic applications does
not derive from the ideal bulk and surface structures but,
instead, is critically determined by intrinsic defects [6]. Among
these, the oxygen vacancy and, in particular, its nature as
a charge trapping center have been most controversially
discussed [7]. The removal of an O atom from the bulk TiO2

lattice results in a single-particle defect state created from
the three Ti dangling bonds that point into the vacancy. The
energetic position of the state depends sensitively on its elec-
tron occupancy and concomitant local lattice relaxations. This
occupancy can range from two electrons in the charge-neutral
defect state (V0

O), to one electron in the singly charged defect
state (V+

O), to none in the doubly charged state (V2+
O ). Formerly

prevalent, seemingly contradictory schools of thought viewed
the vacancy either as a shallow donor (V2+

O ) that contributes
to the n-type conductivity [8–10] or as an electrically inactive
deep trap (V0

O) that reduces neighboring Ti atoms and thus,
e.g., rationalizes an experimentally observed gap state about
0.8 eV below the conduction band [11–14].

For bulk rutile TiO2 hybrid-functional density-functional
theory (DFT) calculations, Janotti et al. [15,16] recently
resolved the preceding discrepancies by showing that V2+

O
is thermodynamically by far the most stable configuration
for all Fermi-level positions within the band gap. However,
this charged donor state can trap one or two small polarons,
in which excess electrons are localized at neighboring Ti3+

sites. The resulting weakly bound complex of shallow donor
and small polarons then naturally explains all experimental
findings but has to be carefully distinguished from the neutral
V0

O configuration, in which the electrons occupy the defect
state centered on the O vacancy site itself.

As it is particularly surface O vacancies that play a crucial
role in many of the TiO2 material applications [17–20], it is
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important to assess how much of this novel understanding
derived for the bulk transfers also to these surface de-
fects. Corresponding first-principles calculations are, however,
rather demanding. Already in the bulk case, at least hybrid-
functional DFT is required to achieve an appropriate electron
localization [15,21]. Even with present-day computing power
this constrains the system sizes that can be accessed. At
the same time, the huge dielectric constant of TiO2 leads
to a very large dielectric response in the case of charged
defects. Here, not only lattice relaxations in the direct vicinity
of the defect but also the polarization of the entire semi-
infinite surrounding medium contribute significantly. Within
the conventional periodic boundary condition (PBC) supercell
approach, this requires intricate extrapolation procedures
involving supercells of increasing size [22–24].

In this situation we instead opt for first-principles
embedded-cluster calculations, in which the employed full-
potential scheme allows for a numerically particularly efficient
application of hybrid-functional DFT inside the quantum
mechanic (QM) cluster region. [25] In the extended molecular
mechanic (MM) embedding region appropriately optimized
interatomic potentials provide a quantitative account of the
strong TiO2 polarization response. We use this setup specifi-
cally to compute the formation energies, structural relaxations,
and electronic structure of the bridging O vacancy at the rutile
TiO2(110) surface. Consistent with the bulk calculations of
Janotti et al., we find that, over a wide range of Fermi-level
positions and oxygen chemical potentials, the doubly charged
V2+

O state is thermodynamically clearly favored. The steeply
decreasing formation energy of this charged defect with a
lowering Fermi level then suggests p doping as a promising
avenue for tuning the surface vacancy concentrations and,
therewith, the catalytic activity of this important material.

II. METHODOLOGY

We describe the localized surface defect in a concentric
solid-state embedding approach as sketched in Fig. 1. The
immediate vicinity of the defect and the rehybridization
induced through it is treated at the QM level, in particular,

1098-0121/2015/92(7)/075308(11) 075308-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.075308


DANIEL BERGER, HARALD OBERHOFER, AND KARSTEN REUTER PHYSICAL REVIEW B 92, 075308 (2015)

FIG. 1. (Color online) Schematic of the employed concentric
solid-state embedding approach. A quantum-mechanic (QM) region
hosting the surface oxygen vacancy is surrounded by a molecular
mechanics (MM) region represented by a polarizable interatomic
potential. Spurious charge leakage out of the QM region is prevented
through a transition shell in which cations are described with
pseudopotentials (PPs). The full electrostatic potential of the infinite
crystal surface is reproduced by placing point charges with fitted
values around the MM region.

through DFT. This QM region is embedded in a much larger
MM region, which accounts for the longer-ranged dielectric
properties of the TiO2(110) surface on the level of a polarizable
interatomic potential. In a transition shell at the QM/MM
boundary, cations are described by pseudopotentials (PPs) to
prevent a spurious overpolarization of the electron density
(a.k.a. charge leakage). These PPs recover the long-range
electrostatics of a point charge, but also have a repulsive short-
range contribution which effectively mimics Pauli repulsion
of core electrons. A final exterior shell of point charges is
added at the outer boundary of the finite MM region. These
point charges have values that are fitted to reproduce the full
electrostratic potential of the infinite surface inside the QM
region [26]. The next consecutive sections provide details on
the DFT calculations, the parametrization of the interatomic
potential, and the employed surface models within this overall
approach.

A. Density-functional theory calculations

All DFT calculations have been performed with the full-
potential, all-electron framework FHI-AIMS [27,28]. Electronic
exchange and correlation (xc) is treated at the level of screened
hybrid DFT, applying the HSE06 functional with the default
mixing of 25% exact exchange and the default screening
parameter of 0.2 Å−1 [29]. Systematic test calculations showed
that the tier2 numerical atomic orbital basis set and the
default tight settings for the atom-centered integration grids
ensure a numerical convergence of the calculated defect
formation energies within ±10 meV. Spin polarization is
included throughout. As PPs for the transition shell we employ
FHI98PP-generated [30] Ti4+ Kleinman-Bylander PPs [31] with
nonlocal projector functions expanded up to the d states.
Further details of these potentials and their implementation
into FHI-AIMS can be found in Ref. [25].

The finite clusters describing the QM region are constructed
using optimized bulk lattice parameters and relaxed positions
of surface atoms at the ideal TiO2(110) surface as obtained
from PBC-DFT supercell calculations. The calculated lattice
parameters of rutile TiO2 are listed in Table I and agree
very well with experiment [32] and preceding calculations

TABLE I. Rutile TiO2 lattice constants a and c, as well as the
static (εa

◦ , εc
◦) and high-frequency (εa

∞ and εc
∞) dielectric constants

along the corresponding axes. Literature data from experiments (exp.)
[32–34] and DFT-HSE06 calculations [35] are compared with our
own calculations at the DFT-HSE06 level and with the parametrized
interatomic potential for the MM region (see text).

a (Å) c (Å) εa
◦ εc

◦ εa
∞ εc

∞

Exp. [32–34] 4.587 2.954 111 257 6.84 8.43

HSE06 [35] 4.588 2.951 278 402 5.74 6.77
HSE06 (this work) 4.588 2.951

MM (this work) 4.587 2.950 3 12 5.76 6.73

at the HSE06 level [35]. The surface calculations employed
symmetric 5 O–Ti2O2–O trilayer slabs, a c(4 × 2) surface
unit cell, and (4 × 4 × 1) Monkhorst-Pack k-point sampling
[36]. Periodic slabs were separated in the z direction by 40 Å
of vacuum and electronically decoupled through a dipole
correction. The surfaces were fully relaxed until residual forces
fell below 10−3 eV/Å.

Within PBCs the zero reference of the electrostatic potential
is not uniquely defined [37]. Notwithstanding, in surface
calculations, the vacuum level can be determined as the
electrostatic potential at the middle of the vacuum separating
the slabs. This gives access to the work function and the
absolute position of the valence-band maximum (VBM) at
the surface, εVBM(surf) = −8.2 eV. To also access the bulk
VBM position we computed the layer-resolved Ti1s core-level
positions in an 11-trilayer thick (1 × 1) slab. These positions
indicate a negligible band bending of the order of 30 meV
for the ideal stoichiometric TiO2(110) surface. This finding
is confirmed by additional calculations with up to 27-trilayer-
thick slabs using the PBE xc functional [38]. For the purposes
of this work we therefore equate surface and bulk VBM levels
and, henceforth, refer only to εVBM.

B. Parametrization of the interatomic potential

The HSE06 functional achieves a reliable account of the
electronic contribution to the bulk dielectric properties of rutile
TiO2, as represented by the close match of the high-frequency
dielectric constants εa

∞ and εc
∞ in Table I. In contrast, it

fails largely to describe the dominant lattice contribution
additionally contained in the large static dielectric constants
εa
◦ and εc

◦ . This has been traced back to its deficiencies in
describing the intricate soft phonon modes of this material
[35]. In order to achieve a seamless embedding the employed
interatomic potentials in the MM region should generally
match the dielectric properties of the xc functional employed
in the QM region. In the present case this would mean that
the QM/MM approach then exhibits the same shortcomings
with respect to the static dielectric properties, a point to
which we return in the discussion below. In addition to the
dielectric properties, the MM potential also has to match the
QM lattice constants, to avoid artificially confining stress, in
particular, when geometric relaxation of the QM region is to
be considered. These demands highly challenge any existing
interatomic potential [39,40]. In the present case, this situation
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is further aggravated by the necessity to saturate the QM
region with cationic norm-conserving PPs, which by definition
have integer charges: in the case of Ti, a charge of +4. For
consistency, the remaining MM region is then also restricted
to formal charges of +4 and −2 on Ti cations and O anions,
respectively.

Oxygen ions in TiO2 are highly polarizable and are, in
fact, intrinsically polarized in the rutile structure. Using as
the interatomic potential a simple rigid ion model with formal
charges does not capture this physics. In the QM/MM context,
such potentials lead to an overpolarization at the QM cluster
region boundary and an overestimation of the electrostatic
potential [41,42]. In contrast, oxygen polarizability can be
modeled efficiently within a polarizable shell model [43], as
has recently been demonstrated for TiO2 by Scanlon et al. [44].
Here, the oxygen anion is described by two point charges: a
“core” charge representing the nuclei and closed-shell core
electrons and a “shell” charge simulating the valence electron
cloud. Mimicking electronic polarizability the oxygen core (c)
and its shell (s) interact via a spring potential,

Vc-s = kc-sr
2
c-s

[
cosh

(
dc-s

rc-s

)
− 1

]
, (1)

where dc-s is the distance between the core and the shell
charge, and kc-s and rc-s are parameters defining the potential.
In this model [43], the dominant Coulomb interaction between
different oxygen shells (s-s) and between oxygen shells and Ti
point charges (s-Ti) is furthermore augmented by Buckingham
potentials

Vs-s = As-sexp

(
−ds-s

ρs-s

)
− Cs-s

d6
s-s

(2)

and

Vs-Ti = As-Tiexp

(
−ds-Ti

ρs-Ti

)
− Cs-Ti

d6
s-Ti

, (3)

to provide an effective account of dispersive interactions and
Pauli repulsion. Here, ds-s and ds-Ti are the distances between
oxygen shells and between the oxygen shell and Ti, respec-
tively, and A, ρ, and C are potential parameters. Restricting
the interaction between MM Ti cations to the mere formal
charge electrostatics, the model is thus defined through a set
of nine parameters [kc-s,rc-s,As-s,ρs-s,Cs-s,As-Ti,ρs-Ti,Cs-Ti,qs],
with a final parameter qs for the charge on the oxygen shell.

To obtain a seamless match to the QM region we perform a
global optimization of these parameters to represent the bulk
DFT-HSE06 lattice and dielectric constants. Specifically, we
employ a differential evolutionary algorithm [45] from the
Python package INSPYRED 1.0[46] to minimize the dimension-
less cost function,

F =
√√√√∑

i

(
LMM

i − LDFT−HSE06
i

LDFT−HSE06
i

)2

, (4)

with Li = [a,c,εa
◦ ,εc

◦,ε
a
∞,εc

∞] and using the DFT-HSE06
values from Ref. [35] (cf. Table I) as target values. In the
corresponding MM calculations, the internal lattice parameter
u is always kept at its DFT-HSE06 value (0.305), and the static
and high-frequency dielectric tensors are determined from the

TABLE II. Interatomic potential parameters, optimized to re-
produce the bulk TiO2 DFT-HSE06 lattice parameters and high-
frequency dielectric constants (see text).

kc-s (eV/Å−2) rc-s (Å) qs (e)
23.67 0.098 −2.9332
A (eV) ρ (Å) C (eV Å6)

s-s 23550 0.2113 38.55
s-Ti 1838 0.3207 26.62

second derivative matrix of all MM particles or only of the
shells, respectively [47].

The best parameter sets generated this way still exhibit
rather large errors, with F � 0.33. They typically exhibit
substantial deviations in the lattice constants. This agrees
not only with the observation by Catlow et al.[39], who
assigned the inability to reproduce both lattice and static
dielectric constants to missing many-body terms in this class
of interatomic potentials. It is also consistent with the finding
of Lee et al. [35] that deficiencies in the description of the TiO2

soft phonon modes (and therewith static dielectric constants)
can be effectively cured through the use of different lattice
constants. In the present context, an accurate representation of
the lattice constants is indispensable, though, to avoid artificial
stress on the QM region. We therefore removed the static
dielectric constants from the target set and immediately ob-
tained parameter sets with significantly reduced cost functions.
The best parameter set exhibits an F = 0.007 and is used in
all QM/MM calculations reported below. It is compiled in
Table II and yields highly accurate lattice parameters and
high-frequency dielectric constants as reported in Table I.
Nevertheless, its largely erroneous representation of the static
dielectric properties (which is actually of the same magnitude
but opposite sign to those obtained with HSE06 itself) is a
concern and we discuss in Sec. III how this is addressed in our
defect calculations.

C. QM/MM setup

In order to assess the convergence with respect to the
employed QM region all calculations are done for a sequence
of three embedded cluster models, originally suggested by
Ammal and Heyden [48]. As shown in Fig. 2, all three clusters,
Ti22O43, Ti32O63, and Ti46O91, are centered on a bridging
oxygen row, whence the central O atom has been removed
to create the surface vacancy. Only the smallest and the largest
clusters are of approximately hemispherical shape, while the
middle Ti32O63 cluster is rather hemiellipsoidal, owing to the
specifics of the rutile structure. Each cluster is embedded into
an MM region that extends hemispherically up to a constant
outer radius of 25 Å. For the smallest cluster this translates to
a total number of 3029 MM atoms, while for the largest cluster
this translates to 2957 MM atoms. Every MM cation within a
6-Å vicinity of the QM cluster is replaced by PPs to suppress
spurious charge leakage out of the QM region (cf. Fig. 2).
All MM cores are placed in positions according to those of
the fully relaxed DFT supercell reference calculation for the
stoichiometric TiO2(110) surface. All O shells are initialized
to the fully relaxed state within a corresponding MM supercell
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FIG. 2. (Color online) Perspective view of the employed (a)
Ti22O43, (b) Ti32O63, and (c) Ti46O91 clusters, each exhibiting a
surface O vacancy in their central bridging O atom row. Ti atoms
are shown as large white spheres; O atoms, as small red spheres; and
semitransparent gray spheres mark positions where PPs represent the
immediately surrounding Ti cations of the MM region.

reference calculation with the MM cores at exactly the same
positions. A final exterior shell of 64 point charges around the
MM region is then added, with charges fitted to reproduce the
full electrostatic embedding potential of an infinite TiO2(110)
surface. [26] Finally, for every QM cluster all MM shells and
QM atom positions are fully relaxed. This setup defines what
is henceforth referred to as the ideal TiO2(110) surface. The
surface defect setups are created from this reference setup,
either without subsequent geometry relaxation (“nonrelaxed”
geometries) or with full geometry relaxation of all QM atoms
except those at the QM region boundary until residual forces
are below 10−3 eV/Å (“relaxed” geometries).

Test calculations increasing the outer radius of the MM re-
gion up to 30 Å show full convergence of the formation energy
and electronic structure in the case of the neutral defect. In the
case of a net-charged QM region the polarization response

is much longer-ranged though (∝ q/(εR)). Fortunately, the
missing polarization energy outside of the finite MM region
can be reliably captured through an analytical correction. For
a hemisphere with radius R in a continuum with a dielectric
constant ε and carrying a charge q at its center, this analytic
correction can be derived as [26]

�Epol(q) = − q2

2R

ε − 1

ε + 1
. (5)

Using the high-frequency dielectric constant in this expression
as further discussed below, we validated that with this
postcorrection also the formation energies of charged defects
are fully converged with respect to the size of the MM region.
Technically, we hereby use as the isotropic dielectric constant
the average over the diagonal entries of the bulk dielectric
tensor, ε = (2εa

∞ + εc
∞)/3. As radius R we simply set the outer

radius of the MM region, and variations of R by ±1 Å have
a negligible effect on the calculated formation energies. As
an approximate method we also use the analytical correction
directly outside the QM region (vide infra). Here, the choice of
the radius is more critical and we determine it by measuring the
semiprincipal axes of the hemiellipsoid defined by the atomic
positions of the QM cluster. R is then taken as the radius of
a hemisphere with identical volume. Uncertainties of ±5%
in the radius thus determined translate in this case into an
uncertainty of ±0.2 eV for �Ef (V2+

O ) and of ±0.05 eV for
�Ef (V+

O).
The actual QM/MM calculations for the setup thus defined

are performed within the CHEMSHELL environment [26,49]
with the interface described in detail before [25]. We specif-
ically use GULP [47] for the MM force calculations and
the DL-FIND routine [50] for the geometry optimizations.
Self-consistent polarization, a.k.a. shell optimization, within
the MM region as a response to an updated QM geometry is
hereby calculated in a series of microiterations.

D. Defect formation energies

Neglecting vibrational entropic contributions in the solid
state and defect-defect interactions in the dilute limit we define
the formation energy to create a surface O vacancy in charge
state q as [51]

�Ef
(
Vq

O

) = E
(
Vq

O

) − E(TiO2(110))

+μO + qεF + �Epol(q). (6)

Here, E(TiO2(110)) and E(Vq

O) are the total energies of ideal
TiO2(110) and of TiO2(110) with the defect as obtained from
our QM/MM calculations, respectively. μO is the chemical
potential of oxygen and εF is the Fermi energy. In our sign con-
vention a positive formation energy implies a cost to create the
defect. Correspondingly, the charge state exhibiting the lowest
formation energy will be the thermodynamically stable state.

μO represents the energy of the reservoir which takes up
the O atom that is removed from the crystal. It is generally a
variable. If the reservoir is a surrounding oxygen gas phase,
μO is, e.g., dependent on temperature and O2 pressure. Limits
for μO can, however, be derived [52]. In the extreme O-rich
limit

μO(O-rich) = 1/2E(O2), (7)
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with E(O2) the total energy of an isolated O2 molecule.
The opposite O-poor (Ti-rich) limit can be assessed from
the stability condition of bulk TiO2 against decomposi-
tion into Ti2O3, μO > −�Ef (Ti2O3) + 2�Ef (TiO2), where
�Ef (Ti2O3) and �Ef (TiO2) are the formation energies of
bulk Ti2O3 and TiO2, respectively. At the HSE06 level this
yields [15]

μO(O − poor) = μO(O − rich) − 4.07 eV. (8)

The Fermi energy εF is the energy of the reservoir to which
electrons released from the charged defects move. Similarly to
μO, εF is also a variable that can, e.g., be tuned through doping.
It is most conveniently referenced with respect to εVBM, and
below we thus report values from 0 (Fermi level positioned at
the VBM) to �εgap [Fermi level positioned at the conduction
band minimum (CBM)], with �εgap the bulk band gap. In our
QM/MM setup the zero reference for the Madelung potential
and hence the VBM is, by construction, the vacuum level.
In order to compute �Ef through Eq. (6) the offset of the
absolute εF value by εVBM must therefore be considered.

Within our supercell setup we calculate a �εgap = 3.15 eV,
which agrees well with preceding studies at the HSE06
level (3.19 eV [53], 3.31 eV [54], 3.05 eV [15], with the
last study only employing 20% exact exchange). This also
extends to the previously calculated absolute VBM position
[55], which we determine at −8.2 eV. The latter value is
also consistent with the experimental value, which can be
estimated from the experimental work function and a presumed
Fermi-level position about 0.1–0.2 eV below the CBM [56] in
corresponding samples [56–58].

In an ideal world, the εVBM calculated for the different
QM cluster sizes within our QM/MM setup would always
be identical to the value obtained with the PBC supercell
calculations. In practice, an imperfect QM/MM coupling
affects the electronic structure, in particular, those orbitals with
appreciable overlap with the QM/MM boundary. In the present
case, this concerns precisely the highest occupied molecular
orbital (HOMO), a.k.a. the VBM, of the QM clusters, which is
of a rather delocalized nature. This results in a slightly spurious
electron depletion or aggregation in the QM region, depending
on the shape and size of the QM cluster and, therewith, to shifts
of the overall electrostatic potential. In order to compensate for
this shift we apply a further correction term in the calculation
of the absolute Fermi-level position for Eq. (6). This correction
is determined once for each cluster size as the difference in
the calculated unrelaxed, closed-shell singlet V0

O defect-level
position compared to the corresponding level in the PBC
calculation. In contrast to the VBM/HOMO, the defect level
is well localized in the center of the cluster. This minimizes
short-range artifacts from the QM/MM interface and probes
(and corrects) the electrostatic potential exactly in the relevant
region.

III. RESULTS AND DISCUSSION

A. Electronic defect structure

We begin our investigation by demonstrating the high-
quality representation of the surface electronic structure
obtained with our QM/MM setup, which could generally not
be achieved without the consistent reparametrization of the

FIG. 3. (Color online) Density of states (DOS) of the ideal
TiO2(110) surface per TiO2 formula unit as calculated with the
embedded Ti46O92 cluster (red) and with a supercell geometry (blue).
εVBM is used as zero reference and filled states are depicted in darker
color. A Gaussian smearing (σ = 0.1 eV) is applied.

MM potentials. Figure 3 compares the density of states for the
ideal TiO2(110) surface obtained with the embedded Ti46O92

cluster with the results of the slab reference calculation. Good
agreement is achieved for both filled and empty states. This
agreement extends not just to the band gap �εgap or to the width
of the valence band. Both are reproduced within 0.5 and 0.9 eV,
respectively. Also, more subtle features within the bands are
reflected rather well. Equivalent findings are obtained for
the neutral defect, where a straightforward comparison to
supercell calculations is also possible (not shown).

For both the ideal surface and the neutral defect case the
density of states calculated with the smaller QM clusters
also does not differ much with respect to the corresponding
calculation with the largest cluster. Intraband features change,
but the band gap or the width of the valence band varies
each time by less than 0.2 eV. Even on an absolute scale
the spectra of the smallest and largest clusters match almost
perfectly. In contrast, the intermediate Ti32O64 cluster reveals
a potential offset by 0.4 eV and up in energy, which can
be attributed to its prolate shape. This cluster exposes the
highest surface-to-volume ratio to the QM/MM interface and
is, hence, most affected by imperfect QM/MM coupling. Note
that this potential offset is compensated in Eq. (6) through the
correction procedure described in the previous section and,
thus, does not affect the calculated formation energies.

Introducing the oxygen vacancy gives rise to electronic
defect states [19]. Depending on the charge state of the defect
these states are empty, singly occupied, or fully occupied. The
two electrons in the fully occupied state of the V0

O defect
can thereby form three different electronic configurations with
differing spin multiplicities: a closed-shell singlet, an open-
shell singlet, and an open-shell triplet. The closed-shell singlet
corresponds to the paired excess electrons occupying the same
orbital localized at the defect site. In the unpaired open-shell
configurations both electrons occupy different orbitals of
either parallel (triplet) or antiparallel (singlet) spin. Rather
than as intrinsic neutral V0

O defects, the latter configurations
should thus be seen as a singly (doubly) charged defect
with one (two) trapped small polaron(s) [16]. In the limit of
large electron separation both open-shell spin configurations
must become energetically degenerate. For closer distances,
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the different electronic configurations give rise to different
formation energies. In order to determine the appropriate
neutral defect state energetics for comparison to the charged
states, it is therefore necessary to identify the corresponding
lowest-energy electronic configuration.

As extensively discussed by Deskins et al. the polarons can
be localized in numerous patterns around the defect site with
varying relative stabilities [59]. Applying the same initializa-
tion tricks as applied by Deskins et al. to achieve these different
localizations, we always end up with one electron trapped at
the defect site, while the other electron can be trapped in
different locations. Whenever these final sites are separated by
more than 3 Å the two open-shell spin configurations emerge as
energetically degenerate—exactly as reported by Deskins et al.
[59]. In contrast to their observation, convergence to an open-
shell singlet configuration proved essentially impossible for
smaller electron separations in our QM/MM setup. Even when
starting from geometries optimized in the triplet state and with
both excess electrons initially separated, the relaxed singlet
geometries always converged to the closed-shell configuration
with paired electrons. Open-shell singlet states could only be
stabilized in the largest QM cluster for rather large separations,
then yielding energetically essentially degenerate stabilities to
the open-shell triplet configuration as stated before.

As further discussed below the closed-shell singlet con-
figuration is energetically much less stable than any of the
various open-shell localizations. In our case the latter all
exhibit rather similar relative stabilities within 0.1–0.2 eV.
This is in disagreement to Deskins et al. [59] and others
[53,60–62], who reported relative stabilities varying over a
range of 1.76 eV and with the lowest-energy conformations
localizing both excess electrons in the sub-surface layer.
Although in principle possible in the largest Ti46O91 QM
cluster, we cannot stabilize such conformations. In contrast,
the lowest-energy conformation found consistently across all
three cluster sizes is depicted in Fig. 4, showing one polaron
localized at the defect Ti sites of the bridging row and one on
a neighboring fivefold coordinated surface Ti atom, with very
little contributions at subsurface Ti sites. This difference from
the preceding studies [53,59–62] could potentially arise out
of the remaining finite-size effects of our QM/MM setup at
even the largest QM cluster employed. Alternatively, it could
be due to their different treatment of the electronic structure

FIG. 4. (Color online) Perspective view of the electron localiza-
tion in the lowest-energy open-shell triplet conformation found for the
neutral defect state with an embedded Ti46O91 cluster. The electron
density contour at 0.01 e/Å3 is shown.

at the effective GGA + U level. In this respect, we note that
the surface localization site of our most stable conformation is
in perfect agreement with previous results by Di Valentin and
coworkers employing the B3LYP hybrid functional [21].

Having potentially missed the true lowest-energy solution
puts a certain uncertainty on the energetics of the open-shell
neutral defect. However, as we discuss further below, even a
stability higher by 0.87 eV, which would then correspond to
the subsurface solution as reported by Deskins et al., would not
critically affect our conclusions regarding its relative stability
with respect to the charged defect states. Even though this
is of no concern to the present study, we plan to further
investigate this issue with large supercell hybrid functional
calculations and GGA + U QM/MM calculations. We note
that an important aspect is certainly the lattice parameters
used, which in many GGA + U studies are simply those of the
underlying GGA functional. We find the use of incorrect lattice
parameters to critically affect the electronic level positions
and therewith the polaron stabilities. Relying on the hybrid-
functional optimized lattice parameters the electronic defect
levels obtained in our QM/MM study are highly consistent with
those of previous bulk and surface hybrid-functional studies.
For all three QM clusters the closed-shell singlet state is located
0.8 eV below the CBM in the unrelaxed structure and shifts
up in energy by 0.2 eV upon the inclusion of lattice relaxation
(cf. Refs. [15] and [21]). The lowest-energy triplet solution
exhibits two defect states, 1.7 and 0.6 eV below the CBM, in
the unrelaxed structure. Upon lattice relaxation the electrons
condense to two small polarons, the states of which, at 1.1 and
0.9 eV below the CBM, are fully consistent with experiment
[7,58,62–65] (vide infra).

B. Formation energies of unrelaxed vacancies

In particular, the large static dielectric response of TiO2

is expected to significantly stabilize charged defects [15]. In
order to quantify this effect it is useful to first analyze the defect
formation energies when structural relaxation in response to
the defect is suppressed. From a methodological point of
view, this additionally provides the possibility of assessing
an analytical scheme that may allow us to compensate the
error introduced by the inability of both the polarizable
interatomic potential in QM/MM calculations and the hybrid
DFT functional in PBC supercell calculations to properly
account for the large static TiO2 dielectric constants (cf.
Table I). Correspondingly, Table III summarizes the calculated
formation energies, in which thus only the high-frequency,
electronic TiO2 polarization that can accurately be accounted
for by both the polarizable interatomic potential and the hybrid
functional is included. Shown are data for �Ef in the O-rich
limit and for the Fermi-level position at the VBM. The series of
three QM cluster sizes demonstrates a rapid convergence. For
the neutral defect the obtained formation energy furthermore
agrees perfectly with the corresponding value obtained by a
PBC supercell calculation.

In these QM/MM calculations the full electronic polariza-
tion response of the material outside the QM region is captured
through the self-consistent relaxation of the O shells within
the MM region, while the analytical correction �Epol(q) in
Eq. (5) additionally accounts for the long-range contribution
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TABLE III. Unrelaxed surface defect formation energies (in eV)
in the oxygen-rich limit and for a Fermi-level position at the VBM.
Shown are results for the three QM clusters employed and, in the
case of the neutral defect, also from the PBC supercell reference
calculations. Data for the neutral V0

O defect correspond to the
closed-shell singlet electronic configuration, which is the only one
that can be stabilized in the absence of lattice relaxation. Upper rows
correspond to a QM/MM setup, in which the electronic polarization
response to the defect is treated through self-consistent relaxation of
the MM shells. Lower rows correspond to a QM/MM setup, where this
response is approximately obtained through an analytical polarization
correction approach (see text).

Ti22O43 Ti32O63 Ti46O91 Slab

Self-consistent MM electronic polarization
V0

O singlet 5.60 5.66 5.60 5.59
V+

O 3.19 3.22 3.17
V2+

O 3.98 3.95 3.95
Analytic correction for electronic polarization

V0
O singlet 5.61 5.66 5.61 5.59

V+
O 3.19 3.21 3.17

V2+
O 3.98 3.95 3.95

outside of the MM region. In these calculations the ε

value entering �Epol(q) corresponds—as appropriate for the
unrelaxed case—to the isotropically averaged high-frequency
dielectric constants (cf. Sec. II C). Table III also compiles
results obtained with a more approximate method, where
the entire electronic polarization response of the material
outside of the QM region is accounted for through the analytic
correction equation, Eq. (5). Here, the O shells in the MM
region are no longer allowed to relax after the creation of the
defect. Instead, the analytical correction equation is employed
with a radius R that corresponds to the outer radius of the QM
region instead of the outer radius of the MM region used before.
This method is numerically more advantageous, as it does
not need to achieve self-consistency between the MM shell
polarization and the QM cluster. It also provides an elegant way
to later assess the error introduced by the erroneous description
of the static dielectric constants through the polarizable force
field. In principle, any value for ε can be employed in �Epol(q),
i.e., also the “correct” experimental value. On the other hand,
the method is more approximate and phenomenological. The
polarization is only described at the isotropic continuum level
and the outer boundary of the finite QM clusters is less well
approximated by a hemisphere as the outer boundary of the
much larger MM region. The results thus also depend more
sensitively on the exact choice of the QM cluster radius R

employed in �Epol(q). For the data compiled in Table III the
R for each cluster size has been chosen as a fit parameter
to reproduce the corresponding self-consistent polarization
results for both charged defects. The values obtained for R

are, for each cluster, about 0.7–0.9 Å larger than what would
be obtained from the positions of the outermost QM atoms
(cf. Sec. II C), thus effectively accounting for the somewhat
larger extension of the electron density. Intriguingly, for each
cluster size the same value of R can accurately reproduce the
formation energies of both charged defects (cf. Table III). This
shows that this approximate method can be applied without
further systematic errors and that, for the polarization response

outside the QM region, any electrostatic multipole moment of
the electron density higher than the monopole term considered
in �Epol(q) can indeed be neglected.

The data in Table III show that already the comparatively
small electronic polarization is sufficient to largely stabilize the
charged defects against the neutral one. We can quantify this
stabilization through the calculated value of �Epol(q) in the
case of the approximate method, i.e., when this term accounts
for the entire response outside of the QM region. Even for the
largest QM cluster, where this additional stabilization through
the far-range response is smallest, �Epol(q) is still −0.60 eV
for the singly charged V+

O defect, whereas for the doubly
charged V2+

O defect it even rises to −2.40 eV. For the smallest
QM cluster the corresponding values are −0.79 and −3.16 eV,
respectively. For the neutral V0

O defect �Epol(q = 0) = 0. The
essentially identical values for �Ef (V0

O) obtained with the
self-consistent polarization and with the analytical correction
method in Table III thus reveal that electronic stabilization
outside the QM region is in this case negligible already for the
smallest QM cluster.

This different polarization response for neutral and charged
defects is sufficient to make the latter thermodynamically
more stable for a wide range of Fermi-level positions. The
value of εF where the formation energies of charge states
q and q ′ become equal defines the transition level ε(q/q ′).
With the values in Table III and of Eq. (6) we determine
the transition level ε(+/0) as 2.44 eV, i.e., less than 1
eV below the CBM. Already when only accounting for
the (small) electronic response, the neutral defect level on
which preceding calculations largely focused their attention is
therefore not stable for Fermi-level positions over a large part
of the band gap. When next also considering the much larger
lattice polarization of TiO2, this trend will be significantly
enhanced, further disfavoring the neutral defect.

C. Formation energies of relaxed vacancies

The results in the preceding section already indicate the
relevance of the charged defect states and, correspondingly,
the hitherto barely explored necessity to reliably describe
them with electronic structure calculations. When moving
to the fully relaxed defect formation energies, our QM/MM
scheme is limited by the shortcomings of the polarizable
interatomic potential with respect to the static dielectric
constants. Thus restricting structural relaxation to the QM
region (and maintaining the full electronic polarization as in
the previous section), we obtain the defect formation energies
compiled in Table IV. Comparing the entries for the neutral
defect in Tables III and IV we observe only a minute lowering
of �Ef , by 0.2 eV, for the closed-shell singlet electronic
configuration (henceforth denoted the singlet) at all three
cluster sizes. The additional lattice response accounted for
in the relaxed calculations is thus quickly converged over
the few atomic shells contained in the finite QM clusters.
While only a marginal quantitative effect for the singlet, it
is only this short-range structural relaxation that stabilizes
the neutral open-shell singlet and triplet configurations at
all. Nevertheless, also for the degenerate lowest-energy such
configurations (henceforth denoted the triplet/singlet), quick
convergence with the size of the QM region is achieved.
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TABLE IV. Relaxed surface defect formation energies (in eV)
for the three QM clusters in the O-rich limit and for a Fermi-level
position at the VBM. Upper rows correspond to a QM/MM setup, in
which only the electronic polarization response outside of the QM
region is accounted for through self-consistent relaxation of the MM
shells. Lower rows correspond to a QM/MM setup, where the full
lattice and electronic response is approximately obtained through an
analytical polarization correction approach (see text).

Ti22O43 Ti32O63 Ti46O91

Self-consistent MM electronic polarization
V0

O singlet 5.40 5.50 5.33
V0

O triplet 4.89 4.78 4.83
V+

O 2.02 1.83 1.92
V2+

O 0.43 −0.20 −0.37
Analytic correction for full polarization

V0
O singlet 5.40 5.50 5.33

V0
O triplet 4.89 4.78 4.83

V+
O 1.70 1.56 1.68

V2+
O −0.69 −1.27 −1.30

In line with the expectations from the large static TiO2

dielectric constants, the additional lattice-polarization stabi-
lization of the charged defects is instead significant even
when only accounting for the relaxation of the nearest-
neighbor atomic shells in the QM region. Comparing again the
corresponding entries in Tables III and IV, this stabilization
is of the order of 2 eV for the singly charged defect and
amounts even to around 4 eV for the doubly charged defect. As
polarization of the environment scales with the square of the
charge [cf. Eq. (5)], this drastic increase is not unexpected. At
the least, for the V2+

O defect no convergence can concomitantly
be achieved over the present range of QM cluster sizes. In view
of the strong lattice relaxations calculated for this defect, this
is also not surprising. With an outwards relaxation of up to
0.45 Å the nearest-neighbor Ti atoms around the defect exhibit
the largest displacements. Corresponding displacements in
the two larger Ti32O63 and Ti46O91 QM clusters differ by
less than 0.05 Å, proving that this shortest-range polarization
contribution is well converged at these cluster sizes. However,
in the largest Ti46O91 QM cluster the next two shells of Ti
atoms still show maximum displacements of 0.12 and 0.05 Å,
respectively. These non-negligible relaxation contributions can
no longer be captured with the smaller clusters.

Just accounting for the lattice relaxation inside the finite
QM region is therefore not sufficient to reliably determine
the formation energies of the charged defects. The relaxation
patterns possible inside the largest Ti46O91 QM cluster would
require a c(2 × 5) surface unit cell in PBC supercell calcu-
lations. Due to the periodic images the relaxation patterns
outside this unit cell are spurious. Our findings for the QM/MM
setup are therefore paralleled by the equivalent insight that
even correspondingly large surface unit cells are not sufficient
to absolutely converge charged defects in PBC calculations.
As these system sizes are at the upper limit of what is
presently tractable at the hybrid functional level, extrapolation
procedures are thus required within the PBC approach [15].
Within our QM/MM approach we can find an analog in
the analytic correction procedure described in the preceding

section. Indeed, using exactly the same radius R for each of the
three cluster sizes as established in the unrelaxed calculations
we can reproduce the �Ef in Table IV with the same accuracy
as was the case for Table III (not shown). Here, this means that,
for ε in �Epol(q) of Eq. (5), we used exactly the high-frequency
value, which corresponds on average to those of the polarizable
interatomic potential.

With this confidence we apply the approximate analytic
correction also for the calculation of fully relaxed formation
energies. For this, we now use as ε in �Epol(q) the isotropic
average of the large static dielectric constants derived from
HSE06 (cf. Table I). Keeping exactly the same radii R as
before in the calculation of �Epol(q), this approach thus
accounts for the full lattice and electronic relaxation explicitly
in the QM region and accounts for the same full lattice and
electronic polarization on the continuum level outside of the
QM region. The results compiled in Table IV indicate another
sizable stabilization, in particular, for the doubly charged V2+

O
defect, the formation energy of which is now also converged
over the two larger QM clusters. Likely, the obtained �Ef

values nevertheless still slightly overestimate the true relaxed
formation energies, as the outermost atoms in the QM region
are not allowed to relax, to avoid artifacts from an imperfect
QM/MM coupling. For small variations of the employed radius
R in �Epol(q) to also effectively account for the corresponding
shell of atoms, we estimate that this relaxation would lower
the formation energy of V+

O (V2+
O ) by another 0.1 eV (0.3 eV).

We therefore arrive at final values for the formation energies
in the O-rich limit and for a Fermi-level position at the VBM
of 5.3 ± 0.1 eV (V0

O singlet), 4.8 ± 0.1 eV (V0
O triplet/singlet),

1.6 ± 0.2 eV (V+
O), and −1.6 ± 0.3 eV (V2+

O ). The stated error
bars thereby reflect conservative estimates accounting for the
uncertainties implied by the analytic correction approach and
the convergence with the QM cluster size. This uncertainty,
in particular, for the doubly charged vacancy, is not entirely
satisfying. Notwithstanding, we note that a similar uncertainty
did arise in the calculation of the bulk defect formation
energies through the extrapolation procedure required in the
employed PBC supercell approach [15], whereas a reliable
polarization-converged calculation of �Ef of the charged
surface defects at the hybrid-functional level has never even
been attempted. Intriguingly, our results are, on the contrary,
very robust against the inaccuracy introduced by the still
large deviation of the static HSE06 dielectric constants with
respect to experiment (cf. Table I). As is apparent from the
nature of Eq. (5) values for ε smaller than the HSE06-derived
value will cause large variations in the long-range polarization
correction. Varying the ε employed in the analytic correction
from the small value corresponding to the MM high-frequency
dielectric constants to the one corresponding to the static
HSE06 dielectric constants thus led to the just discussed large
changes in the formation energies of the charged defects.
However, a further increase in ε to match the experimental
dielectric properties in Table I instead yields only a negligible
further stabilization of the singly (doubly) charged defect, by
0.01 eV (0.03 eV).

In total, structural relaxation therefore lowers the formation
energies of the closed-shell V0

O singlet by 0.3 eV, of V+
O by

1.6 eV, and of V2+
O by 5.6 eV. In the work by Janotti et al. for

the bulk O vacancy the corresponding values were 0.3, 0.9, and
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FIG. 5. (Color online) Calculated relaxed surface defect forma-
tion energies as a function of the Fermi-level position in the band
gap. εVBM is used as the zero reference for εF . The y-axis scales at
the left and right correspond to �Ef in the the O-poor and O-rich
limits, respectively, and are correspondingly shifted by 4.07 eV [cf.
Eq. (8)].

3.5 eV [15]. This suggests a significantly stronger stabilization
of the charged defects at the surface, which one may attribute
to a generally larger structural flexibility of surface atoms.
In light of the preceding discussion on the insensitivity of
the polarization response to small variations away from the
HSE06 dielectric properties, this conclusion should not be
affected by the use of a tailored HSE functional with a slightly
different exact exchange mixing in this preceding work. More
likely, the different functional will affect the description of
the short-range QM rehybridization and therewith prevent a
direct comparison of the absolute defect formation energies
in the bulk and at the surface. Compared to our surface
values of 5.3 eV (V0

O singlet), 1.6 eV (V+
O), and −1.6 eV

(V2+
O ), Janotti et al. report 5.3, 2.2, and −1.4 eV for the bulk,

respectively [15]. Overall, the numbers are intriguingly similar.
Considering also the uncertainties due to PBC extrapolation or
QM/MM convergence, we cannot, however, make any more
detailed statements. Even though the calculated �Ef (V2+

O )
reflect the same trend we therefore cannot comment on the
strong surface segregation tendency obtained previously at the
GGA or GGA + U level [66,67]. Corresponding (polarization-
response-unconverged) calculations had predicted a higher
stability of the surface O vacancy, by ∼0.7–1 eV, compared to
its counterpart in the bulk.

D. Thermodynamic stability

As is clear from Eq. (6) the defect formation energies
depend on the reservoirs available for the removed species,
i.e., the oxygen chemical potential and the electronic Fermi
level. Figure 5 therefore extends the previous discussion to

the O-rich limit and to a Fermi-level position at the VBM
and shows the different �Ef values as a function of the
Fermi-level position and with y-axis scales for both the O-rich
and the O-poor limit. For any Fermi-level position within the
band gap, the doubly charged V2+

O defect exhibits the lowest
formation energies: a situation that was equivalently obtained
before for the bulk O vacancy [15]. When also accounting for
the full lattice relaxation, the transition levels ε(2 + /+) and
ε(2 + /0) are thus located above the CBM; i.e., the surface O
vacancy is a shallow donor.

Even in the limit of strong n-type doping with a concomitant
Fermi level close to the CBM the energetic gap to the
neutral closed-shell singlet V0

O with two electrons bound
in the localized defect orbitals is still quite large. In full
agreement with previous theoretical studies [21,53,59–62] the
equally charge-neutral open-shell triplet/singlet is obtained as
an energetically preferred electronic configuration. However,
in contrast to the intrinsically neutral defect, this would instead
correspond to a situation where the charged defect has trapped
two small polarons [15,16]. In our calculations, this situation
only becomes energetically degenerate to the bare doubly
charged V2+

O defect for a Fermi-level position right at the
CBM (cf. Fig. 5). Here, we have to recall, though, that Deskins
et al. reported a polaron localization in the subsurface layer,
which we could not confirm with the present hybrid-functional
QM/MM setup (vide supra). In their scheme, this subsurface
configuration was 0.87 eV more stable than the surface polaron
triplet/singlet configuration we obtain as the most stable (cf.
Fig. 4). If the subsurface solution by Deskins et al. was indeed
physical, this would thus lower the open-shell triplet/singlet
line in Fig. 5 correspondingly. The resulting lowering of the
transition level ε(2 + /0) to 0.44 eV below the CBM would
then indicate the possibility of polaron trapping at the surface
defects, but only for corresponding high Fermi-level positions.
As discussed by Janotti et al. [16] it is such trapped polarons
(trapped possibly at the surface O defect but equally at other
surface and bulk defects), not the O surface defect itself, that
are responsible for the defect state in the band gap observed in
numerous experimental studies [19].

For Fermi-level positions fuarther away from the CBM,
the formation energy of the V2+

O defect decreases rapidly
(cf. Fig. 5). Under O-rich conditions it is only this steep
lowering of �Ef that eventually leads to values consistent
with appreciable defect concentrations. This is consistent
with experimental reports on increased defect concentrations
upon p-doping [68–70]. Equivalent reductions in �Ef (and
concomitant increases in the defect concentration) can, of
course, also be achieved under less O-rich conditions, i.e.,
by lowering the O chemical potential. A strong presence of
bridging-oxygen vacancies at the TiO2(110) surface has indeed
frequently been observed in ultrahigh-vacuum experiments
[17,71–73]. As is apparent from Fig. 5 the lowering of
�Ef with lower εF or μO is in fact so strong that we
eventually obtain negative formation energies. This unphysical
result indicating a lattice instability is an artifact of the
persistent use of defect formation energies calculated for
the dilute limit. Under conditions corresponding to increased
defect concentrations, defect-defect interactions as well as the
buildup of a space-charge region [74] would in reality modify
the formation energies to suppress negative values [74]. In
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view of the huge energetic preference of the doubly charged
defect presently obtained for such conditions, it is, however,
unlikely that this will change the energetic ordering of neutral
and charged defects.

IV. SUMMARY AND CONCLUSIONS

We have presented a solid-state QM/MM approach with
a polarizable interatomic potential optimized to match the
DFT xc functional employed in the QM region and analytical
corrections for long-range polarization effects. Corresponding
embedded-cluster calculations provide a first determination
of the defect formation energies of neutral and charged O
vacancies at the TiO2(110) surface at the hybrid-functional
DFT level and containing a converged contribution of the
strong dielectric response of this material. The stabilization
of the singly (V+

O) and doubly (V2+
O ) charged surface defect

through lattice relaxation is indeed found to be sizable, i.e.,
of the order of 1.6 and 5.6 eV, respectively. It is thus even
larger than previously obtained for the bulk O vacancy [15], a
fact that we attribute to the generally larger structural flexibility
of surface atoms.

The stabilization of, in particular, the doubly charged V2+
O

defect is large enough to make it the thermodynamically
most stable state for any Fermi-level position in the band
gap. However, under the uncertainties of our approach we
cannot exclude a possible trapping of small polarons at the
charged defect for Fermi-level positions close to the CBM.
The situation for the surface O vacancy would then be fully
equivalent to the one discussed by Janotti et al. before for
the bulk [15,16]. The surface O vacancy is thus a shallow
donor and the electronic defect state within the band gap

observed experimentally results from trapped polarons, not
from the intrinsic O defect itself. The similarity of our
calculated surface formation energies to those previously
obtained for bulk vacancies suggests, furthermore, equivalent
defect concentrations at the surface and in the bulk, i.e., the
absence of significant vacancy segregation.

Within the nature of a charged defect, the formation energy
of the V2+

O surface O vacancy varies with the Fermi-level
position in the band gap. In line with experimental reports
this predicts largely increased vacancy concentrations upon
p doping. As surface vacancies are frequently discussed as
reactive centers, systematic variations of doping concentra-
tions may therefore provide an important avenue to tuning the
catalytic activity of TiO2. The presented embedded-cluster
approach allows us to efficiently address charged reaction
intermediates or their binding to charged defects both under
a converged account of the large polarization response and at
the hybrid-functional DFT or even beyond. This predestines
the approach to quantitatively assess this avenue for this and
other (polarizable) metal oxides.
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