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In Section S1 of this Supplemental Material, we give a short description of the low-energy continuum model devel-
oped in Ref. [S1] for T-valley twisted transition metal dichalcogenides (TMDCs) which we employed here. We show
the band structure for all I-valley twisted TMDCs, WSy, MoSs, and MoSe,, at different twist angles 6. In Section
S2, we present the Wannier construction for the two top-most superlattice valence bands in a twist angle range of
1° < 0 < 5°. In Section S3, we discuss the effect of the long-range Coulomb interactions on the low-energy flat
bands in presence of doping in the Hartree approximation. We follow the procedure from Refs. [S2, S3] for magic-
angle twisted bilayer graphene (MATBG). Section S4 gives estimations of the of the electronic Coulomb interaction
strength, in particular the on-site and nearest-neighbor interaction parameters U and V. In Section S5, we explain
the calculations in the fluctuation exchange (FLEX) approximation [S4, S5]. In Section S6, we discuss the nature
of magnetic ordering, analyze the momentum dependence of the static spin susceptibility at different dopings § and
temperatures T'/t, and show its real space profile. In Section S7, we investigate the leading superconducting order
parameter and possible pairing symmetries in the honeycomb Hubbard model at various dopings and temperatures.
Section S8 discusses the influence of longer-ranged hopping terms on spin fluctuations and superconductivity. In
Section S9 we investigate the influence of non-local electron-phonon coupling as well as dispersive phonon frequen-
cies on the doping dependence of phonon-mediated superconductivity. In Section S10 we provide an estimation of
the effective electron-phonon interaction U.g used for the Holstein model calculations in the main text and for the
non-local Peierls coupling employed in Section S9.

S1. LOW-ENERGY CONTINUUM MODEL FOR I'“VALLEY TWISTED TMDCS

We outline here the low-energy continuum model which we used for the description of the moiré valence band
structure of I'-valley twisted TMDCs. The model was introduced in Ref. [S1], from where we outline here the main
points. In this continuum model, only the valence antibonding state at the I' point is considered, which is isolated
from other bands by hundreds of meV because of the interlayer coupling. Since the bands around the I'-point are
mainly of transition metal d,2-character, spin-orbit coupling effects are small and can be neglected. Because of this,
the description of these I'-valley twisted TMDCs is easier than other TMDC systems like homobilayer WSey, where
the valence band maximum is at the K-point with strong spin-orbit coupling [S6]. The low-energy Hamiltonian of
the continuum model can be written as

h2k?
2m*

H=—

+ Vu(r), (S1)

where m* is the effective mass and Vji(r) is the moiré potential felt by the holes at the valence band maximum in T'.
The moiré potential has the following expression in real space:
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Var(r) =) ) veellEirten), (S2)
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Here, s is the s-th shell of six moiré reciprocal lattice vectors g7 = R(j_1)r/3G* (j =1,...,6) with R,, being the
two-dimensional (2D) rotation matrix about an angle a. We choose reciprocal lattice vectors pointing to the s-th
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Table S1. Continuum model parameters for T-valley twisted TMDCs. ao is the lattice constant in A, m* is the effective mass
in bare electron mass units, and V° are in meV. Data taken from Ref. [S1].

WSQ MOSQ MOSBQ

ao 3.18 3.182 3.295
m* 0.87 0.9 1.17
& 33.5 3945 36.8
V2 4.0 6.5 8.4
V3 5.5 10.0 10.2
¢1’2’3 s T T

shell as G! = G), G2 = GM + GY!, and G? = 2G}!, where G}, span the reciprocal moiré lattice. The phase factors
¢* are constrained by the Cls, symmetry of the moiré lattice to be either 0 or 7.

The continuum model parameters (m*, V', ¢°) were obtained from the ab initio calculation of the fully relaxed
twisted bilayers, and they are given in Table S1 for the different I'-valley twisted TMDCs, WSy, MoS2, and MoSe,
[S1]. The maximum of the moiré potential of Eq. (S2) felt by the holes in the valence band maximum is found in the
AB/BA regions (see Fig. 1B of Ref. [S1]), so that the low-energy physics of the I-valley twisted TMDCs is controlled
by orbitals sitting in the honeycomb AB/BA regions.

The diagonalization of H is performed in reciprocal space, where the Hamiltonian of Eq. (S1) is given by (see
Eq. (1) in the main text)

PP+ G
2m*

H = 6(;7(;/ + VM(G — G/). (83)

k and G denote moiré crystal momentum and vectors from the moiré reciprocal lattice, respectively. V(G —G’) is the
Fourier transformation of Vjy(r). This Hamiltonian is expanded up to a plane-wave cutoff G, for a given twist angle
f. In Fig. S1 we show the band structures for I'-valley twisted TMDCs at twist angles in the range 1° < 6 < 5°. The
zero energy is defined as the top of the valence band. For this twist angle range it is sufficient to use G, = 4-5 GM,
where GM = |G}, .

From the valence band edge, two flat bands emerge which touch at a Dirac point in the corner of the Brillouin zone
and at a certain negative energy. We refer to these bands as "flat Dirac bands” for brevity. These bands are well
isolated from other higher energy bands for § < 5°. The bandwidth of the flat Dirac bands continuously increases
approximately quadratically with the twist angle.

Another approach to calculate band structures is the derivation of atomistic tight-binding models, which, for

instance, has been done in Ref. [S7] for MoS;. This approach yields the same results and reproduces ab-initio
calculations consistently.

S2. WANNIER PROJECTION OF FLAT DIRAC BANDS

Based on our observations in the previous section, we construct a tight-binding Hamiltonian for the isolated flat
Dirac bands via Wannier projection with one orbital per sublattice site. The AB and BA regions play the role of the
A and B sublattice sites in a honeycomb lattice. The eigenstates of the low-energy continuum model are

B(r) = |0F) = ) cige’ T, (54)
G

where « is the band index and ¢ are the plane-wave coefficients obtained from the diagonalization of the Hamiltonian
from Eq. (S3). We set G, = 5G™ and use a k-mesh of 15 x 15. We consider Gaussian functions centered on A and B
sites as the trial orbitals |g*), whose plane-wave expansion coefficients are given by

2 K-
ngG — e—(AK) /2€—zK 1,. ) (85)
Here, m € {A,B} is the sublattice (orbital) index, K = k + G, and 1, = L}/3 + 2L}!/3 and 1 = 2L}/3 + L}!/3

are vectors pointing from the moiré unit cell origin to A and B sites, respectively. L11v’12 are the moiré lattice vectors,
M = |L11\<[2|, and A = AMM/3 is the extent of the trial orbitals. These trial orbitals are then projected onto the
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Figure S1. (Color online) Band structures for the I-valley twisted TMDCs, WSz (top row), MoS, (middle row), and MoSes
(bottom row). We show the low-energy band evolution for the twist angle range 1° < 6 < 5°.

eigenstates manifold of the low energy Dirac bands o) = >, (Pr|gn") |Pg), which yields the corresponding plane-
wave expansion coefficients of the state |¢}") [S8]

v = Z ale™ (S6)

The projection matrix Pe™ = (0 |gi") = Y (cfa) 9l allows to calculate the overlap matrix as
SE = (0 16k) = (RLR)™ - (57)

Egs. (S6) and (S7) are used to calculate the so-called smooth gauge plane-wave expansion coefficients of the smooth
gauge Bloch states |®}")

~m n —-1/2 nm
fla = Y dha - (5 (S8)
n
The resulting set of well-localized Wannier orbitals can be constructed in real space as

1 ~m__iK-(r—R
P )= Ny o 2 e Y

where Ay = v3\M /2 is the moiré unit cell size, r denotes the real space coordinates, and R describes the Bravais
lattice. In Fig. S2(a) we show the real-space probability density |[W|? for the two Wannier orbitals m from the unit
cell at the origin of the Bravais lattice obtained from the flat Dirac bands.

Now, the Hamiltonian in the Wannier orbital basis can be calculated by projecting the continuum Hamiltonian
onto the smooth gauge Block states |®™)

HY™ = (S |H|BY) = >~ (i)' e Hicar, (S10)
G,G’
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Figure S2. (Color online) Wannier tight-binding model for twisted WS» at 3.5°. (a) Wannier densities [W,,|* for each orbital
centered in the sublattices A (green dots) and B (blue dots). White dots denote the Bravais lattice R and white arrows are
the moiré lattice vectors L}%,. (b) Band structure and (c) density of states N (&) per spin and unit cell of the honeycomb
tight-binding model with nearest-neighbor hopping only (¢2,ts = 0, blue line) and including also longer-ranged hopping terms
(t2/t1 = —0.136, t3/t1 = 0.105, red line). The doping § is counted relative to the Dirac point. Van Hove singularities (VHS)
appear at the M-points in the Brillouin zone, corresponding to a doping of § = £0.25 (6 ~ —0.2,0.17) in the particle-hole
symmetric (asymmetric) case.

where Hygg are the matrix elements of the Hamiltonian in Eq. (S3). Fourier transformation of Eq. (S10) gives the
real space Wannier Hamiltonian f[fm whose matrix elements m, n are the hopping integrals entering the tight-binding
model used in the main text. We find that including up to three nearest-neighbor hoppings is sufficient to describe
the band structures found by the continuum model in the twist angle range 1° < 6 < 5°, as shown in Fig. 1(b) of the
main text for WSy at 6 = 3.5°. The angle dependence of the hopping amplitudes is shown in Fig. 1(c) of the main
text.

The resulting honeycomb tight-binding model is

Han(k) Hap(k .
00 = (G226 Font)

Haa(k) = Hpp(k) = 2t; [cos(k - L) + cos(k - L3 + cos(k - (LY + LY)] | (S11)
Han(k) = Hip (k) = £ [1 TS S eik(L?“L?‘)} T+t [2 cos(k - Lgﬂ)eik'@LlMﬂ%} .

The corresponding band structure and density of states (DOS) per spin and unit cell can be found in Figs. S2(b) and
(c), respectively. The DOS is shown as a function of doping 4 that is counted relative to the Dirac point. We show
the third nearest-neighbor hopping model with t3/t; = —0.136 and t3/t; = 0.105 for WSy at 6 = 5° using t = ¢; as
unit of energy. It reveals a slight particle-hole asymmetry around the Dirac point. We also show a simplified model
which only accounts for nearest-neighbor hopping and which is particle-hole symmetric. In both cases there are Van
Hove singularities (VHS) emerging at the M points of the moiré Brillouin zone.

Since t; > to,t3, the character of the VHS does not change to higher order VHS [S9, S10] and the qualitative
physics occurring in the system are not expected to change significantly (c.f. Section S8 for an explicit demonstration).
Therefore, we neglect t2 and t3 and consider the particle-hole symmetric model with nearest-neighbor hopping t; = ¢
only in the main text.

S3. LONG-RANGE COULOMB INTERACTIONS

Several twisted 2D systems are known to show a strong reconstruction of their band structure upon doping caused
by the Hartree potential resulting from the long-range Coulomb interaction [S2, S3, S11-S13]. Here, we study the
effect of the Hartree potential in T'-valley twisted TMDCs. We follow the method developed in Ref. [S2]. The Hartree
potential contribution to the total Hamiltonian of Eq. (S1) is given by

Vi(r) = /dgr'Vc(r —1")ép(r), (S12)
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Figure S3. (Color online) Hartree potential effect in the doped band structures of twisted WS2. From left to right, we show
results for different twist angles #. The undoped bands are shown with black solid lines. Band structures corresponding to
Fermi levels Ff and hole doping n}, set between the undoped valence band maximum and the Dirac point (dashed red, i = 1),
at the Dirac point (dashed gray, ¢ = 2), and between the Dirac point and the bottom of the flat Dirac bands (dashed blue,
¢ = 3). The solid horizontal lines represent the corresponding Fermi energies. Calculations were performed at T = 0.

where Vi (r) = % is the Coulomb potential, ¢ = 4.5 is the dielectric constant of the environment as produced by

hBN, and dp(r) is the deviation of the charge density from charge neutrality. dp = 0 corresponds to the undoped
continuum model, i.e., when the Fermi level is at the top of the flat Dirac bands. We can then write

1 .
Sp(r) = — ) dp(G)e'Cr. S13
ple) = 5, 2 90(G) (513)
The Fourier components dp(G) are given by
2 a/ T a/
op(G) = "Ny Z Z (CkG’) kG’ +G> (S14)

kG o

where the sum over o’ runs over the unoccupied states in the valence band, so it depends on the doping level Ep, the
factor 2 accounts for the spin degeneracy, and the minus sign refers to hole doping. Due to the Dg symmetry of the
lattice, dp(G) are equally weighted in the same s shell of g; vectors, so we can write dps = (5p(g‘;-) for any j. We also
checked that it is enough to consider the first and second shells s = 1,2 to correctly address the effect of the Hartree
potential. Under these assumptions, we can write the Hartree potential as

Vin(r) =) Viidp, » i, (S15)
s j

where V§ = - Ai’;leé”. dps are the amplitudes which define the Hartree potential and have to be determined self-

consistently. By Fourier transforming Eq. (S15), we can introduce the Hartree potential in Eq. (S3) and solve the
total Hamiltonian H + Vj in the reciprocal space.
The self-consistent procedure is as follows:

e We cousider various doping levels with respect to the top of the valence band n, (number of holes per spin).
Here n;, = 0 corresponds to the undoped system, nj, = 1 to the hole doping to the Dirac point, and nj = 2 to
completely empty flat Dirac bands. We consider n} between the undoped level and the Dirac point, n? at the
Dirac point, and nj between the Dirac point and the bottom of the flat Dirac bands. We obtain the plane-wave
coefficients cjg from diagonalizing H + Vy.

new
s .

e Using Eq. (S14), we calculate the new charges dp

e In each iteration step, the self-consistent convergence is checked by |§p2!d — §p2°%| < 1075. If the convergence

criterion is fulfilled, we finish the code and calculate the new and renormalized band structures.

e If the convergence criterion is not fulfilled, then we update dp; using a Kerker mixing procedure [S14], where

Sps = 6p2d + O‘GZG-EW (6pae™ — 5p2M). We set o = 0.1, # = 0.9, and G5 = |G*|. A simple straight mixing is
obtained if 3 is set to a very small value. We find that the charges are usually converged after less than 30

iterations depending on the chosen twist angle 6 and the doping level nj,.
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Figure S4. (Color online) Relative change in the bandwidth with respect to the undoped case W/W;, due to the Hartree
potential in twisted WSa. The change is larger for large hole dopings and non-monotonous in terms of the twist angle. The
largest relative change for § = 3° at n; =~ 1.75 is approximately 27 %.

We show in Fig. S3 the effect of the Hartree potential for WSy at different twist angles 6 and different Fermi
energies E% corresponding to respective hole dopings ni. The Hartree potential mainly shifts the bands as a whole
and increases the bandwidth. Only for larger twist angles § > 5° and dopings n}, the flat Dirac bands start to be
reconstructed, with the higher energy bands below the flat Dirac bands even being partially filled. This is in contrast
to graphene-based systems, where the entangled multiorbital nature of the flat bands facilitate strong renormalization
of the bands.

The bandwidth renormalization can be easily visualized when plotting the relative change of the bandwidth with
respect to the undoped case W/Wy, see Fig. S4, where the change is larger for larger dopings. The change is non-
monotonic when changing the twist angle. From these results, we conclude that 8 < 5° is the limit of applicability of
our calculations. In any case and for the purpose of our FLEX calculations, we can assume that the doping § = 1 —n;,
used in the main text occurs between the valence band maximum and the Dirac point, where the bands are essentially
unaffected by the Hartree potential.

S4. ESTIMATION OF THE COULOMB INTERACTION STRENGTH

From the definition of the Wannier orbitals in Eq. (S9), we estimate the value of the screened Coulomb interaction
matrix elements WR 5. The local and nearest-neighbor Coulomb interactions can be then calculated as the matrix
elements U = Wy 44 and V = Wy 4. The resulting extended Hubbard model can be mapped onto a local Hubbard
model by making the assumption U* = U — V' [S15]. We estimate the upper and lower bounds by projecting an
effective interaction Veg(r) onto the Wannier functions in two limiting dielectric environment cases: free-standing
twisted bilayers, for which the external screening is minimal, and a metallic gate in direct contact with the twisted
bilayers, for which the external screening is maximal [S16]. The screened Coulomb interaction matrix is given by

WR,mn = / d*r d®v' Vg (r — v') pron (1) pon ('), (S16)

with prm(r) = [Wrm(r)|?. Veg(r) is the Coulomb interaction screened by the TMDC bilayer in its undoped state
and the dielectric environment. We start from an Ohno potential [S17]

62

VOhno (I') = T_’_éﬂ (Sl?)

that regularizes the bare Coulomb interaction e?/r at a short wavelength cut-off ¢ = 1 A, which is set by the spacial
extent of the W d-orbitals. The effect of screening is easily included in reciprocal space, so the effective interaction is
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Figure S5. (Color online) Estimated Coulomb interactions in different dielectric environments for WS,. (a) Local and nearest-
neighbor Coulomb interaction U and V in two dielectric environments, free-standing twisted bilayer (‘fs’, red line) and metallic
gate in direct contact with the twisted bilayer (‘m’, blue line). (b) Effective local Hubbard interactions U* = U — V and
bandwidth W (orange line). The blue-red shaded region describes the possible values that U* can take depending on the
dielectric environmental setup. The orange-shaded region indicates interaction values we use in the FLEX calculations (U™ /t ~
5-9).

Vegr(r) then calculated from the inverse Fourier transformation of
Vonno(qQ) 2me* _
Verr(q) = = e i, S18
(@ e(q) e(a)q (518)

where ¢(q) is the dielectric function that encodes the environmental screening effect. For our two limiting cases,
free-standing (‘fs’) and metal in direct contact (‘m’), we use the effective dielectric functions [S16, S18]:

( ) 1— ke~ h
€s\qQ) = Ko —=—— 7 »
1+ Re 4 (819)

h
em(q) = k coth % .

Here, k ~ 10 is the internal screening of the twisted TMDC, h ~ 13 A is the bilayer height [S19, S20], and & =
(k—1)/(k+1). In Fig. S5(a) we plot the on-site and nearest-neighbor interactions U and V at different twist angles
0 for the two limiting cases for WS,. Since the nearest-neighbor interaction with a metal gate contact V,,, is on the
order of 1 meV, we did not include it in the plot. Fig. S5(b) shows the effective local Hubbard interaction U* and
the bandwidth W. A realistic value for U* in I'-valley twisted TMDCs will fall inside the shaded regions between
the limiting cases Uf and U}, which depends on the experimental setup and which can be tuned by changing the
dielectric environment [S16, S21-S25]. For our FLEX calculations, we use U*/t = 5—9 (where we assume an effective
Hubbard model with U = U*) which is indicated by an orange-shaded region, since W = 6¢. These interaction values
correspond to experimentally accessible interaction strengths in a twist angle range of 3 — 5°.

S5. NUMERICAL DETAILS OF FLEX CALCULATIONS

We summarize the calculation steps performed in the FLEX approximation [S4, S5] and give details on the numerical
parameters used. In the FLEX approximation, one solves the Dyson equation

Gk)™ =G (k)™ = (k) (S20)

with the dressed (bare) Green function G (GY), self-energy 3, and the four-momentum k = (iw,, k). k is the crystal
momentum and w,, = (2n + 1)wkgT are the Matsubara frequencies at a temperature 7. In case of the single-orbital
honeycomb model, all quantities are given by 2 x 2 matrices in terms of sublattice indices A and B [S26, S27] which

is denoted by a hat Gopg = (G)ap. The non-interacting Green function is given by

G°(k) = [iwa — (Ho(k) — 1) - (s21)
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where Hy is the non-interacting Hamiltonian given in Eq. (S11), 1 denotes the 2 x 2 identity matrix, and g is the
chemical potential of the doping level §. The self-energy > mainly consists of contributions from spin and charge
fluctuations and is calculated from

Sasth) = 5 S Casth ~0) {12 3000 + 5570 ~ 0| + 10 (522)

with the number of sites Ny, and the Hubbard interaction U as given in Eq. (2) of the main text. The charge and
spin susceptibility entering Eq. (S22) are defined by

~C,S A A -1
X%(@) =X)L £ UX°(a)] (S23)
where the irreducible susceptibility is
T
Xos(q) = - > Gaplk +q)Gaalk) . (S24)
k

Eqs. (S20) — (S24) are solved self-consistently. The calculations are initialized using only the bare Green function G°
with ¥ = 0, i.e., starting from free electrons, and in each iteration step the chemical potential u needs to be adjusted
to keep the doping & fixed. We employ a linear mixing G = GV + (1 — k)G°'4 with x = 0.2. We then defined
self-consistency for a relative difference of 10~% between the self-energy of two iteration steps. In all calculations, we
used a k-mesh resolution of 120 x 120. For the Matsubara frequencies we used the sparse-sampling approach [S28-S30]
of the intermediate representation (IR) basis [S31, S32] with an IR parameter A = 10* and a basis cutoff ;g = 1075,
Since the numerical cost of FLEX calculations for T' = ((0.001¢) is quite expensive, this formalism is crucial. For
instance, older works studying honeycomb models [S33-S35] could not determine the transition temperature Te.
Details on the implementation can be found in Ref. [S29] .

To study the superconducting phase transition driven by spin fluctuations, we consider the linearized gap equation

AAS (k) = —Nik S S VL (0)Gaer (k — )G (g — H)AS 5 (b — q) | (S25)

q o,p

for the pairing potential or gap function A on sublattice v and with spin orientation S. This equation represents
an eigenvalue problem for A where the eigenvalue A can be understood as the relative pairing strength of a certain
pairing channel. The dominant pairing symmetry of the gap function has the largest eigenvalue \ and the transition
temperature is found if A reaches unity. Since we do not consider spin-orbit coupling, the linearized gap equation
(S25) is diagonal in the spin singlet- and triplet-pairing channel (S = 0,1) with the respective interactions due to the
exchange of spin and charge fluctuations

Ao 3 ~S 1 ~C rS= 1 ~S 1 oC
VE(q) = SUPK() — UK () + U, VTN (g) = —5U°R(a) — ;UK (a) - (S26)

We solve Egs. (S25) and (526) by using the power iteration method with a relative error of 10~* for convergence. As
an input serve the converged Green function of the normal state calculations and a trial gap function Ay, which is
set up according to the irreducible representations of the Dg symmetry group [S36].

S6. MAGNETIC QUASIORDER AND SPIN FLUCTUATIONS IN THE HONEYCOMB HUBBARD
MODEL

In two dimensions, the Mermin-Wagner theorem [S37] prevents the formation of (genuine) long-range order at finite
temperature as obeyed by the FLEX approximation [S38]. However, tendencies towards magnetic quasi-order can be
read off from the Stoner enhancement factor Ux°(q), which enters the denominator of the static spin susceptibility
X (ivg = 0,q) (c.f. Eq. (S23)). Thus, possible formation of spin density waves (SDWs) can be investigated in FLEX
by inspecting the instabilities of x*(ivp,q). When the Stoner enhancement approaches unity [Ux° ~ 0(0.99)], x*
diverges and the transition to a quasi-ordered magnetic state is assumed [S4, S39, S40]. At this point, the FLEX
calculations turn unstable and do not converge anymore. A discussion of the leading Stoner enhancement, indicating
regions of strong magnetic fluctuations, is given in the main text.

While the real-space profile of the magnetic fluctuations is discussed in the main text, Fig. 2(b), further insight into
the emerging SDWs can be gained by inspecting the momentum-space structure of x*(ivy, q). In Fig. S6, we show the
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Figure S6. (Color online) Momentum dependent static spin susceptibility calculated in FLEX for different temperatures 7'/t
and dopings 0 (rows) at fixed interaction U/t = 4. The left column contains the non-interacting Fermi surfaces at the respective
doping levels and the dominant nesting vectors Q associated with the largest peak of x*(ivo, q). Middle and right column show
the momentum resolved real part of the spin susceptibility within (AA-component) and between (AB-component) sublattices,
respectively.

intra-sublattice (AA) and inter-sublattice (AB) components of x*(ivy,q) along high-symmetry paths of the Brillouin
zone for different § and T' at an intermediate interaction of U/t = 4. Additionally, we included the Fermi surfaces of
the non-interacting system associated with each doping level.

In the doping range between the Dirac point and VHS, the AA- and AB-components of x*® carry predominantly
a different sign signaling antiferromagnetic fluctuations with respect to the A and B sublattices. Beyond the VHS,
ferromagnetic fluctuations with respect to the sublattice index emerge and the relative fluctuation strength decreases.
In each sublattice, the peak structure of x* changes significantly depending on the Fermi surface shape and becomes
more pronounced for lower temperatures. That is, because the spin fluctuations emerge from the nesting conditions
of the Fermi surface, i.e., possible intra-pocket electron scattering. To illustrate this, we also draw the nesting vector
Q belonging to the dominant peak of x* between Fermi surface sheets.

Near Dirac doping (6 = 0.05), the Fermi surface is formed by small, almost circular pockets around the K point
so that long-wavelength SDWs emerge, since x® peaks close to the I' point. This situation corresponds to an almost
ferromagnetic ordering in each sublattice, but antiferromagnetic fluctuations between the sublattices. Increasing the
doping (6 = 0.15) deforms the Fermi surface to an equilateral shape whereby the spin fluctuations assume shorter
wavelengths, as the peak in x® shifts from the I' point to the M point. At the VHS (6 = 0.25), the system undergoes
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Figure S7. (Color online) Real space profile of the static spin susceptibility calculated in FLEX for different dopings ¢ at
T/t = 0.003 and U/t = 6. The distance |r| of two lattice sites is given in units of the moiré length AM. Correlations between
spins on equal (different) sublattice sites are marked by solid lines with crosses (dotted lines with circles), corresponding to the
AA (AB) component of x*.

a Lifshitz transition and the Fermi surface turns hexagonal with perfect nesting conditions. This causes strong
fluctuations with a chiral spin profile on each sublattice [S41, S42]. Beyond the VHS (§ = 0.35,0.45), the Fermi
surface contracts around the I' point with decreasing relative fluctuation strength. Increasing the interaction U
enhances the fluctuation strength, but does not affect the general structure of x°.

Spin fluctuations can mediate an effective electron-electron interaction, as described by Eq. (S26). This interaction
has non-local attractive regions which can pair spatially correlated electrons as they avoid occupying the same site.
Thus, the real space profile x*(ivp,r) provides information on the pairing potential for electrons. In Fig. S7, we
show x*(ivp,r) for different dopings at T/t = 0.003 and U/t = 6. In accordance with the previous discussion of the
momentum space structure, antiferromagnetic correlations between different sublattice sites occur for doping levels in
the vicinity of the Dirac point (§ < 0.15) which turn ferromagnetic for larger dopings. By increasing the doping, the
AA and AB components of x* change sign on a shorter length scale, so that regions with antiferromagnetic correlations
shrink. This reduces the attractive regions (V° ~ x* < 0) leading to a less optimal pairing situation since the pair
electrons need to move closer while the Coulomb repulsion pushes them apart.

In the main text, we discuss that an optimal pairing condition with maximal transition temperature 7,"** arises.
This can be understood from the structure of x*(ivg,r) and DOS. Considering U/t = 6, T is located around
dopt ~ 0.06 —0.07. The top row of Fig. S7 shows that the fourth- and fifth-nearest-neighbor component of x%  change
sign in this doping region. Up to this point, T, increases with doping driven by the increase in the DOS at the Fermi
level (c.f. Fig. S1(c)). As the attractive region shrinks beyond dopt, pairing conditions deteriorate and T.. decreases.
The optimal situation appears where these two counteracting trends are balanced.

S7. LEADING SUPERCONDUCTING INSTABILITY

The possible pairing symmetries of the superconducting order can be classified according to the irreducible rep-
resentation of the point group symmetry of the system [S36]. The honeycomb lattice is of Dg symmetry which can
possibly host singlet extended s-wave, or degenerate d-wave (dg,, d,2_,2) as well as triplet degenerate p-wave (ps, py),
Ja(a?—3y2)-Wave, or fy(3,2_,2)-wave pairing. The dominant pairing symmetry emerges with the largest eigenvalue A
of the linearized gap equation (S25).

In Fig. S8(a), we compare A of the d-wave and f = f,(;2_3,2)-wave pairing symmetry for different dopings ¢
between the Dirac point and VHS. These two parings emerge as the dominant pairing symmetries in the singlet
and triplet pairing channel, respectively. The momentum dependence of the corresponding intra-sublattice order
parameters at lowest Matsubara frequency Aaa (iw1, k) is shown in Fig. S8(b). By comparing the superconducting
eigenvalues, it can be seen that singlet pairing is favored over triplet pairing. This is, in fact, consistent with the
observed antiferromagnetic fluctuations as they support singlet pairing. Clearly, the d-wave pairing is the dominant
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Figure S8. (Color online) Singlet vs. triplet superconductivity in the honeycomb Hubbard model. (a) Eigenvalues A of
the linearized Eliashberg equation for the degenerate d-wave (solid lines) and the f = f,(,2_3,2)-wave (dotted lines) pairing
symmetries. Shown is the temperature dependence of A for different dopings 6 at U/t = 6. Note that the temperature scale
is logarithmic. (b) Momentum-space structure of the order character for the d-wave and f-wave pairing symmetries. Shown
are the normalized diagonal elements of the gap function Aaa at lowest Matsubara frequency for converged calculations at
T/t =0.005, U/t =6, and § = 0.1. The nodes of the gap are indicated by white lines.

superconducting instability for which the critical temperature 7 is read off for Ay — 1. The values of Ay, on the
other hand, do not reach unity in the studied temperature region indicating that a possible transition would occur at
considerably lower temperatures.

For the dominant d-wave pairing, we find that the pairing mainly takes place between different sublattices since
we observe |[Aap| > |Aaal|. This is also in agreement with the antiferromagnetic alignment of the spins between the
sublattices. Because of this, the triplet pairing instability can be enhanced and even dominate over the singlet pairing
by introducing a staggered potential between the A and B sublattice sites [S33].

Below T¢, a linear combination of the degenerate d-wave states forms as the superconducting ground state. The
exact realization depends on the free energy with the possibility of a chiral or nematic states [S36]. For the simple
honeycomb lattice, the chiral d+id state is the preferred solution with the lowest free energy [S43-S45], as the number
of nodes in the quasiparticle spectrum is minimized in this case.

S8. INFLUENCE OF PARTICLE-HOLE ASYMMETRY ON SPIN-FLUCTUATION-MEDIATED
SUPERCONDUCTIVITY

In Section S1, we discussed the influence of longer-ranged hopping terms on the band structure and DOS of the
honeycomb lattice tight-binding model (c.f. Fig. S1(b) and (c)). Here, we assess the change of the spin-fluctuation-
mediated superconducting phase transition line due to the resulting particle-hole asymmetry. We use the same
parameters to/t = —0.136 and t3/t = 0.105 as in Section S1. To describe the asymmetry, we need to compare each
side of the Dirac point. We calculate the critical temperature TP for one Hubbard parameter U/t = 6.

A comparison of the doping dependence of T, for the particle-hole symmetric and asymmetric model is shown in
Fig. S9. In accordance with the band structure and DOS asymmetry, an asymmetry in the doping dependence of
T3P emerges. On the left side of the Dirac point, superconductivity is slightly enhanced, while it is suppressed on the
other side. This might be contrary to expectations, since the enhancement/suppression of the DOS is opposite. The
reason for this is a change in the shape of the Fermi surface and hence nesting conditions caused by the additional
hopping terms. Near the Dirac point, the triangular parts of the Fermi surface become flatter and the spin fluctuation
strength increases due to better nesting. At the VHS, the hexagonal shape of the Fermi surface becomes rounder
causing weaker spin fluctuations. The extent to which this happens, is different for each side of the Dirac point
resulting in two different curves. For instance, on the left side the DOS of both cases is similar, but TSP of the
asymmetric model is slightly increased due to stronger spin fluctuations. The different nesting conditions also cause
the VHS to be less detrimental to the calculations, since the Stoner enhancement does not diverge as strongly.

Even though quantitative aspects of TSP () change by the presence of long-range contributions to the single-particle
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Figure S9. (Color online) Comparison of the doping dependence of the spin-fluctuation-driven superconducting transition line
TP for the particle-hole symmetric (t2,t3 = 0, blue line with diamonds) and asymmetric (t2/t = —0.136, t3/t = 0.105, red
line with circles) honeycomb lattice model. The density of states for each model is drawn by a shaded area to indicate the
position of the Van Hove singularities (VHS) in each case and how the phononic transition line TP would differ qualitatively.
The Dirac point and its vicinity are indicated by a gray shaded area.

dispersion, the general qualitative behavior remains unchanged. A clear maximum of TP exists on both sides of the
Dirac point, while superconductivity is suppressed by doping away from that region. Still ferromagnetic fluctuations
form beyond the VHS which lead to the absence of superconductivity.

S9. SUPERCONDUCTIVITY FROM NON-LOCAL ELECTRON-PHONON INTERACTION

In the main text, we have stated that conventional superconductivity driven by the electron—phonon interaction
persists over a larger doping range and peaks at different levels than unconventional superconductivity driven by spin
fluctuations. More precisely, using the approximations of a single Einstein phonon mode and a constant Holstein
electron—phonon coupling, we have shown that the critical temperature closely follows the electronic DOS. Here, we
will demonstrate that these observations remain valid for more general momentum-dependent phonon frequencies and
Peierls electron—phonon coupling.

We describe the electrons and phonons of the moiré superlattice using nearest-neighbor-only tight-binding and
mass—spring models on a honeycomb lattice. The tight-binding Hamiltonian is equivalent to the nearest-neighbor
part of Eq. (S11), except that we change the orientation of the two electronic sublattices A, B and the primitive moiré
lattice vectors Lllvfz for the sake of notational simplicity, see Fig. S10 (a). Using reciprocal lattice units k1 2 = k- Llf/fQ,
the tight-binding Hamiltonian can then be defined as

Hyap =t(1+e™ +e7*) Hypy = Hinp, Hgan = Hypp =0, (527)

where ¢t = t; and the asterisk denotes the complex conjugate. The corresponding electron dispersion relation (see
Fig. S2 (b)) reads

Fyy = ﬂ:t\/?) + 2008(]411) + 2COS(]€2) + 2008(]411 + ]412) (828)

For the phonons, we use a mass—spring model with an isotropic nearest-neighbor force constant. Using reciprocal
lattice units g1 2 =q - Lll\/fQ, the dynamical matrix can be defined as

3k

k i —i *
Dyag = —ﬂﬂ(l +e " +e7), Dypa = Dgan, Dgaa = Dgpp = 1M’ (529)
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Figure S10. (Color online) Non-local electron-phonon interactions. (a) Honeycomb lattice with primitive lattice vectors Lllvfg,
bond vectors 79,1,2, and sublattices A, B. (b) Phonon dispersion wq+ in units of \/k/M with force constant k£ and mass M.

(c) Critical temperature T¢ in units of \/k/M and density of states N in arbitrary units as a function of the doping level § for
different strengths of the effective interaction Ueg in units of the hopping t.

where k£ and M are the effective force constant and a mass, respectively. The force constant and mass have to be
understood as effective quantities related to the moiré unit cell and not referring to the primitive unit cell or individual
atoms. 1 denotes the unit matrix in the space of Cartesian displacement directions.

We show in Fig. S10(b) the corresponding phonon dispersion which consists of two branches, whose degeneracy is
the number of spatial dimensions, and reads wq+ = \/kq+ /M with

kgt = k[3 4 /3 +2cos(q1) + 2cos(qa) + 2cos(q1 + q2)]. (S30)

Finally, modeling the dependence of the hopping ¢ on the bond length 7 as t/tq = (7/79) ™" [S46] and labeling the
sublattices of the ionic displacements as A’, B/, the deformation-potential matrix element can be defined as

n . 4
_ A ~ ik ~ —ik AT ] _ *
dgakas = 7(70 +71e"™ +72e7"?), dgakpa = dgarkiqass  dgpki; = —dgarkis (S31)

where 7o 12 are the normalized nearest-neighbor bond directions (Fig. S10(a)) and i,j € A,B. dqekij quantifies the
scattering of an electron from k,j to k + q,7 due to a q,z displacement. Using the eigenvectors 1) and e of the
tight-binding Hamiltonian and the dynamical matrix, the deformation-potential matrix element can be transformed
to the band basis via

dqukmn = Z equlpltJrqimwkjndqa:kij’ (832)
xij
where v denotes the phonon branch and m, n the electronic band. The index z combines A’, B’ and Cartesian
directions. With this, we have everything needed to calculate the effective electron—phonon coupling strength
unkmn 6(6k+qm - /L)(;(Gkn - :U’)Ucelllcszmn
qumn 6<€k+qm - M)(S(ekn - M)

A(p) = N(p) : (S33)

where we have defined the effective attractive interaction U = |alq,,kmn|2 /kqu, and the logarithmic average of

qrkmn
the phonon energy

qukmn 5(€k+qm - /u‘)é(ekn - lu)Uggkmn log(wa’)
unkmn 5(€k+qm - [L)(S(Gkn - M)Uglf/fkmn

Wiog (1) = exp (S34)

as a function of the chemical potential y [S47]. Here, N(u) is the DOS per spin direction and unit cell, see Fig. S2(c)
for the DOS as a function of the doping level §. Both A and wioe are double Fermi-surface averages; the § functions
ensure that both in- and outgoing states k,n and k + q, m are on the Fermi surface. Note that the shape of A and
Wiog as a function of p for our model is fixed and their magnitude depends solely on the prefactors Ueg/t = 32t/72k

and \/k/M, respectively.
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We calculate the critical temperature T, using McMillan’s formula [S47, S48] (Eq. (3) of the main text) for different
values of Ueq covering the entire range from weak to strong coupling, i.e., 0 < A < 2, as a function of the doping §.
For simplicity, we set the Coulomb pseudopotential p* = 0, while finite u* do not change the picture qualitatively.
We sample the Brillouin zone using 96 x 96 x 1 q and k points in combination with a Gaussian broadening of 0.05¢.
In all cases, T, approximately follows the DOS, see Fig. S10 (c¢). Depending on the value of Usg, the maxima at the
VHS are more or less pronounced.

S10. ESTIMATION OF EFFECTIVE ELECTRON-PHONON INTERACTION PARAMETER Ueg

In the main text and in Section S9 we used McMillan’s formula to show that superconductivity arising from electron-
phonon coupling reveals generic and robust doping fingerprints by T, following the DOS. The quantitative details of
the superconducting transition are then determined by the material properties. Here, we give an estimation on the
order of magnitude for the effective BCS-like interaction Ueg entering the pairing strength A = Ueg N (EF) for I'-valley
twisted TMDCs.

The simplest estimation for the pairing strength A for twisted moiré systems is to extrapolate from calculations for
the untwisted material. In homobilayer TMDCs, A can take values up to 8 [S49] depending on the doping with the DOS
varying between 0.4 eV~! and 2 eV~ [S50]. Hence, the effective interaction strength is Usg = A\/N(Er) ~ 4—12 eV per
unit cell. This value needs to be scaled to the moiré unit cell which contains approximately (A\M/ag)? = 1/sin? 0 ~ =2
single unit cells with lattice constant ag (c.f. Table S1) for small 6, i.e., the effective interaction is twist-angle dependent
Ueit(0) ~ 4-1262 eV. Using our observation t oc 6% (c.f. Fig. 1(c) of the main text), we can express Usg in units of
t. For instance, for twisted MoS, bilayer we can write t ~ 2 eV-0? = a#? with 6 in radians. Thus, we estimate an
interaction strength of Ueg/t = 2—6.

We also discuss moiré phonon modes, where we obtain U,z = d?/k from elastic properties of the bilayer TMDCs.
Instead of using the microsopic electron-phonon coupling g and the averaged (”typical”) phonon frequency (w), we
express Ueg in terms of an effective moiré deformation potential d and an effective moiré force constant k. They are
related by

2 2 nd? &
Uett = 30y = hiwy 2M ()~ (835)

since g = 4/ Wh@)d [S51] and (w) = /k/M with mass M. It shows that the attractive phonon-mediated interaction

can be interpreted as a classical quantity, as all i cancel out.

First, we consider a case which corresponds to a purely local mode with Holstein-type coupling, which results
from an interlayer breathing mode, see Fig. S11(a). In this case, a restoring force F' = kAh is induced when the
interlayer distance is changed by an amount Ah. The response of the system is also encoded in the elastic constant
in out-of-plane direction

o F/A Fh

Cs3 = —

¢ Ah/h~ AARL (S36)

with the tensile stress o of the lifted area A and strain e of the equilibrium layer distance h. Thus, the force constant
can be calculated from

F  ACs

F=ART

(S37)

We assume that only a fraction p < 1 (the AB, BA regions) of the moiré unit cell needs to be lifted, so that

A= p@()\M)2 ~ p@a%@’? The magnitude of the deformation potential is given in Eq. (S31) and for a single mode
it simplifies to

_ft

d
h

(S38)

with the interlayer hopping ¢, . The attractive interaction in Eq. (S35) then takes the form

) 2 2,2
Ugfolst. — i — (M) . h ~ ﬂ tL . (339)
k h ACs3 ?pa%9_2h033



Figure S11. (Color online) Moiré phonon modes. (a) Layer-breathing mode (“Holstein” coupling). (b,c) Optical in-plane
modes of a honeycomb lattice at I" (“Peierls” coupling). (d) Effect of TMDC layer displacement. The left panel shows the
unshifted lattice, while in the right panel the red TMDC lattice was displaced to the right by u, so that the moiré superlattice
is shifted to the top by ér. Empty circles denote the unshifted atom positions.

Expressing Ugf"l“‘ in units of the moiré honeycomblattice hopping ¢t ~ af? yields

UHOlst. ~ i thi t. (840)
off V3 apazhCss

We can estimate U™ to be in the range of 0.05 1.4 ¢ by assuming 8 = 45 [S46], ag = 3.18 A[S50], C33 = 52 GPa
[S52, S53], t; = 0.3-0.4 eV [S1], h = 3-6 A, @ = 2 eV, and p = 0.167-0.5. In our simplified approach, we
thus get interactions that can induce superconductivity (c.f. Fig. S3(b) of the main text) since the pairing strength
A = Uer/t - N(Er)t reaches values up to A = 0.5 (c.f. Fig. S2(c)).

Now, we consider an interlayer shear mode with the two layers being moved in opposite directions and opposite
shearing profile in the AB and BA regions of the moiré. This effectively modulates the bond lengths in the moiré
honeycomb superlattice, i.e., we estimate the effective interaction arising from the Peierls coupling discussed in Section
S9. Two equivalent shear modes exist, see Fig. S11(b,c), for which the potential energy is given by the optical g = 0
eigenmode (c.f. Eq. (S30)) of the spring model in Section S9. The displacement dr¢ of a Wannier center with respect
to the origin at an AB/BA site thus has the elastic energy

1
Eel = §kq:07+ (S’)"g =3k (ST?] . (841)

On the other hand, we can estimate the equivalent displacement energy [S54]

_ 1 2 2 2
E = 3 /AMd T ; ALUL, + Zﬁ2mfua5 (S42)
associated with the displacement field u of a single layer. Here, uqg = %(gzg + g:i + Zy gzz gmig) is the strain tensor
and Ar,, pup, are the Lamé constants which are linked to the Young’s modulus Y and Poisson ratio v via
v 1 1
LTl 0 T o) (543)

with Y & 150 N/m and v ~ 0.22 for TMDC homobilayers [S55, S56]. The shear displacement u of the TMDC layers
induces a perpendicular shift dr of the Wannier center with respect to the origin at an AB site as shown Fig. S11(d).
They are linked by

0 +¢
u4 = [Rig/g — ]12><2] or ~ :FQ 0 or s (844)
2
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for small twist angles where the upper and lower TMDC layer carry a different sign. For each mode the displacement
field dr(; ) = 0r(r)e,,, can be described by the leading Fourier components

257”0

3V3

Since the shear modes (and displacement energies) are equivalent, we focus on the mode in Fig. S11(b) in the following.
For this mode, we have the stress tensor components

or(r) = (sin(Gll\/[r) +sin([G3! — GMJr) —sin(G3'r)) . (S45)

«=0,
Usy = Uye = 55 = = F =0 ——GM (cos(GY'r) + cos([G' — GY]r)) (346)
Uyy = Ouy _ %TO ——=GM (cos(G)'r) + cos([GY' — GY']r) — 2 cos(G3'r)))

dy G\f

where the higher order terms of the offdiagonal components were neglected for small displacements and GM = |G o =

2 /MM, Inserting Eq. (S46) into Eq. (S42) and integrating over the moiré unit cell area, the displacement energy for
one layer yields

1602673

E=-
236

(GM)2 AL + 3pz) (S47)
We obtain the force constant by equating the displacement energy for both layers with twice (due to two layers) the
elastic energy in Eq. (S41) and using Eq. (S43) as

2
k=—EF
36r3 el =

\V/3m? 3 —4v
108 (1 —2v)(1+v)

(GM) AL + 3up)0? = Y62 = kob? (S48)

108

with ko ~ 5.6 eV/A2. The deformation potential is as in Eq. (S38) with ¢, and h being replaced by ¢ and A\M/3
(Wannier orbital extent), respectively. The effective potential takes the form

2
2 242 (6
UPcicrls ~ (ﬁt)\M> ~ gﬂ ! <a0> — 9ﬂ2 t2 _ 90‘52
eff

~ = = 6% - t. 549
ko2 k62 a%ko a%kO ( )

2
Since UEeer!s /t oc t oc 9% with the prefactor zf ~ 5—8, the effective interaction and hence pairing strength is very
small. From our estimation we conclude that superconductivity from moiré Peierls coupling will not be realized in

the real material system.
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