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Zusammenfassung

Wir benutzen einen analogen Quantensimulator mit ultrakalten fermionischen 40K-Atomen
in einem eindimensionalen optischen Gitter, um die Dynamik eines Anfangszustandes
fernab des Gleichgewichts zu untersuchen. Während sich generische abgeschlossene
Quantensysteme ergodisch verhalten und ihr thermisches Gleichgewicht erreichen - eine
Vorhersage der Hypothese der Eigenzustandsthermalisierung - gibt es bekannte Ausnah-
men von diesem Grundsatz. Insbesondere Integrabilität und Vielteilchenlokalisierung
führen zu nicht-thermischem Verhalten aufgrund einer extensiven Zahl von Erhaltungs-
größen. Zuletzt sind hingegen weitere Systeme in den wissenschaftlichen Fokus gerückt,
die weder eindeutig als thermisch noch als integrabel klassifiziert und typischerweise als
schwach ergodizitätsverletzend zusammengefasst werden können. In dieser Doktorar-
beit betrachten wir mit Vielteilchen-Mobilitätskanten und Hilbertraumfragmentierung
zwei Vertreter dieser neuen Klassen von der experimentellen Seite und unterstützen die
Ergebnisse mit komplementären theoretischen Resultaten.

Im ersten Projekt realisieren wir ein Gittermodell mit quasiperiodischer Unordnung
und einer Einteilchen-Mobilitätskante. Dieses nicht-wechselwirkende System können
wir dadurch in einer Koexistenz aus lokalisierten und ausgedehnten Zuständen prä-
parieren. Die Einführung lokaler Wechselwirkungen motiviert in diesem Kontext zwei
zentrale Fragen, die Gegenstand aktueller theoretischer Debatten sind: Kann Vielteilchen-
lokalisierung in einem System mit einer Mobilitätskante überhaupt vorkommen? Existiert
dazwischen eine neue Vielteilchenphase, die durch eine Koexistenz lokalisierter und
ausgedehnter Vielteilchenzustände definiert ist? In dieser Arbeit demonstrieren wir
Vielteilchenlokalisierung in einem Parameterbereich, in dem alle zugehörigen Einteilchen-
zustände lokalisiert sind. Weiterhin beobachten wir, dass nicht-lokalisierte Zustände
nicht zu einer beschleunigten Relaxation des Systems hin zu einem thermischen Zustand
führen und somit kein effizientes Bad darstellen. Dies schließt die Möglichkeit einer neuen
(intermediären) Vielteilchenphase nicht explizit aus.

Das zweite Projekt untersucht das eindimensionale Fermi-Hubbard-Modell in der Gegen-
wart eines starken linearen externen Potentials, des sogenannten Tilts. Dieses Modell
dient als ideales Versuchsfeld, um die Physik fragmentierter Hilberträume zu untersuchen.
Dabei handelt es sich um einen neu entdeckten Mechanismus, der in der Gegenwart nur
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weniger Erhaltungsgrößen zu nicht-thermischen Eigenschaften führt. Wir untersuchen
die Dynamik verschiedener Anfangszustände, die sich durch den Anteil doppelt besetzter
Gitterplätze unterscheiden. Dabei kommen neue experimentelle Methoden zur Charak-
terisierung des Anfangszustands mittels Mikrowellenspektroskopie und zur Kontrolle
des spinabhängigen Tilts durch Radiofrequenz-Dressing zum Einsatz. Wir beobachten
eine starke Abhängigkeit der Dynamik von den jeweiligen Anfangsbedingungen, was ein
charakteristisches Merkmal schwacher Ergodizitätsverletzung darstellt. Zusammen mit
numerischen Simulationen des effektiven Hamiltonians führender Ordnung in Störungs-
theorie können wir Beweise liefern, dass unsere experimentellen Befunde mit dieser
effektiven Beschreibung übereinstimmen und wir daher ein fragmentiertes Modell in
unserem System implementieren können.

ii



Summary

We employ an analog quantum simulator with ultracold fermionic 40K atoms in an optical
lattice confined to one dimension to probe the dynamics of a given initial state far from
equilibrium. While generic closed quantum systems are expected to behave ergodically
and thus reach thermal equilibrium as predicted by the eigenstate thermalization hy-
pothesis, there are well-known exceptions to this paradigm. Above all, integrability and
many-body localization avoid thermalization through an extensive set of conserved quan-
tities. However, recently new types of systems that can neither be classified uniquely as
thermal or integrable and that are commonly summarized as weakly ergodicity breaking,
attracted considerable interest. In this thesis we investigate two such classes, mobility
edges and Hilbert space fragmentation, experimentally and support our findings with
complementary theoretical insights.

In the first project we realize a lattice model with quasiperiodic on-site detuning with a
single-particle mobility edge such that the non-interacting system can be prepared in a
coexistence of localized and extended eigenstates. Upon the addition of local interactions
two central questions that are in the focus of a current theoretical debate, arise: Does many-
body localization occur in the presence of a single-particle mobility edge? Does a many-
body intermediate phase characterized by a coexistence of localized and extended many-
body states emerge? In our work we establish the existence of many-body localization in
such a model in a regime where all single-particle states are localized. Further, we observe
that the presence of extended states does not lead to a faster relaxation of the system to a
thermal ensemble such that extended many-body states do not serve as an efficient heat
bath. This does not explicitly exclude the existence of a many-body intermediate phase.

The second project is dedicated to the one-dimensional Fermi-Hubbard model in the pres-
ence of a strong linear external potential, the so-called tilt. This model is the ideal setting
to probe the physics of Hilbert space fragmentation, a recently discovered mechanism
that avoids thermalization with only few conserved quantities. We probe the dynamics
of various initial states that differ by the fraction of doubly occupied sites. Herein we
employ new experimental methods to characterize the initial state by means of microwave
spectroscopy and to tune the spin-dependent tilt via radio-frequency dressing. We ob-
serve a strong dependence on the initial conditions, a characteristic property of weakly
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ergodicity-breaking systems. Together with numerical simulations of a leading-order
effective Hamiltonian we can provide evidence that our experimental observations are in
agreement with this effective description such that we can indeed implement a fragmented
model in our system.
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Preface

The thermalization of classical systems is believed to be understood in terms of Boltz-
mann’s ergodic hypothesis [1]. It states that during time evolution the system explores
the full available phase space as allowed by global conservation laws. The time-averaged
expectation value of physical observables is thus given the the microcanonical ensemble
average. A quantum system on the other hand, thermalizes through the loss of coherence
that has to be erased in the course of the dynamics [2]. This, however, is not obvious
since time evolution is unitary and chaotic dynamics that drive thermalization in classical
systems cannot occur. Instead, quantum thermalization happens on the level of individual
eigenstates as predicted by the famous eigenstate thermalization hypothesis (ETH) [3, 4].
Every eigenstate itself behaves like a thermal ensemble and possesses thermal expectation
values for a given physical observable.

Although the ETH is only a hypothesis without available formal proof, it is believed
to hold for all thermalizing quantum many-body systems and numerical simulations
support this conjecture by reproducing central claims of the ETH [5]. However, providing
full evidence for a given system to be thermal is extremely difficult as it would require
that every physical observable behaves thermally. While quantum thermalization is a
ubiquitous phenomenon, there are few exceptions to this paradigm, which gather a lot of
theoretical and experimental interest. The most prominent mechanism to break ergodicity
is integrability that comes along with an extensive set of conserved quantities that limit
the degrees of freedom and impede thermal dynamics. Integrable systems can be solved
with the famous Bethe ansatz [6] and many popular models belong to this class such as the
Fermi-Hubbard model [7], the Lieb-Liniger model [8], the antiferromagnetic Heisenberg
spin chain [9] or the Anderson impurity model [10]. Integrable models, though, are
very fine-tuned and small perturbations like non-local interactions or an external drive
are sufficient to restore thermalization. A more robust exception to ETH are randomly
disordered systems that feature localized eigenstates due quantum interference [11]. It was
shown that this localization can persist forever in the presence of interactions giving rise
to the phase of many-body localization (MBL) [12–17]. It is characterized by the absence
of particle transport and thus vanishing conductivity [18–20] as well as logarithmically
slow entanglement growth [21]. The MBL phase possesses an emergent integrability as
the Hamiltonian can be expanded in terms of a complete set of conserved local operators
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in close analogy to integrable systems [22, 23]. The local integrals of motion (LIOMs) are
able to explain the MBL phenomenology. Although the occurrence of localization was first
predicted for systems with random disorder, the famous Aubry-André model [24] also
features localized eigenstates with a quasiperiodic external potential. Later, numerical
works provided evidence that MBL is equally expected there [25]. Due to the experimental
relevance of this model localization was soon investigated experimentally in quasiperiodic
systems.

Although Anderson’s theory was originally formulated for electrons in disordered metals,
localization cannot be observed in real solid state systems due to thermal phonons that
serve as a heat bath and destroy localization phenomena. It required the development of
synthetic systems until Anderson localization was first demonstrated about 60 years after
its prediction with light in a disordered waveguide array [26, 27]. In the following, quan-
tum simulators with ultracold atoms in optical lattices proved to be a successful platform,
comprising the first demonstration of single-particle [28] and many-body localization [29]
in the quasiperiodic Aubry-André model. In the following years MBL was then identified
in many other experimental platforms ranging from quantum gas microscopes [30, 31],
ion traps [32] and superconducting qubits [33, 34] to nuclear spins [35]. Subsequently,
many further questions regarding the properties of the MBL phase attracted the attention
of theoretical investigations, accompanied by complementary insights from experimental
studies. These include localized systems subject to an external periodic modulation [36–
40], the nature of the dynamical transition between the ergodic and localized phase [41–49]
and the possibility of MBL in higher dimensions [50–54]. For real-life applications it is
a particularly relevant question what happens to an MBL system when it is coupled to
a thermal bath. Numerous theoretical studies [55–59] agree that for sufficiently strong
coupling to the environment an MBL system restores thermalization and is driven to
thermal equilibrium. This was also confirmed in dedicated experiments implementing
the coupling to a bath [60, 61]. Along these lines an interesting question to explore is the
coupling between localized and extended components as explored in [62]. This situation
is different from coupling to a thermal bath due to the comparable number of degrees of
freedom in the system and the bath. Those results take on significance when studying the
role of many-body mobility edges [12, 63–66] and the resulting coexistence of localized
and extended many-body states across the spectrum. The questions whether many-body
mobility edges exist and whether MBL prevails in such systems is highly debated [67, 68]
and its experimental exploration is part of this thesis.

In recent years the community redeployed interests towards other classes of systems
that violate the ETH in the absence of disorder and in particular looked for MBL in
disorder-free systems with translational invariance [69–75]. These studies typically iden-
tify trapped metastable states with exponentially long-lived localization owing to kinetic

2



Preface

constraints due to strong interactions and frustration. In this context one can define a
strong and a weak version of ETH: While all eigenstates within the spectrum need to
have thermal expectation values in order to satisfy strong ETH, as obeyed by typical
ergodic systems, the weak version tolerates a finite number of outlying states as long as
their number vanishes in the thermodynamic limit. This distinction was motivated by
the discovery of special long-lived initial states in a Rydberg tweezer experiment [76]
that led to the theoretical discovery of quantum many-body scars [77–85], non-ergodic
eigenstates within a thermal bulk that feature low entanglement and non-ergodic proper-
ties. Another important class in the context of weak and strong ergodicity breaking are
fractonic systems [86] that exhibit constrained dynamics, either because they are explicitly
included in the Hamiltonian or due to conservation laws. For the concrete case of charge
and dipole moment conservation it was recently shown that the Hilbert space fragments
into exponentially many dynamically disconnected subsectors and thereby provides an
efficient method to prevent ergodicty as the dynamics are restricted to an exponentially
small sector of the full Hilbert space [81, 87–91]. Consequently, this process is called
Hilbert space fragmentation (HSF) and represents a new ergodicity-breaking phenomenon
without the need of quenched disorder. This mechanism has to be properly distinguished
from conventional MBL and a defining characteristic of HSF is a strong dependence of
the dynamics on the initial conditions [87, 88] as opposed to thermal and MBL systems.
Such models bear experimental significance as charge and dipole moment conservation
naturally occur in the effective description of the Quantum Hall effect [92–94] and tilted
lattice models [95, 96]. The latter case of a linearly tilted lattice potential has already been
realized in multiple experimental platforms [97–100], although with a different research
focus, until recent works discovered MBL-like properties in such a system including
harmonic confinement [95] or weak disorder [96]. Thus, this newly discovered phase was
dubbed Stark MBL. Though, a proper distinction between HSF and Stark MBL needs to
be established. In this thesis we explore this model with the goal to detect experimental
evidence for HSF via state-dependent dynamics in a strongly tilted optical lattice.

Exploring the intriguing non-equilibrium phenomena of closed quantum many-body
systems in real experiments poses many challenges. First, any quantum system that seeks
to explore non-ergodicty has to be sufficiently decoupled from its environment so as to
properly probe its intrinsic unitary evolution. Any bath coupling typically serves as an
efficient way to drive a system to thermal equilibrium as it was investigated for MBL [55–
61] and HSF systems [101]. Second, it requires precise control over the experimental
parameters, a capability that state of the art experiments satisfy to unprecedented accuracy.
This includes for example control over the Hubbard parameters such as the interaction
strength that can be set by means of a Feshbach resonance [102] and the precise shaping
and control of optical potentials with optical deflectors and spatial light modulators [103].
Over the last decade the capabilities of quantum simulators with ultracold atoms on opti-
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cal lattices [104] have been evolving considerably. Quantum gas microscopes [105–109]
for instance provide single-site resolution of charge [106, 107] and even spin [110] in one-
and two-dimensional geometries and allow for an efficient experimental implementation
of bosonic and fermionic Hubbard models. In particular, the Fermi-Hubbard model [7],
originally formulated as a tight-binding model for the dynamics of interacting electrons in
a solid state, bears high relevance for the understanding of real-life metals and insulators.
Studies in one dimension for example demonstrated the evolution of magnetic correla-
tions [111] and spin-charge separation [112]. In two-dimensional Fermi-Hubbard systems
a lot of effort has been put into the exploration of the rich cuprate phase diagram as a
function of temperature and electron-hole doping. Recent advances in atom cooling have
enabled the realization of long-range antiferromagnetic order [110, 113] that is expected at
zero doping and temperatures below the superexchange energy. Upon the introduction
of hole doping more exotic phases like the pseudogap phase, strange metals [114] (non
Fermi liquid) and d-wave superconductors are expected to emerge. A long-term goal
is the understanding of two-dimensional cuprates and the responsible mechanisms for
superconductivity, which is still in the focus of current research. This knowledge could
then be employed to foster high-temperature superconductivity [115, 116] beyond current
limitations.

The experiments reported in this thesis were carried out on an analog quantum simulator
with ultracold fermions in a three-dimensional optical lattice. Via dynamically decoupling
the orthogonal lattice axes we restrict the dynamics to one dimension realizing the 1D
Fermi-Hubbard model. We have access to large system sizes up to 300 lattice sites far
beyond numerically traceable dimensions and coherence times in the order of hundreds
of tunneling times before open system effects limit the evolution times. We can trace
the dynamics locally by using a bichromatic superlattice setup and preparing a charge-
density wave (CDW) initial state with every second lattice site occupied. Our imbalance
observable that traces the time evolution of atom densities on even and odd sites hence
does not rely on macroscopic particle transport, but resolves local density patterns and
evolutions and can thus even resolve slow dynamics which would not be visible in global
observables. The CDW state was soon applied in other experiments as well, either with
the lowest periodicity [29, 48, 60, 117], but also in a more general version with variable
wavelength [54, 99, 114, 118]. In our experiment we employ the density imbalance to detect
the localization properties of the many-body system and to resolve real-time hopping
processes in the optical lattice. In future applications it will be worthwhile to extend the
number of available observables to include entropy and correlators in a large-scale system
as current experiments with high spatial resolution are typically still limited to relatively
small system sizes.

4



Preface

Structure of this thesis

The projects reported in this thesis focus on the emergence of non-ergodic dynamics in
an optical lattice with ultracold fermionic atoms. In particular, we explore new concepts
in the spectrum between thermal and integrable systems that violate at least the strong
version of ETH and thus lead to weak ergodicity breaking. We realize a one-dimensional
lattice geometry with an either quasiperiodic or linear external potential and investigate
the system’s out-of-equilibrium dynamics starting from a charge-density wave initial state.
This thesis is divided into four main parts which are described here in some detail.

Part I reviews the important theoretical concepts covered in this thesis. We start with a brief
treatise of the eigenstate thermalization hypothesis (ETH) and integrability in chapter 1.
Chapter 2 is then dedicated to many-body localization (MBL) and reviews the central
concepts necessary to understand the first project in this thesis including the MBL phase
transition and open system effects. Finally, chapter 3 starts with an overview of recently
developed concepts and systems that cannot be classified by the previous categories of
thermal and integrable systems. Instead they exhibit weak ergodicity breaking that truly
conforms with neither of the two classes. Among those we then emphasize mobility
edges and Hilbert space fragmentation as they are covered in the following parts of this
thesis. In particular, a connection between Stark MBL and Hilbert space fragmentation is
established.

The experimental setup is thoroughly described in part II starting with a brief overview of
the experimental sequence in chapter 4 including the cooling procedure and lattice setup.
We continue to explain the spectroscopic techniques using radio-frequency and microwave
operations. At this point the newly developed Potassium microwave setup as well as the
technique of RF dressing are explained in detail. Chapter 5 continues with the observables
we measure in the reported projects. These are the density imbalance already employed
in many previous projects, but also introduces new techniques resolving imbalance and
in-situ distributions of singlons and doublons separately.

Part III is dedicated to the exploration of a many-body intermediate phase with ultracold
atoms in a quasiperiodic potential realizing the generalized Aubry-André (GAA) model.
In chapter 6 the non-interacting model is studied numerically to explore its properties
and highlight differences to the Aubry-André model in the eigenstate characteristics and
imbalance time evolution. We also briefly review the results from [119] that thoroughly
demonstrated the single-particle mobility edge in our system. The corresponding inter-
acting model is investigated in chapter 7 where we provide evidence for an MBL phase
in an interacting model with a single-particle mobility edge and explore the existence
of a many-body intermediate phase. We discuss the conceivable interpretations of our
results.
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In part IV we investigate the Fermi-Hubbard model with a strong linear external poten-
tial. Chapter 8 reviews the properties of the non-interacting system, the Wannier-Stark
ladder, and explains the experimental implementation and its importance for calibration
measurements. As this model serves as an ideal platform to investigate the recently estab-
lished mechanism of Hilbert space fragmentation, chapter 9 is dedicated to the theoretical
description and experimental exploration of the tilted Fermi-Hubbard model. We explain
our observations, in particular a strong dependence of the dynamics on the initial condi-
tions and the resolution of microscopic processes, in terms of a leading-order effective
Hamiltonian. This is an indication that we indeed realize a model featuring Hilbert space
fragmentation.

6



Part I.

Introduction to theoretical concepts

When a quantum many-body system is prepared in an initial state far from equilibrium,
there are multiple possible outcomes regarding the steady-state conditions. While generic
quantum systems obey the eigenstate thermalization hypothesis (ETH) and relax to ther-
mal equilibrium, there are many prominent exceptions to this paradigm, especially in one
spatial dimension. These include many-body localized systems, which retain memories of
the initial state up to infinite times and fail to thermalize due to emergent integrability
in terms of local integrals of motion. Recently, many new models have been developed
that cannot be classified into either of the preceding classes (thermal and integrable) and
require a more sophisticated distinction of strong and weak ergodicity breaking. In this
part we review the important concepts of thermalization and many-body localization
before focusing on intermediate classes that are also explored experimentally in this thesis,
namely many-body mobility edges and Hilbert space fragmentation.
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1. Thermalization and integrability in
quantum systems

The term thermalization describes the relaxation of a many-body system to an equilibrium
state that can be described by few thermodynamic quantities. This notion especially
holds for arbitrary initial states and applies to most generic systems in nature. Important
properties of classical and quantum thermalization are reviewed in previous works [120,
121]. Here, we give a brief review of thermalization in quantum systems and the powerful
eigenstate thermalization hypothesis (ETH) as well as on integrable systems that represent
an important exception to this concept.

1.1. Quantum thermalization and the Eigenstate Thermalization
Hypothesis

A quantum system, in close analogy to classical thermodynamics, is viewed to be in ther-
mal equilibrium if its state can be fully characterized by few extensive quantities such as
particle number or energy. Local degrees of freedom become fully entangled with the rest
of the system and it can be described by classical methods such as hydrodynamics [122].

This fact means that any memory of the details of an initial state must be erased during
the process of thermlization and, above all, this equally applies to all states of a quantum
many-body system in the thermodynamic limit, irrespective of their energy. This intuition,
however, must be flawed as unitary time evolution of a closed quantum system cannot
erase information given that time evolution is linear and chaotic dynamics are absent [123].
The resolution to this paradox is that the memory is not destroyed, but hidden non-
locally. The entanglement spreading over time distributes the information and makes it
inaccessible when measuring local properties of the system. This process of "information
loss" is called decoherence [2]. In quantum thermodynamics a closed quantum system can
reach thermal equilibrium under its own unitary dynamics because the whole system can
act as a heat bath for a small subsystem. A closed quantum system is fully decoupled from
its environment, in particular there is no energy exchange with a quantum heat bath. In
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1. Thermalization and integrability in quantum systems

nature and any realistic experiment though, there is always some finite coupling between
a system and its environment with a strength Γb. However, as long as the inverse of this
coupling is much larger than characteristic timescales of the system (τsys � 1/Γb), it can
be assumed to be closed. Only on longer times it will reach thermal equilibrium due to
coupling to a bath.

The classical definition of ergodicity requires that all available microstates of a system
allowed by global conservation laws are occupied with equal probability over a long
period of time [124]. A direct adaption of this notion to the quantum world, however,
is not straightforward. Consider a generic non-equilibrium quantum state |ψ(0)〉 =

∑α cα |α〉 expanded in the basis of eigenstates |α〉 that evolves under unitary time evolution
governed by a Hamiltonian H as

|ψ(t)〉 = e−iHt/h̄ |ψ(0)〉 = ∑
α

cαe−iEαt/h̄ |α〉 . (1.1)

Every coefficient acquires a phase determined by the eigenstate energy Eα, but the proba-
bility to find the system in a certain eigenstate is given by pα = | 〈α|ψ(t)〉 |2 = |cα|2 and is
therefore time-independent and only depends on the choice of initial conditions. This is
in contradiction to the classical definition where the whole phase space is explored and
therefore quantum ergodicity must have a different origin.

One way to resolve this paradox is to consider the infinite-time average of a physical
observable Ô [16] given by

〈Ô〉∞ = lim
t→∞

1
t

� t

0
dt′
〈
ψ(t′)

∣∣ Ô ∣∣ψ(t′)〉 = ∑
α

pα 〈α| Ô |α〉 , (1.2)

assuming that there are no degeneracies in the Hamiltonian. As can be directly seen, it
depends on the occupation probabilities pα and the respective expectation value of the
observable. Off-diagonal elements of 〈Ô〉∞ average out because they oscillate at different
frequencies. Now, if 〈Ô〉∞ displays a thermal quantity, this implies that the expectation
values of every individual eigenstate agree with the microcanonical ensemble that only
depends on the energy E: 〈α| Ô |α〉 = 〈Ô〉mc(E). This defines the main statement of the
Eigenstate Thermalization Hypothesis (ETH) [3, 4], which relates the thermal behavior
of a quantum system to the expectation value of individual eigenstates. Equally put,
this further implies that systems obeying the ETH have thermal observables. Quantum
thermalization happens on the level of individual eigenstates which are thermal by them-
selves. Starting from a certain initial state, thermalization removes coherences that are
initially present and reveals the thermal nature of the system. Another consequence is a
volume-law scaling of the entanglement entropy of the system that is defined as the von
Neumann entropy S = − tr(ρA ln(ρA)) of subsystem A. For a strictly thermal and thus
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1.2. Integrable systems

maximally entangled state ρA ' dim(A)−11 the entanglement entropy indeed becomes
S = log(dim(A)) ∝ vol(A).

As the name already suggests, the ETH is a hypothesis and no formal proof exists. Though,
all known thermalizing systems obey the ETH as proven by numerical investigations [5],
such that it is suggestive that this assumption can explain the generic process of thermal-
ization of isolated quantum systems. Whether ETH is a necessary condition for a given
system to thermalize is still an open question. On the other hand, systems that explicitly
violate the ETH such as many-body localization (see chapter 2) have attracted considerable
interest and some classes of such systems are covered in this thesis.

1.2. Integrable systems

One example of systems violating the ETH are integrable quantum systems. They possess
an extensive number of conserved quantities that commute with the Hamiltonian and
restrict the system dynamics providing a mechanism to elude thermalization. Another
definition of integrability is that the system can be solved with the Bethe ansatz [6].
Characteristic properties of interacting systems can encompass long-lasting oscillations
or relaxation to an equilibrium state described by a generalized Gibbs ensemble where
at least some observables exhibit a non-thermal equilibrium state. Though, this may in
general be hard to distinguish from a thermal system such that experimentally one is
rather interested in the former case as an indicator of integrability.

There are are many models in condensed matter physics that are integrable, the most
prominent ones being all non-interacting systems, but also the Lieb-Liniger model [8],
the XXZ model and the Heisenberg spin chain [9], all in one dimension. Further, the
one-dimensional Fermi-Hubbard model is integrable for all interaction strengths [125]. Its
integrability and connection to non-equilibrium transport properties was studied at our
experiment and published in [126]. The Fermi-Hubbard model is also integrable in the
limit of infinite tilt (see chapter 9), where it is known that non-thermal properties emerge.
However, integrability is in general a fine-tuned effect and even small perturbations like
an external potential or weak long-range interactions break the integrability and restore
thermalization.

Integrability as a mechanism to avoid thermalization and thus violate the ETH can also
occur in a different context. In the following chapters we will explore the role of in-
tegrability emerging in many-body localized systems that are an established class of
ergodicity-breaking ensembles and usually insensitive to small perturbations.
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2. The Anderson insulator and many-body
localization

In this chapter the most important properties of the many-body localized phase are
only reviewed briefly to an extent that is necessary for the project in part III. They are
mainly described in the previous doctoral theses at this experiment [120, 121]. In short,
MBL denotes the persistence of Anderson localization in the presence of interactions.
Unlike generic systems, a many-body localized ensemble does not thermalize under
unitary dynamics which means that it cannot serve as its own heat bath. This violates the
eigenstate thermalization hypothesis (ETH) [3, 4] and therefore attracted a lot of theoretical
and experimental interest (see reviews [15, 17, 127] and references therein).

2.1. Single-particle localization in random and quasi-periodic
potentials

2.1.1. Anderson localization in real-random disorder

A spatially localized particle in a homogeneous lattice potential is a superposition of Bloch
waves. Its wavefront traveling with the fastest velocity allowed by the dispersion relation
consequently spreads ballistically with time. This is in contrast to a localized system. The
discovery of localization dates back to the famous work of Phil W. Anderson in 1958 [11],
who predicted the absence of diffusion in certain random lattices.

For the special case of spinful fermions (spin-1/2) with two spin components σ in a
one-dimensional lattice the Hamiltonian reads

ĤA = −J ∑
i,σ
(ĉ†

i+1,σ ĉi,σ + h.c.) + ∆ ∑
i,σ

Vin̂i,σ, (2.1)

where the first term describes the hopping between neighboring lattice sites with ampli-
tude J. The operators ĉi (ĉ†

i ) are the fermionic annihilation (creation) operators destroying
(creating) a particle with spin σ ∈ {↑, ↓} on lattice site i. The second term represents the
disorder part where ∆ denotes the amplitude and Vi ∈ [−1, 1] is the on-site disorder value,
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2. The Anderson insulator and many-body localization

typically randomly chosen from a box-shaped distribution. According to Bloch’s theorem,
the eigenstates of particles in a regular lattice are given by Bloch waves, that represent
a plane wave modulated by a periodic function φ(x) with the same periodicity as the
lattice. The wavefunction can be written as ψ(x) ∝ e−ikxφ(x) and is fully delocalized in
real space. Conversely, in the presence of disorder it can be shown that the wavefunctions
become exponentially localized as a consequence of quantum mechanical interference. The
parts of the wavefunction reflected from the potential wells interfere constructively, while
wavepackets transmitted in forward direction interfere destructively. The eigenstates of
the Anderson model in Eq. (2.1) are exponentially localized for any finite value of the
disorder ∆ > 0 and for all energies in one and two dimensions. Given that Anderson
localization is a wave phenomenon analogues were found in optics and acoustics [128].

The direct observation of localization in a physical experiment was difficult to achieve
because it requires a time-independent potential. This condition is not fulfilled in usual
atomic crystals due to thermal excitations and Coulomb interactions. This requires the
realization of artificial potentials with controlled disorder and was first observed experi-
mentally in two different kinds of systems. The first was realized with a Bose-Einstein
Condensate (BEC) expanding in a one-dimensional waveguide in the presence of a disor-
der potential created by laser speckles [26]. The second type of experiment demonstrated
the transverse localization of light in a two-dimensional photonic lattice with random
fluctuations [27]. Anderson localization can also be observed in three dimensions [129,
130], although the system possesses a localization transition at finite disorder that is further
energy-dependent (see sec. 3.1.1). Whether localization can also persist in an interacting
system remained an open question for many decades until theoretical works were able to
provide an answer to this question. We will discuss this in sec. 2.2.

2.1.2. Localization in quasiperiodic potentials

In 1980 Aubry and André [24] discovered that randomness is not a prerequisite to have
localization in one dimension. Instead, they introduced a quasiperiodic potential with
perfect correlation, but whose pattern never repeats itself in any finite system. This
characteristic is revealed when looking at the continuum Hamiltonian ("incommensurate
lattice model") in Eq. (2.2):

H = − h̄2

2m
d2

dx2 + Vp cos2(2kpx) + Vd cos2(2kdx + φ). (2.2)

Herein, Vp and Vd denote the strength of the primary and detuning potential respectively
and φ is the relative phase between them. Besides the kinetic part it contains two periodic

14



2.1. Single-particle localization in random and quasi-periodic potentials

potential terms with with a wavenumber ratio β = kd/kp. This quantity β will be referred
to as the incommensurability in the following. The pattern repeats itself if the wavenumber
ratio can be written as kd/kp = p/q with p, q ∈N, hence the wavelength ratio is rational.
It can be shown that the eigenstates of such a system are extended Bloch waves (modulated
plane waves) such that this is not relevant in the context of localization. On the other hand,
if β is irrational, it does feature localization. In an experimental setup with finite size this
conditions is always satisfied since the laser wavelength is an irrational quantity by itself.
Moreover, in finite systems it is considered a sufficient condition to have β > 1/L.

The continuum model in Eq. (2.2) is barely used in theory and is instead mapped to
lattice models in a tight-binding description, where the dynamics are restricted to the
lowest band. These systems are easier to simulate and established methods are available.
This mapping is performed in previous works [120, 131] and it ultimately results in the
celebrated Aubry-André model in Eq. (2.3)

ĤAA = −J ∑
i,σ
(ĉ†

i+1,σ ĉi,σ + h.c.) + ∆ ∑
i,σ

cos(2πβi + φ)n̂i,σ. (2.3)

It is the primarily employed model for localization in quasiperiodic systems both in
theory and experiment. Unlike the Anderson model which localizes the wavefunction al-
ready at infinitesimal disorder, the Aubry-André model has a localization transition
at ∆/J = 2. This follows from the self-duality at this point of the model between
real and momentum space [25]. Moreover, it is possible to give an analytic expres-
sion for the single-particle wavefunction as a function of the detuning strength. It is
given by |ψ(x)|2 ∝ exp(−|x− x0|/ζ), where x0 is the center position of the particle and
ζ = 1/ ln(∆/2J) is the localization length which diverges at the transition point. The
localization mechanism in the quasiperiodic case is different from the real-random case. In
the latter it is an interference phenomenon while in the quasiperiodic case the localization
emerges from the spectral properties of the Schrödinger equation [132]. The different
origins of localization are further highlighted in the actual non-interacting time evolution
under the Hamiltonians in Eqs. (2.1) and (2.3). Starting from a single particle localized
in the center of a homogeneous lattice we observe the characteristic ballistic expansion
with the average group velocity of vav =

√
2d/τ in Fig. 2.1a [133] with the tunneling time

τ = h̄/J. Upon the addition of disorder with amplitude ∆/J = 2.5, the particle in the
Anderson model is clearly confined to a small spatial region, an obvious hallmark for
localization (Fig. 2.1b). In the AA model the dynamics are very similar although confined
to a narrower spatial region. The analytical localization length of this model is indicated
by the dashed vertical lines (Fig. 2.1c). In both cases the expansion dynamics are shown
for a single realization of the disorder pattern or detuning phase. In order to properly
distinguish the different disorder types and the underlying localization mechanism, we
refer to the external potential in the Anderson model as disorder and in the AA case as
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Figure 2.1.: Expansion dynamics in a disordered lattice: Time evolution of the occupation density
of a single particle initialized in the center of the lattice. a The dynamics in a clean lattice reveals
the typical ballistic expansion. b Time evolution in the Anderson model in the presence of random
disorder. c At the same detuning strength the dynamics are more confined in the AA model.
The dashed lines indicate the analytical localization length. In the last two panels a disorder /
detuning strength of ∆/J = 2.5 was considered and the data is obtained for a single realization of
the disorder pattern or detuning phase φ. For a better visualization the maximum density shown
is 0.5 and the initial state is fully localized on a single lattice site with the initial density 1.

detuning.

One of the main reasons for the success of the AA model is the direct relevance in
experimental applications. The Hamiltonian in Eq. (2.2) can be implemented relatively
straightforwardly by superimposing two lattices with incommensurate wavelength ratio.
Exactly this approach was taken in the first demonstration of single-particle localization in
a quasiperiodic potential with a non-interacting Potassium BEC [28]. In a subsequent study
with a fermionic quantum gas the transition in the AA model was observed equally [29].
While the former experiment measured the cloud size of the expanding BEC as global
observable, the latter made use of a local observable. Fig. 2.2 shows the density imbalance
(see sec. 5.1) as a function of the detuning ∆/J together with exact diagonalization (ED)
simulations matching the experimental setup as closely as possible. The simulation of
the ideal model (Eq. 2.3) clearly shows the sharp localization transition at ∆/J = 2 while
the experimental data rather suggests a smooth crossover and good agreement is only
established for strong detuning. It can be confirmed convincingly that this crossover traces
back to the harmonic confinement which leads to a finite localization length even in the
absence of disorder/detuning. The confinement present in the experiment is determined
in an independent measurement and including the additional term 1

2 mω2(x− x0)2 with
trap frequency ω, atomic mass m and center position x0 in the simulations matches the
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Figure 2.2.: Localization in the AA model: Steady-state imbalance as a function of the detuning
strength ∆/J averaged over three points in time between 13 and 20τ and four different phases φ.
The blue points represent the experimental data with the error bars showing the standard error
of the mean. Numerical results are obtained from ED on a system as large as the experimental
one (≈ 200 lattice sites). While the gray line reflects the ideal system, the red solid line taking into
account the external harmonic potential matches the data very well. Figure taken from [29] with
permission.

experimental data impeccably. Moreover, it proves that the AA model is very reliably
realized in our system, which serves as an important reference for the project reported in
part III.

2.2. Many-body localization

The term many-body localization defines the persistence of localization in an interacting
many-body system and can be understood as a generalization of Anderson localization.
This phase of matter eludes thermalization because the disorder prevents an efficient
energy exchange between different degrees of freedom and the quantum system can no
longer serve as a heat bath for itself. Hence, MBL represents a violation of the eigenstate
thermalization hypothesis. The existence of an MBL phase is not at all a straightforward
conclusion from the localization in single-particle systems because one could imagine that
interactions open up new transport channels. For instance, a particle may expand via an
avalanche of excitations from a high-energy initial state to a low energy final state and
restore transport via this channel [134]. An important step was the seminal work by Basko
et al. [12] that predicted localization below a critical temperature based on a perturbative
analysis and they were thus the first to establish a non-thermal phase in an interacting
quantum system. This view was later corrected in [13] where the authors stated that MBL
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2. The Anderson insulator and many-body localization

can even exist at infinite temperature in a disordered lattice model with spinless fermions
and nearest-neighbor interactions. Similar works on the Heisenberg spin chain confirmed
this result [14, 135]. Unlike integrable systems the MBL dynamical phase of matter is
insensitive to small changes in the microscopic Hamiltonian. Central properties of the
MBL phase are nicely reviewed [15–17] as well as in previous theses conducted at this
experiment [120, 121] and in the following we will only highlight the aspects that are
particularly relevant for the project reported in part III.

2.2.1. Phenomenology of MBL

Throughout the theoretical and numerical studies of many-body localization a couple of
spectral and dynamical observables have been employed to characterize the new emergent
phase of matter and investigate the transition from an ergodic phase to MBL. A few of
those observables are briefly reviewed here without giving a complete list of available
diagnostics.

Eigenstate entanglement entropy

The entanglement entropy scaling of eigenstates can distinguish between a thermal and
an MBL system [136]. The von Neumann entropy S = −Tr(ρ ln(ρ)) for a density operator
ρ scales with the dimension for a thermal system and implies that eigenstate entangle-
ment can span the entire system, it is therefore referred to as volume-law scaling and
the corresponding states are maximally entangled. Conversely, many-body localized
systems exhibit an area-law scaling that is constant in one dimension. The low eigenstate
entanglement of MBL states is explained by the toy model introduced in [137]. It considers
two subsystems A and B that are connected along the boundary ∂A. Without interactions
the eigenstates of the system are simple product states of both subsystems with zero
entropy. Interactions coupling both subsystems act locally at the boundary within the
localization length and longer-range couplings are exponentially suppressed in agreement
with the notion of localization. Thus, spins are only entangled between A and B close to
the boundary, yielding an area-law scaling of the entanglement entropy S ∝ vol(∂A). The
area-law scaling was confirmed numerically [63, 138, 139] and also served as an observable
across the transition from a thermal to an MBL system.

Level spacing statistics

Spectral statistics of adjacent energy levels of a many-body Hamiltonian are capable of
capturing the transition from a diffusive to an insulating phase. To understand this be-
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2.2. Many-body localization

havior we consider the gap between adjacent energy levels δn = En+1 − En. Dynamical
timescales tdyn of a system, in particular on the context of thermalization described by
Eq. (1.2), are governed by the transition between neighboring states and can be approxi-
mated as tdyn ∝ 1/δn. The contribution of small δn leads to long characteristic timescales
which are suppressed in a thermal system. Hence, they exhibit level repulsion and obey a
Wigner-Dyson distribution with the probability density vanishing as p(δn = 0) = 0. This
was first confirmed in [13]. Contrarily, in a many-body insulating phase such as MBL
the eigenstates are localized in the many-body Fock basis. States nearby in energy do
not interact and instead show a Poissonian distribution with p(δn = 0) = 1. The phase
transition can then be captured by a change of the energy level distribution. In order
to obtain a dimensionless parameter in analogy to local order parameters one typically
considers the gaps between adjacent energy levels and defines the ratio

rn = min{δn, δn−1}/ max{δn, δn−1}. (2.4)

As long as there is no mobility edge, this quantity is typically averaged across large parts
of the spectrum to obtain the mean spacing parameter r̄. In the case of a Poissonian
distribution, i.e. for an integrable or localized many-body phase, the mean value r̄P '
0.386 while for the Wigner-Dyson distribution for a thermal system the mean value was
determined numerically to be r̄WD ' 0.530. It should be noted that for a finite-size system
the statistics change smoothly across the transition such that a proper finite-size scaling
analysis is required to obtain conclusive results. Note that the level statistics are a more
versatile tool and can be applied to many classes of many-body systems. While generic
chaotic systems obey Wigner-Dyson statistics, integrable and other non-ergodic systems
exhibit Poisson statistics, so this tool is very common for other types of ergodicity breaking
as well.

Dynamical evolution

While the diagnostics above are rather the result of numerical analyses, one can further
gain an analytical understanding of the physics in the MBL phase. It is now believed to be
well understood based on a phenomenological description via local integrals of motion.
This notion originates from integrable systems, which inherit their non-ergodicity from an
extensive number of conserved quantities. Given the low entanglement in MBL systems,
the starting point are product states. Together with quasilocal unitary transformations one
obtains local integrals of motion τz

i that are exponentially localized around their carrier
as opposed to the situation in a thermal system. The localization length of the operators
can be interpreted as the many-body localization length. These local operators form a
complete set of local integrals of motion and are often referred to as LIOMs or l-bits [23,
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2. The Anderson insulator and many-body localization

137]. The MBL Hamiltonian can be expressed in terms of LIOMs and becomes

H = ∑
i

h̃iτ
z
i + ∑

i,j
Jijτ

z
i τz

j + ∑
i,j,k

Jijkτz
i τz

j τz
k + · · · (2.5)

The couplings between remote operators, also called non-local interactions, decay expo-
nentially with distance according to Jij ∝ J0 exp(−|i− j|/λ) with a characteristic length
scale λ. Given that this effective MBL Hamiltonian commutes with an exponentially large
number of integrals of motion τz

i , this description proves an emergent integrability in the
MBL phase in close analogy to common integrable systems. It further directly explains
the Poissonian level statistics as well as the absence of particle transport.

In order for two distant spins to become entangled with each other, the time grows ex-
ponentially with the distance and thus correlations propagate logarithmically in time.
While the logarithmic entanglement growth mentioned above was first discovered nu-
merically [21], the picture of local integrals of motion can readily explain this behavior.
Indeed, starting from a system in a product state, the entanglement entropy in response to
a quantum quench evolves according to [21, 22, 135]

S(t) ∝ ξ ln(J0t/h̄) (2.6)

where ξ can be interpreted as the many-body localization length. The characteristic time
evolution of the entanglement in an MBL system comprises three stages. In the beginning
the entropy quickly rises to the value of the single-particle system on the order of few
tunneling times. Subsequently, the entropy grows logarithmically in time with the slope
depending on the localization length, as predicted by Eq. (2.6). This logarithmic evolution
is one of the central defining features of the MBL phase [21]. At exponentially long
times the entropy saturates to a volume-law steady-state value that is subthermal and
thus smaller than the Page value [140], which would be attained in a thermal system.
Conversely, entanglement in a thermal system spreads ballistically (S(t) ∝ t) [135, 141].
An MBL system, despite the absence of particle transport and therefore being a perfect
insulator with vanishing conductivity, equilibrates. Though, the "equilibrium state"
is a highly non-thermal state with a certain memory of the initial conditions, which
distinguishes it fundamentally from a thermal phase. It is worth mentioning that a recent
study [142] observed that while the entanglement entropy grows logarithmically, the
number entropy, expected to obey an area-law, actually grows as SN ∝ ln(ln(t)) in a
one-dimensional system. This would indicate ongoing subdiffusive dynamics that would
ultimately thermalize the system. Though, the authors cannot exclude that the slow
increase ceases at long times such that the established MBL phenomenology would not be
challenged.
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2.2. Many-body localization

2.2.2. Previous theory and experiments

Theoretical tools

As complementary works to the perturbative studies introduced above, extensive nu-
merical simulations have been carried out to further investigate the phase of many-body
localization and the transition to the thermal phase (see sec. 2.3). The primary challenge
when simulating an interacting quantum many-body system is the size of the Hilbert space
that grows exponentially with the system size. This mostly affects exact diagonalization
(ED) simulations, which are typically limited to about 20 lattice sites due to memory
limitations on a classical computer. Larger systems are accessible to time-dependent
density-matrix renormalization group (tDMRG) approaches [143–145]. Though, these are
only applicable in the strongly localized regime, otherwise the growth of entanglement
entropy limits the accessible time due to an increasing cumulative error rate. These limita-
tions highlight the need for experiments, which typically provide larger system sizes and
thereby circumvent the problems of ED. Given these limitations, theory works typically
reside to spin models instead of Hubbard models. They qualitatively exhibit the same
physics with the main advantage that the local Hilbert space is smaller such that larger
systems with weaker finite-size limitations can be explored. In a spin chain every lattice
site is occupied by a spin that either points up or down. Conversely, a spin-1/2 Hubbard
model has four allowed configurations per site (spin up, spin down, doublon or hole).
In the context of many-body localization the primarily employed model is the XXZ spin
chain

ĤXXZ =
J
2 ∑

i
(Sx

i Sx
i+1 + Sy

i Sy
i+1) + V ∑

i
Sz

i Sz
i+1 + ∑

i
hiSz

i . (2.7)

The first term induces the swapping of neighboring spins with rate J and the second
term denotes the interaction adding energy V if adjacent spins have the same direction.
The last term represents an additional field along the z-direction realizing e.g. a random
or quasiperiodic potential. This model can be mapped to a one-dimensional system of
spinless fermions with nearest-neighbor interactions under the Jordan-Wigner transforma-
tion:

Ĥs f = −J ∑
i
(ĉ†

i ĉi+1 + h.c.) + V ∑
i

n̂in̂i+1 + ∑
i

hin̂i. (2.8)

This readily explains why most publications focus on these two models since they are
related by a transformation. The main differences between the spin and Hubbard models is
the type of interactions and the fact that the spin degree of freedom is not respected. They
therefore describe qualitatively the same physical processes, but quantitative agreement
is not necessarily satisfied. For example the precise value of the critical point of the
thermal-MBL transition might be slightly model-dependent. In the projects reported in
this thesis the simulations reproducing our experimental results are performed for the full
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2. The Anderson insulator and many-body localization

Hubbard model (Eq. 4.2) exclusively and we employ both techniques, ED and tDMRG (or
time-evolving block decimation, TEBD).

Experiment

After the early theoretical works on many-body localization the issue soon took on ex-
perimental significance with the emergence of quantum simulators that provide a high
level of control and tunability while satisfying the necessity of a closed quantum system
over sufficiently long times. These experimental platforms currently encompass cold atom
experiments, ion traps and superconducting qubits although the future may bring about
further types of quantum systems. This section is supposed to give a short overview of
the current status of experiments on MBL and closely related topics.

The first experiments focusing on MBL were quantum simulators based on ultracold atoms
as they provide good isolation from the environment on at least intermediate timescales.
They typically prepare out-of equilibrium initial states with high energy density in order
to examine the MBL phase and the transition which distinguishes it fundamentally from
known quantum phase transitions at zero temperature. Schreiber at al. [29] simulated the
Aubry-André model (Eq. 2.3) with fermions in two spin states realizing the Hamiltonian

Ĥexp = ĤAA + U ∑
i

n̂i,↑n̂i,↓ (2.9)

with on-site interactions of strength U. From recorded time traces of the imbalance starting
from a charge-density wave initial state they inferred dynamical properties of the system
as a function if the Hubbard parameters ∆ and U. In the absence of detuning (∆ = 0) the
imbalance shows a fast decrease and settles to zero. This is in agreement with a thermal
system since an equal occupation of even and odd lattice sites is expected. Adversely,
for stronger detuning above the critical detuning strength a finite steady-state value is
observed, indicating certain memory of the initial state and thus the presence of MBL in
a system with quasiperiodic detuning. This statement was justified for a large range of
interaction strength as well as multiple energy densities of the initial state.

The development of quantum gas microscopes with single-site resolution made new
observables such as entanglement entropy and correlations experimentally accessible.
This was the direction taken by [30, 31] who basically confirmed the expected behavior of
the entanglement entropy in the thermal and many-body localized phase, including the
logarithmic growth in time, area-law scaling of the number entropy and the non-thermal
volume-law saturation value which further distinguishes it from a thermal system. The
accessibility of on-site densities further enables the investigation of correlations. Such an
experiment was reported in [49], where the authors studied the many-body entanglement

22



2.2. Many-body localization

in the quantum critical regime and across the MBL transition and revealed the structure of
sparse resonances across the transition in the Aubry-André model.

While MBL is well-established in one dimension, for both random and quasiperiodic
disorder, the situation is less clear in higher dimensions. This issue is a topic of ongoing
theoretical debate without an evident conclusion. While earlier works [50, 146, 147] argued
that no MBL exists in higher dimensions due to to an avalanche effect of thermal bubbles
caused by regions of weak disorder, more recent works with thorough numerical methods
conclude that they find signatures of MBL in two [51] and even three dimensions [52] for
specific models without being able to make more general statements though. These recent
findings are supported by experiments studying the fate of MBL in a two-dimensional
system, either in a 2D quasiperiodic lattice setup [53] or in a quantum gas microscope with
random disorder created by a speckle pattern [54, 62]. Both experiments find clear indica-
tions of MBL in two dimensions although these results are limited to a finite observation
time.

Another relevant platform are chains of ions trapped in a one-dimensional Paul trap,
recently employed to realize the disordered transverse field Ising chain

Ĥ = ∑
i<j

Ji,jσ
x
i σx

j +
B
2 ∑

i
σz

i +
1
2 ∑

i
Diσ

z
i (2.10)

with the Pauli matrices σi acting on spin i, long-range couplings Ji,j, homogeneous mag-
netic field B and random on-site disorder Di [32]. Monitoring the time evolution of the
magnetization 〈σz

i 〉 the authors identified the onset of localization for sufficiently strong
disorder, a hallmark of MBL. They further confirm the logarithmic entanglement entropy
growth as well as Poissonian level statistics directly. This platform is particularly interest-
ing because it integrates tunable long-range interactions via the Coulomb force as opposed
to on-site interactions in cold atom experiments. Whether MBL can persist for non-local
interactions is still an open question [148] and these experiment can potentially shed light
on this issue.

Finally, superconducting qubits are another promising platform, both for quantum com-
putation (see e.g. Google’s publication [149] on a quantum computer with 53 qubits
demonstrating quantum supremacy) as well as for the simulation of quantum many-body
systems with programmable potentials. For instance, in [33, 150] the authors observe MBL
and an energy-dependent transition point (i.e. a many-body mobility edge, see sec. 3.1.2)
and in a recent work [151] the non-local interactions of the LIOM picture (Eq. 2.5) were
even addressed directly. Though, these platforms are still limited to small system sizes
and relatively short evolution times such that the results are not fully conclusive.
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2. The Anderson insulator and many-body localization

2.3. The many-body localization transition

2.3.1. General

Classical phase transitions are characterized by a discontinuity in the first or higher
derivative of a thermodynamic function of the physical system. Phase transitions are
described by Landau’s theory [152] that further predict spontaneous symmetry breaking
at the critical point. Prominent examples for classical phase transitions are the transition
from a ferro- to a paramagnet at the Curie temperature or the melting of ice. Conversely,
quantum phase transitions [153] only happen at zero temperature such that transitions
cannot be driven by thermal fluctuations. Instead, the absolute ground state as a function
of a non-thermal parameter can be influenced giving rise to a transition due to quantum
fluctuations originating from Heisenberg’s uncertainty principle. A typical example
appears in the Bose-Hubbard model. The ground state phase diagram exhibits a superfluid
and a Mott-insulating phase and the transition is driven by the ratio between the kinetic
and the interaction energy.

The transition between the thermal and many-body localized phase, however, does not fit
into the framework of quantum phase transitions within quantum statistical mechanics
as described above. First, the MBL transition is a dynamical transition that has no man-
ifestation in static thermodynamic quantities. Moreover, it is typically referred to as an
eigenstate transition because the entanglement entropy scaling changes from volume-law
to area-law when crossing the MBL transition. Second, the MBL transition is not restricted
to the absolute ground state, corresponding to a zero temperature state, of the system. It
was found that all states throughout the spectrum undergo the transition independent of
their energy. These findings are reviewed in [45–47] and references therein. In the follow-
ing, we will summarize the most important dynamical properties of the MBL transition
and highlight their relevance for the work presented in part III of this thesis.

Most papers studying dynamics at the MBL transition consider the Heisenberg or XXZ
spin chain with random disorder [14, 41, 42, 139, 154]. The main characteristic of this
quantum critical phase are slow dynamics in terms of a sub-ballistic entanglement growth
S(t) ∝ t1/z with z ≥ 1 and a power-law decay of the spin-density imbalance I(t) ∝ t−ξ .
These exponents 1/z and ξ depend on the disorder strength and vanish upon approaching
the transition point from the thermal side. This scaling also applies to other observables
such as the optical density or the return probability as studied in [42] and consequently this
regime is referred to as subdiffusive as opposed to the usual diffusive behavior in thermal
systems. This characteristic was explained by a sparse backbone of resonances [139] that
provides long-range entanglement sufficient to thermalize the system on the thermal side
of the transition. A physical picture of the transition was developed in the framework
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2.3. The many-body localization transition

renormalization group (RG) approaches [43, 44]. It is based on the occurrence of rare
regions, local subsystems that are in a different phase than the surrounding system. These
rare regions serve as a bottleneck for transport and in particular close to the MBL transition
they can impede thermalization on long timescales. It can be shown that the subdiffusive
scaling given above can be explained by this Griffiths picture [120, 155] where the balance
between finding such a rare region and the induced transport is considered. RG simu-
lations confirm the results previously obtained with exact diagonalization. Conversely,
it is natural to consider the occurrence of rare thermal regions in the MBL phase [156],
but at this point relaxation within the MBL phase is not well understood. Whether this
mechanism equally applies to quasiperiodic systems is still under debate. Given the
correlation and periodicity of the detuning potential, rare regions that are induced by
small areas with weak or large disorder, cannot exist. Instead, randomness in the initial
state might lead to similar dynamics although such regions would ultimately be removed
in the thermalization process. See [120] for a more detailed discussion.

2.3.2. Previous experimental results

In a previous project at our experiment the authors studied the dynamics across the MBL
transition in a one-dimensional Fermi-Hubbard model with quasiperiodic detuning [48].
From imbalance time traces recorded for multiple detuning strengths they analyzed the
decay dynamics and compared them to numerical results obtained with ED on 20 lattice
sites. Fig. 2.3a shows three exemplary traces for different detuning strengths on a doubly
logarithmic scale, exhibiting a certain imbalance decay during time evolution. This decay
becomes weaker upon reaching stronger detunings. The experimental points are in good
agreement with the numerics and can seemingly be described by a power-law as indicated
by the yellow lines. In order to get more quantitative insights into the decay dynamics,
the traces are fitted with a power-law I(t) ∝ t−α and the resulting exponents are plotted
in Fig. 2.3b as a function of the detuning strength. They continuously decrease upon
approaching the transition point until it is supposed to vanish in the MBL phase. The
finite plateau α0 can be attributed to open system effects (see sec. 2.4) and our system is
assumed to be many-body localized when the relaxation exponent reaches its plateau
value. This method can further be used to extract an experimental lower bound for the
MBL transition point, in this case it is located at ∆c = (3.8 ± 0.5)J. We will use this
knowledge about the AA model for the experiment on the many-body intermediate phase
reported in chapter 7.
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Figure 2.3.: Experimental results on the MBL transition in the Aubry-André model: All results
are obtained for the interaction strength U/J = 4 and numerical simulations were performed on a
system with 20 lattice sites. a Imbalance time traces taken at detuning strengths below the MBL
transition. Solid lines are ED simulations and yellow lines are power-law fits between 8 and 40
tunneling times. b Dynamical relaxation exponents as a function of the detuning strength ∆/J
starting from the single-particle localization transition at ∆/J = 2. The experimental data points
settle to a positive plateau value α0 due to open system effects and the resulting finite lifetime
(see sec. 2.4). The gray shaded area represents the determined regime of slow dynamics. Purple
squares indicate numerical results including the uncertainty estimate from a finite-size analysis.
Figure adapted from [48] with permission.

2.4. Open system effects

The considerations in the previous sections are only precisely valid in a closed quantum
system that is perfectly isolated from its environment for infinite times. In an experiment,
although tremendous progress has been made in this respect which finally enabled the
studies of MBL, the isolation can only be established over finite times before bath coupling
will finally set in. The fate of MBL in a quantum system coupled to an external bath
soon attracted considerable theoretical interest [55–59]. The common result of these
studies reads that the coherent nature of the localized phase gets ultimately destroyed,
restoring quantum thermalization. Hence, in order to interpret realistic experimental
data it is essential to qualitatively understand the impact of such open system effects. A
quantitative analysis of this question was studied experimentally on our system for two
different cases of couplings to the environment. Since these mechanisms also affect the
conclusions drawn for the project in chapter 7, the findings are briefly reviewed at this
point.

The dominant decay mechanism present in our experiment is the residual coupling be-
tween neighboring one-dimensional systems along the orthogonal directions in our optical
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2.4. Open system effects

lattice setup, that was studied in detail in [60] for the case of quasiperiodic detuning. On
short timescales the dynamics are restricted to the one-dimensional tubes along the pri-
mary lattice axis, but on longer timescales the particles can also hop along the orthogonal
axes. The detuning pattern is identical in all tubes such that inter-tube tunneling is res-
onant. In the non-interacting case the system is exposed to external noise and photon
scattering (see below), limiting the lifetime of atom numbers to a few thousand tunneling
times. The imbalance remains virtually unchanged because the system is separable and
both directions can be decoupled. In the presence of interactions, however, this separabil-
ity is broken and dynamics along the transverse axis affect the localization properties of
the system. Therefore, coupled tubes serve as an efficient channel to thermalize the entire
ensemble because they act as a bath for each other.

The second important mechanism is the scattering of off-resonant photons from the lattice
and dipole trap beams. In order to perform a quantitative investigation of the role of
photon scattering, the authors of [61] implemented a highly controllable measure for
the scattering rate. This represents an effective implementation of dephasing due to
coupling to an external bath. Concretely, photon scattering results in two processes.
First, the scattering event effectively measures the position of an atom within the photon
wavelength λ and therefore projects the wavefunction onto the respective lattice site
with a new localization length λ/2π. Not only does this destroy the coherence of the
many-body wavefuntion resulting in an incoherent mixture of Wannier states, it can also
lead to excitations into higher bands. Due to a larger tunneling rate, atoms localized in
the ground band are extended in higher-lying bands. In addition, these higher bands are
typically not trapped by the external harmonic confinement and thus lead to particle loss.
Moreover, in an interacting system these excitations can lead to delocalization mechanisms
due to interactions between ground band and excited band atoms. Theory and experiment
identify that the imbalance evolution of an open quantum system can be modeled by a
stretched exponential decay I ∝ e−(Γt)β

with a coupling constant Γ that depends on the
photon scattering rate and a stretching exponent β [55, 57, 61].

Both effects discussed here are unavoidable in the experiment and therefore challenge
some conclusions. In particular, these decay mechanisms yield a stretched exponential
imbalance decay even in the many-body localized phase. The resulting finite imbalance
lifetime, is recorded as a positive decay constant such that we do not expect a vanishing
exponent (see sec. 2.3) in the MBL phase. Further, across the MBL phase transition the
coupling effects accelerate the recorded relaxation dynamics masking potential charac-
teristics in the subdiffusive phase. An independent study of the discussed effects is not
simple since inter-tube coupling and photon scattering are strongly correlated. One may
potentially reduce the coupling between the tubes by deeper orthogonal lattices, but this
comes along with a larger photon scattering rate. Thus, such open system effects represent
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2. The Anderson insulator and many-body localization

two of the main limitations of our quantum gas experiment.

2.5. MBL in systems without disorder

The preceding discussion about many-body localization and ergodicity breaking applies
exclusively to systems with quenched disorder (or detuning) that explicitly break transla-
tional invariance. Hence, soon the question was considered whether robust non-ergodic
phases can also exist in models without quenched disorder. In general, translational
invariance in a finite system requires that any inhomogeneity with finite wavelength
reminiscent of the initial state must eventually decay to zero. This is apparently in contra-
diction to disordered MBL systems where non-equilibrium patterns survive for infinite
times. However, the characteristic decay time may potentially diverge with system size,
leading to an intuitive definition of translation invariant many-body localization [69]. In a
two-leg spin system composed of light and heavy spins the authors find an exponentially
long decay time of an initial finite-wavelength spin modulation before ultimately diffusion
sets in. The observed exponentially long sub-diffusive dynamical regime is called quasi
many-body localization that is considered an intermediate regime between full MBL and
diffusion. While this phase shares some common features with disordered MBL such
as logarithmic entanglement growth on transient timescales, the authors cannot provide
evidence that the lifetime of quasi-MBL diverges in the thermodynamic limit. Similar
observations, in particular the exponentially diverging relaxation timescale, were reported
in a polar Bose-Hubbard model [72].

Other works on comparable setups study localization in disorder-free systems driven by
interactions and dynamical constraints due to frustration [70, 71, 73, 75]. These constraints
can trap the evolution into a metastable state under certain conditions. This behavior
was recently observed in an experimental study of the mass-imbalanced Fermi-Hubbard
model [157] where the authors found the onset of a metastable regime for large interac-
tions and mass imbalances. These results can also be interpreted in terms of quantum
glasses [74] that exhibit self-induced localization due to dynamical constraints. Though,
the respective phase does not possess an extensive set of conserved quantities which
fundamentally distinguishes it from true many-body localization.

A different approach to search for non-ergodicity in systems without quenched disorder
is pursued in recent studies that investigated the localization in tilted lattice models.
Since the seminal work by Wannier [158] it is known that a single particle in a linear
external potential exhibits Wannier-Stark localization resulting in wavefunctions with an
exponential envelope (see sec. 8.1). Thus, the non-interacting conditions are comparable to
disordered settings. However, in the interacting case the situation is less obvious since the

28



2.5. MBL in systems without disorder

potential is regular and the resulting many-body spectrum possesses many degeneracies
which may prevent the emergence of stable localization. For this reason two works
independently considered a modification of the purely linear potential, either a parabolic
term modeling a harmonic confinement [89, 95] or a weak random disorder [96]. In the
cited literature the authors investigated a model of spinless fermions with the additional
type of external potential. The models are represented by the following Hamiltonians

Ĥ1 =
J
2

L−2

∑
i=0

(
ĉ†

i ĉi+1 + h.c.
)
+

L−1

∑
i=0

Wi

(
n̂i −

1
2

)
+ U
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∑
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)(
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1
2

)
, (2.11)

Ĥ2 = ∑
i

[
J
2

(
ĉ†

i ĉi+1 + h.c.
)
+ i · ∆n̂i + hin̂i + Un̂in̂i+1

]
. (2.12)

The external potential in Ĥ1 comprises the linear and parabolic part according to Wi =

−γi + αi2/L2 with system size L and hi in Ĥ2 denotes the random on-site disorder. Both
works independently find characteristic MBL features in the respective system. This
includes Poissonian level statistics, logarithmic entanglement entropy growth and a stable
density imbalance plateau over long times. For historic reasons this newly discovered
phase is dubbed Stark-MBL in reference to the Stark effect in an external electric field.
Though, the nature of the observed non-ergodicity in the tilted models is still under
active debate and the relation to traditional disorder-induced MBL is under investigation.
Moreover, the behavior of the clean system without harmonic confinement or disorder
raises further questions. The inconclusive scaling of level statistics or entanglement
entropy is no direct evidence of ergodicity and recent developments in this field suggest
that even such a system exhibits non-ergodic properties on transient timescales. The
common explanation is the newly found mechanism of Hilbert space fragmentation. We
revisit this field in more detail in sec. 3.2 as well as its relation to Stark MBL in secs. 3.2.3
and 9.3.1.
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3. Weak ergodicity breaking: From mobility
edges to Hilbert space fragmentation

As outlined in the preceding chapters, integrability and many-body localization are
established ways to avoid ultimate thermalization of a closed quantum system. Though,
recent advances in the field of quantum many-body systems revealed more classes of
systems that cannot be allocated unequivocally to thermal or non-ergodic ensembles.
Instead, they exhibit non-ergodic properties that do not originate from the established
disorder-driven localization or evade thermalization on intermediate timescales due to
quasiconserved quantities. Further, there are systems where it is still unknown whether
they will ultimately thermalize, for example dynamically constrained systems as presented
in sec. 2.5. These studies are mainly limited by finite time and system size in the underlying
theory works. Fig. 3.1 summarizes a couple of currently known concepts and how they
can be classified with respect to thermal, integrable and many-body localized systems. The
classes covered in this thesis are highlighted in bold. In this context it is central to define
the notion of weak and strong ETH as introduced in the literature. The strong version of
the ETH is defined such that all eigenstates within the spectrum become thermal in the
thermodynamic limit. Most generic quantum systems satisfy this condition. Contrarily,
the weak version of the ETH allows for a finite number of non-thermal states throughout
the spectrum as long as their ratio vanishes in the thermodynamic limit. Consequently, we
consider it as weak ergodicity breaking when the strong version of ETH is violated and as
strong ergodicity breaking in case even the weak version of the Eigenstate Thermalization
Hypothesis no longer applies.

In the following we will discuss two of these intermediate phenomena, namely mobility
edges and Hilbert space fragmentation, in more detail as they will be central for the
experimental studies reported in parts III and IV. We thereby give a general review of the
fundamental concepts in this chapter and go into more specific details in the respective
part of this thesis.
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Figure 3.1.: Overview of theoretical concepts and phases: Besides thermalizing and non-ergodic
localized quantum many-body systems more concepts and phases have been discovered whose
behavior cannot be directly allocated to one of the preceding classes, but belong to the spectrum
between these extreme cases. Concepts at least partially covered in this thesis are highlighted in
bold.

3.1. Mobility edges

3.1.1. Single-particle mobility edge (SPME)

As stated previously, all eigenstates throughout the spectrum in the one-dimensional
Anderson and Aubry-André model localize at a common critical disorder strength in-
dependent of their energy. However, there exists a class of models, which feature a
coexistence of localized and extended eigenstates in different regions of the spectrum. The
energy separating these kinds of states is called a mobility edge. One of the most famous
models featuring a mobility edge is the three-dimensional Anderson model and this was
already predicted by Anderson himself in [11]. Its phases as well as the mobility edge
were even observed and characterized experimentally in [159] with a BEC near the ground
state in a speckle laser field. Controlled excitations from a periodic modulation of the
disorder pattern added energy to the system and lifted the BEC above the mobility edge
where the extended nature of the eigenstates was detected via expansion measurements.
A similar approach studied the expansion of an atomic cloud in the presence of a speckle
potential and recorded localized and diffusive components belonging to states below and
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3.1. Mobility edges

above the single-particle mobility edge [129, 130] without concrete energy resolution, but
clearly demonstrating the presence of localized and extended components at different
energies.

It should be noted that an intermediate phase with a mobility edge is expected in a generic
system with quasiperiodic disorder as well as higher-dimensional systems. In the case
of quasiperiodic detuning it is possible to construct one-dimensional systems with a
single-particle mobility edge [160–165] that are commonly summarized under the term
generalized Aubry-André model since they have a deterministic on-site potential, typically of
the general form given by

V̂ = 2∆ ∑
i

cos(2πqi + φ)

1− α cos(2πqi + φ)
n̂i, (3.1)

or
V̂ = ∆ ∑

i
cos(2παin + φ)n̂i with 0 < n < 1 and α ∈ R \Q. (3.2)

Note that both models reduce to the AA model, either for α = 0 or n = 1 and have a
mobility edge otherwise. Though, these models are beyond direct potential experimental
realizations. In [132] the authors then suggested a model with a shallow primary lattice
superimposed with the quasiperiodic detuning lattice. The term shallow implies that,
unlike in the AA model, the tight-binding description is not appropriate and terms of
higher orders such as next-nearest neighbor hoppings have to be taken into account.
This model can indeed be implemented in our experiment and is introduced in more
details in sec. 6.1. Single-particle mobility edges can also be observed in other systems
such as a synthetic momentum-space lattice with artificial gauge fields and engineered
disorder [166].

3.1.2. Many-body mobility edge (MBME)

Much like in the single-particle case, the many-body equivalent of a mobility edge defines
a critical energy separating localized and extended states in the many-body spectrum. In
the canonical ensemble description this corresponds to a critical temperature of the system
separating an insulating from a conducting phase. This concept was already introduced
in [12] and implies that states above the critical energy are thermal and obey ETH while
states below the mobility edge can be written in the LIOM framework and are close to
product states. The presence of a many-body mobility edge underlines that the MBL
transition is a dynamical phase transition with the eigenstate properties changing across
the critical point as a function of the control parameter. In the case of disordered systems,
this includes both the disorder strength as well as the energy.
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Figure 3.2.: Many-body mobility edge in the spin-1/2 Heisenberg chain: The model exhibits an
ergodic and a many-body localized phase discriminated by the participation entropy volume law
coefficient a1. For intermediate disorder strengths 2 ≤ h ≤ 3.5 the transition depends on the energy
which is clear evidence for a mobility edge. Note that this is a schematic representation of the
findings of [63] and not the result of a numerical simulation. Figure adapted from [63].

The most studied model in the context of an MBME is the isotropic spin-1/2 Heisenberg
ladder subject to a random magnetic field [63–66] described by the Hamiltonian

ĤHB = J ∑
i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1 − hiSz

i
)

(3.3)

although similar works on a transverse field quantum Ising chain [138, 167, 168] yield
the same qualitative results. Note that the mobility edge found in these systems is purely
induced by interactions since the corresponding non-interacting system is known to be
fully localized at infinitesimal disorder strength due to Anderson localization, excluding
the possibility of a single-particle mobility edge. The phase diagram of the disordered
Heisenberg chain as a function of the disorder strength and eigenstate energy is illustrated
in Fig. 3.2 and based on the results of [63]. This is a schematic representation of those
results and not an actual computation. The numerical observable used in this case is the
participation coefficient a1 that is related to the entanglement entropy S and Hilbert space
dimension dimH via S ∝ a1 ln(dimH). For low disorder the eigenstates are extended
and thermal as reflected by the volume-law entropy scaling S ∝ dimH with a1 = 1,
conversely, all eigenstates are localized (and a1 � 1 in accordance with an area-law) above
the critical disorder strength of hc ≥ 3.5. Note that this is the critical point also cited
in [14, 41] where a mobility edge is no longer present and the full system is supposedly
many-body localized. At intermediate disorder strengths the eigentate phase transition is
visibly energy-dependent with the band edges localizing at a lower critical point.
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3.2. Hilbert space fragmentation

Similar works were also performed for a deterministic quasiperiodic potential of the
type in Eq. (3.1) [169–173]. A major difference in this case is that the corresponding
non-interacting model possesses a single-particle mobility edge. These works hence
aim to explore the question whether the interacting system with an MBME can remain
localized, i.e. an MBL phase can exist at infinite temperature when equally averaging
over localized and extended contributions or if all states get hybridized such that the
full system thermalizes. In the project reported in part III we approach this question
experimentally and more details on the related theory works are given in sec. 7.1.

Note that a many-body mobility edge is not a generic feature in disordered quantum
many-body systems. For instance, the Aubry-André model with on-site interactions shows
no signs of an energy-dependent phase transition, neither in the single-particle model due
to the self-duality, nor in the interacting case.

3.2. Hilbert space fragmentation

Another exception to strong ETH was found in kinetically constrained fracton systems.
These possess elementary excitations that exhibit restricted mobility, either because they
can only move in certain directions (subdimensional particles) or because their motion
necessarily creates additional excitations [86]. Originally studied in three-dimensional
lattice models [174, 175], and models with kinetic constraints directly imposed on the
Hamiltonian [176, 177], different approaches to fractonic systems equipped with the
conservation U(1)-charge (e.g. total magnetization) and its associated dipole moment
demonstrated the localization of charge excitations. These types of systems were then
studied in the context of random unitary circuits [81]. In such systems every discrete time
step is governed by a local unitary gate equipped with the imposed conservation laws.
In subsequent studies it was shown that three-site gates lead to long-lived localization,
while longer-range interactions tend to thermalize the system [87, 88]. This observation
motivated the definition of strong and weak Hilbert space fragmentation as explained in
the following.

The phenomenon of Hilbert space fragmentation is illustrated in Fig. 3.3. In the presence
of conservation laws the Hilbert space splits into a block-diagonal structure where ev-
ery symmetry sector S is labeled according to the conserved quantity, in this example
the dipole moment P. In a generic system all states within this sector are dynamically
connected by the Hamiltonian and the system relaxes to an infinite temperature state
within each symmetry sector S in the thermodynamic limit, provided that the available
states are degenerate. However, dipole moment conservation in combination with strictly
local interactions leads to further fragmentation of the symmetry sector into exponentially
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Figure 3.3.: Schematic illustration of Hilbert space fragmentation: Due to conservation laws the
Hamiltonian splits into a block-diagonal structure of symmetry sectors S . In this example S is
uniquely defined by the dipole moment P. In the case of Hilbert space fragmentation the symmetry
sectors further shatter into exponentially many dynamically disconnected fragments called Krylov
sectors K.

many subspaces that are closed under the action of the Hamiltonian and cannot be directly
identified with an underlying symmetry or conserved quantity. Those Krylov subspacesK
are defined as the set of states that are coupled under repeated action of the Hamiltonian
Ĥ on the initial state |ψ0〉: K = span{|ψ0〉 , Ĥ |ψ0〉 , Ĥ2 |ψ0〉 , . . .}. Therefore, a given initial
state only lives within an exponentially small section of the Hilbert space, yielding an
intuitive picture for the violation of ETH and ergodicity breaking in such settings with
only few conserved quantities. The conservation of dipole moment takes on experimental
significance because it naturally occurs in realizable settings such as the quantum Hall
effect [94, 178, 179] or a tilted optical lattice [89, 95, 96]. In these systems a leading-order
effective Hamiltonian can be derived that preserves the total dipole moment exactly in
the limit of infinite tilt. For the situation of finite tilt, however, the conservation laws are
approximate and apply on a transient timescale where the system exhibits fragmentation
before it ultimately reaches thermal equilibrium [88, 180, 181].

Another striking characteristic of fragmented systems is the strong dependence of the
dynamics on the initial conditions. Consider different localized product states with the
same dipole moment, thus living in the same symmetry sector, but not in the same Krylov
subspace. It is now intuitive to imagine that the dynamics reflect the dimension of the
sector they live in. In the most extreme case one can have a frozen state (a product
eigenstate of the Hamiltonian) on one side which lives in a fully disconnected subspace
with dimension one and shows no dynamical evolution. On the other side, one can start
from a state living in a subspace that is almost as large as its symmetry sector leading to
nearly thermal behavior. It is this smoking-gun characteristic of initial state-dependence
in systems exhibiting Hilbert space fragmentation that we seek to explore experimentally
in part IV. Note that this is a major difference to thermal systems where every initial
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3.2. Hilbert space fragmentation

state, with the exception of low-energy eigenstates, relaxes to the same equilibrium state.
Further, such a behavior does not occur in MBL systems either where localization persists
for all typical initial states throughout the energy spectrum. We also comment on this
important distinction between fragmentation and MBL in sec. 3.2.3.

In the literature there are two distinct types of Hilbert space fragmentation, the strong
and weak version [87, 88]. Their definition is based on the scaling of the fragment
dimension with system size as will be explained below. The distinction of strong and weak
fragmentation goes along with the violation of weak and strong ETH as defined above.

3.2.1. Strong fragmentation and violation of weak ETH

In the strongly fragmented case the system does not thermalize for any initial state and
hence represents an example of strong ergodicity breaking. This violation of the weak
version of ETH was studied numerically for a spin-1 chain [87] that obeys the three-site
Hamiltonian

Ĥ3 = −∑
i

(
S+

i (S
−
i+1)

2S+
i+2 + h.c.

)
(3.4)

(in the spin-1/2 framework this can equally be formulated as Ĥph = ∑i(ĉ†
i ĉ†

i+3ĉi+2ĉi+1 +

h.c.), typically referred to a the pair hopping or minimal model and introduced in this
context by [90]). The Hamiltonian conserves the U(1) charge Q̂ = ∑i Sz

i and its associated
dipole moment P̂ = ∑i iSz

i . A numerical analysis of this Hamiltonian reveals non-ergodic
characteristics represented by a non-thermal saturation value of the autocorrelation func-
tion, a non-thermal distribution of expectation values as well as eigenstate entanglement
entropies much smaller than in an infinite temperature system.

The ergodicity-breaking behavior is referred to the dimensions of connected subspaces in
a certain symmetry sector defined by the charge q and dipole moment p. The dimension
of the largest connected subsector only attains an exponentially small weight compared to
the full symmetry sector

max
i

(dim(Ki)) / dim(S(q,p)) ∝ exp (−N) (3.5)

with system size N. This exponential scaling defining strong Hilbert space fragmentation
is supposed to explain the absence of thermalization in such systems and occurs, for
example, in a lattice in the limit of infinite tilt. After all, strong Hilbert space fragmentation
is a novel type of robust ergodicity breaking in a translation-invariant system without
disorder.
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3. Weak ergodicity breaking: From mobility edges to Hilbert space fragmentation

3.2.2. Weak fragmentation, quantum scars and violation of strong ETH

Ergodicity can be restored when longer-range interactions are added to the original
Hamiltonian. This context is investigated in the Hamiltonian

Ĥ = Ĥ3 + Ĥ4 = Ĥ3 −∑
i

(
S+

i S−i+1S−i+2S+
i+3 + h.c.

)
. (3.6)

which involves four-site processes. This Hamiltonian has the same conservation laws as
Eq. (3.4) and equally preserves charge and dipole moment. Like in the previous case the
Hilbert space has exponentially many invariant subspaces, though the authors of [87]
confirm that it exhibits dynamics in agreement with at least weak ETH. The observations
include a decay of the autocorrelation function to zero in the thermodynamic limit and
most eigenstates from the bulk of the distribution have a thermal entanglement entropy.

This drastic change of the system’s properties upon the addition of longer-range interac-
tions is related to the statistics of fragment dimensions. As opposed to strong fragmenta-
tion, in the weak case, the largest sector dimension approaches the size of the respective
symmetry sector in the thermodynamic limit

max
i

(dim(Ki)) / dim(S(q,p)) −−−→N→∞
1. (3.7)

Therefore, almost all states belong to the same subspace such that the system can thermal-
ize within the symmetry sectors for typical initial states. There is, however, a small number
of outlying eigenstates with low entanglement entropy that can evade thermalization. This
is precisely the definition of weak ETH. These special states also occur in other models in
the context of scarred states and are explored below.

The original incentive to study the thermalization dynamics of kinetically constrained
models was triggered by the observation of unexpected, non-thermal behavior in a one-
dimensional Rydberg quantum simulator [76]. It consists of an array of 51 atoms that can
either be in the ground state |g〉 or excited Rydberg state |r〉 and the distance between
the atoms can be freely tuned. However, Rydberg atoms interact strongly via van der
Waals interactions. Consequently, two neighboring atoms cannot be in the excited state,
a consequence of the well-known Rydberg blockade. This restriction makes the model
kinetically constrained. When initiating the system in the high-energy state |Z2〉 =

|. . . grgrg . . .〉, long-lived oscillations of the domain wall density were observed, which is
in contradiction to the expected thermal relaxation. This response could not be explained
in the beginning because it cannot be related to any conservation law in the system or
the Rabi frequency. In order to explain this unexpected observation, the PXP-model [77,
78, 182] describing a chain of Rydberg atoms including the blockade was developed. It is
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described by the Hamiltonian

ĤPXP =
L

∑
n=1

Pn−1XnPn+1 (3.8)

with the Pauli operator Xn = |g〉n 〈r|n + |r〉n 〈g|n and the projectors Pn = |g〉n 〈g|n which
enforce the Rydberg blockade and make the model interacting. This model possesses a
finite number of eigenstates that have a large overlap with the Z2-state and can explain the
observed oscillations this way. This number of special states is small such that the model
belongs to a class of models with weak ergocity breaking. Those special eigenstates are
also referred to as quantum scars, a description that is motivated from a classical stadium
billard. There, a quantum scar has a large density in the vicinity of a classically stable
orbit [182]. Up to now there have been numerous studies of quantum scars, highly-excited
eigenstates with low entanglement, in various systems ranging from constrained spin
chains to the tilted Fermi-Hubbard model in a special regime [79–85, 183]. Note that
weak fragmentation and quantum scars are intertwined, but not the same. The occurrence
of scars does not require a fragmented Hilbert space, but inversely, weakly fragmented
systems exhibit such special states that belong to the context of quantum scars as reported
in [87].

Overall, a prominent hallmark of weak ergodicity breaking is a strong dependence of the
system’s dynamics on the initial configuration [88]. While some atypical states feature a
certain longevity like oscillations or transient non-thermal plateaus, most physical states
are thermal and exhibit fast relaxation towards thermal equilibrium. Weak fragmentation
is reminiscent of quantum scarring because there is a number of non-thermal eigenstates
with low entanglement entropy in an otherwise thermal bulk such that the systems fails
to thermalize for special initial states. Though, this is not too obvious, because, while
the number of scar state in the PXP-model scales linearly with system size, the model in
Eq. (3.6) possesses exponentially many outlying states.

3.2.3. Fragmentation and Stark MBL

The concept of MBL was originally studied for quantum many-body systems with random
or quasiperiodic disorder. In this case non-thermal properties were identified resulting
in a memory of the initial conditions up to infinite times. This new phase of matter is
stable to small perturbations such as an external drive as well as mostly insensitive to
the initial conditions. Recent work investigated a lattice model with a linear external
potential (tilt) in the presence of interactions. When adding an additional term that lifts
the perfectly linear tilt, either a harmonic potential [89, 95] with curvature α or weak
random disorder [96], the authors identify characteristics that are identical with the typical
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3. Weak ergodicity breaking: From mobility edges to Hilbert space fragmentation

MBL signatures in the case of weak interactions. These include Poissonian level statistics,
logarithmic growth of the entanglement entropy with time and a non-zero steady-state
value of the imbalance or comparable observables. Therefore, this phase was dubbed
Stark MBL. Though, a fundamental difference to common MBL systems is the absence
of quenched disorder. However, the situation is less conclusive when studied for a
purely linear tilt. In this case the level statistics exhibit an intermediate scaling between
Poissonian and the Gaussian Orthogonal Ensemble and equally the entanglement entropy
scaling neither shows thermal nor localized characteristics. Its origin can be explained
by the model of two particles in a strongly tilted lattice with slope ∆ much larger than
the on-site interaction U. While direct hops of a single particle are suppressed due to the
energy difference ∆ between initial and final state, pairwise hops of two particles forming
a doublon that preserve the dipole moment P = (x1 + x2)/2, where x1 and x2 denote the
position of the particles in the lattice, are allowed given a smaller energy penalty of only
U � ∆. The effective hopping rate for this process is

J′ ∝
|J|2

∆−U
− |J|2

∆ + U
=

2|J|2U
∆2 −U2 ≈

2|J|2U
∆2 . (3.9)

The two terms represent both ways to reach the final state via different virtual intermediate
states and the hopping amplitudes of both processes add up. We immediately see that
without interactions the amplitudes cancel and that the effective hopping amplitude is
small for large tilts. Consequently, in order to cause delocalization, the weak off-diagonal
hopping J′ has to compete with the on-site interaction U and requires an intricate analysis
of the diagonal and off-diagonal matrix elements of the Hamiltonian at higher orders in
perturbation theory. Additional on-site terms such as disorder or curvature equally have
to compete with the weak hopping, such that localization can be induced easily and this
was observed numerically as Stark MBL. In this case the eigenstates only have a low en-
tanglement entropy suggesting that the many-body states are a superposition of localized
single-particle states reconciling with the LIOM picture constructed for disorder-induced
MBL [89]. Hence, the other observations of logarithmic entanglement entropy growth or
Poissonian level statistics can equally be explained this way. A recent publication [184]
investigated the entanglement entropy in more detail. For a purely linear potential they
find a linear growth in time and subsequent saturation to a tilt-dependent value, a clear
distinction from MBL-like behavior. The linear growth is attributed to a fast resonant
spread of the wavefuntion within the respective available subspace. In contrast, upon the
addition of a harmonic confinement, the authors recover logarithmic entanglement growth
like in disordered MBL systems and attribute this change of behavior to the removal of
degeneracies in the respective sector and the breaking of dipole moment conservation.

The physics of the pure Stark model (α = 0) can be connected to Hilbert space fragmen-
tation. In the limit of large tilt the Stark Hamiltonian is dominated by the term ∆ ∑i in̂i,
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which denotes the dipole moment of the system. Hence, dipole moment is conserved and
the Hilbert space is strongly fragmented according to [87, 88, 90] leading to a violation
of weak ETH. In the spin language this corresponds to the minimal model referred to
as the lowest order Hamiltonian Ĥ3 = −J ∑i

(
S+

i (S
−
i+1)

2S+
i+2 + h.c.

)
involving three con-

secutive sites. In the case of finite tilt, it requires higher orders in perturbation theory
like Ĥ4 (Eq. 3.6) involving longer-range hopping processes. This addition was found to
restore thermalization for sufficiently large admixtures of the higher-order terms. Recent
numerical work even suggests [89] that the spin model Ĥ3 + εĤ4 for arbitrarily small ε

as well as the Stark model with α = 0 thermalize in the thermodynamic limit. Though,
future work will be required to resolve this fundamental question.

The additional higher-order couplings make the system only weakly fragmented [88]
where it was found that generic states exhibit thermal properties and only a vanishingly
small fraction of states behave non-ergodically. Thus, localization can only persist on
timescales t∗ ∝ exp (∆/J) when the leading order term applies. This behavior can be
unified with the theory of prethermalization. The central theorem of this approach states
that a system on intermediate times is governed by an effective Hamiltonian with approx-
imate conservation laws that lead to restricted dynamics and temporary equilibration
to a generalized Gibbs ensemble. At exponentially long times it finally relaxes to full
equilibrium. Although this concept was previously studied for periodically driven Floquet
systems in theory [180, 181] and experiment [185, 186], it can also be applied to static
many-body systems [88]. On intermediate timescales the dynamics in the tilted lattice
model are well described by the effective Hamiltonian Ĥ3 and ultimately higher orders
will lead to relaxation on exponentially long times. Though, one has to discriminate this
behavior carefully from thermal systems because weak fragmentation violates the strong
version of ETH, but any typical state with a narrow energy distribution will ultimately
thermalize.

Another striking difference between Stark MBL and conventional MBL is the strong de-
pendence of the dynamics on the initial conditions, which suggest that the underlying
mechanism leading to non-ergodicity is inherently different. In disordered systems lo-
calization comes about due to exponentially many local integrals of motion for a typical
initial state and nearly independent of its energy. As observed in [29] there might occur a
different energy-dependent final state, but localization prevails throughout the spectrum
as long as there is no mobility edge. Conversely, in Stark MBL the behavior can be related
to the fragmented Hilbert space and the domination of on-site energies over the effective
hopping rate. It typically shows a strong dependence on the initial conditions that is most
prominent in the case of weak fragmentation and can be related to the shattered Hilbert
space structure and fragment dimensions. Finally, recent numerics suggest that there are
no signs of a phase transition from an ergodic to a localized phase [91]. These insights
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3. Weak ergodicity breaking: From mobility edges to Hilbert space fragmentation

are based on the fact that the Hilbert space is fragmented such that strong ETH is never
satisfied. Instead, the authors introduce a quasi-ergodic phase that possesses large ergodic
grains with ETH-like observables that can exceed the system size in numerical works,
but this argument does not apply to the thermodynamic limit. Moreover, the late time
dynamics depend on the initial state given the existence of outlying non-thermal states.
This is in contradiction to the statement of ETH. Earlier works suggested the existence
of a phase transition at finite tilt [96], but the authors admit that they cannot disprove
a potential nonergodic phase at lower tilt. Most likely they were unable to distinguish
the quasiergodic phase from true ergodic characteristics. The prerequisites of a model
exhibiting Hilbert space fragmentation can be implemented in our fermionic quantum gas
experiment. All details will be explained in part IV.
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Part II.

Experimental setup and techniques

Quantum simulators with ultracold atoms in optical lattices are nowadays a ubiquitous
experimental platform to implement lattice models like the Bose- or Fermi-Hubbard model
and to explore quantum systems far from equilibrium in one, two or three dimensions.
These setups have been constantly evolving and even enable real-time investigations of
dynamical processes in solid state and condensed matter systems with access to global and
local observables including entanglement entropy, n-point correlators or the resolution
of many-body level statistics. In this part we introduce our experimental system that
employs ultracold 40K-atoms cooled to quantum degeneracy in an optical lattice to realize
the 1D Fermi-Hubbard model. Further, we explain our experimental techniques and
observables used to explore non-ergodic dynamics in disordered and tilted optical lattices.
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4. Experimental setup

In this chapter the experimental system with the cooling scheme and lattice setup is briefly
described in the beginning before reviewing the central properties of the one-dimensional
Fermi-Hubbard model. Finally, the technique of RF and microwave spectroscopy, em-
ployed in the second thesis project, are introduced, in particular the newly developed
Potassium-microwave device.

4.1. A degenerate gas of 40K

All experiments reported in this thesis are performed with the fermionic Potassium isotope
40K cooled to quantum degeneracy and loaded into a three-dimensional optical lattice.
In this chapter only a brief overview of the experimental setup and techniques is given
while more detailed information can be found in preceding PhD theses carried out at this
experiment [187–189].

The cooling sequence begins with capturing 40K and bosonic 87Rb in a dual-species
magneto-optical trap (MOT) followed by Doppler cooling in an optical molasses. Af-
ter magnetic transport from the MOT chamber to the science cell through a differential
pumping section, the sample is forcedly RF-evaporated in a plugged quadrupole trap.
This process mostly evaporates Rb while the K-atoms are primarily cooled sympathet-
ically. At this stage of the sequence we have about 2× 105 K and 2× 106 Rb atoms at
temperatures of few microkelvin. After this intermediate step the atoms are loaded into a
three-dimensional crossed dipole trap where the evaporation process continues. At low
temperatures the s-wave scattering cross section of fermions in the same state tends to
zero, but evaporative cooling requires thermalization of the sample by energy exchange
via scattering processes between the particles. Hence, fermions cannot be cooled efficiently
to ultracold temperatures. Instead, we cool it sympathetically via the Rb. This way we can
simultaneously cool K to quantum degeneracy and Rb well below the critical temperature
such that it forms a Bose-Einstein condensate with a negligible thermal fraction below the
detection limit. At the end of the sequence the Rb is removed from the trap by lowering
the trap bottom such that the Rb atoms, which have about twice the mass of K, can no
longer be held against gravity. The Potassium atoms are prepared in the lowest magnetic
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hyperfine state mF = −9/2 of the ground state hyperfine manifold F = 9/2 (see [190]
for a full documentation of the relevant Potassium properties). Unwanted components
are removed via interspecies Feshbach resonances between K and Rb during the cooling
process, inducing strong losses via three-body interactions. In order to generate an inter-
acting ensemble, a second component is required. This additional mF = −7/2-component
is generated from the spin-polarized sample by a Landau-Zener sweep (see sec. 4.4.1).
This way we can generate arbitrary mixing ratios although we typically use an equal
mixture of both states. At the end of the sequence we obtain about 60× 103 atoms with a
temperature around 0.15TF, where TF denotes the Fermi temperature. It is determined via
a Fermi-Dirac fit to the cloud density profile after time-of-flight.

The dipole trap beams at a wavelength of 1064 nm generate a trapping potential wherein
the evaporation is performed by sequentially lowering the trap depth and thereby los-
ing the most energetic atoms. The geometry of the horizontal traps is elliptical with a
horizontal elongation of about 300 µm and a vertical diameter of 30 µm. The horizontal
confinement is thus much stronger such that the atoms are supported against gravity
while the density of the cloud is set by the weaker vertical confinement so as to avoid
losses from three-body collisions. The horizontal confinement is instead dominated by the
vertical trapping beam with circular shape and a diameter of 150 µm.

4.2. Optical lattices

4.2.1. General setup

Since the projects described in this thesis are realized in different lattice setups, their com-
monalities are presented here, while the individual details of the experimental realization
are addressed in the respective chapter describing the particular project.

All experiments of this thesis are carried out in a three-dimensional lattice geometry
generated by three orthogonal retro-reflected laser beams. This results in a standing wave
pattern along all three axes and the atoms are attracted to the intensity minima or maxima
of the standing wave, depending on the detuning with respect to the atomic transition.
All laser beams forming the optical lattices have roughly the same geometry, the atoms
are located in the focus of a Gaussian laser beam with a diameter of about 150 µm. The
primary lattice along the x-axis with the wavelength λp = 532 nm is generated by a Verdi
V18, a frequency-doubled diode-pumped YAG laser with an output power of 18 W. All
one-dimensional experiments in this thesis are conducted along this lattice axis. The
orthogonal lattices along y and z with λ⊥ = 738 nm are generated by a Titanium-Sapphire
laser with a maximum output power above 4 W pumped by a Verdi V18. The polarization
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of the orthogonal lattice beams are chosen perpendicular to each other and in addition to
a frequency offset of about 160 MHz such that the lattices do not interfere and the lattice
is purely rectangular. The models simulated in this experimental setup and reported in
this thesis are one-dimensional. In order to realize this condition, the tunneling element
along the primary axis has to be much larger than along the vertical directions, such that
the dynamics are confined to the primary lattice over a certain timescale. This goal is
achieved by employing very deep orthogonal lattices between 40Er and 55Er such that the
tunneling time ratio between primary and orthogonal lattice ranges from about 5× 10−4

to 2× 10−3, dependent on the particular choice of primary lattice depth. Thus, our system
consists of one-dimensional tubes that are dynamically decoupled on a timescale of few
hundred tunneling times according to the given tunneling ratios.

We further have a long lattice along the x-axis at twice the wavelength of the primary
lattice, so λl = 1064 nm. Superimposed with the primary lattice this results in double-
wells whose relative phase sets the energy difference between the left and right site. Given
the boundary condition of having a node at the retro-reflecting mirror, the phase between
both lattices is set by the wavelength and hence small changes in the frequency of one of
the lattices enable an arbitrary control of the relative phase. The Nufern, a fiber laser with
an output power on the order of 10 W is referenced to a temperature-stabilized Fabry-Pérot
cavity and the Verdi generating the primary lattice is stabilized to that reference via a
beat-offset lock. Together these two lattices form the superlattice which is employed
in the initial state preparation and final state readout. The high controllability of the
superlattice phase thereby plays a crucial role for the fidelity of the initial state as well
as for the imbalance readout (see sec. 5.1). Further, a strongly tilted superlattice freezes
the dynamics before and after time evolution because the achievable inter- and intrawell
couplings get much smaller than what could be reached with a deep primary lattice
alone.

Except of the long lattice required for the superlattice, all lattices are blue-detuned with re-
spect to the atomic transition at 766.7 nm. This is advantageous because it can compensate
for the harmonic confinement induced by the dipole traps. In particular, along the vertical
z-axis the red-detuned dipole trap and the blue-detuned lattice have approximately the
same geometry such that the confinement can be nearly compensated and a homogeneous
potential landscape can be created up to leading order. This is an experimentally relevant
factor and was successfully employed in [117, 119, 126]. Moreover, the confinement during
lattice loading is tunable via the dipole trap intensity, which is important for the atomic
density distribution in the lattice (see sec. 9.2.2).

Along the primary lattice axis we employ a quasiperiodic potential generated by an
additional lattice with incommensurate wavelength ratio or a linear tilt. Details on the
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precise realization can be found in the respective part of this thesis reporting on the related
experimental projects in secs. 7.2.2 and 8.2.

4.2.2. Lattice loading

After evaporative cooling to quantum degeneracy the degenerate Fermi gas is loaded into
the three-dimensional lattice in a series of linear ramps. The goal of the procedure is to be
as adiabatic as possible in order to avoid heating the gas during the loading process and
thus achieve lowest entropies in the lattice. Entropy and temperature define the density
and particle distribution in the initial state. In an independent measurement we verified
that upon non-interacting loading the temperature only changes slightly such that the
final temperature in the dipole trap corresponds closely to the temperature in the lattice.
While holding the gas in the dipole trap, the long lattice along the primary axis and the
orthogonal lattices are ramped to a depth of 1Er, here Eri = h̄2/(2mλ2

i ) defines the recoil
energy of the respective lattice i ∈ {s, l,⊥} with wavelength λ and m denotes the atomic
mass of 40K. At this depth the lattice is held for 100 ms while the horizontal confinement
is linearly increased via the vertical dipole trap. Since the tunneling element in such a
shallow lattice is still large, the atoms can react to the changing external confinement such
that the final particle distribution can be controlled in this step. After the wait time, the
lattices are ramped in two linear steps of 75 ms and 20 ms to their final values (20Erl for
the long lattice and between 36Er⊥ and 55Er⊥ in case of the orthogonal lattices) freezing
the dynamics on timescales of the experiment and thereby fixing the initial state for the
subsequent dynamical studies. After another wait time of 6 ms the primary lattice is
switched on fast to its maximal depth of 18Ers within 100 µs with a fixed superlattice phase
such that strongly tilted double wells are generated. The strong potential offset between
the left and right well ensures that the particles are exclusively located in the lower well.
When the long lattice if finally ramped off before time evolution, every second site of the
primary lattice is occupied. This is the charge-density wave initial state used in most of
the experiments reported here.

In particular for the project on Hilbert space fragmentation the initial state distribution
plays an important role for the observability of the expected signal. Therefore a detailed in-
vestigation was conducted which is presented in sec. 9.2.2 and the experimental techniques
are elaborated in 5.3.
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4.3. Fermi-Hubbard model and interactions

Due to the Pauli blockade, fermions have a vanishing s-wave scattering cross section at
ultracold temperatures such that two atoms in the same state cannot interact. In order
to enable interactions in the optical lattices, at least two different spin components are
necessary. We realize this by preparing the atoms in two magnetic hyperfine states of the
lowest hyperfine manifold that will be referred to as |↓〉 ≡ |F = 9/2, mF = −9/2〉 and
|↑〉 ≡ |F = 9/2, mF = −7/2〉. This setting is described by the following Hamiltonian in
second quantization [191]

ĤF =

�
∑
σ

ψ̂†
σ

(
− h̄2

2m
∇2 + V(~r)

)
ψ̂σd~r + g

�
(ψ̂†
↓ψ̂

†
↑ψ̂↑ψ̂↓)d~r (4.1)

in terms of the fermionic field annihilation (and creation) operators ψ̂(†). Herein σ ∈ {↓, ↑}
denotes the spin, V is a generic external potential such as harmonic confinement or a
lattice and the interaction parameter g = 4πh̄2a/m. m is the mass of the atoms and a is
the s-wave scattering length between opposite spins. In a lattice setup the Hamiltonian
in Eq. (4.1) can be transformed in terms of the tight-binding approximation, i.e. only
taking the lowest band into consideration and expanding the Bloch functions in terms
of localized Wannier functions. The transformed Hamiltonian results in the well-known
Fermi-Hubbard model

ĤFH = −J ∑
i,σ
(ĉ†

i,σ ĉi+1,σ + h.c.) + U ∑
i

n̂i,↑n̂i,↓ + ∑
i,σ

µi,σn̂i,σ (4.2)

with the sum running over all lattice sites i and spins σ. The important Hubbard param-
eters are the tunneling element J between neighboring lattice sites and the interaction
strength

U =
4πh̄2a

m

�
|w(~r)|4d~r. (4.3)

Herein, w(~r) is the Wannier function centered around position~r. µi,σ denotes the external
chemical potential from above. It can be of general form such as a harmonic confinement
due to an external trapping potential, but also disorder or a linear tilt. The latter two cases
are realized and investigated in the projects reported in this thesis.

This is the most commonly used model in the context of condensed matter physics and also
applies to our experiment with ultracold fermions in optical lattices. Originally formulated
by Hubbard [7] in the 1960s to describe electrons in transition metals, it soon gained major
significance in the context of condensed matter physics and quantum simulation. One
such development was the demonstration that the Hubbard model can be employed to
explain the emergence of high-Tc superconductivity in cuprate materials [192]. Current
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4. Experimental setup

Figure 4.1.: Feshbach resonance in 40K: Scattering length between the spin components |↑〉 and
|↓〉 as a function of the magnetic field. The Feshbach resonance is centered around 202.1 G.
The highlighted region marks the regular range of operation, accessing attractive and repulsive
scattering lengths and in particular the non-interacting point at 209.2 G.

progress includes the exploration of the cuprate phase diagram including bad metals [114]
and the pseudogap phase.

The interaction strength in the Fermi-Hubbard model can be tuned experimentally via a
Feshbach resonance [102] between the spin states |↑〉 and |↓〉 given by the characteristic
dependence of the scattering length a in units of the Bohr radius a0 on the magnetic field
amplitude B

a(B) = abg

(
1− ∆B

B− B0

)
. (4.4)

The resonance is centered around B0 = 202.1 G, has a width of ∆B = 7.1(1)G and a
background scattering length abg = 174a0 [193, 194], the functional form is plotted in
Fig. 4.1. We typically operate in the highlighted region of the magnetic field above the
resonance because on this arm we have a zero-crossing point where the sample can be
made non-interacting and further we can access attractive and repulsive interactions.
Dependent on the primary lattice depth, we can access the range −20J ≤ U ≤ 20J. If
we move too close to the resonance, strong interactions lead to atom number losses due
to inelastic collisions, however, the available range is typically sufficient to realize the
hard-core limit. In this limit (U → ±∞) no higher occupancies can be formed due to an
infinite energy cost and conversely, no dynamical decay of a doublon is allowed. The
resulting Hilbert space without doublons is thus closed under time evolution. In the case
of an initial state without doublons, this setting maps to a model of spinless fermions such
that there is an exact symmetry between U = 0 and U = ±∞ [133]. Contrarily, in the
presence of doublons such a mapping does not exist lifting this symmetry. Moreover, the
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Fermi-Hubbard model possesses a dynamical symmetry between attractive and repulsive
interactions [195] that also holds in the presence of a tilt or disorder as well as for the
Bose-Hubbard model.

4.4. Radio-frequency (RF) and microwave (MW) operations

In our experiment we have excellent control over the Hubbard parameters in the Hamil-
tonian in Eq. (4.2). While the tunneling J is defined by the primary lattice depth, the
on-site interaction strength U is set by the scattering length via the Feshbach resonance
and the chemical potential comprises the external trap as well as other potential sources.
Moreover, we are in the position to manipulate the internal electronic states of the atoms
via RF and microwave operations. These enable us to retrieve state-selective information
of a given quantum many-body state in the optical lattice as will be explained in sec. 5.3.
In the following we explain the methods behind these state manipulations that employ
spectroscopic techniques.

4.4.1. RF spectroscopy

State manipulations between different magnetic hyperfine states mF within the same
hyperfine manifold F are driven by RF-transitions with typical frequencies ranging from
1 MHz to 60 MHz in our experiment. We have two methods available to drive the respec-
tive transition, which differ in the available resolution and fidelity.

Landau-Zener sweeps

In a Landau-Zener sweep, the frequency is continuously tuned across the resonance and
hence across the avoided crossing between two energy levels. In this case the probability
of excitation is given by the celebrated Landau-Zener equation

Pe = 1− e−2Ω2/∆̇ (4.5)

with the Rabi frequency Ω and the Landau velocity ∆̇, which defines the rate of change of
the detuning across the resonance. If the time scale is sufficiently adiabatic with respect
to the coupling strength, one can obtain almost perfect state transfer. In the experiment
we typically remain with the unwanted spin state component below the resolution limit
such that the transfer efficiency is above 98 %. The main advantage of a Landau-Zener
sweep is the nearly perfect fidelity and its insensitivity to external noise sources due to the
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wide range of the frequency sweep. On the other hand, for high-resolution spectroscopy,
sweeps are unsuited due to their comparatively large spectral width (typically 100 kHz to
1 MHz).

Rabi pulses

The second option to change the internal state is via Rabi oscillations in a resonant RF-field.
After the duration of a π-pulse Tπ = π/Ω the state is entirely transferred in theory. We
employ this method due to the high frequency resolution given by 1/Tπ, which is the
main advantage over a Landau-Zener sweep. On the other hand this method is very
sensitive to external noise sources such as magnetic field fluctuations since this moves
the transition temporarily out of resonance and reduces the excitation probability. In our
experiment we can observe coherent Rabi oscillations on timescales up to 300 µs before
they dephase, setting an upper limit for applicable pulse durations. In order to be most
insensitive to fluctuations in the excitation probability, we employ π-pulses with about
60 µs duration such that our spectral resolution is on the order of 17 kHz.

4.4.2. The Potassium microwave setup

As a part of this thesis project, a new Potassium microwave setup was developed and this
section is supposed to give a detailed sketch of the electronics and physical setup. The
device is designed to induce transitions between the F = 9/2 and F = 7/2 ground state
hyperfine manifolds in the presence of a magnetic field in the region of 209 G, the usual
working point near the Feshbach resonance of the mainly employed spin components
|↑〉 and |↓〉. Fig. 4.2a depicts the level structure in the ground state in the presence of a
magnetic field and Fig. 4.2b displays the transition frequency between the most relevant
states. Transitions that can be induced require that ∆mF = +1 (σ+) due to the dipole
selection rules. In the Paschen-Back regime at strong magnetic fields dipolar transitions
strictly require that ∆mJ = ±1 and ∆mI = 0. Although a magnetic field around 209 G
does not yet define the Paschen-Back regime, we clearly note that only the σ+-transitions
plotted in Fig. 4.2b can be excited with high fidelity while π- and σ−-transitions are
strongly suppressed.

The microwave setup can take up to four different MW input signals and corresponding
TTL triggers. The MW channels are switched by a broadband RF-switch (ZSWA-4-30DR+
from Mini Circuits) and the related designed logic electronic circuit. In order to achieve suf-
ficient isolation between the input and final output, another switch (SR-V800-2S, UMCC)
is inserted before the first amplifier, suppressing the signal at least by another 50 dB when
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Figure 4.2.: Properties of the K-Microwave setup: a Level spectrum of 40K in the ground state
with two hyperfine manifolds. The relevant magnetic hyperfine states for the experiment are
highlighted in color while the other states are shaded in gray. b Transition frequencies between the
indicated states as a function of the external magnetic field. We typically operate around 209 G.
c Power emission of the MW setup for two different input power levels. The maximal output
power clearly saturates around 46 dBm. d Emission spectrum of the antenna across the anticipated
frequency range. e Photograph of the log-periodic MW-antenna.

the switch is closed such that unwanted signals are suppressed below the detectable noise
level. Otherwise transitions could be induced accidentally. The MW signal then proceeds
to the pre-amplifier (KU LNA BB 1522 A, Kuhne Electronic) which amplifies the signal to
a maximal power of 20 dBm. Afterwards, the main amplifier (KUPA 170220-30A, Kuhne
Electronic) further amplifies to a maximal power level of 48 dBm within the specified
frequency range. Finally, a circulator (E10-1FFF, Aerotek) protects the main amplifier from
damage due to back reflections. This is very likely to happen when the antenna is not
perfectly impedance matched. The maximum MW power measured at the output of the
device was 46 dBm corresponding to about 40 W. Given the maximum power ratings of
the RF components, the input power level should not exceed 3 dBm. A detailed study
of the power ratings is depicted in Fig. 4.2c for two different input power levels. Below
the saturation of the amplifiers, the maximal total amplification of the device is about
47 dB. The frequency range is primarily limited by the main amplifier, which is rated
between 1.7 GHz and 2.2 GHz. Outside this range lower peak powers and perhaps other
limitations have to be tolerated.

The antenna is based on a log-periodic design with manual modifications, the longest
rods are elongated in order the extend the emission spectrum to lower frequencies. Its
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4. Experimental setup

performance was quantified by measuring the reflections as a function of the frequency
with a network analyzer. This data is shown in Fig. 4.2d together with a photo of the
antenna in Fig. 4.2e as implemented in the experiment. Over the aspired frequency
range the antenna emits at least 90 % of the power and is therefore well suited for this
application.

As mentioned above, we can observe coherent Rabi oscillations on RF transitions for few
hundred microseconds before external noise sources decohere the dynamics. In order to
induce the oscillations for our microwave transitions, the magnetic field stability of our
power supply is insufficient though. The reason lies in the sensitivity of the transition
frequency to magnetic field fluctuations, i.e. the shift of the resonance as a function
of the magnetic field strength. In [196] an equation for the decoherence time of Rabi
oscillations was derived based on the coupling strength (or Rabi frequency) Ω0 and the
detuning induced by the magnetic field fluctuations ∆N and it scales approximately as
tdec ≈ 4πΩ0/∆2

N . The RF transition |↑〉 ↔ |↓〉 has a sensitivity of 153 Hz/mG, while the
MW-transition |F = 9/2, mF = −9/2〉 → |F = 7/2, mF = −7/2〉 is almost twenty times
more sensitive with 2.6 kHz/mG. This results in coherence times which are about 100
times shorter than for RF transition and this is indeed observed experimentally. Thus, we
can only induce sweeps with the microwave setup, but this is sufficient for our purposes,
although it requires more sophisticated designs of the respective sequence.

4.4.3. RF dressing

Not only can we use RF spectroscopy to induce transitions between different spin states,
we further employ a new technique exploiting a resonant field to manipulate the dynamics
in the optical lattice. Due to our generation of the tilt via a magnetic field gradient
(see sec. 8.2), the spin states encoded in different magnetic hyperfine states see a state-
dependent potential with slopes ∆↓ and ∆↑. This can have drastic consequences for the
dynamics in the lattice since there are no proper resonances given a ubiquitous energy
mismatch |∆↓ − ∆↑|. However, we can use a resonant RF field coupling the states to
compensate this tilt difference as previously demonstrated in [197]. We consider the
atoms as two-level systems described by the Hamiltonian ĤA and with the ground state
|↓〉 and excited state |↑〉. In the presence of an external field ĤR coupling the states,
the system’s eigenstates can be recast in terms of the dressed states, the eigenstates of
the new Hamiltonian Ĥ = ĤA + ĤR + ĤI , wherein the last term describes the atom-
light interaction. The central parameters of the coupled system are the resonant Rabi
frequency Ω0, the detuning δ from resonance as well as the generalized Rabi frequency
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Ω =
√

Ω2
0 + δ2. The dressed creation operators are defined as

ˆ̃c†
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)
eiφ/2ĉ†
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)
eiφ/2ĉ†
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)
e−iφ/2ĉ†

i,↓

(4.6)

where tan(θ) = Ω0/δ and φ is the phase of the driving field. Similarly, one can express
the time evolution of the original creation operators by applying the unitary operator and
obtains

ĉ†
i,↑(t) =eiΩt/2 cos

(
θ

2

)
e−iφ/2 ˆ̃c†

i,↑ + e−iΩt/2 sin
(

θ

2

)
eiφ/2 ˆ̃c†

i,↓

ĉ†
i,↓(t) = −eiΩt/2 sin

(
θ

2

)
e−iφ/2 ˆ̃c†

i,↑ + e−iΩt/2 cos
(

θ

2

)
eiφ/2 ˆ̃c†

i,↓.
(4.7)

The technique of RF dressing is employed to compensate the tilt difference induced by the
magnetic field gradient in the project on Hilbert space fragmentation reported in part IV.
Therein we study the tilted Fermi-Hubbard model (see chapter 8 for a detailed discussion
of the model) described by the Hamiltonian

Ĥ = −J ∑
i,σ
(ĉ†

i+1,σ ĉi,σ + h.c.) + U ∑
i

n̂i,↑n̂i,↓ + ∑
i,σ

∆σin̂i,σ (4.8)

with the spin-dependent tilt ∆σ and the number operators n̂i = ĉ†
i ĉi. In order to compute

the transformation of this Hamiltonian in the basis of the dressed states, the new creation
and annihilation operators according to Eq. (4.7) have to be inserted into the Fermi-
Hubbard Hamiltonian (Eq. 4.8). One finds that the kinetic and interacting part are invariant
under this transformation. In particular the latter is useful in the experiment as it allows
us to use the Feshbach resonance (see sec. 4.3) between the states |↓〉 and |↑〉 to set the
interactions between dressed states [198]. The last term including the spin-dependent tilt
transforms as

∆↑ ĉ†
i,↑(t)ĉi,↑(t) + ∆↓ ĉ†

i,↓(t)ĉi,↓(t) =
(
∆↑ cos2(θ/2) + ∆↓ sin2(θ/2)

)
ˆ̃c†
i,↑ ˆ̃ci,↑

+
(
∆↓ cos2(θ/2) + ∆↑ sin2(θ/2)

)
ˆ̃c†
i,↓ ˆ̃ci,↓

+ (∆↑ − ∆↓) cos(θ/2) sin(θ/2)ei(Ωt−φ) ˆ̃c†
i,↑ ˆ̃ci,↓

+ (∆↑ − ∆↓) cos(θ/2) sin(θ/2)e−i(Ωt−φ) ˆ̃c†
i,↓ ˆ̃ci,↑.

(4.9)

The last two terms of Eq. (4.9) are time-dependent, but due to magnetic field fluctuations
the generalized Rabi frequency Ω varies and those terms vanish for Ω� ∆↓, ∆↑. The tilts
seen by the dressed states can be directly identified from the first two terms. From this
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insight we can readily compute the tilt difference in the dressed basis to become

∆̃↓ − ∆̃↑ = ∆↑
(
sin2(θ/2)− cos2(θ/2)

)
− ∆↓

(
sin2(θ/2)− cos2(θ/2)

)
(4.10)

= −∆↑ cos(θ) + ∆↓ cos(θ) (4.11)

=


−∆↑

1√
1 + tan2(θ)

+ ∆↓
1√

1 + tan2(θ)
(δ > 0)

∆↑
1√

1 + tan2(θ)
− ∆↓

1√
1 + tan2(θ)

(δ < 0)
(4.12)

= (∆↓ − ∆↑)
|δ|√

δ2 + Ω2
0

. (4.13)

In order to measure the resonant Rabi frequency Ω0 we record Rabi oscillations between
the spin states and extract the frequency as a function of the applied RF power. The
measured excitation fraction is fitted with the equation |c↑(t)|2 = sin2(Ω0t/2) and an
exemplary data set is shown in the inset of Fig. 4.3c together with the analytical fit. Due to
the mentioned magnetic field fluctuations the Rabi oscillations dephase on timescales on
the order of 500 µs.

We directly measure the tilt seen by the dressed states recording Bloch oscillations of the
imbalance (see secs. 5.1 and 8.1) in the absence of interactions, which can be seen in a
linearly tilted optical lattice at early times before they dephase due to inhomogeneities
in the potential [117]. The frequency of these oscillations directly represents the tilt.
Extracting the time evolution of the spin-resolved imbalance (see sec. 5.1.2) we obtain the
oscillation frequencies from an analytical fit to the data points with the function

Iσ(t) = exp (−t/τ) · J0

(
8J
∆̃σ
· sin

(
π∆̃σt/h

))
(4.14)

based on the results presented in [117]. The first part is an exponential envelope with decay
time τ mimicking the dephasing while the Bessel function of the first kind J0 represents
the analytical equation for an ideal system. The recorded oscillations are presented in
Fig. 4.3. Without RF dressing the spin components clearly exhibit a notable tilt difference
(see Fig. 4.3b) originating from the different magnetic moments of the two spin states.
Conversely, this difference can be almost perfectly compensated with the maximal dressing
power corresponding to a Rabi frequency of Ω0 = 85(1) kHz as shown in Fig. 4.3a.

Due to the magnetic field gradient the resonance frequency is spatially dependent inducing
a detuning δ that varies across the lattice. We find that we can describe the experimentally
obtained relative tilt difference δ∆ = (∆̃↓ − ∆̃↑)/∆̃↓ as a function of the Rabi frequency
with a single average detuning as illustrated in Fig. 4.3c. From a fit of Eq. (4.13) to the data
points we extract an average detuning of δ = 6.5(2) kHz. One can develop an intuitive
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Figure 4.3.: RF dressing and tilt difference: a Bloch oscillations with maximal dressing power
(Ω0 = 85(1) kHz) resolved by the spin component. b Bloch oscillations without RF dressing. The
frequency difference is explained by the natural difference in the magnetic moment of the spin
states. The solid lines are analytical fits to extract the oscillation frequency (see text) and the
error bars denote the standard error of the mean obtained from four averages. c Tilt difference
δ∆ as a function of the Rabi frequency Ω0. We can tune it continuously between about 11.0(2)%
and 0.6(2)%. The solid line is a fit to the data points with only one free parameter according to
Eq. (4.13). The inset shows a sample data set we extract the Rabi frequency from, as fit parameters
for the solid line we use the frequency and amplitude. The vertical axis is the excitation probability
from |↓〉 to |↑〉.

picture for the origin of the detuning. Given the space-dependent detuning across the
lattice, the tilts seen by the dressed states

∣∣↓̃〉 and
∣∣↑̃〉 following Eq. (4.13) are given by

∆̃↑,↓ =
∆↑ + ∆↓

2
± ∆↑ − ∆↓

2
|δ|√

Ω2
0 + δ2

. (4.15)

In the experiment we automatically average across all possible values of the tilts through-
out the atomic cloud. This averaging effect can be imitated numerically by computing the
resulting superposition of Bloch oscillations with the respective frequency ∆̃↑,↓ and weigh-
ing their contribution with a Gaussian distribution representing the density distribution of
the atomic cloud. For large tilts we expand the Bessel function in the analytical description
for Bloch oscillations according to Eq. (4.14) to second order yielding a cosine-function.
Hence, we obtain the imbalance resulting from this superposition as

I↑̃,↓̃(t) =
1
η

L/2

∑
i=−L/2

J0

(
8J

∆̃↑,↓(δi)
sin
(
π∆̃↑,↓(δi)t/h

))
· exp

(
−δ2

i /(2σ2)
)

≈ 1
η

L/2

∑
i=−L/2

1− 1
2

(
4J

∆̃↑,↓(δi)

)2 (
1− cos

(
∆̃↑,↓(δi)t/h̄

)) · exp
(
−δ2

i /(2σ2)
)

(4.16)
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with the normalization constant η = ∑i exp
(
−δ2

i /(2σ2)
)

and the standard deviation of the
detuning distribution across the atomic ensemble σ = 14.5 kHz. We fit this superposition
in Eq. (4.16) with a single oscillation frequency and extract the tilt difference ∆̃eff

↓ − ∆̃eff
↑ of

the dressed states for multiple Rabi frequencies Ω0. This results in a distribution of the tilt
difference as a function of the Rabi frequency similar to the one shown in Fig. 4.3c. Fitting
the model in Eq. (4.13) we retrieve an effective detuning of δeff = 9.8(1) kHz. This value
is reasonably close to the experimental value and confirms our intuitive explanation. In
summary, the technique of RF dressing represents an effective tool to control the dynamics
of the tilted Fermi-Hubbard model in terms of the dressed states. The tilt difference
between them can be tuned continuously from the natural value of δ∆ = 11.0(2)%
to the best possible compensation δ∆ = 0.6(2)% at our maximal Rabi frequency of
Ω0 = 85(1) kHz. Moreover, the kinetic and interaction part of the Hamiltonian are
invariant under the transformation to the dressed basis, which largely simplifies the
experiment as we can immediately employ the existing Feshbach resonance between
the undressed states. Note that this fact is related to the SU(2)-invariance of the Fermi-
Hubbard model.

The implementation of the RF dressing field required a few changes to the experimental
setup because it is a high-power RF application as opposed to the hitherto state manip-
ulations in the dipole trap and the lattice. First, an additional helical RF antenna had
to be installed in the vicinity of the science cell. It is mounted along the x-axis and the
dipole and lattice beams propagate through the center of the antenna. The RF signal
with a frequency around 46 MHz is produced by an Agilent E4431B programmable digital
signal generator. An RF-switch (ZX80-DR230-S+, Mini-Circuits) controlled by the TTL
signal from the timing computer timely switches the RF field. The signal is then amplified
up to 40 W by a high-power RF-amplifier (LZY-22+, Mini-Circuits) and directly guided
to the antenna. In the experimental sequence we switch on the RF dressing in the deep
lattice 1 ms before the time evolution starts. This time was found to be sufficient to reach
steady conditions and Rabi oscillations between the original states have dephased due
to magnetic field fluctuations. The subsequent time evolution in the lattice then takes
place in terms of the dressed states. Immediately after time evolution we switch off the
dressing field abruptly such that the states get projected back on the undressed eigenstates
|↓〉 and |↑〉. This step is essential as we extract our observables in this basis. We also tested
a slow decrease of the dressing power to probe the adiabatic limit, but did not measure
any difference in the subsequent imbalance readout.
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The experimental observables employed in the thesis projects give information about
localization properties of the system and global charge distributions in the lattice. We pri-
marily resort to the density imbalance when investigating the dynamics of the many-body
system and deciding if it exhibits localization. Moreover, we record density distributions
of singly and doubly occupied sites in the lattice and infer global information on the
system’s response to external impacts such as harmonic confinement.

5.1. Density imbalance

The initial state in most of our experiments is a charge-density wave (CDW) with every
second lattice site occupied. Those are referred to as even sites while the initial empty
ones are referred to as odd. In a thermalizing system every memory of the initial state
is erased in the course of time evolution, reaching an equilibrium state with all sites
equally occupied (or rather obeying the chemical potential, but within a local density
approximation the sites can be regarded as equally occupied in thermal equilibrium).
If remnants of the highly non-thermal initial state persist after time evolution, this is a
clear signature of non-ergodicity, indicating the presence of localized states. The density
imbalance is defined as the occupation difference between even Ne and odd No lattice sites
normalized to the total atom number

I =
Ne − No

Ne + No
. (5.1)

Hence, the initial state has an imbalance of one and the equilibrium state with an equal
population on all lattice sites has a vanishing imbalance. Imperfections in the experiment
in the initial state preparation or readout lead to a slightly reduced initial imbalance
around I0 = 0.90(2), but this is compensated by a proper calibration method [117] such
that the experimental data should range from 0 to 1. This way it is easier to compare to
numerical simulations, which typically assume perfect initial state preparation.

One major advantage of the imbalance in connection with our CDW initial state is the
access to local microscopic properties of the final state although the experiment is not
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equipped with high-resolution tools such as single-site resolution in quantum-gas micro-
scopes. Given our ability to distinguish even and odd lattice sites no long-range particle
transport is required for a significant change of the observable. It can therefore give
information both on fast short-range processes as well as intrinsically slow dynamics.
Note that while the imbalance can clearly indicate localization in the case of a finite value,
a vanishing imbalance is no evidence for ergodicity. The non-interacting Stark model, for
instance, possesses distinct points where the imbalance is exactly zero, but the eigenstates
are localized for any finite tilt. Instead, this result is related to the particular functional
form of the eigenstates at this point in parameter space (see sec. 8.1 and [117]).

5.1.1. General method of initial state preparation and final state readout

As introduced in sec. 4.2, we have a short primary lattice and a long lattice with twice
the wavelength. Together they form the superlattice setup with a freely tunable phase
between both lattices. This is used to prepare the initial CDW ordered state as well as to
read out the imbalance of the final state after time evolution.

Initial steps of the lattice loading procedure are already explained above. After preparing
the atoms in the long lattice, the short lattice is ramped to 18Er,s with a phase of 0.44π

such that one obtains strongly tilted double wells and thereby ensures that only the lower
energy site is occupied. When the long lattice is ramped down, one ends up with the
CDW state in the short lattice. These steps are illustrated in Fig. 5.1a. The scattering length
during the loading sequence sets the number of doubly occupied sites (doublons). While
the formation of doublons is favored for attractive interactions, repulsive loading can
suppress their formation below the detection limit [126]. The sequence applies equally
to doublons such that doubly occupied sites in the long lattice are preserved in the final
CDW state.

The final state detection and imbalance extraction equally make use of the superlattice
setup, as depicted in Fig. 5.1b. Details on the bandmapping technique can be found in [199,
200] and the full calculations for our system are performed in [201], such that only the
most important points are briefly reviewed here. After freezing the dynamics at the end of
the time evolution by ramping up the primary lattice, the long lattice is added with the
same superlattice phase as before. Then, we increase the depth of the long lattice to 50Er,l .
In the band structure we thereby ramp across an avoided crossing of the second and third
band of the superlattice fast such that the atoms on odd sites are excited to the third band.
When the short lattice is now switched off, those atoms are projected onto the third band
of the long lattice while atoms on even sites remain in the ground band. In the end, all
lattices are switched off adiabatically and time-of-flight images reveal the momentum
space distribution in the lattice as shown in Fig. 5.2a. Counting the population in the
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Figure 5.1.: Schematic representation of the CDW preparation and imbalance readout: a Lattice
sequence for the creation of a CDW initial state in the short (primary) lattice. b State transfer and
bandmapping after time evolution to extract the density imbalance as explained in the text. Colors
indicate different spin components. The more transparent atom illustrates that the scheme equally
works with doublons in the initial state. They are preserved in both sequences.

different bands of the lattice then finally yields the imbalance in Eq. (5.1). The transfer to
the third band is necessary in order to spatially separate the bands in the raw images.

5.1.2. Spin-resolved readout

The imbalance returns information about the microscopic density distribution of the
entire atomic sample in the lattice. However, in particular when investigating spin-
dependent dynamics, it is advantageous to be capable to access the different spins sep-
arately. Typical setups with spin-dependent dynamics include alkaline-earth systems
in state-dependent optical lattices. These are for example investigated in the context
of optical lattice clocks [202] or quantum computation with optical qubits [203]. In our
experiment we can induce a spin-dependent tilt generated by an inhomogeneous magnetic
field (see sec. 8.2). The spins encoded in the magnetic hyperfine states thus experience a
different strength of the magnetic field gradient resulting in spin-dependent dynamical
properties.

While the bandmapping sequence is explained in the previous section, measuring the
spin-resolved imbalance requires two changes to the procedure. First, an inhomogeneous
magnetic field is applied during time of flight. The spins have different magnetic moments
µ = dE(B)/dB, where E(B) is the state energy in the external magnetic field. In the
case of atoms in the ground state manifold 42S1/2 it can be computed analytically via the
Breit-Rabi equation. The resulting force ~F = −∇(~µ · ~B) is therefore also spin-dependent
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Figure 5.2.: Raw images for imbalance measurement: a Bandmapping image after 8 ms time of
flight. The rectangles indicate the first and third band, the respective populations represent the
final distribution of particles among even and odd lattice sites (Ne and No) and yield the density
imbalance I . b Spin-resolved bandmapping images after spatial separation with the Stern-Gerlach
technique in an inhomogeneous magnetic field and 6.4 ms time-of-flight. The identification of both
spin components is represented by the rectangles. The individual imbalances are extracted in the
same manner as in a.

such that the two states separate spatially during time-of-flight. This is the famous Stern-
Gerlach technique. However, the difference in the magnetic moments of the states |↑〉
and |↓〉 is insufficient to generate a large enough spatial separation in the imaging area.
Therefore, we transfer the atoms in |↑〉 to the state |→〉 ≡ |F = 9/2, mF = −5/2〉 with a
radio-frequency Landau-Zener sweep prior to the band transfer and bandmapping. In this
context we make use of the Feshbach resonance between the states |↓〉 and |→〉 centered
around 224.2 G. Its non-interacting point is located at 231.6 G. We thus ramp the field to
this point and then exert the aforementioned sweep. Performing the bandmapping in the
absence of interactions is important to avoid interband oscillations after the band transfer.
Moreover, we found empirically that the data accuracy improves, primarily due to a better
quality of the raw images. With this additional state manipulation the spin states can be
separated spatially on the CCD camera as illustrated in the sample raw image in Fig. 5.2b.
The individual imbalance of both spins is then obtained in the same manner as in the
regular readout sequence.

5.2. Singlon and doublon imbalance

Not only can we modify the experimental sequence in order to gain information about
the spin-dependent dynamics, but it is also possible to separately access the imbalance,
and thus dynamical information, of singlons and doublons. This capability enables us to
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5.2. Singlon and doublon imbalance

measure a local observable to characterize the dynamics of singly and doubly occupied
sites and thus resolve physical hopping processes predicted by the respective Hamiltonian.
For the project presented in part IV this information is essential so as to gain precious
complementary insights on the state-dependent dynamics.

In the experiment we employ a subtractive method, similar to what was realized in a
previous project on non-equilibrium mass transport [126], to separate the singlon and
doublon imbalance. Note that in this case we do not rely on a spin-resolved readout. In
a first shot we take a regular image and detect the density imbalance I and total atom
number N. In a second shot with the same experimental settings we remove the doublons
with the doublon blast right before the band transfer and final state readout (see sec. 5.1).
This blast is a near-resonant light pulse that induces strong light-assisted collisions on
doubly occupied sites thus removing all doublons and keeping the singlons virtually
unaffected [126]. Hence, the second image contains information about the singlon number
NS (in the following we will use the singlon density nS = NS/N) and readily represents
the singlon imbalance IS. By subtracting the second from the first image we directly
retrieve the doublon density nD = 1− nS. Our definition of the doublon number ND is
such that it denotes the number of atoms bound in doublons, hence a single doublon
means that ND = 2. From there it is straightforward to show that the imbalance obeys the
simple relation

I = nSIS + nDID, (5.2)

which applies when the variation in the total atom number from shot to shot is small. In
the experiment those variations are typically on the order of 10 %, but by averaging over
multiple instances we justify this technique. The expression in Eq. (5.2) can be solved
for the doublon imbalance ID and its uncertainty ∆ID is computed via Gaussian error
propagation:

ID =
I − (1− nD)IS

nD

∆ID =

((
∆I
nD

)2

+

(
nD − 1

nD
∆IS

)2

+

( IS

nD
− I − (1− nD)IS

n2
D

)((
NS

N2 ∆N
)2

+

(
∆NS

N

)2
)1/2

2


1/2
(5.3)

Although it is rather uncommon in numerical works to extract the singlon and doublon
imbalance, these observables can readily be implemented in the numerical simulations
we employ in the respective project. For a given state they follow from the densities on a
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given lattice site i and are given by

I = 〈Î〉 = 1
N ∑

i
(−1)i〈n̂i〉

IS = 〈ÎS〉 =
∑i(−1)i (〈n̂i,↑(1− n̂i,↓)〉+ 〈n̂i,↓(1− n̂i,↑)〉

)
∑i
(
〈n̂i,↑(1− n̂i,↓)〉+ 〈n̂i,↓(1− n̂i,↑)〉

)
ID = 〈ÎD〉 = ∑i(−1)i〈n̂i,↑n̂i,↓〉

∑i〈n̂i,↑n̂i,↓)〉

(5.4)

with the sum running over all lattice sites.

This newly developed technique within the framework of this thesis represents one key
ingredient for the investigations of part IV without the need for single-site resolution
or other means of access to local observables such as correlation functions. Moreover,
it provides additional information on the dynamics governed by a given Hamiltonian
depending on the charge density of a given state.

5.3. In-situ density distributions

Contrary to the imbalance, which is a local observable, we also access global density
distributions in the lattice via in-situ absorption imaging. These are used to characterize
the distributions of singlons and doublons in the initial state as a function of various
loading parameters. Given that our imaging resolution is limited to about 2.2 µm ' 8.3
primary lattice sites per pixel on the CCD chip [126], we are at least able to investigate
global particle distributions, though without access to local density patterns. Instead,
it is possible to separate singly from doubly occupied lattice sites via a series of state
manipulations with RF and MW operations. The newly developed scheme is carried out
at the non-interacting point of the Feshbach resonance between the states |↑〉 and |↓〉 and
comprises eight steps in total including the imaging sequence. The entire procedure is also
represented schematically in Fig. 5.3 highlighting the relevant atomic states in the ground
state hyperfine manifolds. The operations are exclusively performed on the singlons
since we found that changing the doublon interaction diabatically can lead to unwanted
losses.

In the scheme we exploit that singlons and doublons can be distinguished spectroscopically
via an interaction shift. Take for instance a doublon |↑↓〉 which is non-interacting at the
set magnetic field. When sending a pulse exciting the state |↑〉 to |→〉 the new interaction
strength is governed by the Feshbach resonance for the states |↓〉 ↔ |→〉. With these
particular settings the doublon is now strongly repulsively interacting with a scattering
length of 262a0 such that one has to overcome the interaction shift in addition to the
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Figure 5.3.: Singlon and doublon imaging scheme: This schematic figure illustrates the state
operations with RF (red and blue arrows) and MW (green arrows) fields employed to image
singlons and doublons separately. The colored spheres represent the initial spin states and the
purple groups are opposite spins bound in doublons. RF sweeps and pulses operate in the same
hyperfine manifold while MW sweeps excite the atoms to the F = 7/2-manifold. Except of the
second imaging step, all operations are performed at the non-interacting point of the Feshbach
resonance at 209.1(1)G. The inset shows an experimental RF spectrum to illustrate the interaction
shift between singlons and doublons relevant for steps 1 and 5. Two distinct peaks at the singlon
νS and doublon νD resonance emerge which can be clearly resolved. From the relative height of
the peak we extract a doublon fraction of 0.46(2). All data points are averaged thrice with the error
bars showing the standard error of the mean and the fitting is done with a composite sinc-function.

regular energy difference between the states in the external magnetic field. This shift
depends on the difference in the scattering length as well as the particular lattice depths
(follows from Eq. (4.3)). In our case with lattice depths Vp = 18Er and V⊥ = 36Er the shift
amounts to about 32 kHz and is therefore larger than the resolution of the RF-pulse used
to separate them (17 kHz). A sufficient resolution is essential to separate the resonances as
shown in the inset in Fig. 5.3. The visible peaks are resonances of the RF-excitation from
|↑〉 to |→〉. While the singlon resonance νS is not affected, the doublon resonance νD is
offset by the interaction shift as explained above. The following list explains the scheme
to image singlons and doublons exploiting the described interaction shift. All atoms are
initially in the state |F = 9/2, mF = −9/2〉 or |F = 9/2, mF = −7/2〉, either as singlon or
bound in a doublon.

1. First, singlons in the |mF = −7/2〉-state are excited to |mF = −5/2〉 with an RF
π-pulse. This way we only excite singlons while doublons in the same state are
sufficiently separated via the interaction shift.
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2. The excited singlons in the mF = −5/2-state are transferred to |F = 7/2, mF = −3/2〉
in the other hyperfine manifold with a MW sweep. Due to magnetic field fluctua-
tions in the experiment and the enhanced sensitivity of the transition frequency for
an MW transition, we cannot perform a pulse with sufficient fidelity here.

3. An RF sweep swaps the occupations in the F = 9/2 ground state. This way the
remaining singlons are transferred to mF = −7/2 and the doublons are practically
unaffected. Since the bandwidth of the sweep is much larger than the interaction
shift, singlons and doublons are equally transferred.

4. An RF sweep clears the currently occupied level |F = 7/2, mF = −3/2〉 by sweeping
the singlons to mF = −1/2. Otherwise the second MW sweep in step 6 would bring
them back to the F = 9/2-manifold.

5. Repeat step 1.

6. Repeat step 2.

After this series of pulses and sweeps the singlons are transferred into the F = 7/2
hyperfine manifold while the doublons remain in their original states. For the imaging
part of the sequence we send two light pulses which image the particle distribution via
absorption imaging. Thereby we gain independent information on the singlon an doublon
distribution as explained in the following.

1. In the presence of the magnetic field we shine in light resonant with the closed-
cycling transition |F = 9/2, mF = −9/2〉 → |F = 11/2, mF = −11/2〉with the latter
in the 4P3/2 excited state. Hence, we only detect one of the doublon components.
The other atoms are invisible for two reasons. First, the imaging laser is detuned
by about 30 MHz with respect to the respective transition. Second, starting from
mF = −7/2 there is no closed-cycling transition such that the atoms will ultimately
be lost from the cycle ending up in a dark state. Therefore, this method is not useful
for a determination of the doublon fraction, but since the spin components are
distributed equally across the lattice, this method is a viable technique to positively
image the doublon distribution.

2. Between the first and second imaging pulse the magnetic field is ramped down.
Since the doublons have been removed during the imaging process, there are only
singlons left in the lattice and thus molecule formation upon crossing the Feshbach
resonance is not an issue. Moreover, the laser detuning is changed so as to be
on resonance in the absence of a magnetic field. Consequently, the second image
displays the singlon distribution.
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Figure 5.4.: In-situ distribution of singlons and doublons: Exemplary raw data obtained with
the imaging scheme explained in this section. Top: Doublon (left) and singlon (right) density
profile in the lattice. The colorbar represents the optical density in arbitrary units, but on the same
scale for both panels. Bottom: Integrated profiles along the vertical direction. The dashed lines are
Gaussian fits to the profile used to extract the cloud width.

A sample raw image obtained with this technique is shown in Fig. 5.4. The data can be
used to evaluate the initial state distribution of singly and doubly occupied sites in the
lattice as a function of the loading parameters and retrieve the cloud size from fitting a
Gaussian distribution. This analysis was performed for the project reported in part IV and
is evaluated in detail in sec. 9.2.2. The total fidelity of the entire sequence is limited by
the magnetic field stability during the π-pulses to about 80 %, the sweeps have a nearly
perfect transfer probability. This results in a small scatter of the recorded atom numbers.
Therefore, we cannot use this scheme reliably to measure the doublon imbalance and
instead resort to the indirect method explained above.
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Part III.

Ultracold atoms in quasiperiodic
potentials

A tight-binding lattice model with a quasiperiodic potential, the Aubry-André model,
features a single-particle localization transition for all eigenstates and is known to be
many-body localized for sufficiently strong detuning. These facts are well-established by
numerical investigations and experiments. However, beyond the tight-binding limit a
single-particle mobility edge (SPME) emerges such that localized and extended eigenstates
coexist in different regions of the spectrum. The corresponding many-body equivalent
- a many-body mobility edge - has been observed numerically in small systems, but its
existence in the thermodynamic limit is still a highly debated topic. Here we describe
our implementation of a lattice model with a single-particle mobility edge and explore its
fate upon the addition of (weak) local interactions. We thereby want to investigate two
central questions in this context: Does MBL exist in a model that features an SPME in its
non-interacting limit? Does an SPME give rise to a many-body intermediate phase that
features a coexistence of localized and extended many-body states?
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6. Single-particle mobility edge in the
generalized Aubry-André model

6.1. The generalized Aubry-André model

In chapter 3.1.1 the central properties of single-particle mobility edges as well as key mod-
els in theory and numerics were presented. However, the generalized Aubry-André (GAA)
model introduced in Eq. (3.1) has no obvious significant experimental relevance apart from
few fine-tuned exceptions, while the incommensurate lattice model in Eq. (2.2) results
from the superposition of two optical lattices with an irrational wavelength ratio, which is
readily implementable in cold atom experiments and in other suitable platforms [28, 29,
49, 204].

As explained in sec. 2.1.2, this model can be mapped to the AA model in the tight-binding
limit of infinite primary lattice depth. However, when the tight-binding approximation
breaks down, for example in the situation of a shallow primary lattice, additional con-
tinuous degrees of freedom have to be taken into account. In order to be able to derive
an effective lattice Hamiltonian regardless, a Wegner flow approach [120, 132, 205] can
be employed, yielding the Hamiltonian in Eq. (6.1) including corrections up to second
order:

ĤGAA = ĤAA + J1 ∑
i,σ

cos
[

2πβ

(
j +

1
2

)
+ φ

]
(ĉ†

i+1,σ ĉi,σ + h.c.)

− J2 ∑
i,σ
(ĉ†

i+2,σ ĉi,σ + h.c.)

+ ∆′∑
i,σ

cos(4πβi + 2φ)n̂i,σ

= ĤAA + Ĥ′.

(6.1)

This lattice Hamiltonian resulting from a bichromatic potential will be referred to as
GAA model in the following. The corrections to the tight-binding description of HAA

(Eq. 2.3) are a correction to the nearest-neighbor hopping amplitude J1 caused by the
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detuning lattice, the introduction of second-order or next-nearest-neighbor tunneling with
amplitude J2 as well as a correction of the on-site potential with strength ∆′. Typical values
of the parameters for realistic experimental situations are listed in appendix A. These
additional terms are vital to capture the mobility edge occurring in this model as will
be shown by numerical simulations in this chapter. The appearance of an SPME follows
from the violation of the self-duality of the model and its explicit non-nearest neighbor
nature [132].

One commonly employed way to study the localization properties of such models is to
compute the normalized (NPR) and inverse participation ratio (IPR) as defined in Eq. (6.2)
of all eigenstates in the lowest band.

IPR(i) =
∑m |u(i)

m |4(
∑m |u(i)

m |2
)2 , NPR(i) =

(
N ∑

m
|u(i)

m |4
)−1

(6.2)

Here the sum runs over all lattice sites m and u(i)
m denotes the i-th eigenstate. For a perfectly

extended state that has the same occupation probability on every site |um| = 1/
√

N for
system size N, the IPR becomes ∑m |1/

√
N|4 = N/N2 = 1/N −−−→

N→∞
0 (the denominator

is a normalization factor equal to one for a normalized state). In the thermodynamic limit,
this expression vanishes. On the other hand, if one considers a delta-localized state on site
k (|um| = δm,k), the IPR is ∑m δm,k = 1. It is even possible to draw a connection between
the IPR and the imbalance: When ignoring the normalization factor the imbalance can
be expressed as I = ∑m

(
|u2m|2 − |u2m+1|2

)
distinguishing even and odd lattice sites. For

an extended states it attains a vanishing value since even and odd lattice sites are equally
occupied. On the other hand, an initial charge density wave state that retains its memory
evidently adopts a positive value.

Conversely, the NPR remains finite for spatially extended states and goes to zero for
localized states. This can be seen equally easily if we consider the same limiting case as

for the IPR above. For a spatially extended state the NPR becomes
(

N ∑m |1/
√

N|4
)−1

=(
N · N/N2)−1

= 1. And for the maximally localized state we instead have
(

N ∑m |δm,k|4
)−1

=

1/N −−−→
N→∞

0.

By averaging over all eigenstates across the entire spectrum at a certain detuning strength
the two quantities yield complementary information since they are sensitive to either
localized or extended states. Thus, they reveal the existence of a single-particle intermedi-
ate phase when both observables are finite and indicate the coexistence of localized and
extended states. This is explained in full detail in the following section.
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6.2. Single-particle simulations

The properties of the non-interacting generalized Aubry-André model can be studied
directly using ED simulations on large system sizes. From a direct comparison to the
AA model we can then identify the major differences between the two models, which
are relevant for the project. We implement the Hamiltonians from Eqs. (6.1) and (2.3) in
the number basis and perform an exact diagonalization with a system size of L = 369
sites. This system size was also employed in [119] and represents a good compromise
between finite-size effects and computation time. In order to study the impact of higher
orders in the Hamiltonian directly, we choose Vp = 4Er for both models and manually set
the higher order terms to zero for the AA model while they are taken into account with
the correct values relevant to the experiment for the GAA model (see appendix A). The
appearance of a single-particle mobility edge in the GAA model or its relatives [132, 206]
can immediately be identified from IPR and NPR (Eq. 6.2). This is depicted in Fig. 6.1a
where the participation ratios are plotted as a function of the detuning strength Vd as
defined in Eq. (2.2). The single-particle localization point of the AA model is around
Vd = 0.5Er as indicated by the vertical gray line. Within the numerical accuracy the IPR
becomes finite at the same point the NPR goes to zero. This implies that all states become
localized at the same detuning strength. Contrarily, in the GAA model there is a broad
range where bot the IPR and NPR are finite, meaning that localized and delocalized states
coexist. This is precisely the situation when a mobility edge is present. Note that the
localization already sets in below the transition point of the AA model.

Another insightful observable to highlight the differences between both models is to in-
vestigate the eigenstates directly as a function of their energy. In the following we perform
this analysis for a constant detuning strength of Vd = 0.6Er. In Fig. 6.1c and d we show
the logarithm of the real-space probability distribution 〈ψ|ψ〉 = |ψ|2 of every eigenstate
|ψ〉 as a function of its energy. As expected, the AA model shown in panel d exhibits a
homogeneous behavior of its eigenstates without any sign of an energy dependence. This
is in agreement with the result from panel a which implies that all eigenstates localize
for Vd > 0.5Er irrespective of their energy. The situation is vastly different for the GAA
model in panel c. Here we see a strong dependence of the localization characteristics
across the energy spectrum. While the low-energy states are strongly localized with a
localization length that is shorter than in the AA model respectively, the high-energy
states are delocalized. This immediately follows from the approximately homogeneous
density distribution across the entire system. Between these limits the localization length
further exhibits an energy dependence, a context that is studied in more detail in Fig. 6.1b.
It is known that the eigenstates of both models are exponentially localized according to
|ψ(x)| ∝ exp(−|x− x0|/ζ)) with center position x0 and localization length ζ. We fit the
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Figure 6.1.: Numerical properties of the GAA model: a IPR and NPR of the AA (dashed lines)
and GAA model (solid lines). The dashed vertical line represents the single-particle localization
point in the AA model. b Energy-dependent localization length ζ(ε) in lattice sites d for the GAA
and AA model. The horizontal dashed line is the analytical prediction for the AA model and the
vertical line marks the approximate position of the mobility edge in the GAA model. c Eigenstates
of the GAA model obtained from ED on 369 lattice sites. The color code represents the occupation
probability on a logarithmic scale. A significant dependence of the localization length on the
energy and the mobility edge are clearly visible. d The same situation for the AA model. The
localization length is independent of the energy since the AA model does not possess a mobility
edge. For all simulations in panels b-d a detuning strength of 0.6Er was used.

numerically obtained eigenstates with this analytical function within a certain window
around the center position to obtain the localization length. In order to weigh all points
equally, the fitting is performed on a logarithmic scale. The scatter in the data is caused by
boundary effects. In the AA model all states have about the same localization length and
the numerically obtained value matches the analytical prediction [24] ζ(∆) = 1/ ln(∆/2J)
impeccably, as indicated by the horizontal dashed line (Vd = 0.6 corresponds to ∆/J ' 2.4).
The GAA model, on the other hand, possesses eigenstates whose localization length ζ does
depend on the energy. The strongest dependence occurs in the center of the band. At high
enough energy the localization length diverges and the fit fails. This is the position of the
mobility edge in the spectrum, also indicated by the vertical line in Fig. 6.1b. The location
of the mobility edge in this particular situation is around ε = 0.87J, but the location
depends on the strength of the detuning. For strong enough detuning the mobility edge
will finally disappear and the entire system will be localized.

While the existence of an SPME is evident from the numerical analysis presented in Fig. 6.1,
we further have to investigate how it can be identified in the experiment. While previous
experiments for example demonstrated the appearance of an SPME in the 3D Anderson
model via a measurement of the expanding density distribution, we investigate how an
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Figure 6.2.: Single-particle time traces: ED simulations of the non-interacting AA model (green)
and GAA model (blue). The detuning values given in the legend are chosen such that the respective
GAA model is in the localized, intermediate and extended phase. The inset shows the time-
averaged imbalance Ī of the main panel. In this case the main difference between both models for
intermediate detuning in terms of a slightly difference steady-state imbalance becomes visible.

SPME could potentially be seen in the imbalance. For this purpose we simulate time
traces of the non-interacting systems in the three regimes of the GAA model, namely
extended, localized and intermediate starting from a charge-density wave initial state and
compare them to the respective traces in the AA model. We use the same parameters as in
Fig. 6.1 meaning that we only consider the leading terms in the AA model and use the
parameters from appendix A for the GAA model. Since these are single-particle systems,
the simulations can be performed by exact diagonalization (ED) on large system sizes. In
this case we choose L = 100 sites and simulate the time traces in steps of one tunneling
time.

All traces are averaged over ten initial state realizations and eight phases of the detuning
potential. The lowest detuning value ∆/J0 = 1.5 is below the single-particle localization
transition and thus in the fully extended phase. The corresponding time traces thus drop
to zero within the first few tunneling times and remain there for the remaining evolution.
The opposite happens for the largest detuning ∆/J0 where the imbalance remains finite
around 0.3 throughout. In the inset of Fig. 6.2 we compute the time-averaged imbalance
Ī = 1

T

� T
0 I(t)dt that removes the remaining oscillations in the original time traces and

better reveals the average value. Herein we observe that in both the extended and localized
phase both models behave the same way and in particular saturate to the same imbalance
plateau. Since all single-particle states are either extended or localized in both models this
behavior is actually plausible. Conversely, for the intermediate detuning value ∆/J0 = 2.5
the initial conditions encompass a mixture of localized and extended states, so the fact that
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6. Single-particle mobility edge in the generalized Aubry-André model

the imbalance remains finite is caused by the former. We further observe that the steady-
state value in the GAA model is slightly higher, a result that is highly surprising since
one would expect that the admixture of extended single-particle states should decrease
the imbalance. Though, this outcome is in agreement with the behavior of the IPR in
Fig. 6.1a that is higher in the GAA model and thus explains the larger imbalance. One
can understand this result by considering the CDW initial state as a superposition of
eigenstates |φi〉 according to |ΨCDW〉 = ∑i ci |φi〉 with coefficients ci = 〈φi|ΨCDW〉. In this
notation the imbalance can be expressed as Ī = ∑i |ci|2 · I (|φi〉), which is a weighted
average of the imbalance of each eigenstate. Strongly localized states with large imbalance
now have a large overlap with the initial CDW initial state, while extended ones have a
much weaker contribution. Hence, the localized low-energy states dominate and give rise
to a higher imbalance in the GAA model despite the presence of extended states. However,
the traces are hardly distinguishable, and potential small differences that hint towards
the existence of an single-particle intermediate phase are too weak to be resolved within
the experimental accuracy. Therefore, the imbalance alone is not eligible to be used as
single observable in an experiment designed to investigate the intermediate phase in the
GAA model. Instead, at least a second complementary observable is required as will be
explained in the following section 6.3.

6.3. Previous experiment and the single-particle mobility egde in
our system

A previous work carried out at our experiment realized the Hamiltonian from Eq. (6.1)
and investigated the appearing single-particle mobility edge thoroughly [119, 120]. Those
results are briefly summarized here as they are of major importance for the new results
presented in chapter 7 of this thesis. In these experiments, a high-temperature initial
state is produced via the CDW order and a sudden quantum quench. This way we can
ensure that eigenstates throughout the entire spectrum of the first band are occupied, such
that the existence of an SPME would be observed as a coexistence between localized and
extended single-particle states. In analogy to the complementary numerical observables
IPR and NPR the experiment also employed two observables, one sensitive to localized
states and the other sensitive to extended states present in the system. The choice of two
complementary observables is essential as the imbalance alone cannot reliably identify the
aspired coexistence of localized and extended states. Simulating an exemplary time trace
of the GAA and AA model, we find that the imbalance is indistinguishable within the
experimental uncertainty and thus fails to identify the intermediate regime (see Fig. 6.2).
The imbalance I returns positive values as soon as the first single-particle states localize.
Contrarily, the expansion of the cloud E , defined as the renormalized difference of the
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Figure 6.3.: Experimental results on the incommensurate lattice model: a Imbalance and expan-
sion as a function of the detuning lattice depth for a primary lattice depth of 4Er. The solid lines are
heuristic fits to the data in order to extract the critical point and the gray shaded region marks the
detuning lattice depths where localized and extended states coexist. b Extracted phase boundaries
of the intermediate phase from the data in panel a as presented in [119, 120]. Diamonds denote the
numerical results including experimental imperfections of tube averaging. The inset shows the
numerical results for the ideal system. Figure adapted from [120] with permission.

cloud size before and after time evolution, settles to zero as soon as all single-particle states
are fully localized. Hence, if both types coexist in the intermediate region, both observables
are found to be finite. This precisely happens for a certain range of detuning lattice depths
and is shown in Fig. 6.3a for the case of 4Er primary lattice depth. The experiment is able to
identify a wide range of detuning strengths where both observables are finite, indicated by
the gray shaded region. The transition points VI and VE for both observables are extracted
via heuristic fits to the experimental data. By repeating this measurement for various
primary lattice depths and extracting the critical points, a phase diagram can be mapped
out as presented in Fig. 6.3b. The obtained results provide evidence for the emergence of
three different single-particle phases for shallow primary lattice depths. At weak detuning
all states are extended while sufficiently strong detuning localizes all eigenstates of the
system. The appearance of an intermediate phase is elucidated above. Upon increasing Vp

the tight-binding limit is approached and the width of the intermediate phase decreases
continuously until it vanishes in the AA model. This trend is even more pronounced
in the numerical calculation shown in the inset. From these results another observation
can be drawn that all eigenstates of the underlying model become fully localized when
the detuning strength overcomes the bandwidth of the first band [132]. At 8Er primary
lattice depth this is the case for Vp ≥ 0.24Er and for 4Er at Vp ≥ 0.65Er respectively. The
experimental data is in excellent agreement with numerical results. In the investigation of
the interacting version of the model we rely on these single-particle results as they serve
as an important reference for the non-interacting limit in our system.
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7. Many-body intermediate phase and MBL
in a model with a single-particle mobility
edge

7.1. Current research on many-body mobility edges

As already introduced in sec. 3.1.2, it is important to distinguish two different types of
mobility edges. The first type is a purely interaction-induced mobility edge as it was
observed numerically in the randomly disordered 1D Heisenberg spin chain and related
works (see sec. 3.1.2), where the corresponding non-interacting model is fully localized.
The consensus states that the MBL phase transition is energy-dependent until at sufficiently
large disorder the system is fully many-body localized even at infinite temperature. The
second type is the more general feature of a many-body intermediate phase (MBIP)
originating from a single-particle mobility edge upon the addition of interactions. It is
therefore the main goal to investigate the fate of such an intermediate phase composed of
extended and localized states when turning on local interactions. This question is usually
approached perturbatively in numerics and analytics such that most works on this topic
explore the regime of weak interactions on the order of the tunneling. In this project we
exclusively focus on the latter type, an MBIP.

Up to this point the numerous numerical works on the issue of many-body mobility
edges are not fully conclusive due to severe restrictions in the available systems sizes.
There is thus no definite information about the thermodynamic limit. In particular, it is
a viable option that many-body mobility edges are only a finite-size artifact and indeed
there are opposing research results: on the one hand, published simulations exclude
the existence of many-body mobility edges and an intermediate phase in general [67,
146]. Their main argument is based on hot thermal bubbles in an otherwise localized
many-body system. These bubbles spread out resonantly and will ultimately thermalize
the entire system, ruling out the existence of a mobility edge as well as an energy-driven
MBL transition. A complementary viewpoint states that interactions lead to a net energy
transfer from localized to extended states and thus delocalize any initial state [207]. On
the other hand, recently, a new numerical investigation of a hard-core Bose-Hubbard
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model with a many-body mobility edge in the particle density [68] found long-lived
localization up to 500 tunneling times and put forward an argumentation that is based on
the restricted mobility of thermal bubbles. Though, these results also hold for a relatively
small system and intermediate times only and it is therefore unknown what to expect in
the thermodynamic limit. Further efforts from theory and experiment are required to shed
light on this interesting question and it remained an open debate after the publication of
our work [208] reported in this chapter.

Analogous limitations apply to the important question what exactly happens when in-
teractions are added to a single-particle intermediate phase. The numerical works on
this issue focusing on the specific case of a quasiperiodic potential [172, 173, 209] as in
Eq. (3.1) produced rather inconclusive results due to finite-size effects. Though, those
publications commonly conclude that even in the many-body system there emerges a new
phase which is neither thermal nor many-body localized. Given this paradox, the phase
was termed non-ergodic metal (or partially-extended) in order to emphasize the mixed
nature of the eigenstates in this regime. On the one hand, the term metal insinuates a
finite DC conductivity and thus particle transport, which is a key requirement for thermal
systems that is absent in localized systems. This fact is represented by a vanishing DC
conductivity in MBL systems [18–20] even at infinite temperature. They are therefore
perfect insulators at all energies, which discriminates them from band insulators. Those
only have strictly zero conductivity at zero temperature, otherwise thermal excitations to
higher bands lead to a finite conductivity. On the other hand, non-ergodic implies that the
system does not thermalize either in a sense that it violates ETH. The works cited above
consider the eigenstate entanglement entropy as a precursor for non-ergodicity. Across
the transition from a delocalized to a localized phase the entanglement entropy scaling
changes from volume-law to area-law and by computing this quantity for different system
sizes as a function of the energy, a critical energy EL can be found above which the entropy
scaling changes and the eigenstates become extended. This energy is therefore deemed to
be the mobility edge as it separates localized and extended eigenstates. As complementary
observable the mentioned theoretical works make use of the particle number fluctuations
of states nearby in energy, defined as

O(E) =
L/2

∑
j=1
〈ΨE| n̂j |ΨE〉 (7.1)

with a many-body eigenstate |ΨE〉. Large fluctuations of this quantity O(E) are a signature
for non-thermal behavior and the violation of ETH. Computing these fluctuations as a
function of energy, a critical energy ET is identified as the energy below which the variance
of the fluctuations increases drastically, characteristic for non-thermal behavior. The
energies ET and EL were found to be unequal with EL < ET indicating that the localization
and thermalization transition point might not coincide. Those results point towards the
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7.1. Current research on many-body mobility edges

Observable Thermal Non-ergodic metal MBL
Eigenstate entan-
glement entropy

Volume-law Volume-law, but non-
thermal

Area-law

NPR Finite ∝ 1/Vγ
H (0 < γ < 1) ∝ 1/VH

Fluctuations O(E) small O(E) large O(E) large

Table 7.1.: Overview of numerical characteristics of the non-ergodic metal: This table summa-
rizes the numerically found properties of the extended, partially-extended and localized phases in
the quasiperiodic model as described in the main text.

existence of an intermediate phase with extended, non-ergodic eigenstates. In order to
distinguish this intermediate phase from the established thermal and MBL phases, a series
of observables are studied in [173]. They investigated the characteristic scaling of the
entanglement entropy, normalized participation ratio and fluctuations, well-established
observables in the context of thermalization and localization. The numerically obtained
properties of the non-ergodic metal are summarized in Tab. 7.1. However, it should be
emphasized that these results were carried out with exact diagonalization and system sizes
L ≤ 16 bear finite-size limitations that limit the significance of these findings although a
recent work employing machine learning claimed to have found the non-ergodic metal
phase with high confidence [210].

A many-body intermediate phase was also found in different settings, but with very
similar results such that it is useful to mention them here. Hyatt et al. [211] consider the
mechanism of coupling a localized system to a bath in a ladder model where the system
and the bath have the same number of degrees of freedom (which distinguishes it from
open system effects discussed in sec. 2.4). This assumption is comparable to the situation
in a many-body mobility edge where localized and extended many-body states coexist
at different energies and the latter may serve as a bath in the presence of interactions.
While in such a setting the system usually tends to thermal equilibrium, certain parameter
regimes can be found which violate the ETH, especially when the coupling between system
and bath is weak. This observation is similar to the many-body localization proximity
effect [58], which states that if a strongly localized subsystem is coupled to a weak bath, it
can lead to localization of the entire system. Moreover, in a similar model of a two-legged
ladder [212] reported on a new phase of matter called many-body mobility emulsion,
which features extended and localized states at the same energy, so there is no mobility
edge. Hence, there are still many open questions to be explored in the future.

In order to gain additional insights into this complex subject, we perform an experiment
to search for a many-body intermediate phase starting from the single-particle mobility
edge in the generalized Aubry-André model. With approximately 250 lattice sites, our
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7. Many-body intermediate phase and MBL in a model with a single-particle mobility edge

experimental system is significantly larger than those typically studied in numerical
investigation. Hence, finite-size effects should be significantly weaker and thus we can
provide valuable complementary input, at least on the available observation times.

7.2. Experimental investigation of the non-ergodic metal phase

7.2.1. Experimental goals

Having established the notions of a single-particle mobility edge and many-body lo-
calization as well as the current theoretical understanding of a potential many-body
intermediate phase, we move on to the new findings of this project. In a joint work of
experiment and numerics we tackle two main questions that naturally arise when a system
with a single-particle mobility edge coupled by interactions is considered. These are also
depicted in the schematic heuristic phase diagram of the GAA model in Fig. 7.1:

1. Does MBL exist in a model which possesses a single-particle mobility edge? This
question has been addressed in numerical studies predicting MBL in some models,
but not as a generic feature [170, 213].

2. Does an SPIP survive finite interactions to become a many-body intermediate phase
like a non-ergodic metal?

S.P. Extended SPIP S.P. Localized

BA

MBLETH

U

∆

MBIP?

Figure 7.1.: Schematic conjectured phase diagram of the GAA model: The non-interacting GAA
model has three different phases depending on the detuning strength (extended, intermediate and
localized). The parameter ∆ on the horizontal axis is the detuning strength and U is the Hubbard
on-site interaction. The phase boundaries are indicated by A and B. The situation in the interacting
case is mostly unknown, although an MBL phase is expected in a regime where all single-particle
states are localized. Especially the existence of an MBIP (shaded in gray) is highly debated.

Experimentally, both models are accessible such that we can directly compare the dynamics
of both interacting models whose single-particle limits either exhibit an SPME (GAA
model) or not (AA model). We can detect differences in the dynamics and therefrom infer
the potential existence of a many-body intermediate phase. This is the main strategy of
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the project described in this thesis. We thereby make use of the fact that the AA model has
been studied very thoroughly both in experiment and theory such that its phase diagram
is supposedly well understood. Moreover, it was shown that our experiment realizes the
AA model very closely, both in the single-particle case [29] as well as in the interacting
system as inferred from multiple projects comparing it to numerical simulations [40, 48].

7.2.2. Experimental techniques

The general lattice setup was already explained in sec. 4.2, here only the specific details for
this project are reported. The light for the detuning lattice is generated by the same laser as
the orthogonal lattices and thus has the wavelength λd = 738 nm. The incommensurability
between the primary and detuning lattice is β = λp/λd ' 0.721. This value is also used in
the numerical simulations below as well as in the non-interacting computations presented
in sec. 6.2. Further, disorder averaging is implemented via changes to the detuning phase
φ by setting different frequencies of the detuning lattice for individual runs. The lattice
loading is performed with strong repulsive interactions at a background scattering length
of 140a0, suppressing the doublon fraction in the initial state typically to 5− 10 %, close to
our detection limit. Right before the time evolution, while the long lattice is switched off,
the detuning lattice is ramped diabatically to the desired value within 10 µs. This timescale
is much shorter than any dynamics in the lattice such that it can be regarded as a quench
and hence the application of "quenched disorder" is experimentally justified. Quenching
the primary from 18Ers during the initial state preparation to the set value for the time
evolution initiates the dynamics. After time evolution the scheme is repeated in inverse
order. After ramping the short lattice back to 18Ers, the detuning lattice is switched off
fast and at the same time the long lattice ramps up to 20Erl , creating strongly tilted double
wells together with the primary lattice in order to freeze the dynamics. The remaining
sequence is as described in sec. 5.1.1 including bandmapping and imbalance extraction.

In the experiment we can freely choose the primary lattice depth Vp and detuning lattice
depth Vd during time evolution. This combination simultaneously sets the tight-binding
parameters in first and second order as introduced in Eq. (6.1). While we focus on two
different values of the primary lattice, we freely tune the detuning lattice depth between
the thermal and MBL phase. The correspondence between the pairs (Vp, Vd) and the
tight-binding parameters J0, J1, J2, ∆ and ∆′ is visualized in Fig. 7.2 and further explained
and tabulated in appendix A. In order to compare both models directly, we typically use
the tight-binding parameters as multiples of the nearest-neighbor tunneling element J0 in
the following.
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Primary lattice (532 nm)

Detuning lattice (738 nm)

Quasiperiodic latticeVp = 0.3 ... 1.9 Er

Vp = 4 & 8 Er

U
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J2

Δ
+ Δ’

J0, J1

Figure 7.2.: Lattice setup in the MBIP experiment: Along the x-axis a primary lattice with wave-
length λp = 532 nm and a detuning lattice with λp = 738 nm are superimposed to create the
quasiperiodic potential. The depths of the lattices are given and the figure on the right illustrates
the first- and second-order tight-binding parameters of the GAA-Hamiltonian in Eq. (6.1).

7.2.3. MBL in a system with an SPME

As opposed to previous works on the Aubry-André model on this experiment [29, 48, 60,
61], we realize the GAA model by a lower primary lattice depth [119]. This way higher
orders in the Hamiltonian in eq. (6.1), in particular the second order tunneling J2, become
more relevant which leads to the appearance of an SPME in the single-particle spectrum
as explained in section 3.1.1. Our first goal in this part is to explore if MBL is present
in this system at all and if so, at which parameters it occurs. The general issue of MBL
in the presence of an SPIP has been explored before with partially inconclusive results.
Several works [170, 173, 213] agree that a spinless fermion model with the incommensurate
detuning potential from Eq. (3.1) exhibits an MBL phase for sufficiently strong detuning
in the infinite temperature limit. Such a conclusion is based on ED simulations for the
entanglement entropy and level spacing statistics which exhibit the characteristic MBL
properties (sec. 2.2.1). However, this observation is no general statement and strongly
depends on the particular form of the detuning term. Other quasiperiodic models with
modified on-site potentials were found to yield observables in agreement with thermal
expectations in the presence of interactions. Therefore, a definite statement is missing
and current studies also suffer from strong finite-size effects although it was attempted
to relate properties of the non-interacting spectrum to the many-body system [213]. In
particular, information about the thermodynamic limit is not accessible with numerics
alone, hence we try to contribute with our experimental system that is about an order of
magnitude larger than typical numerical systems in ED.

The experimental identification and characterization of a potential MBL phase will be
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carried out in a similar fashion as was already employed to detect critical dynamics near
the phase transition of the AA model [48]. For this purpose we measure imbalance time
traces after a quantum quench from an out-of-equilibrium CDW initial state for various
detuning strengths ∆/J0 (or Vd as defined in the continuum model in Eq. (2.2)). The
experimental data is supported by exact diagonalization (ED) computations on up to 16
lattice sites assuming spinful (spin-1/2) fermions with on-site interactions in order to
model the experiment as closely as possible. The initial state has a filling of 1/4 given
the CDW order and the final numerics are averaged over different realizations of the
spin configuration. In the experiment we assume a random spin order and automatically
average over those in our detection sequence.

First, we focus on the regime of weak interactions, because this is the preferred setting
in most theoretical investigations searching for MBL and an MBIP [63, 132, 169–171,
213], typically in random-field Heisenberg spin chains or spinless fermions with nearest
neighbor interactions. It is believed that the weakly interacting regime is most auspicious
for the observation of an MBIP because the interactions can be treated as a perturbation,
simplifying the calculations, and the properties of the non-interacting system are most
likely to survive. In this project we thus primarily work at an interaction strength of
U/J0 = 1. The time traces for the GAA model are recorded between 10τ and 100τ while
the traces of the AA model span the range from 8τ to 40τ, the total observation time
in both cases is roughly equal (up to 10 ms) due to the different primary lattice depths
and hence unequal tunneling times τ = h̄/J0. The short-time dynamics starting from
the initial imbalance value I0 = 0.90(2) is omitted because it is not relevant for our
investigation. It mainly shows damped oscillations and a rapid imbalance decay from the
initial value I0 [29, 48]. The resulting traces for both models are plotted in Fig. 7.3 on a
doubly logarithmic scale. We focus on two detuning strengths above the single-particle
localization transition of the tight-binding AA model located at ∆/J0 = 2.0 because
for weaker detuning strengths the imbalance decays exponentially to zero within a few
tunneling times due to the absence of localized states. The first time trace is taken at weak
detuning strength of ∆/J0 = 2.1 just above the single-particle transition point. The traces
for both models exhibit a considerable imbalance decay irrespective of the underlying
model. Contrarily, the time traces at larger detuning strength of ∆/J0 = 3.1 is recorded
deep in the single-particle localized phase of both models. Here, we observe larger values
of the imbalance and a much slower decay over the experimental time span. Again, this
assessment applies to both models equally. The experimental data is plotted together with
ED simulations on 16 lattice sites and shows reasonable agreement. Every data point is
averaged over six different detuning phases φ and the numerical simulations are averaged
over ten random phases and eight different initial state realizations. We attribute the
offset between the experimental and numerical time traces to the effect of an external
harmonic confinement. This increases the observed imbalance due to an additional source
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Figure 7.3.: Time evolution of the imbalance in the AA and GAA model: Measured imbalance
time traces in the AA (Vp = 8Ep

r ) and GAA (Vp = 4Ep
r ) model for fixed interaction strength

U/J0 = 1. The dashed lines are power-law fits to the data and the solid lines are the numerical
results including the uncertainty from averaging over random phases and different initial states.

of localization, in particular in the regime around the single-particle localization transition
point and therefore explains why the trace at larger detuning are better described by the
simulations.

The observed dynamics in the AA model at the different detuning strengths reveal the
presence of a thermal (ETH) and a many-body localized (MBL) phase below and above
the interaction-dependent critical detuning strength respectively. This notion is well
established theoretically [24, 25] and experimentally [29, 48]. We note that the imbalance
time traces of both models are indistinguishable within our experimental resolution
regardless the particular regime under study. From the apparent similarity in the dynamics
we infer that the GAA model possesses a many-body extended phase at weak detuning
while for strong detuning the system is likely many-body localized. This is the first
strong indication that MBL can exist in a system with a single-particle mobility edge for
sufficiently strong detuning when all single-particle states are localized.

We now study the imbalance dynamics in more detail with the technique introduced in
sec. 2.3. The traces are fitted with a power-law of the form

I(t) = I0t−ξ (7.2)

where I0 denotes the initial imbalance and ξ is the critical exponent. The fitting is per-
formed on a doubly logarithmic axis where a power-law describes a linear function in
order to weigh all points equally. There was a recent debate whether the power-law
description is valid in the case of a quasiperiodic potential. In the real-random case it
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ETH

Figure 7.4.: Power-law exponents of the GAA model: Measured relaxation exponents as a funtion
of the detuning strength. The top panel shows the results for the interacting case with U/J0 = 1.
We identify a thermal phase characterized by a fast imbalance decay below the single-particle
transition at ∆/J0 = 2 and a localized phase with a constant background exponent. In the
intermediate regime (brown shading) we find decreasing exponents with increasing detuning, a
characteristic of critical dynamics. The experimental data is in good agreement with the numerical
simulations including fit uncertainties indicated by the blue shaded region. The lower panel
depicts the non-interacting situation with a single-particle extended and localized phase as well
as the intermediate phase in the presence of an SPIP. The gray shaded region is the numerically
predicted intermediate phase.

is well established that the Griffiths mechanism leads to an algebraic imbalance decay
and subdiffusive transport [43, 44, 155]. This is related to locally insulating rare regions
which slow down the particle transport. Such rare regions, however, are absent in the
quasiperiodic case, so it is still an open question what process exactly applies in this case.
A thorough discussion of the experimental data in the critical regime of the AA model as
well as the theoretical debate on the analytical form of the decay (power-law, exponential
or stretched exponential) is given in [48]. For our purposes though, we need a quantitative
measure for the imbalance decay and although the power-law description may not be
physically correct, it describes our data well over the observed time window.

The resulting exponents ξ as a function of the detuning are plotted in Fig. 7.4. Just
above the single-particle transition point we observe an exponent of ξ = 0.33(5) before
it monotonously decreases for increasing detuning strengths. Finally, it converges to a
constant positive plateau around ∆/J0 = 3.0(2), which we perceive as the MBL transition
point in this case although one would expect the exponent to vanish in the many-body
localized phase. Experimental imperfections in the form of open system effects (see
sec. 2.4) such as weak bath couplings due to off-resonant photon scattering [61] as well
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as coupling between adjacent one-dimensional tubes [60] lead to a finite lifetime and an
overall decay of the imbalance. These effects are well understood, hence we attribute
this result to imply that MBL is present in a model with a single-particle mobility edge
when all single-particle states are localized. This determined transition point is, however,
above the upper bound of the SPIP which spans between 1.7 ≤ ∆/J0 ≤ 2.6 such that our
findings suggest the existence of MBL only when all single-particle states are localized.
However, this alone is not at all a trivial statement. While the AA model features MBL
when all single-particle states are localized, this does not automatically apply to the GAA
model as well since the Hamiltonian defining the time evolution is different. In order to
make predictions about the nature of the many-body system it is not sufficient to study the
corresponding model in the non-interacting regime. Indeed, in [213] a general criterion
was sought to determine whether MBL exists in a model with an SPME and it was found
that certain models feature MBL while others do not. Another striking example for the
non-trivial properties of many-body systems are certain symmetry-protected topological
phases, where it has been shown that finite interactions can enable topological phases
although the corresponding non-interacting model is topologically trivial [214]. All in all,
this observation underlines the non-trivial nature of the result.

It is tempting to ask whether MBL can also occur when not all single-particle states are
localized, i.e. when the corresponding non-interacting system is in the intermediate phase.
This is precisely the question studied in [170, 213] for various potentials. In order to gain
an answer, it requires a model whose intermediate phase extends to larger detunings,
closer to the experimental transition point. One way to accomplish this goal is to go to
even shallower primary lattices, where the single-particle intermediate phase extends
to even larger detuning strengths (see Fig. 7.5). Based on these considerations we take
additional data at 3Ep

r primary lattice depth and compare it to the data obtained at 4Ep
r

presented in Figs. 7.3 and 7.4. It is displayed in section 7.2.4 where the existence of the
many-body intermediate phase is explored.

At this point it is important to emphasize that even shallower lattices are problematic
for multiple reasons. First, in order to achieve sufficient detuning strengths in terms of
∆/J0 would require the detuning lattice to be deeper than the primary lattice as soon as
Vp ≤ 2Er and ∆/J0 ≥ 2. The clear distinction between the primary and detuning lattice
as perturbation becomes meaningless. Second, the model in Eq. (6.1) is no longer valid
as higher-order contributions have to be taken into account as their impact may easily
become significant. This is particularly relevant in the context of long-range tunneling.
The GAA model connects the tight-binding limit (where the AA model is formulated) with
the continuum limit of the incommensurate lattice model. The presence of MBL in models
with long-range tunneling [148] and in the continuum limit [215] is still under current
theoretical debate and we do not want to enter this direction of research. Instead, it may be
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Figure 7.5.: Numerically determined width of the single-particle intermediate phase in the
GAA model: The boundaries of the intermediate phase (gray shading) are determined from
the IPR and NPR on a lattice with 369 sites. For deeper primary lattices the width of the intermedi-
ate phase shrinks as we expect it to vanish in the tight-binding limit. Experimental data was taken
at Vp = 3, 4 and 8Er.

worth considering other models which feature a broader intermediate regime while being
feasible to implement in an actual experiment. A promising candidate in this direction is
the one-dimensional Soukoulis-Economou model [216]. In addition to the primary lattice
it requires two detuning lattices with the second having twice the wavelength of the first,
but this is beyond the scope of this work.

7.2.4. Existence of a many-body intermediate phase

The second question we want to examine in this project concerns the possible existence
of a many-body intermediate phase and the concomitant coexistence of localized and
extended many-body states. As reviewed in sec. 7.1 this is a theoretically highly debated
question without definite answers, usually limited by small system sizes or short times.
We want to contribute experimentally to this issue given the size of our experimental
system where we expect finite-size limitations to play a much smaller role. Starting point
are the imbalance time traces and the corresponding relaxation exponents. By comparing
the results for the GAA and AA models we gain insights into the different dynamics of
models with and without a single-particle mobility edge.

Between the thermal and MBL phase we observe slow dynamics (indicated by the brown
shaded region in Fig. 7.4), characterized by a decreasing exponent with increasing detun-
ing. Such a behavior was previously observed in the AA model as well [48]. In our search
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7. Many-body intermediate phase and MBL in a model with a single-particle mobility edge

for the many-body intermediate phase we focus on the decay dynamics in this regime
since the non-interacting GAA model has its intermediate phase at these detuning values,
concretely up to ∆/J0 ≈ 2.6 as indicated in Fig. 7.5.

As explained in sec. 7.1 there are three potential scenarios for the fate of a single-particle
intermediate phase. On the one hand, a new many-body phase may come about by the
emergence of a many-body mobility edge or in a more general form of an MBIP like the
non-ergodic metal. On the other hand, is was argued that such a phase cannot exist in the
thermodynamic limit due to the resonant spreading of thermal bubbles hybridizing the
localized states. In this context a plausible point of view is, that the absence of such an
intermediate phase may express itself in the dynamics in terms of an accelerated decay
towards thermal equilibrium as compared to a model which does not possess an SPME.
When coupling coexisting localized and extended states, the latter may act as a bath for
the localized states, which is known to thermalize the system [55, 56], provided that the
coupling is large enough and the bath has sufficiently many degrees of freedom. We
investigate this assumption by directly comparing the relaxation exponents of the AA and
the GAA model since such a thermalization process should be absent in the latter model.
The results are shown in Fig. 7.6 for weak and intermediate interaction strengths. The data
points are interpolated with a guide to the eye defined as the heuristic fit function

ξ(∆) =

a(∆− ∆∗)2 + ξ0, if ∆ ≤ ∆∗

ξ0, if ∆ > ∆∗
(7.3)

which is a good description of the experimental relaxation exponents. ∆∗ denotes the
critical detuning strength above which the exponents reach a plateau ξ0 and a is a scaling
fit parameter. In analogy to previous works [41, 48] this point ∆∗ can be related to the
critical point of the MBL transition.

Below the critical point the decay exponents of the AA model are consistently higher, but
this offset can be explained by an averaging effect in our experiment as we explain in
sec. 7.2.5. Taking this systematic effect into account we conclude that within the experi-
mental uncertainties the models are practically indistinguishable across all investigated
detuning strengths. This leads to the conclusion that on the experimentally accessible
time scales the presence of extended single-particle states does not lead to an accelerated
thermalization of the many-body system at any detuning strength. Thus, this outcome
is not in contradiction to the existence of a many-body intermediate phase following the
picture from above.

While the appearance of an MBIP was mostly studied for the regime of weak interactions
(U/J0 = 1) where they can be treated perturbatively, another possible mechanism leading
to the existence of an MBIP was suggested to be observed at strong interactions in an
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Figure 7.6.: Comparison of relaxation exponents in the GAA and AA model: Direct comparison
of the power-law exponents in both models and two different interaction strengths. Error bars
denote the standard error of the mean from six averages and solid lines are obtained from the
heuristic fit function in Eq. (7.3) and serve as guides to the eye.

anisotropic XXZ-chain in a random magnetic field [217]. The mechanism relies on con-
strained dynamics due to the conservation of the total spin. The interplay between strong
interactions and the symmetry gives rise to an energy-dependent localization transition.
This view is in contrast to the studies focusing on weak interactions where the appearance
of a many-body mobility edge is based on perturbative arguments [12]. Intrigued by
this possibility, we investigate this assumption by measuring the data set at U/J0 = 4
where the interactions can no longer be regarded as a perturbation parameter compared
to the detuning. The resulting relaxation exponents are presented in Fig. 7.6 together
with the previous U/J0 = 1 data. While we observe overall larger exponents and a shift
of the transition point to a higher detuning strength, the general result is basically the
same. Even for the case of strong interactions we find remarkably similar dynamics and
exponents such that our conclusions apply to both interaction strengths.

Additional experimental data

In our GAA model we found that MBL is present when all single-particle states are fully
localized. Moreover, a thorough analysis of the data taken at 4Ep

r and 8Ep
r does not reveal

any evidence for the existence of a many-body intermediate phase. In order to increase the
difference between both regimes and to have a broader SPIP, we take additional data at
3Ep

r and U/J0 = 1. Like in the investigation above, we take imbalance time traces between
10τ and 100τ and fit a power-law to extract the decay exponent. One tunneling time is
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Figure 7.7.: Comparison of the data at 3Ep
r and 4Ep

r : Imbalance time traces at two different detun-
ing strengths ∆/J0 and interaction U/J0 = 1. The dashed lines are power-law fits. The inset shows
those relaxation exponents obtained from the fit as a function of the detuning. All data points are
averaged six times with error bars representing the standard error of the mean.

approximately 81 µs such that the total observation time is still comparable to the other
cases.

In Fig. 7.7 we compare the time traces and exponents at the different lattice depths as
a function of the detuning. Within the experimental uncertainty no difference can be
detected between the data at 3Ep

r and 4Ep
r . Hence, the broader intermediate regime does

not express itself in the relaxation dynamics such that our conclusions regarding the
many-body intermediate phase remain unchanged.

Numerical results and simulations at longer evolution times

The numerical simulations accompanying the project are carried out for system sizes of
L ≤ 16 and implement the Hamiltonian from Eq. (6.1) directly, thereby matching our
experimental setup as closely as possible. Simulations for larger systems are prohibitively
difficult due to the exponential growth of the Hilbert space. The initial CDW state is fixed
to have zero magnetization and quarter filling (L/4 fermions in spin up and down each,
this restricts the system size in the simulations to be multiples of four), in particular no
double occupancies are allowed. Every imbalance calculation is averaged over eight initial
state realizations (spin scrambling) and ten random phases φ. One particularity is that
in the numerics we consider the real AA model by setting higher-order corrections from
Eq. (6.1) to zero and keeping 4Ep

r primary lattice depth, while in the experiment these are
finite in the 8Ep

r primary lattice.
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Figure 7.8.: Numerical investigation of the long-time dynamics: a Imbalance evolution in the
GAA and AA model for fixed interaction strength U/J0 = 4. The AA model is represented by the
green lines and the GAA model by the blue ones. The traces for the weakest detuning remain finite
due to finite-size errors. b Fitted relaxation exponents ξ including the uncertainties for L = 16.
The dashed line indicates the numerical exponents for L = 12. Error bars denote the numerical
uncertainty from averaging over eight spin configurations and ten detuning phases.

Due to the finite-time limitations of our experiment we extend our simulations of the
quench dynamics to longer times (> 100τ) with the goal to resolve qualitative differences
between the models. This complementary study is motivated by the possibility that the
interaction between localized and extended states is only weak and hence longer timescales
are required. Fig. 7.8a shows numerical imbalance time traces, the detuning strengths
are chosen such that we compute one time trace for each of the single-particle regimes
(extended, intermediate, localized) for both models to have a direct comparison. The
weakest detuning ∆/J0 = 0.8 produces a thermal result where the imbalance immediately
decays to a vanishing value. We attribute the small residual value to finite-size effects.
On the contrary, in the case of large detuning (∆/J0 = 4.0) the imbalance is large and
basically stable, in agreement with an MBL phase. The traces in the intermediate regime
(∆/J0 = 2.2) exhibit the characteristic decay described above. Overall, we see here that
the imbalances of the AA and GAA model are virtually indistinguishable, although in the
intermediate case the GAA imbalance appears to be slightly higher. The trend we found
in the non-interaction simulations (see sec. 6.2) is also present in the interacting system.

As explained above, we analyze the decay exponent ξ of the numerical time traces whose
results are presented in Fig 7.8b. We obtain these exponents from a power-law fit (see
Eq. 7.2) to the numerical imbalance time traces in the time range between 100 and 500τ.
For large detuning they are in agreement with our experimental results at shorter times
and predict the presence of MBL. In the intermediate regime between 2.0 ≤ ∆/J0 ≤ 2.6
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7. Many-body intermediate phase and MBL in a model with a single-particle mobility edge

the numerics suggest that the GAA exponents are slightly larger than the AA exponents.
This signature may indeed hint towards an accelerated thermalization in the presence
of extended many-body states and an absence of a many-body intermediate phase. Un-
fortunately, the validity of these statements is only limited due to finite-size effects. This
becomes evident from a comparison of the numerical exponents for L = 12 and L = 16
in Fig. 7.8b. Not only do the absolute values strongly depend on the system size, also
the difference in the dynamics of both models becomes smaller for larger systems. This
suggests that the effect of an intermediate phase or even its presence may vanish in the
thermodynamic limit and is only a finite-size effect after all. Though, it has to be concluded
that the accessible system sizes are too small to make concrete statements. For ∆/J0 > 2.6
the exponents of both models agree and converge to zero at large detunings. These results
are in agreement with the ones obtained at shorter times as well as from the experimental
data.

7.2.5. Experimental imperfections

Up to this point, we considered our experiment as one-dimensional, but the unavoidable
open-system effects caused by inter-tube coupling [60] and photon scattering [61] limit our
experimental observation times to about 10 ms. Additionally, technical sources such as
amplitude and frequency noise of the optical lattices lead to atom loss on time scales on the
order of 1000τ and hence play a minor role on the time scales accessed in this experiment.
However, these contributions are difficult to estimate quantitatively. Another systematic
effect of the experiment stems from the fact that we generate a three-dimensional opti-
cal lattice which is split into individual one-dimensional tubes via deep perpendicular
lattices such that the orthogonal tunneling rate J⊥ is suppressed by about three orders
of magnitude. However, due to the Gaussian-shaped intensity profile of the laser beams
with a beam waist around 150 µm, inner and outer tubes have slightly different values of
Vp and Vd. The bandmapping sequence during our final state detection averages over all
one-dimensional tubes, yielding the average dynamics of 1D systems with different lattice
depths weighted by the respective atom numbers.

Via in-situ images of the atomic cloud in the lattice we extract a size of about 42 µm in the
horizontal x-y-plane and about 12 µm along the vertical z-direction. With this information
an atom number distribution and effective detuning strength as a function of the relative
lattice depths Vp and Vd can be derived, as shown in Fig. 7.9. Outer tubes evidently feature
a weaker detuning strength because both a shallower detuning lattice and primary lattice
(via an increase of J0) lead to a reduction of the relative detuning strength ∆/J0. This effect
depends on the primary lattice depth and is even enhanced for deeper primary lattices
due to the non-linear scaling of the tight-binding parameters (see also Tab. A.1 in the
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Figure 7.9.: Impact of tube averaging: Distribution of the detuning strength ∆/J0 as a function
of the relative lattice depth, the central tube is set to ∆/J0 = 3.0. The tube averaging effect
is apparently amplified for deeper primary lattices. The black dashed line shows the relative
weight of the one-dimensional tubes as a function of the relative lattice depth corresponding to the
respective atom number.

appendix). The computation of the tube-dependent detuning strength is also plotted in
Fig. 7.9. In an extreme case, this can lead to a situation where the single-particle states in
the center are localized while the outer ones see a detuning below the transitions and are
hence extended.

This tube averaging effect presumably has some impact on our experimental imbalance
measurement. First, from the relaxation exponents in Fig. 7.4 we see that a weaker
detuning leads to a larger relaxation exponent in the intermediate regime where slow
dynamics are observed. Tube averaging consequently results in a larger exponent ξ as
compared to a homogeneous system. Moreover, the effect becomes stronger for deeper
primary lattices such that we expect the AA model to see a larger effect since it is realized
with Vp = 8Ep

r as opposed to the GAA model Vp = 4Ep
r . The expected offset between both

models induced by tube averaging can be approximated by a weighted average of the
exponents from Fig. 7.4 and it turns out to be about 0.04 for 2.0 ≤ ∆/J0 ≤ 3.0. Indeed, a
small offset of the exponents between the models in Fig. 7.6 is observed which is likely
explained by the tube averaging effect. Though, the conclusion about the similarity of the
relaxation dynamics in both models remains unchanged.
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7.3. Conclusion and outlook

In summary, we realized the interacting GAA model beyond the tight-binding description
with a single-particle mobility-edge in the non-interacting limit. At large detuning strength
we found evidence for a many-body localized phase at sufficiently strong detuning when
all single-particle states are localized. This is a non-trivial result since it is impossible to
relate the single-particle properties of a system to the many-body case. The transition point
itself is indistinguishable from the one found in the AA model within our experimental
resolution. It is worth mentioning that the absence of MBL in models with an SPME would
have ruled out the possibility of having MBL in realistic 3D systems because generic
three-dimensional models possess a mobility edge [218, 219].

An investigation of the relaxation dynamics in both models at multiple detuning and
interaction strengths reveals that they are very similar on short timescales, suggesting that
the presence of extended states does not serve as an efficient heat bath for the probed initial
states and evolution times. While these observations do not rule out the existence of an
MBIP, the significance of the experimental findings is limited due to external baths. More-
over, the imbalance as a single observable may not be sufficient to probe the characteristic
properties of the many-body intermediate phase. One approach could be to have multiple
complementary observables to detect extended and localized many-body states in analogy
to the technique employed in [119] for the respective single-particle system. Potential
candidate observables include the detection of transport properties like the expansion of
the cloud or the DC conductivity. The former serves well on the single-particle level, it is
unsuited in the interacting case because in order to detect a sufficient transport distance in
our experiment, the sample has to expand considerably. Not only is this process extremely
slow as demonstrated in [119], but it also makes the ensemble more dilute and thereby
changes the local energy density as a function of time. Instead, it was suggested to study
entanglement entropy or observables on the eigenstate level although the latter may be
hard to access in an experiment. A measurement of the AC conductivity in a quantum
gas experiment has been proposed theoretically [156] has been demonstrated in [220].
Though, due to open system effect we might be limited in the low-frequency response of
the system.

One worthwhile direction of future research is the exploration of the origin of slow
dynamics in both models. While the dynamical properties of the AA model close to the
phase transition were probed previously [48], the underlying mechanism is still under
debate. In the real-random Anderson model there is the Griffiths effect relying on locally
insulating or thermal regions induced by islands of strong or weak disorder. Such regions
are absent in the quasiperiodic model and the Griffiths effect cannot be used to explain
the observation of slow dynamics. However, in the experiment there is a randomness in
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the initial state, which may produce local spin-polarized regions which have to be slowly
thermalized by the surrounding system when the disorder is stronger than the single-
particle localization point. In our study, it was assumed that the intermediate regime of
slow dynamics is caused by different mechanisms in both models studied, but it may well
be that they are of similar physical origin. This process is not yet fully understood [221]
and requires further investigation. Moreover, it is important to access longer evolution
times to study other mechanisms that are suggested to lead to a potential delocalization
of an MBL system. While the charge sector is localized by the detuning potential, the
spin sector is free to move via spin flips between neighboring sites and can lead to spin
diffusion in our SU(2) symmetric system, ultimately leading to delocalization [222–226].
Though it is presumably a slow process happening on time scales far beyond experimental
limitations. Thus, while a spin-dependent detuning potential may be relevant for the
appearance of full MBL in general, it is only of minor significance for experimental studies
of this subject.
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Part IV.

Ultracold atoms in linear potentials

Since the seminal work by Wannier it is known that a single-particle system in a linear
external potential has exponentially localized eigenstates. The physics of the interacting
model, however, is less clear and has recently been explored exhaustively. It was found
that tilted lattice systems bear a great relevance in the context of weak ergodicity breaking.
At leading order in perturbation theory the tilted Fermi-Hubbard model displays similar
terms that appear in dipole-conserving setting, which exhibit Hilbert space fragmentation
and thus fail to thermalize as their Hilbert space is shattered into exponentially many
disconnected subsectors. In this part we report on the experimental realization of a tilted
Fermi-Hubbard model and the observation of state-dependent dynamics. Together with
simulations of the corresponding effective Hamiltonian we show that our observations are
in agreement with the implementation of a fragmented model in our experimental system.
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8. The Wannier-Stark ladder

In the second project reported in this thesis we investigate the dynamical properties of the
Fermi-Hubbard model in the presence of a linear external potential. While the interacting
model is currently an active research area and also explored thoroughly in chapter 9, the
corresponding single-particle model is well understood as the well-known Wannier-Stark
ladder [158], also called Stark model in the literature. It owes its name to the energy level
structure that displays highly degenerate equidistant levels separated by the tilt energy.
This chapter only briefly summarizes the relevant properties of a single particle in a tilted
lattice, a more detailed investigation can be found in [133, 227]. We exploit the availability
of analytical solutions to calibrate our experimental parameters with high accuracy, a
prerequisite for our understanding of the corresponding interacting model.

8.1. The Stark model and its properties

The fermionic Stark model describes a lattice in the tight-binding limit superimposed with
a linear external potential and is given by the Hamiltonian

Ĥ = −J ∑
i,σ
(ĉ†

i,σ ĉi+1,σ + h.c.) + ∑
i,σ

∆σin̂i,σ (8.1)

with the tunneling element J and the state-dependent tilt ∆σ. This setting is illustrated
schematically in Fig. 8.1a highlighting the Hubbard parameters. Note that the compen-
sation of the spin-dependent tilt is an integral part of the project reported in chapter 9
and the corresponding experimental technique of RF-dressing is explained in sec. 4.4.3.
Hence, in the following we will use a common tilt ∆ for all spin components to simplify
the discussion as it is irrelevant for the physics of the non-interacting model. Since this
Hamiltonian from Eq. (8.1) was studied analytically in a previous thesis [133], only the
key results important for the reported project are revised. The main characteristic of the
Stark model is that all eigenstates are localized for any finite tilt strengths irrespective of
their energy, the same situation, which also occurs in the Anderson model. In particular,
the model does not have a single-particle mobility edge. The eigenstates, also called
Wannier-Stark states, from the center of the spectrum are shown in Fig. 8.1b for three
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Figure 8.1.: Visualization of the Stark model: a Schematic illustration of the Hamiltonian in
Eq. (8.1). x is the spatial coordinate and E denotes the energy. Colors represent different spin states.
It further visualizes the spin-dependent tilt ∆σ that can be tuned via RF dressing. b Eigenstate
probability density of the Wannier-Stark ladder for three different values of the tilt. Evidently, they
are localized for all tilt strengths and the localization length ` for the intermediate tilt strength
is illustrated by the dashed vertical lines. The presented states are picked from the center of the
energy distribution.

different values of the tilt. Apparently, the wavefunction is localized on fewer and fewer
lattice sites when the ratio of tilt and tunneling ∆/J is increased. In fact, this extent ` is
analogous to the localization length in disordered lattices and can be approximated by
the expression ` ' 4Jd/∆ with the lattice spacing d as illustrated in Fig. 8.1b. In the limit
of infinite tilt the eigenstates of the Stark model converge to the Wannier functions, the
localized eigenstates of the lattice.

A single particle initially spatially localized undergoes periodic breathing dynamics
around its fixed center of mass and with an oscillation amplitude given by the localization
length `. The oscillation frequency thereby matches the tilt. From the analytical solution of
the probability density we can derive the imbalance as a function of time. It can be written
in the analytical form

I(t) = J0

[
8J
∆

sin
(

π∆t
h

)]
(8.2)

with the zeroth order Bessel function of first kind J0 and yields a parity-projected observ-
able probing the localized real-space dynamics. In the limit of large tilt that is realized in
our experiment (∆/J = 8) the atoms are strongly localized around their original lattice
site and we can approximate the expression in Eq. (8.2) by expanding the Bessel function
up to second order yielding I(t) ≈ 1− sin2(π∆t/h)/4. Hence, we observe nearly sinu-
soidal Bloch oscillations with the frequency given by the tilt. For weaker tilt strengths
the particle extends over multiple lattice sites such that higher frequency components
enter the expression and the coherent imbalance dynamics become richer with additional
oscillation features within one Bloch cycle [117, 133].
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8.2. Experimental implementation

While the preceding discussion applies to a perfect system, the experimental setup in-
evitably has certain imperfections that affect the outcomes. Most prominent among them
is the harmonic confinement originating from the Gaussian shaped beams of dipole traps
and lattices. It modifies the Hamiltonian and adds a quadratic correction to the external po-
tential according to α ∑i i2n̂i such that the tilt becomes space dependent: ∆σ(i) = ∆σ + 2iα.
This local curvature is much weaker than the tilt, typically suppressed by about three
orders of magnitude. Hence, the individual dynamics of the atoms are not affected within
the oscillation period, but the imbalance, as it averages over the entire system, records a
sum of oscillations at slightly different frequencies. This results in the familiar case that
the dynamics start dephasing after a collapse time Tc ≈ 1/(2αL) and finally revive when
all oscillations are back in phase [133] for the same reason it was observed for matter wave
fields and Rabi oscillations of a coherent state [228, 229]. Therefore, the Bloch oscillations
recorded in the experiment exhibit a damped envelope. The revival dynamics are not
observed experimentally because additional noise sources such as lattice or magnetic field
noise irretrievably decohere the oscillations. It is therefore of interest what steady-state
value the imbalance attains when the oscillations are dephased. In order to calculate this
expression, one starts from a density-matrix approach where all off-diagonal elements,
representing the coherences, are manually set to zero. This results in the steady-state
imbalance of the Wannier-Stark model that solely depends on the tilt and obeys the simple
relation

I∞(∆) = J 2
0

(
4J
∆

)
. (8.3)

Not only is this function strictly non-negative, but also possesses poles for ∆/J ≤ 1.5.
However, this does not imply that the states are delocalized. Instead, their weight on
even and odd lattice sites is equal as can be seen in Fig. 8.1b for the case of intermediate
detuning. These characteristics of the Wannier-Stark ladder, namely the Bloch oscillations
and steady-state imbalance, will be used as a tool to calibrate our experimental system as
described in sec. 8.3.

8.2. Experimental implementation

The implementation of a linear potential as included in the Hamiltonian in Eq. (8.1)
has been realized in previous quantum gas experiments. Most often the setups were
designed such that the dynamics happen along the vertical direction. The lattice is then
superimposed with the gravitational potential [97, 98] resulting in a nearly perfectly
linear dependence of the energy on the position that is independent of the atom’s internal
state. However, the achievable tilt is rather weak (on the order of the tunneling J in our
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experiment) compared to other methods and it requires means like an inhomogeneous
field for magnetic levitation to tune the tilt seen by the atoms.

Another approach is the optical implementation of a potential gradient via the AC-Stark
shift of an intense laser beam [99, 100]. Its Gaussian profile has a nearly linear slope 1σ

away from the center that serves as the external potential. Hence, this technique requires
that the atoms are overlapped with the tilt beam that is misaligned by the right amount
with respect to the center. Depending on the available laser power and detuning this
method can realize large values of the tilt, but is only reliable for small system sizes before
the inhomogeneity of the tilt becomes relevant.

In our experiment we use the magnetic field generated by a single coil with 25 mm
diameter, 20 windings and a mean distance of 26.5 mm from the atomic cloud [133, 187].
Besides a large homogeneous part, the resulting magnetic field possesses a strong linear
component that takes the role of the tilt. Higher order terms are also present, although
with a negligible amplitude, and add up with the harmonic confinement and can be
seen in the dephasing of the Bloch oscillations. The tilt induced by the magnetic field
is dE(B)/dB · ∂xB(x). Herein E(B) is the energy of the atomic state in the presence of a
magnetic field according to the Breit-Rabi equation. In small magnetic fields below the
Paschen-Back limit the energy depends on the magnetic hyperfine state mF. Therefore, the
different spin states in the experiment, encoded via mF do not see the same slope. Note
that this technique was employed in a previous experiment where the tilt difference was
used as a tool to study spin-dependent transport in a two-dimensional Fermi-Hubbard
model [230]. The tilt difference induced by the magnetic moments of the respective spin
state can be compensated with the technique of RF dressing (see sec. 4.4.3) and set to
any value between close to zero, resulting in an average tilt of ∆̄ = (∆↓ + ∆↑)/2, and the
naturally given value of about 11 %. We can achieve tilts of up to h · 1.9 kHz over several
hundred tunneling times before running into current limitations, which corresponds to
about 8.5J in a primary lattice with a depth of 12Er.

Note that in order to set the correct interaction strength around the Feshbach resonance
via the vertical magnetic field Bz, the field along the horizontal direction Bx composed of
a constant part Bx0 and the linear contribution generated by the gradient coil has to be
taken into account. The total field generated by this configuration is

Btot(x) =
√

B2
z + B2

x =

√
B2

z +

(
Bx0 + x · dBx

dx

)2

' Bz +
B2

x0
2Bz

+
Bx0

Bz
· x · dBx

dx
(8.4)

where we used that the vertical field is the largest contribution to expand the square root
and we neglected the squared contribution of the gradient. This expression directly reveals
that one obtains an additional homogeneous contribution that needs to be compensated.

104



8.3. Calibrations and reference measurements

Moreover, the linear potential gets suppressed by the vertical field and amplified by the
longitudinal homogeneous part. Thus, setting the correct slope of the external potential
and the appropriate vertical field to obtain the desired interaction strength is an iterative
process and requires multiple steps to converge because both quantities of interest depend
of each other. The calibration process and the experimental implementation of this
procedure are reported in [117, 133]. Finally, the magnetic field is space-dependent
which causes a variation of the interaction strength across the atomic cloud. This effect is
treated quantitatively in sec. 9.3.5.

8.3. Calibrations and reference measurements

Measurements in the non-interacting tilted Fermi-Hubbard model conceal essential in-
formation that is of larger interest for the respective quantum many-body system. In this
project we employ reference measurements on the non-interacting or even spin-polarized
system in order to access and calibrate the Fermi-Hubbard parameters, namely the tunnel-
ing element J and the tilt ∆σ. For this purpose we exploit that the Wannier-Stark ladder
provides analytical functions for the Hubbard parameters that can be used to retrieve the
aspired information. In a first step we record Bloch oscillations with a spin-polarized gas
in the |↓〉-state to eliminate all interaction effects. As follows from Eq. (8.2), the periodicity
of the imbalance evolution solely depends on the tilt, whereas the amplitude of the oscil-
lations is set by the ratio between tilt and tunneling element. We simulate the dynamics
including the harmonic confinement by directly solving the non-interacting Hamiltonian
using exact diagonalization. From this we can retrieve fit values for J, ∆ and α by fitting
it to the experimental traces as shown in Fig. 8.2a. By repeating this measurement for
multiple values of the tilt as well as for both spin components, we can reliably calibrate
∆ across the entire experimental range. Note that this method is not really suited to fit
J. The tunneling is very sensitive to the amplitude and due to the decay it is very prone
to errors. Only for about the first two periods the fit value is in good agreement with the
theoretical expectation, but this short time window is in general not sufficient to obtain
an accurate value for the tilt. Moreover, from the fitted collapse time of Tc = 11.0 ms we
extract a local curvature on the order of α = h · (2LTc)−1 ≈ h · 0.2 Hz ≈ 10−3 J. Hence, the
local potential variation due to the confinement is indeed negligible.

Second, once the tilt is known precisely, we can make use of the relation in Eq. (8.3) to
extract the tunneling element J from the steady-state imbalance. After the dephasing of
the Bloch oscillations, the non-interacting system adopts a plateau imbalance value as
shown in the inset of Fig. 8.2a. We extract this plateau value as a function of the tilt and
show the result in Fig. 8.2b. We directly fit the function Eq. (8.3) and retrieve J as a fit
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8. The Wannier-Stark ladder

a b

Figure 8.2.: Calibration measurements in the non-interacting model: a Real-space Bloch oscilla-
tions of a spin-polarized Fermi gas. The solid line represents a numerical simulation including
the harmonic confinement from which the tilt ∆ can be extracted. The obtained dephasing time is
11.0 ms = 12.2TB. In the inset we show the time trace up to longer times reaching its steady-state
value, that matches the prediction from Eq. (8.3) (dashed line) very well. b Steady-state imbalance
as a function of the tilt after two different evolution times. Solid lines are fits with the analytical
function in Eq. (8.3) to extract the tunneling element J. Error bars denote the standard error of the
mean obtained from six averages.

parameter. After 33τ we obtain J = h · 223(4)Hz and after 67τ it is J = h · 233(2)Hz. For
a perfect system with a primary lattice depth of 12Er one expects J = h · 216 Hz, so we
understand the experiment quite precisely. This measurement was performed for two
different evolution times to ensure that there are no decay mechanisms that could forge
the experimental data. However, the extracted tunneling elements almost agree within the
experimental uncertainty such that we can safely assume the non-interacting to be stable
on the timescales under study.
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9. Non-ergodicity and state-dependent
dynamics due to Hilbert-space
fragmentation

The second project of this thesis also explores another regime in the spectrum between
thermal and integrable systems (see Fig. 3.1). The experimental goal in this project is the
demonstration of state-dependent dynamics in the strongly tilted Fermi-Hubbard model
and the description of this observation in terms of a leading order effective Hamiltonian.
This will serve as strong indication that we indeed realize a fragmented model in our
experiment. Although recent experimental works provided evidence for non-ergodicty
in the presence of a tilted external potential [117, 231, 232], one of the central features
of Hilbert space fragmentation, namely initial-state dependent dynamics, has not been
demonstrated yet. In this work we realize different families of initial states characterized
by the doublon fraction and probe the subsequent dynamics via the singlon, doublon and
charge imbalance. These traces are reproduced by a fragmented effective Hamiltonian.
Supported by complementary numerical observables we further investigate the kind of
dynamics within individual fragments.

In the following we will introduce the concept of an effective Hamiltonian that will be
used to describe the dynamics at leading order in perturbation theory. After explain-
ing the important experimental techniques including the initial state preparation and
characterization we present our experimental results and their interpretation.

9.1. Hilbert space fragmentation in the tilted Fermi-Hubbard
model

In sec. 3.2 we introduced the field of Hilbert space fragmentation as a mechanism of weak
(or even strong) ergodicity breaking from the viewpoint of previous theoretical studies in
spin systems and random unitary circuits. While in those systems the central ingredients
for fragmentation, namely U(1)-charge and dipole moment conservation as well as local
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

interactions, are explicitly engineered, they naturally occur in the strongly tilted spin-
1/2 Fermi-Hubbard model when expanding the Hamiltonian in perturbation theory
up to leading order. This results in a description in terms of an effective Hamiltonian
that directly satisfies the conservation laws required for fragmentation. Here we show
the correspondence between both models and elaborate on how we can investigate the
underlying physics in our quantum gas experiment. We first recall the Hamiltonian of
the two-component Fermi-Hubbard model with on-site interactions and a linear external
potential given by

Ĥ = −J ∑
i,σ
(ĉ†

i+1,σ ĉi,σ + h.c.) + U ∑
i

n̂i,↑n̂i,↓ + ∑
i,σ

∆σin̂i,σ, (9.1)

with the hopping element J, interaction strength U and tilt ∆σ. The latter is in general spin-
dependent (index σ), but we can approximately compensate this effect with our technique
of RF dressing (see sec. 4.4.3). Thus, we omit the spin-dependence in the following and
use a common tilt ∆ ≡ ∆↓ = ∆↑ for the remaining discussion. However, in sec. 9.3.3
we investigate the dynamics with spin-dependent tilt explicitly and develop an effective
picture for that situation.

In certain limiting cases the Hamiltonian in Eq. (9.1) can be expanded in perturbation
theory. This can either be achieved by a Schrieffer-Wolff transformation [233] or a high-
frequency Magnus expansion. Details on the derivation can be found in [90, 117, 133],
here we only give the final result relevant for the project and explain the appearing terms
at leading order in perturbation theory.

In the limit of large tilt and weak interactions (∆ � |U|, J) the tilted Fermi-Hubbard
Hamiltonian (Eq. 9.1) can be expanded in powers of 1/∆ to obtain an effective Hamiltonian
Ĥdip

eff at third order in perturbation theory that reads

Ĥdip
eff = J(3)T̂3 + 2J(3)T̂XY + Ũ ∑

i
n̂i,↑n̂i,↓ + 2J(3) ∑

i,σ
n̂i,σn̂i+1,σ̄ (9.2)

and preserves the total charge Q̂ = ∑i n̂i and dipole moment P̂ = ∑i in̂i. The central
energy scale of this Hamiltonian is the effective tunneling rate J(3) = J2U/∆2. We have
already encountered this third-order expression for a correlated hopping of two parti-
cles joining on the same lattice site in Eq. (3.9). Given that the effective hopping J(3)

depends on the interaction strength, it is evident that dipole-conserving processes are
generated by interactions and purely off-diagonal terms vanish due to destructive interfer-
ence [117]. Moreover, the Hamiltonian predicts two types of correlated hoppings, namely
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9.1. Hilbert space fragmentation in the tilted Fermi-Hubbard model

the squeezing term T̂3 and the spin-exchange term T̂XY, which are given by

T̂3 = ∑
i,σ
(ĉ†

i,σ ĉi+1,σ ĉi+1,σ̄ ĉ†
i+2,σ̄ + h.c.),

T̂XY = ∑
i
(ĉ†

i,↑ ĉi,↓ ĉ†
i+1,↓ ĉi+1,↑ + h.c.)

(9.3)

and that are schematically illustrated in Fig. 9.1a. Note that the term T̂3 precisely corre-
sponds to the pair hopping model introduced in sec. 3.2.1 that is known to feature dipole
moment conservation and strong fragmentation as shown in [87, 88] up to additional spin
degrees of freedom. This fact directly underlines the correspondence between the frag-
mented Hamiltonian studies in the respective section and the tilted Fermi-Hubbard model
in the limit of large tilt. Already in the original Hamiltonian (Eq. 9.1) it is straightforward
to see that it conserves the dipole moment for large tilt. In this case the term of the external
potential Ĥ∆ = ∑i ∆in̂i dominates and hence the Hamiltonian approximately commutes
with Ĥ∆ making the dipole moment ∆ · P̂ = Ĥ∆ a conserved quantity and leading to
strong Hilbert space fragmentation [87]. One can thus introduce symmetry sectors defined
by the dipole moment 〈P̂〉 of the initial state. In the case of finite tilt the hopping terms
with amplitude J(3) couple multiple symmetry sectors with different dipole moments.
Hence, this conservation law is no longer exact such that the description in terms of a
dipole-moment conserving effective Hamiltonian has to break down at exponentially long
times while the effective description is appropriate on intermediate timescales. Instead,
higher order terms have to be taken into account, which leads to weak fragmentation as
explained in sec. 3.2.2.

It is worth mentioning that the effective Hamiltonian Ĥdip
eff and in particular the term T̂3 are

SU(2)-invariant. This means that fragmentation occurs in infinitely many bases. The most
relevant basis for the experimental description is the local Sz-basis where the incoherent
initial product states are prepared.

Unlike previous theoretical studies of a closely related model [87, 88, 90, 95], our ef-
fective Hamiltonian in Eq. (9.2) contains a diagonal interaction term with amplitude
Ũ = U

(
1− 4J2/∆2) that leads to an effective conservation of the doublon number due

to energy conservation when Ũ � J(3). This is precisely the situation in our case since
J(3)/Ũ = 1/(∆2/J2 − 4) ' (J/∆)2 � 1 and hence the first process sketched in Fig. 9.1a
starting with two singlons on adjacent even sites is suppressed. If however, a singlon
and a doublon are adjacent on even sites, the process T̂3 can happen resonantly with
hopping rate J(3). Though, doublon number is no conserved quantity of Ĥdip

eff . While the
dynamics are properly captured by the effective Hamiltonian, we have to enforce the
doublon conservation manually in order to compute the correct dynamical fragments or
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Ĥdip
eff

a

b

T̂D
3

J (2)

e o e

|U | � 2∆

|U | � J

Figure 9.1.: Leading order hopping processes of the effective Hamiltonians: a Schematics of the
correlated tunneling processes according to respective term of Ĥdip

eff in Eq. (9.2). Colored spheres
represent different spin states, the upper row illustrates the initial, the lower row the final state.
For a singlon initial state the first process is energetically suppressed. b Same for the resonant
regime U ' 2∆ governed by the effective Hamiltonian in Eq. (9.5). All processes happen with the
effective hopping rate of the respective Hamiltonian.

Krylov subspaces. For this purpose we replace the term T̂3 in Eq. (9.2) with

T̂′3 = ∑
i,σ

(
(n̂i,σ − n̂i+2,σ̄)

2ĉi,σ̄ ĉ†
i+1,σ̄ ĉ†

i+1,σ ĉi+2,σ + h.c.
)

. (9.4)

Compared to Eq. (9.3) the resulting dynamics are more constrained and thus the relative
fragment dimensions are smaller than without this additionally imposed conservation
law.

While the limit ∆� |U|, J was studied numerically and analytically on previous occasions
in the context of fragmentation, this is not the only regime of the Fermi-Hubbard model
that exhibits fragmented characteristics. Triggered by experimental results reported for this
model in the resonant regime |U| ' 2∆ and the subsequent theoretical exploration [117]
we revisit this regime in the case of large tilt to study the fragmented nature of this model.
On the resonance |U| = 2∆ and ∆ � J the effective Hamiltonian is of second order in
perturbation theory and reads

Ĥres
eff = Ĥ0 + (U − 2∆)∑

i
n̂i,↑n̂i,↓ +

8J2

3∆ ∑
i

n̂i,↑n̂i,↓ −
4J2

3∆
T̂XY

+
J2

∆
T̂1 −

2J2

∆
T̂2 +

2J2

3∆
T̂D

3 + ĤD.

(9.5)

The effective Hamiltonian in this regime consists of three different kinds of correlated
hopping processes defined by the terms T̂1, T̂2 and T̂D

3 illustrated in Fig. 9.1b and the
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relevant energy scale in this case is the effective tunneling J(2) = J2/∆. The second term
in Eq. (9.5) considers a detuning from the exact resonance and is a necessary ingredient
given that the resonant interaction strength is slightly shifted by the third term [117]. The
resonance condition at leading order in perturbation theory thus reads

U = 2∆− 8J2/(3∆). (9.6)

For large tilt ∆ this correction is small such that we will write |U| ' 2∆ in the following.
The other contributions to the effective Hamiltonian are defined as

Ĥ0 = ∆ ∑
i,σ

in̂i,σ + 2∆ ∑
i

n̂i,↑n̂i,↓ = ∆ · P̂ + U · N̂D,

T̂XY = ∑
i,σ
(ĉ†

i,σ̄ ĉi+1,σ̄ ĉ†
i+1,σ ĉi,σ + h.c.),

T̂1 = ∑
i,σ

(
(1− n̂i+2,σ̄)(1− 2n̂i+1,σ̄)n̂i,σ̄ ĉ†

i,σ ĉi+2,σ + h.c.
)

,

T̂2 = ∑
i,σ

(
(1− n̂i+2,σ̄)n̂i,σ ĉ†

i,σ̄ ĉi+1,σ̄ ĉ†
i+1,σ ĉi+2,σ + h.c.

)
,

T̂D
3 = ∑

i,σ

(
(n̂i,σ − n̂i+2,σ̄)

2(1− 2(n̂i+2,σ̄ − n̂i,σ))ĉi,σ̄ ĉ†
i+1,σ̄ ĉ†

i+1,σ ĉi+2,σ + h.c.
)

,

ĤD = −4J2

3∆

(
2 ∑

i
n̂i,↑n̂i,↓(n̂i+1 + n̂i−1) + ∑

i,σ
n̂i,σn̂i+1,σ̄

)
.

(9.7)

Since [Ĥres
eff , Ĥ0] = 0, the effective Hamiltonian conserves the linear combination of dipole

moment P and doublon number ND such that the occurrence of fragmentation can be
understood from this conservation law. In [117] it was shown numerically that the
Hamiltonian is indeed strongly fragmented. Like in the regime |U| � ∆ the effective
Hamiltonian contains a squeezing term T̂D

3 , in this case the process respects the globally
conserved quantity Ĥ0. Moreover, the term (U − 2∆)∑i n̂i,↑n̂i,↓ considers the resonance
condition for renormalized interactions given in Eq. (9.6) since U is not exactly twice
the tilt. This detuning would normally appear in every second-order process, but it can
be shown [234] that as long as |U − 2∆| < J, these corrections can safely be neglected
at leading order in perturbation theory and a global detuning as given in Eq. (9.5) is
sufficient.

9.2. Experimental techniques

At this point we outline experimental methods relevant for this project that have not
been mentioned so far, but whose ingredients are presented in part II. This concerns the
preparation and characterization of initial states in the optical lattice as this knowledge is
an important building block of this project.
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

9.2.1. General sequence and preparation of initial states

Our experimental sequence has many parallels with the experiments performed in [117,
126] as far as the initial state preparation and overall lattice sequence are concerned. First,
the atoms are loaded into a deep three-dimensional lattice - the process is discussed in
more detail below - and held for a duration of 30 ms to destroy residual coherences and
obtain a product state. While all dynamics are frozen in the deep lattice, the gradient
field is ramped to the desired value and at the same time the Feshbach field has to adjust
in order to compensate the homogeneous part of the gradient field and set the correct
interaction strength. After this wait time the dynamics are initiated by quenching the
primary lattice to 12Er and switching off the long lattice, both within 10 µs. The employed
primary lattice depth in this project is deeper than in previous works at this experiment
so as to achieve larger tilts ∆/J. Since the attainable slope ∆ is limited by the coil design,
we have to use a lower tunneling element J in order to satisfy the large-tilt limit. At the
end of time evolution the primary and long lattice are ramped to their respective values
before the evolution. The gradient is switched off and the vertical magnetic field is set
to the non-interacting point of the Feshbach resonance in order to have no interactions
during the final state readout. All this is performed while the final atom distribution in
the lattice is frozen for another 30 ms.

A characteristic signature of Hilbert space fragmentation, that we want to demonstrate
experimentally in this project, is the initial-state dependence of the dynamics in the tilted
Fermi-Hubbard model. Therefore, we have to be able to prepare states that live within
different fragments and symmetry sectors of the Hilbert space. In general, the type
of state we can reliably produce is an incoherent mixture of product states with zero
magnetization. It can be described by the density matrix ρ̂ = N−1 ∑σ |ψ0(σ)〉 〈ψ0(σ)| with
the sum running over all spin permutations with vanishing magnetization. The product

state |ψ0(σ)〉 can be represented in the number basis as |ψ0(σ)〉 = ∏i even

(
ĉ†

i,↑
)n̂i,↑ (

ĉ†
i,↓
)n̂i,↓

.
In our experiment we do not have access to the local chemical potential such that it is not
feasible to control local charge or spin distributions. That would be the ideal scenario so
as to prepare initial states corresponding to the same global conserved quantities and to
probe dynamics of distinct fragments within the same symmetry sector. However, one
parameter that we can control reliably with good reproducibility is the doublon fraction
nD, so we prepare initial product state families with different values of nD. Although this
changes the average filling fraction, we are still able to identify state-dependent dynamics
(see sec. 9.3.1).

In our case we define the doublon fraction as the number of atoms bound on doubly occu-
pied sites ND divided by the total atom number N: nD = ND/N. The resulting density
distribution in an interacting Fermi-Hubbard model was studied previously [235, 236]

112



9.2. Experimental techniques

and we use those results to optimize the loading procedure into the lowest band of our
three-dimensional lattice. The final scenario is basically characterized by a single dimen-
sionless parameter, the compression, that compares the relevant energy scales, tunneling,
interaction and harmonic confinement. For small compression the tunneling dominates
over the trapping potential such that one obtains a metallic state with delocalized atoms
to minimize the kinetic energy. Upon increasing the compression the filling in the center
gets increased and one can realize a Mott insulator or even a band insulator. Our main
parameter to affect this important quantity is the strength of the external harmonic con-
finement and we provide a detailed analysis of the loading characteristics in the following
section. The finite temperature of the atoms in the lattice thereby limits the density in the
trap center as well as the achievable doublon fraction.

9.2.2. Initial state characterization

In this project we developed a technique to image the singlon and doublon distribution in
the lattice in separate images. This scheme is illustrated in full detail in sec. 5.3 and the
results of this analysis are presented here. As mentioned above, the vertical confinement
during the loading process and the scattering length a are the parameters we can tune
to control the final density distribution in the optical lattice. Therefore, we characterize
the cloud sizes and doublon fractions to optimize the respective initial state for the
experiment. The harmonic confinement is quantified in terms of the trap frequency
ωh =

√
αh̄/(md2π) with the lattice spacing d = 266 nm and atomic mass m. α denotes

the local curvature introduced in sec. 8.3. The trap frequency is determined from an
independent measurement in the dipole trap configuration where we measured the
trap frequency directly from real-space oscillations performed by the cloud. At the
non-interacting point of the Feshbach resonance we perform in-situ measurements of
the singlon and doublon cloud size as a function of the trap frequency ωh as shown in
Fig. 9.2a. Upon increasing the confinement the total cloud size declines and so do the
singlon σS and doublon radius σD presented in the inset. A smaller cloud size results in a
higher charge density in the center and a reduced hole density, important ingredients to
observe the aspired dynamics. However, a disadvantage of strong confinement during
loading is shown in Fig. 9.2b. The doublon fraction for fixed loading scattering length of
−20a0 decreases for strong confinement owing to a reduced lifetime [195]. We therefore
fix the trap frequency to about ωh ≈ 2π × 60 Hz during the lattice loading process which
is a good compromise between initial doublon fraction and cloud size.

At this fixed harmonic confinement the doublon fraction is controlled via the scattering
length during the loading process. The resulting doublon fraction in the initial state as a
function of the scattering length is plotted in Fig. 9.2c. We operate in the range between
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Figure 9.2.: Investigation of lattice loading parameters: a Measured in-situ cloud size in multiples
of the lattice spacing d as a function of the harmonic confinement. The inset shows the singlon
and doublon cloud size for even larger trap frequency than in the main panel. b Initial doublon
fraction with loading scattering length −20a0 versus the harmonic confinement. In the experiment
we operate around ωh ≈ 2π × 60 Hz. c For initial states with doublons we vary the scattering
length between −30a0 and 30a0 as indicated by the gray shaded region. The blue data point was
taken with a different compression to suppress the doublon formation further. All data points are
averaged thrice and error bars represent the standard error of the mean.

−30a0 and 30a0 such that we typically have between 25 % to 45 % initial doublon fraction.
Even more attractive interactions were not found to yield a larger doublon fraction,
perhaps because of a reduced lifetime in the lattice [195]. Moreover, large attractive
interactions prefer a more uniform density distribution and larger cloud size accompanied
by an increased hole fraction [126], while we rather thrive for a small number of defects
and larger doublon density near the center. In order to prepare pure singlon states, we
load strongly repulsively (100a0) and further weaken the confinement set by the dipole
traps. Although this leads to a lower average density and a larger cloud size, it does
not represent an issue for the singlon states. Residual doublons on the order of 15 % are
removed from the lattice with a blast pulse before time evolution.
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Figure 9.3.: Schematic illustration of initial state dependence: State-dependent imbalance dy-
namics I(t) for different doublon fractions nD. The solid lines are the cumulative average of TEBD
simulations with U = 2.7J and ∆ = 8J on L = 101 lattice sites according to the Hamiltonian in
Eq. (9.1). Dashed horizontal lines indicate the imbalance value of a thermal ensemble at infinite
temperature within the full symmetry sector of the given initial state.

9.3. Realization of fragmented models in tilted Fermi-Hubbard
chains

The following section presents the experimental and numerical results of the project on
Hilbert space fragmentation published in [234]. The central experimental goal are the
demonstration of state-dependent dynamics in the strongly tilted Fermi-Hubbard model
as sketched in Fig. 9.3 and the description via a fragmented effective Hamiltonian. To
show this we explore two regimes of the tilted Hubbard model, as introduced in sec. 9.1,
that are known to exhibit fragmentation in the limit of large tilt ∆/J → ∞:

• ∆� |U|, J ("Dipole-conserving regime")

• |U| ' 2∆� J ("Resonant regime")

Here we can expand the Fermi Hubbard Hamiltonian (Eq. 9.1) to obtain a leading-order
effective Hamiltonian (see sec. 9.1) to identify the correlated hopping processes (see Fig 9.1)
and further define the dynamical fragments within their respective symmetry sector. By
preparing various initial states that live within different fragments and recording the
respective imbalance time evolution we show the characteristic initial-state dependence
typical for systems with weak ergodicity breaking. The obtained traces are compared to
the predictions from the respective effective Hamiltonian and good agreement provides
evidence that we realize a fragmented model in our experiment. With complementary
numerical observables we try to investigate whether individual fragments thermalize
within accessible timescales.
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9.3.1. The dipole-conserving regime

Models with intrinsic dipole conservation have been studied previously for spin chains [87],
random unitary circuits [81, 88] and spinless Hubbard systems [89, 90] and they all exhibit
ergodicty breaking features caused by Hilbert space fragmentation. The tilted Fermi-
Hubbard model was shown to exhibit dipole conservation in the regime ∆ � U, J as
explained in sec. 9.1. For our CDW wave initial state with every even site occupied
by a singlon or a doublon the effective Hamiltonian in Eq. (9.2) predicts two correlated
tunneling processes according to T̂3 as shown in Fig. 9.1a, while T̂XY does not play an
important role for a CDW state. Due to the diagonal energy penalty Ũ the first process for
an initial singlon CDW is suppressed due to energy conservation (J(3)/U = (J/∆)2 � 1).
Contrarily, if a singlon and a doublon are adjacent to an empty site, the illustrated process
is resonant and happens on a timescale set by the effective hopping rate. Based on these
considerations the doublon density is expected to have a strong effect on the dynamics
described by the effective Hamiltonian Ĥdip

eff . In order to demonstrate the effective pro-
cesses in the experimental data, we measure density-resolved imbalance time traces of
singlons IS, doublons ID and all atoms I (charge imbalance) with the method explained
in sec. 5.2.

Imbalance traces and initial state dependence

To realize the dipole-conserving regime experimentally, we set ∆/J = 8.0(2), U/J = 2.7(2)
and the minimal tilt difference (see sec. 4.4.3) δ∆ = (∆↓ − ∆↑)/∆↓ = 0.6(2)% as this is a
parameter regime where we observe significant signatures and at the same time satisfy
the conditions for the dipole-conserving regime sufficiently well. Comparing the charge
imbalance time traces in Fig. 9.4b we observe qualitatively similar behavior for pure
singlon states (nD = 0) and mixed initial states with nD = 0.28(2). After a fast drop from
the starting point at short times the imbalance develops a steady-state value at evolution
times t ≥ 30τ, in agreement with previous observations for weaker tilt [117]. Note that in
these traces we do not observe Bloch oscillations as they would be expected in a linearly
tilted lattice because they can only be observed on shorter timescales . 15τ before they
dephase due to harmonic confinement and decoherence [117]. However, for the initial
state with doublons the steady-state imbalance is significantly reduced as compared to the
singlon CDW. This dependence is more strikingly illustrated by the density-resolved time
traces in Fig. 9.4a. While the singlon imbalance IS(t) remains around 0.75 and thus only
marginally below the value of the singlon state, the doublon imbalance ID(t) shows a
drastic decrease to an average value around 0.4. This observation can be readily explained
by the action of T̂3, which leads to a rearrangement of doublons between even and odd
lattice sites, while the singlons remain unaffected (see Fig. 9.1a). These processes happen
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Figure 9.4.: Dipole-conserving regime: a Imbalance time traces for different initial states: Singlon
CDW, doublon ID and singlon imbalance IS of a mixed initial state with nD = 0.28(2). Solid lines
are the result of TEBD simulations on L = 101 lattice sites for the effective and dashed, transparent
lines for the exact model. The dashed vertical line shows the effective timescale 1/(2π J(3)). b
Charge imbalance I for the data from panel a together with the non-interacting case and the
singlon CDW initial state. Experimental data points are averaged ten times and error bars denote
the standard error of the mean. c Steady-state charge imbalance as a function of the doublon
fraction. Experimental data and TEBD simulations of the exact and effective Hamiltonian are
averaged in the time window between 120 and 140τ. d Average fragment dimension according to
Eq. (9.8) as a function of the doublon fraction in the initial state. The average is computed over all
possible charge configurations in a system with L = 13 lattice sites.

on a timescale 1/(2π J(3)) ' 24τ in agreement with our observations. Moreover, we
confirm that this initial-state dependence is indeed a many-body phenomenon by taking a
time trace for the mixed initial state with U = 0. Within our experimental uncertainty it
attains the steady-state value of the pure singlon CDW even in the presence of doublons,
here nD = 0.28(2) (see Fig. 9.4b). Hence, we can experimentally prove the expectation that
dipole-conserving processes require interactions. This observation is further underlined
by the fact that the effective Hamiltonian Ĥdip

eff in Eq. (9.2) vanishes trivially for U = 0.

We reproduce our experimental traces from Fig. 9.4a using time-evolving block decimation
(TEBD) [237] based on matrix product states (MPS) for the exact (Eq. 9.1) and effective
Hamiltonian (Eq. 9.2) in a lattice with L = 101 sites. We choose this numerical technique
over ED to be able to include experimental imperfections in the simulations and we can
further simulate large system sizes on the required timescales. Based on previous studies
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

with comparable initial conditions [126] we assume a hole fraction of 20 % on even sites
that is caused by non-adiabatic lattice loading and thus a finite temperature as well as
other experimental imperfections. Moreover, in the outer regions of the atomic cloud the
density is overall lower such that holes appear with larger probability and our imbalance
extraction method inevitably averages of the entire atom cloud. Holes effectively cut the
atomic chain and constrain the dynamics because the effective hopping processes require
certain charge configurations for resonances to occur. Hence, in order to simulate the
experiment as closely as possible, we have to include holes in the numerics. Since we can
only simulate 13 lattice sites for fillings ≥ 0.5 efficiently with ED, the addition of holes
would reduce the particle number even further and we have to expect strong finite-size
effects. The simulations typically show oscillations like Bloch oscillations and interaction-
induced revivals that are absent in the experiment on intermediate timescales due to
ensemble averaging and other imperfections. We therefore present the time-averaged
imbalance defined as I(t) = 1

t

� t
0 I(τ)dτ. We find that the numerical simulations match

our experimental data very well, in particular they are captured by the perturbative
description with the effective Hamiltonian. There is a small deviation between exact and
effective description for t & 10τ due to the effects of higher orders, but still the effective
Hamiltonian captures the observed dynamics of our system emphasizing that they can be
reproduced with the leading-order processes. This agreement between our experimental
data and the simulations from a fragmented Hamiltonian are a first strong indication that
we indeed probe the dynamics within a fragmented Hilbert space. We further note a weak
residual imbalance decay for the singlon initial state that we attribute to technical heating
due to lattice noise on the transverse laser beams. This effect is more dominant for large
imbalance values such that the other initial states are less influenced. Moreover, we can
attribute a small systematic offset between experiment and numerics to an inhomogeneous
density distribution of the initial state.

Connection to Hilbert space fragmentation

In order to connect our observations to the phenomenon of Hilbert space fragmentation
beyond the description in terms on an effective Hamiltonian, we rely on complementary
numerical investigations. We study the steady-state imbalance for various initial dou-
blon fractions and correlate it with the dimension of the fragment within the respective
symmetry sector the initial state ψ lives in. In Fig. 9.4c we show the experimentally
determined steady-state charge imbalance, obtained from averaging the data points in
the time window between 120 and 140τ, as a function of the initial doublon fraction nD.
As anticipated, the steady-state imbalance monotonously decreases for increasing nD. In
the experiment we can prepare values up to nD < 0.5, but we complement the range
numerically by going up to nD = 1 (half-filling). We observe that this behavior continues
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9.3. Realization of fragmented models in tilted Fermi-Hubbard chains

until the imbalance reaches a minimum around nD = 0.85 before it increases again. At
first glance this result is surprising as the symmetry sector is largest for half-filling and
thus most likely to thermalize. However, this outcome can be explained by the effective
doublon number conservation due to the diagonal energy penalty Ũ associated with
the formation and dissociation of doublons. A pure doublon CDW would indeed be
frozen like the singlon CDW considering only the leading-order processes of Ĥdip

eff . As
explained in sec. 9.1, we take this effective doublon number conservation into account by
replacing T̂3 in the effective Hamiltonian with T̂′3 (Eq. 9.4) and using this expression for
the computation of the dimension dK of the dynamically relevant fragment. The various
initial states we can prepare in the experiment have different fillings and hence differ in
the total charge or particle number, thus living in different symmetry sectors of the Hilbert
space. Further, even at the same doublon fraction, certain charge configurations do not
have the same dipole moment such that a direct comparison of the fragment dimension
is not meaningful as one would ideally compare different fragments K within the same
symmetry sector S . Instead, we compute the relative fragment dimension normalized
to the dimension dS of the respective symmetry sector the fragment is contained in and
present the quantity

Cψ =
log(dK)
log(dS )

=
log
[
dim

(
KnD ,ψ

)]
log [dim (SP,nD)]

. (9.8)

Assuming an exponential scaling of fragment and symmetry sector dimension with system
size (up to polynomial corrections), this quantity is independent of the system size and
lies in the range Cψ ∈ [0, 1]. While a frozen state would have Cψ = 0, this quantity tends
to 1 if the fragment is almost as large as the full symmetry sector defined by doublon
number and dipole moment. We use ED on an ideal system (i.e. no holes) with size
L = 13 and sample over all initial state configurations to obtain the averaged quantity C̄dip

nD

that is shown in Fig. 9.4c. We can identify a strong correlation between the steady-state
imbalance value shown in Fig. 9.4b and the average size of the corresponding fragment. If
the dynamics thermalize within the respective fragments, this is a strong indication that
the observed dynamics can be explained by the fragmentation of the underlying Hilbert
space. Though, we cannot infer the type of dynamics within the fragments, whether
there is thermalization or non-ergodicity restricted to a certain Krylov subspace as our
numerical observables do not allow a conclusion for this regime. We comment more on
this issue for the second investigated regime in sec. 9.3.2. The dimensions for individual
states are presented in Appendix B.2.

Interpretation of our results in terms of Stark MBL

Although this particular regime of strong tilt and weak interactions was repeatedly studied
in the context of Stark MBL [89, 95, 96, 101], we cannot conclude from our experimental
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

data whether our system really exhibits features typical for Stark MBL. On the available
timescales the observed dynamics can be explained by a leading-order effective Hamilto-
nian and the resulting dynamical hopping processes. This does not make any statement
about the long-term behavior. In our case of finite tilt the strongly fragmented effective
Hamiltonian only applies on transient timescales as higher orders in the expansion make
the system weakly fragmented by coupling different fragments and lead to a relaxation on
exponentially long times t ∝ exp(∆/J), according to the theory of prethermalization [180,
238]. Admittedly, Stark MBL was found in the presence of harmonic confinement that is
certainly present in our system, but in order to show Stark MBL over Hilbert space frag-
mentation we would have to access the long-time behavior of the time traces. Our system
might as well be in a prethermal regime governed by the leading order effective Hamilto-
nian before it finally thermalizes. It is also worth mentioning that the observed initial state
dependence distinguishes this system fundamentally from regular MBL characteristics.

9.3.2. The resonant regime

In the presence of resonances between interaction energy U and tilt ∆ the tilted Fermi-
Hubbard model also features non-ergodic properties and a description in terms of an
effective Hamiltonian can be found. At first glance this might appear counter-intuitive
as resonances, even at long distance, enable transport via resonant particle exchange as
observed in [239] and can restore thermalization. Such a scenario was drawn for MBL
systems, for instance as a mechanism to explain the Griffiths regime near the phase transi-
tion [43]. However, in the strongly tilted Fermi-Hubbard model we have the imposition
of dynamical constraints via dipole moment and doublon number conservation such
that this picture does not apply. Instead, in a previous study [117] the authors identified
non-ergodicity over long times, even at low and intermediate tilt, and related this outcome
to emergent kinetic constraints governed by a fragmented Hamiltonian.

Time traces and initial-state dependence

The expected initial state dependence in the regime U ' 2∆ � J can be illustrated by
considering the processes of Ĥres

eff sketched in Fig. 9.1b. Among the correlated tunneling
processes only those related to T̂D

3 change the recorded charge and doublon imbalance. In
addition, the process T̂2 leads to a change of the singlon imbalance. Both processes have
in common that they require the presence of doublons. Starting from a pure singlon CDW
it requires the dynamical production of doublons via T̂1 to enable the other processes,
which impedes their efficiency and time scale. This picture illustrates the expected initial
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9.3. Realization of fragmented models in tilted Fermi-Hubbard chains

state dependence of the dynamics in this fragmented regime of the tilted Fermi-Hubbard
model.

Like in the previous regime we investigate this assumption by measuring imbalance time
traces for an initial singlon CDW (nD = 0) and a mixed initial state with the highest
achievable doublon fraction of nD = 0.47(4). These traces are plotted in Fig. 9.5a. After an
initial drop in the beginning, the singlon CDW state remains at a high imbalance plateau
close to IS = 0.75. The same characteristic was found in the regime ∆ � U, J, but here
the imbalance is slightly lower. This behavior can be explained by the resonant formation
of doublons according to process T̂1 where a single particle hops by two lattice sites to
its nearest neighbor and the released potential energy gets transferred into interaction
energy. Subsequently, the dynamics continue via T̂2 and T̂D

3 . This chain of processes was
already found to lead to a reduced imbalance for a singlon initial state at the resonance
U ' 2∆ [117]. Conversely, when starting from an initial state with doublons we observe
a fast and strong reduction of the imbalance owing to the previously explained leading-
order processes. Hereby we further notice that singlon IS and doublon imbalance ID

attain similar values, a striking difference to the previous regime where the leading-order
process only affected the doublon evolution on even and odd sites. This is a consequence
of the fact that the singlon imbalance is imminently affected by the effective Hamiltonian,
namely by the operator T̂2.

Again, the data is reproduced with time-averaged TEBD simulations of the full and
effective Hamiltonian, this time on L = 51 lattice sites and including 20 % holes on
even sites. We use the interaction strength U = 15.7J fulfilling the resonance condition
from Eq. (9.6). We find very good qualitative agreement with the experimental data
reproducing all characteristic features described previously. The systematic offset is
attributed to ensemble averaging and an imperfect density distribution in the lattice. The
processes that reduce the observed imbalance are strongly density-dependent and thus
the distribution of doublons and the presence of holes can change the recorded traces
significantly. Conversely, starting from a singlon CDW only the process T̂1 takes place.
Hence, the agreement between theory and experiment is better in this case. Moreover, the
traces from the exact and effective Hamiltonian exhibit good conformity and only start to
deviate for times t & 30τ due to higher orders in the expansion. We conclude that in the
resonant regime we equally get good agreement between the data and the leading-order
effective Hamiltonian. Since Ĥres

eff is fragmented, this is a strong indication that we indeed
probe the dynamics of a fragmented model.
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Figure 9.5.: Resonance regime U ' 2∆: a Imbalance time traces for a singlon initial state as well
as with a doublon fraction of nD = 0.47(4). Error bars denote the standard error of the mean
after ten averages. Solid lines represent TEBD simulations of the effective, dashed, transparent
lines of the exact Hamiltonian performed on L = 51 lattice sites and averaged over ten different
initial configurations. b Steady-state charge imbalance as a function of the initial doublon fraction
nD from experimental data points and time-averaged TEBD simulations of full and effective
Hamiltonian averaged between 120 and 140τ. c Average fragment dimension according to Eq. (9.8)
as a function of the initial doublon fraction. The dimension is averaged over all possible charge
configurations in a system with L = 13 lattice sites.

Connection to Hilbert space fragmentation

Like in the previous regime we relate our observations deduced from the recorded imbal-
ance time traces to the phenomenon of Hilbert space fragmentation. Fig. 9.5b displays the
steady-state imbalance averaged between 120τ and 140τ, both for experimental data and
numerics. Not only do we find good agreement between experiment and theory, but also
between exact and effective dynamics across the full range of doublon fractions. Like in
the dipole-conserving regime we correlate the steady-state imbalance with the average
fragment dimension C̄res

nD
in Fig. 9.5c. Note that in the case of nD = 1 the fractal dimension

C̄res
nD

= 0, hence the doublon CDW is frozen, but the simulated steady-state imbalance is
around 0.3. While the computation of the fragment dimension assumes an ideal state, the
TEBD simulations of exact and effective Hamiltonian contain 20 % holes. While this had
no effect in the dipole-conserving regime, at resonance the doublon CDW is no longer
frozen because the process T̂1 can take place in inverse direction. This leads to a dynamical
doublon decay and subsequent dynamics according to T̂2 and T̂D

3 . Like in the previous
regime we conclude that this correlation can be explained by fragmentation if we assume
that the dynamics are thermal within individual fragments. In the resonant regime we can
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9.3. Realization of fragmented models in tilted Fermi-Hubbard chains

investigate this assumption more closely as done in the following section.

Entanglement entropy and thermalization dynamics

We can gain further information about the system’s properties by looking at the ther-
malization dynamics within the individual fragments. For this purpose we compute the
time evolution of the half-chain entanglement entropy SL/2 for multiple initial doublon
fractions and compare it to the Page value [87, 140] of the respective fragment. That value
represents a thermal ensemble at infinite temperature. Note that these simulations are
carried out for a small system of 13 lattice sites with ED and for an ideal system without
holes, otherwise an estimate for the Page value is intractable due to a too large Hilbert
space. Moreover, we disregard atypical initial states with strong boundary effects irrele-
vant for larger system sizes. We compute the entanglement entropy for multiple doublon
fractions up to 5000τ, average them over relevant initial state configurations and plot the
resulting traces in Fig. 9.6. They all exhibit a steady increase towards a filling-dependent
saturation value. The dashed horizontal lines mark the mean Page value for the respective
doublon fraction and the shaded area marks the uncertainty from averaging over different
initial states with the same doublon fraction. Note that this implicitly connects to the
fragment dimension plotted in Fig. 9.5c. Since the thermal entanglement entropy, as an
extensive thermodynamic quantity, depends on the fragment dimension, the entropy
scaling with the doublon fraction can be directly explained from this result. In all cases
shown it seems like the entanglement entropy finally saturates to the respective Page
value after very long times, much longer than experimentally accessible timescales. Hence,
within the individual fragments the system thermalizes, but as a whole the system remains
non-ergodic as can be, above all, inferred from the non-zero steady-state imbalance on
intermediate times. This is a typical feature of fragmented systems and underlines that
Hilbert space fragmentation is likely present in our system although this evidence is
purely numerical.

This outcome pinpoints a major difference between Hilbert space fragmentation and
conventional MBL. As explained in sec. 2.2, MBL features a fast initial increase to the
non-interacting entropy value within the first tunneling times followed by a logarithmic
growth in time and a volume-law saturation value at exponentially long time that is
subthermal and thus smaller than the Page value. In the regime U ' 2∆ on the other
hand we observe an initial ballistic growth followed by an asymptotic approach to the
thermal value within the respective fragment. This concept of Krylov-restricted ETH
was first introduced in [90]. Note that in the dipole-conserving regime ∆ � U, J we
cannot make such a statement because the evolution of the entanglement entropy is much
slower and exhibits long-lived oscillations such that we cannot reach a conclusion about
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Figure 9.6.: Half-chain entanglement entropy in the resonant regime U ' 2∆: Time evolution
of the entanglement entropy for three different initial doublon fractions. Dashed horizontal
lines indicate the Page value of the respective fragment signaling a thermal ensemble at infinite
temperature with an uncertainty due to averaging over all relevant initial charge configurations
indicated by the shaded region. The simulations were performed with ED for an ideal system on
13 lattice sites.

its convergence on available timescales. Moreover, thermalization within the individual
fragments is not established in this regime. Instead, the authors in [90] even identified
integrable sectors that obviously violate this assumption and could potentially explain the
slower evolution of entanglement.

9.3.3. Effect of a tilt difference

The effective Hamiltonian in the dipole-conserving regime (Eq. 9.2) is, like the Fermi-
Hubbard model, SU(2)-invariant. The effect of SU(2)-symmetry breaking can be studied
when the tilts seen by both spins are not equal. In the presence of such a tilt difference
the central process predicted by Ĥdip

eff becomes off-resonant with an energy mismatch
δ = |∆↓ − ∆↑| > 0. This adds additional constraints to the system and thus the dynamics
become strongly suppressed if J(3) < δ < J. We study this effect experimentally for the
dipole-conserving regime and for a mixed initial state with doublon fraction nD = 0.47(4)
by measuring the singlon and doublon imbalance after a fixed evolution time between 67τ

and 80τ in the presence of a certain tilt difference δ∆ = (∆↓ − ∆↑)/∆↓. As characterized
in Fig. 4.3, we can tune the tilt difference freely in the range δ∆ ∈ [0.006, 0.11] via the
power of the RF dressing field. The obtained results are plotted in Fig. 9.7. For the smallest
possible tilt difference we recover the results from Fig. 9.4a, while the steady-state doublon
imbalance increases monotonously for larger δ∆. At the same time the singlon imbalance
shows no significant dependence on the tilt difference, again for the reason that T̂3 leaves
the singlon imbalance unchanged. We reproduce the experimental results with TEBD
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Figure 9.7.: Tilt difference in the dipole-conserving regime: Singlon and doublon steady-state
imbalance as a function of the tilt difference δ∆ averaged in the time window between 67τ and 80τ

for an initial state with nD = 0.47(4). Solid lines are the result of TEBD simulations with the exact
Hamiltonian on 51 lattice sites and the gray line denotes the imbalance of a Wannier-Stark localized
dipole as explained in the text. The upper horizontal axis quantifies the relative tilt difference in
units of the effective tunneling. Experimental data points are averaged 40 times and error bars are
the standard error of the mean.

simulations of the exact Hamiltonian and the spin-dependent tilt implemented. While the
overall trend is observed in the experiment is reproduced by the simulations, we notice
a systematic deviation for large values of δ∆. We attribute this to technical heating from
the orthogonal lattice beams, which particularly affects large imbalance values. The same
effect was observed for the singlon CDW in the dipole-conserving regime (see Fig. 9.4a).

In order to get a quantitative understanding of the physical impact of this tilt difference,
we can modify the effective Hamiltonian to include the spin-dependent tilt. As long as
δ is small compared to the hopping rate (δ� J), the perturbative expansion can still be
applied and we obtain an effective Hamiltonian

Ĥδ
eff = Ĥdip

eff + ∆↑∑
i

in̂i + δ ∑
i

in̂i,↓. (9.9)

The effect of this additional term in δ can be intuitively understood by considering a
family of states {|n〉} = {|. . . ↑↑l 0 ↑↑ . . .〉} with a doublon (l) initiated on site n with a
neighboring hole and surrounded by a spin-polarized background. This family defines a
subspace that is closed under the action of the effective Hamiltonian. The term T̂XY has a
trivial interaction and diagonal contributions except of the term in δ become proportional
to the identity matrix. Thus, when projected onto this subspace, Eq. (9.9) simplifies to the
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expression
Ĥδ

eff = −J(3) ∑
n
|n〉 〈n + 1|+ h.c. + δ ∑

n
n |n〉 〈n| . (9.10)

This precisely defines a single-particle Hamiltonian of a doublon-hole pair that propagates
with tunneling J(3) in a tilted external potential with slope δ. In the spin-1 framework
used in [87] this corresponds to a dipole |+−〉 propagating in a background of polarized
spins. The resulting dynamics are well-known, the doublon undergoes Bloch oscillations
and acquires a steady-state imbalance of

ĪD = J 2
0

(
4J2U

∆3
↓ · δ∆

)
= J 2

0

(
4J(3)

δ

)
(9.11)

as explained in sec. 8.1. This analytical prediction is shown in Fig. 9.7 and matches the
numerical result from the TEBD simulations of the exact Hamiltonian (Eq. 9.1) very well.
Only in the limit of small δ∆ this simplified description fails because the picture of a bound
doublon-hole pair is no longer appropriate. Note that in our experiment the condition
δ < J is fulfilled for the full range of tilt differences as J/J(3) ' 26. For very large
differences δ > J it can be shown that the dipole moment is independently conserved for
each spin such that the effective Hamiltonian only contains diagonal contributions and
the dynamics are frozen for any initial state [234, 240].

9.3.4. Interaction scan

Finally, we investigate the characteristics of the tilted Fermi-Hubbard model for large
∆ � J as a function of the interaction strength U beyond the strictly defined regimes
studied above. We measure the steady-state imbalance averaged in the time window
from 67τ to 80τ for a pure singlon initial state as well as for a mixture with doublon
fraction nD = 0.47(4). We present the recorded singlon and doublon imbalance in Fig. 9.8
and also highlight the relevant regimes studied above. In the dipole-conserving regime
(blue-shaded area) we recover the main characteristic that the singlon imbalance is mostly
unaffected while the doublons show a strong signal, an outcome that could directly
be explained by the processes of the effective Hamiltonian. In the fragmented regime
at the resonance U ' 2∆ (yellow region) we see a distinct decline in both the singlon
and doublon imbalance. Within our experimental uncertainty the initial singlon CDW
shows no dependence on the interaction strength across the full investigated range. At
first glance, this seems to be in contradiction to the results from [117], where distinct
dips in the imbalance were identified near the resonance U ' 2∆ and that were related
to the dynamical formation of doublons and subsequent dynamics as predicted by the
effective Hamiltonian (Eq. 9.5) and its leading-order processes (Fig. 9.1b). Though, this
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Ī D
, Ī
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ĪD ĪS ĪS (n0
D = 0)

Figure 9.8.: Interaction dependence of the tilted Fermi-Hubbard model: Steady-state singlon
and doublon imbalance extracted in the time window between 67τ and 80τ as a function of
the interaction strength. The purple points represent the singlon CDW initial state that does
not show dynamics on this timescale. The mixed state has an initial doublon fraction of nD =

0.47(4). Colored regions highlight the investigated regimes in this project that exhibit Hilbert
space fragmentation with the dashed vertical lines marking the concrete experimental interaction
strength. The data points are are averaged eight times for five points in time and error bars denote
the standard error of the mean.

was observed at lower tilt (∆ = 3.3J) and longer observation times up to 700τ such that
we do not expect a significant signal at our shorter observation times.

Also indicated in the figure is the resonant regime U = ∆ that is known to exhibit
fragmentation and represents a constrained version of the Quantum East Model [177]
that respects particle number conservation. According to [79] this regime further features
quantum many-body scars, highlighting the rich dynamics of the tilted Fermi-Hubbard
model. Similar to the other regimes, one can derive an effective Hamiltonian, in this case
at first order in perturbation theory, and compute the structure of the fragmented Hilbert
space. Moreover, this regime provides product states giving rise to scarred dynamics [79]
and thus enabling an investigation of the interplay between quantum scars and Hilbert
space fragmentation. We leave this study for future work. In the limit of strong interactions
and away from possible resonances (|U| � J, ∆; |U| 6= n∆; n ∈ N) the number of
doublons is effectively conserved and moreover, the model maps to a first-order effective
Hamiltonian of spinless fermions in the presence of a tilt. We cannot enter this regime
in the experiment because we are technically limited to the interaction range plotted in
Fig. 9.8.
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

9.3.5. Discussion of experimental imperfections

Up to this point the discussion of the experimental results applies to an ideal system, with
the exception that we included holes in the numerical simulations. However, a realistic
experimental setup exhibits imperfection that may necessitate a closer inspection of the
data. In our experiment we identify three main deviations from the ideal setting and
explore the impact on the final data by means of simulations with the approximate method
developed in [241].

Limited doublon lifetime

Individual atoms in an optical lattice have a finite lifetime due to off-resonant photon
scattering and subsequent heating. Typical scattering rates of photons from the lattice and
dipole trap lasers are in the range of few Hz such that atom number lifetimes are on the
order of hundreds of milliseconds up to few seconds. In an independent measurement
we determined the singlon lifetime in the optical lattice, mainly limited by this effect, to
be 2.6(2)× 103τ, so it plays a negligible role on the experimentally relevant timescale.
Conversely, the primary loss mechanism for doublons are light-assisted collisions. This
term describes the pair-wise loss of atoms located on the same lattice site caused by
strong dipole-dipole interactions between a ground-state and an excited-state atom that
previously absorbed an off-resonant photon [126, 195]. For our blue-detuned lattices these
interactions are repulsive such that the atoms move away from each other and pick up a
part of the detuning as kinetic energy. This energy absorption is sufficient for both atoms
to escape the trap.

We aim to measure the doublon lifetime independent of any ongoing dynamics in the
lattice so as to distinguish the induced losses from dynamical doublon dissociation and
formation. We remove the tilt as well as the magnetic field ramps at the beginning and the
end of the time evolution. The atoms are kept at constant, strongly repulsive interaction
(U = 20J) such that doublons cannot decay dynamically into singlons. This decay is
prohibited energetically because in the tight-binding limit, the dissociation of a doublon
releases the interaction energy U and converts it into kinetic energy. The width of the
ground band is 4J such that two atoms can only absorb an energy of 8J at most. Keeping
the doublon at strong interactions U = 20J thus suppresses this decay channel and the
only decay we measure in the experiment is caused by light-assisted collisions. Via
iterative measurements of the atom number with and without the doublons removed
by our near-resonant blast pulse we can monitor the singlon and doublon number as a
function of the hold time in the lattice as shown in the inset of Fig. 9.9a. While the singlon
number is constant, important evidence that there is no dynamical doublon loss, the total
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Figure 9.9.: Quantitative analysis of experimental imperfections: a Dependence of the doublon
fraction in a deep lattice as a function of the hold time in a deep primary lattice with 18Ers and
strongly repulsive interactions (U = 20J). The solid line represents the expectation from the text
without free parameters. The inset shows the singlon and doublon numbers that are used to
compute the doublon fraction plotted in the main panel. Solid lines are fits to the data points
(averaged four times and error bars showing the standard error of the mean), an exponential
decay to the doublons and a constant value to the singlons. b Variation of the interaction strength
along a 1D tube between the center and edge of the cloud due to the magnetic field gradient at
a fixed tilt of ∆ = 9J for different initial states, corresponding to the singlon CDW and a mixed
states with maximal doublon fraction nD = 0.47(4). While the main panel gives an upper bound
for the interaction shift, the inset shows the relative weight of dU based on the Gaussian density
distribution of the atomic cloud for a mixed initial state (σ0 = 70 sites).

atom number decays exponentially. The fit describes the data very well and yields a
doublon lifetime of 109(8)ms = 145(11)τ. The dynamical doublon fraction is then given
by as nD = 1− N̄S/N(t) with the constant singlon number N̄S and presented in the main
panel of Fig. 9.9a. This outcome explains that the available observation time is limited by
this doublon loss and we therefore do not exceed evolution times of about 133τ.

Interaction averaging

As explained in sec. 8.2, the magnetic field gradient induces a spatially dependent inter-
action strength along the 1D tubes of the optical lattice and depends on the extent of the
atomic density distribution. The cloud size determined from in-situ images, is defined
as the 4σ-width of the Gaussian profile and depends on the initial state. In case of a
pure singlon CDW we obtain about 360 sites while the cloud is smaller with 290 sites for
the initial state with maximal doublon fraction. Using the expression of the interaction
strength in Eq. (4.3) and the parametrization of the Feshbach resonance in Eq. (4.4) we
can compute the range of interaction strengths as a function of the set value for both
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

cloud sizes [133]. The result is plotted in Fig. 9.9b and shows the interaction difference dU
between the cloud center and wings for a 12Er deep primary lattice. These values are only
an upper bound for the amplitude of the averaging effect. The inset shows the weights of
interaction variation taking the Gaussian density distribution of a mixed initial state with
nD = 0.47(4) into account. These weights are plotted for three different center interactions
U0 and underline that the effect is weaker for strongly repulsive interactions. The most
striking impact of his averaging effect is that it causes a finite interaction even in the case
U = 0.

Time-dependent interaction strength

The finite lifetime of double occupancies in the optical lattice imposes constraints on the
design of the experimental sequence. Our main limitation is the ramp time of the power
supply responsible for the generation of the Feshbach field. In a previous experiment [117]
on the same apparatus we conceded wait times as long as 140 ms for the magnetic field
to settle between lattice loading the beginning of the time evolution. This duration was
found to be sufficient to reach the target value of the magnetic field and thus the correct
interaction strength to an accuracy better than our detection limit. In that case, however,
we were only working with singlons in the initial states and the associated lifetime is
much longer such that the long wait time did not represent an obstacle. In this experiment,
however, we prepare states with doublons that are subject to light-induced losses. Within
a wait time of 140 ms we would already lose about 73 % of the initial doublon fraction
making the experiment practically impossible. Instead, we have to use shorter wait times
before and after the time evolution in order to keep as many doublons as possible. The
obvious disadvantage of this method is that the magnetic field will not have settled at the
beginning of the time evolution and we induce a time-dependent interaction strength.

We can employ the technique of RF spectroscopy to directly measure the induced shift in
the magnetic field and thus the interaction shift during time evolution in the optical lattice.
Starting from a spin-polarized sample in the |↓〉-state we send and RF π-pulse resonant
with the transition |↓〉 → |↑〉 for different evolution times t after a wait time of 30 ms
like in the experimental sequence. For every time t we record the excitation spectrum of
the pulse and extract the center frequency from a Gaussian fit. Note that the analytical
spectrum of a π-pulse is P(ω) ∝ sinc2 ((ω−ω0)Tπ/2) with the center frequency ω0.
However, due to the space-dependent magnetic field the transition frequency is not the
same throughout the atomic cloud. The spectrum is thus inhomogeneously broadened (in
analogy to Doppler broadening in laser spectroscopy) and the Gaussian approximation
applies fairly well. The recorded resonances are depicted in Fig. 9.10a for the shortest
and longest wait time. From the extracted transition frequencies we obtain the respective
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Figure 9.10.: Time dependence of the interaction strength U: a Excitation spectra of RF π pulses
after two different evolution times t. Solid lines are Gaussian fits to the data points and error
bars denote the standard error of the mean from four averages. b Interaction shift U(t)−U0 with
the set interaction strength U = 0 as a function of the evolution time obtained from the fitted
center frequencies in panel a. The solid line is an exponential fit to the data points returning a time
constant of 32(6)τ.

magnetic field by solving the Breit-Rabi equation numerically. The resulting interaction
strength then follows from the equation for the Feshbach resonance (Eq. 4.4) and the results
are shown in Fig. 9.10b. The interaction shift is well captured by an exponential decay
with a time constant of 24(4)ms ' 32(6)τ and an initial offset of 1.8(1)J. Therefore, the
short-time dynamics are mostly affected by the shift while our statements about long-time
dynamics and steady-state properties are rather unaffected. In case of a singlon initial state
the preceding discussion does not apply because we adapt the wait time to the previously
established duration of 140 ms.

Quantitative analysis with the approximate method

The preceding experimental imperfections are not included in the TEBD and ED sim-
ulations, but it is important to understand their quantitative impact on the recorded
imbalance. We tackle this problem by means of the approximate method recently de-
veloped in our group [241]. This method is particularly efficient for strongly localized
systems and thus eligible for this project. In short, this numerical algorithm considers a
lattice with 2`+ 1 sites around a |↓〉-atom at the center. We take k↓ additional |↓〉-atoms,
k↑ |↑〉-atoms and kd doublons with the restriction k↑, k↓, kd < `. These approximations
are justified for localized systems where the dynamics of a given atom are restricted to a
sublattice of size 2`+ 1. Its evolution is computed via ED and averaged over all possible
charge and spin configurations. The main advantages of this method over TEBD or ED
(on the full system) are that it operates on a much smaller Hilbert space and the possibility
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Figure 9.11.: Quantitative analysis of experimental imperfections with the approximate
method: The top row presents the results for the regime U � ∆ and the bottom row for U ' 2∆.
The imbalance traces are all time-averaged. a Doublon imbalance for the ideal case, time dependent
interaction U(t) as well as with additional space-dependence dU. Dots represent experimental data
averaged ten times and error bars showing the standard error of the mean. b Charge imbalance
in the resonant regime with otherwise same parameters. c, d Charge imbalance traces showing
the effect of doublon loss during time evolution (see text). Both traces also include the time- and
space-dependence of U. e, f Dynamical evolution of the doublon fraction with and without the
background loss and comparison to experimental data. All computations were performed on a
system with L = 100 lattice sites and for the initial state a doublon fraction of 45% was used. The
simulations were performed by Bharath H. M.

to include imperfections like time and spatially dependent interactions in a direct manner.
In addition, it does not have finite-size effects because large systems can be simulated
efficiently by averaging over multiple small subsystems with size 2`+ 1. Moreover, the
loss of doublons can be included by solving the Lindblad Master equation

˙̂ρ = − i
h̄
[Ĥ, ρ̂] + γ

2`+1

∑
i=1

L̂iρ̂L̂†
i −

1
2
{L̂†

i L̂i, ρ̂}. (9.12)

Herein Ĥ is the Fermi-Hubbard Hamiltonian (Eq. 9.1), ρ̂ denotes the density matrix of
a many-body mixed state and L̂i = ĉi,↓ ĉi,↑ is the jump operator that represents the loss
of a doublon at lattice site i. The master equation is solved with the technique explained
in [234, 241].

The quantitative effects of the experimental imperfections as simulated with the approx-
imate method and the comparison with experimental data are illustrated in Fig. 9.11.
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9.3. Realization of fragmented models in tilted Fermi-Hubbard chains

Therein the top row depicts the results for the dipole-conserving regime and the bot-
tom row for the resonant regime. The simulations are performed for the parameter set
(`, k↑, k↓, kd) = (5, 3, 3, 3) and it was ensured that the traces are fully converged. The effect
of time and space dependence of the interaction strength on the imbalance evolution
in the dipole-conserving regime is only marginal as emphasized by Fig. 9.11a. As the
main difference oscillations are damped, but the steady-state value of the time-averaged
imbalance agrees. This situation is different for the resonant regime (panel b). Here the
time-dependence of U changes the result drastically compared to the ideal case because
initially the system is not on resonance and the resonance feature is narrow at strong
tilts. Only in the long-time limit the traces approach each other. The addition of spatially
varying interactions mitigates the effect because some regions of the cloud are in the
resonant regime. With both imperfections included the experimental results are nicely
reproduced. On top we add the effect of doublon loss due to light-assisted collisions.
In both regimes (panels c and d) the charge imbalance traces are hardly distinguishable,
emphasizing that the doublon loss has a negligible quantitative effect on the imbalance
evolution. Finally, we compare the doublon fraction between experiment and numerics
(panels e and f). The traces with doublon loss show good qualitative agreement with the
experimental data points. All in all, the experimental imperfections studied here only
have a small effect on the results and do not change our interpretation of the data.

9.3.6. Conclusions and outlook

In summary, we experimentally realize the tilted Fermi-Hubbard model and find indica-
tions that we indeed probe the dynamics in agreement with weak ergodicity breaking via
Hilbert space fragmentation. First, we measure density-resolved imbalance time traces
and show a strong dependence of the observed dynamics on the initial conditions. We
succeed in describing the experimental time traces in terms of leading-order hopping
processes of an effective Hamiltonian and further identify the emergent timescales at
higher orders in perturbation theory directly in the experiment. Given that the effective
Hamiltonian is fragmented, this comprises strong indications that we indeed realize a
model that exhibits Hilbert space fragmentation in our optical lattice. Moreover, we relate
the recorded steady-state imbalance to the average fragment dimension via numerical
analyses. We find strong correlations as a function of the doublon fraction in the initial
state, which is a hallmark of Krylov-restricted thermalization and thus a violation of
strong ETH. This notion is further underlined by the entanglement entropy evolution in
the resonant regime U ' 2∆, which seems to converge to the Page value on long time
although these are beyond experimentally accessible timescales. However, this numerical
investigation is not conclusive and requires further input, also from the experimental side.
The reported investigation is made feasible by the technique of RF dressing that mitigates
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9. Non-ergodicity and state-dependent dynamics due to Hilbert-space fragmentation

the tilt difference between both spin states. At the same time this feature can be used
to implement effective spin models via precise control over the tilt difference in future
projects.

The field of weak ergodicity breaking is constantly evolving at the moment and based on
these new results and the current interest in Hilbert space fragmentation and quantum
scars there are a couple of worthwhile research directions for future projects. First, it has
been considered to extend this scheme to a two-dimensional tilted lattice system. When
the tilt is applied at an irrational angle with respect to the lattice axes, the dipole moments
are preserved along both directions on a prethermal timescale [88]. Moreover, such a
configuration creates a quasiperiodic potential such that tilted two-dimensional systems
may be relevant for the investigation of the stability of MBL in higher dimensions [96].
The dynamical properties of such 2D systems were previously studied experimentally [99]
for the particular case that the tilt is aligned with one lattice axis, and theoretically [242,
243] in the context of hydrodynamic descriptions and diffusion. In addition, it is possible
to study quadrupole moment conservation when adding harmonic confinement to the
system. Not only can the pair hopping model, that appears in the effective Hamiltonian
in the dipole-conserving regime (Eq. 9.2), be mapped to a tilted lattice, but also onto a
thin torus [90, 244]. Hence, one can conceive this setting as testbed for the exploration
of fractional quantum Hall physics [92, 93]. Finally, future experiments may investigate
the microscopic properties of individual fragments. While we find indications of Krylov-
restricted thermalization in the regime |U| ' 2∆, we cannot reach a conclusion for
the dipole-conserving regime. It might well be that there exist as well integrable or
scarred fragments as instigated in [90], which represents an interesting direction for future
projects.
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A. Parameters of the AA and GAA model

The tight-binding parameters as well as the higher order corrections, that emerge upon
the transformation from the continuum (Eq. 2.2) to the lattice model (Eq. 6.1), can be
calculated in two different ways, either analytically employing the Wannier functions
(localized eigenfunctions of the lattice Hamiltonian) or numerically via the Wegner flow
method [132]. Both methods are briefly presented in this appendix.

The tight-binding parameters of the AA model, J0 and ∆, as well as the second-order
tunneling element J2 can be computed analytically via the unperturbed Wannier functions
wj of the primary lattice centered at site j via

J0 = − 〈w0| Ĥ0 |w1〉 ≡ −
� ∞

−∞
dxw∗0 Ĥ0w1,

∆ =
Vdβ2

2Ep
r
〈w0| cos

(
2βkpx

)
|w0〉 ,

J2 = − 〈w0| Ĥ0 |w2〉 ,

(A.1)

where Ĥ0 = − h̄2

2m
d2

dx2 +
Vp
2 cos

(
2kpx

)
. The remaining parameters J1 and ∆′, however,

require the Wannier functions of the detuned primary lattice (superposition of detuning
and primary lattice) and cannot be computed in that manner. Instead, the full set of
parameters is generated with the Wegner flow approach. Where applicable both methods
yield the same results and they are presented in Table A.1.

In the experiment, the distinction between the GAA and AA model is made via the
primary lattice depth Vp and the detuning strength is chosen via Vd, the depth of the
incommensurate lattice. In the numerics, on the other hand, a common lattice depth
of Vp = 4Er for both models is chosen. For each pair (Vp, Vd) the GAA parameters are
generated (see Tab. A.2) for the simulations of the time evolution. In case of the AA model,
higher orders in the Hamiltonian (H′ in Eq. 6.1) are removed. Thus, the conversion to the
tight-binding parameters ∆/J0 is model-independent, unlike in the experimental data.
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GAA model AA model
Vp = 4Ep

r Vp = 8Ep
r

J0/h (Hz) 1508 543
J2/J0 −0.072 −0.021

∆/J0 = 2.1 ∆/J0 = 3.1 ∆/J0 = 2.1 ∆/J0 = 3.1
Vd (Ep

r ) 0.52 0.77 0.16 0.24
−J1/J0 0.23 0.35 0.057 0.085
−∆′/J0 0.016 0.036 0.002 0.006

∆/J0 = 2.5 ∆/J0 = 4.0 ∆/J0 = 2.5 ∆/J0 = 4.0
Vd (Ep

r ) 0.62 1.00 0.19 0.31
−J1/J0 0.28 0.45 0.067 0.11
−∆′/J0 0.023 0.060 0.004 0.010

Table A.1.: Model parameters: This table summarizes the relevant parameters values form the
GAA Hamiltonian in our experiment. The signs of the parameters are chosen in accordance with
the convention in Eq. (6.1).

Vd (Ep
r ) 0.50 0.57 0.62 0.70 0.77 0.83 0.90 1.00

∆/J0 2.01 2.27 2.49 2.81 3.08 3.34 3.61 4.01
−J1/J0 0.22 0.26 0.28 0.31 0.34 0.37 0.40 0.45
−∆′/J0 0.015 0.019 0.023 0.030 0.036 0.042 0.049 0.060

Table A.2.: Conversion from the continuum model with Vp = 4Ep
r to the GAA model: These

parameters were derived via the Wegner flow approach. The other parameters from Eq. (6.1) only
depend on the primary lattice depth Vp and are listed in Table A.1.
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B. Numerical and analytical methods in the
Hilbert space fragmentation project

In this appendix we list the most important numerical techniques employed in the project
on Hilbert space fragmentation reported in chapter 9 to simulate the imbalance time
evolution and dimensions of dynamical fragments. The composition if the code as well as
the execution of most simulations were performed by Pablo Sala.

B.1. Time-evolving Block Decimation (TEBD) simulations

As explained in sec. 9.3.1, we employ TEBD simulations to reproduce our experimental
imbalance time traces. This is implemented using the open source library TeNPy [237]
applied to our spinful Fermi-Hubbard model. While the evolution of the exact Hamilto-
nian (Eq. 9.1) is straightforward, the time evolution of the effective Hamiltonian is defined
as [117]

Û(t, t0) = e−iλŜe−i(t−t0)Ĥeff eiλŜ (B.1)

with a self-adjoint operator Ŝ given by

Ŝdip = −i ∑
i,σ

(
1 +

U
∆
(n̂i+1,σ̄ − n̂i,σ̄)

)
ĉ†

i,σ ĉi+1,σ + h.c, (B.2)

in the dipole-conserving regime and by

Ŝres = −i ∑
i,σ

(
1− 2n̂i,σ̄ −

2
3

n̂i+1,σ̄ +
8
3

n̂i,σ̄n̂i+1,σ̄

)
ĉ†

i,σ ĉi+1,σ + h.c, (B.3)

in the resonant regime. The small parameter λ = J/∆ � 1 leads only to approximate
conservation laws in the case of finite tilt. In order to still enforce the conservation
laws at leading order in perturbation theory, the additional operator Ŝ has to be taken
into account. It is derived via the Schrieffer-Wolff transformation or a high-frequency
expansion and is explained in [117, 133]. A direct consequence of this rotation Ŝ is that the
Krylov subspaces K = {|n〉} are not fragmented in the number basis Sz, but in a locally
dressed version K̃ = {e−iŜ |n〉}. However, we confirmed numerically that for our case
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of large tilt the overlap between the original fragment and the dressed version is large
such that the admixture of other fragments can be neglected. Hence, our conclusions
from chapter 9, which assumed the evolution of a state within a fixed fragment remain
unchanged. Another direct consequence of the Schrieffer-Wolff rotation can be seen for
example in Fig. 9.4a for the singlon CDW. Although the state is frozen under the evolution
with Ĥdip

eff and the fractal dimension Cψ = 0, the numerical imbalance ĪC = 0.88. The
imbalance is measured in the Sz-basis while the fragment is defined in the rotated basis
e−iŜ. This basis transformation weakly admixes other fragments and thus explains the
reduced imbalance.

B.2. Dimensions of analytical fragments

In Figs. 9.4 and 9.5 we showed the mean fractal dimension C̄nD obtained from averaging
over families of initial states with the same doublon fraction nD. Here we show the
distribution of individual states for completeness. The effective Hamiltonian is treated
as an adjacency matrix in the local Sz-basis, the relevant basis choice for the incoherent
product states produced in the experiment, yielding the fragmented structure of the full
Hilbert space as well as the dynamical fragment of a certain initial state. For this type
of simulations we use ED on 13 lattice sites and realize all possible charge distributions
starting from a Néel-ordered singlon CDW background and adding additional atoms to
form doublons. This yields a fixed number of possible states for a given doublon fraction
and their relative fractal dimension Cψ is plotted in Fig. B.1a for the dipole-conserving
regime and Fig. B.1b in the resonant regime U ' 2∆. Note that in the former case we have
to enforce doublon number conservation as explained in sec. 9.3.1 to obtain the physically
relevant fragments given the diagonal interaction energy. We observe certain fluctuations
in the fragment dimension that come from states with strong boundary effects where
the doublons are accumulated contiguously at the edge of the system and this effect is
even more pronounced in the resonant regime such that some points are not shown in
Fig. B.1b and omitted in the computation of the average dimension [234]. After all, these
atypical configurations occur due to strong boundary effects in the small system and bear
no physical relevance for the states prepared in the actual experiment. Apart from that
we infer that the fragment statistics within different symmetry sectors are well-behaved
such that the relation we draw between the steady-state imbalance and average fractal
dimension is justified.
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Figure B.1.: Statistics of fractal dimensions: Relative fragment dimension with respect to the full
symmetry sector resolved by the concrete state for all initial doublon fractions studied numerically
in the main text. The dashed horizontal lines indicate the average value for all states with the same
doublon fraction nD (values given in the legend of panel b). a Dipole-conserving regime ∆� U, J
b Resonance regime U ' 2∆.
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[36] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin. “Many-Body Localization in
Periodically Driven Systems”. Phys. Rev. Lett. 114 (14 2015), p. 140401 (cit. on p. 2).

145

https://www.nature.com/articles/nature07070
https://www.nature.com/articles/nature07070
https://www.nature.com/articles/nature05623
https://www.nature.com/articles/nature05623
https://www.nature.com/articles/nature07071
https://www.nature.com/articles/nature07071
http://www.sciencemag.org/content/349/6250/842.abstract
http://www.sciencemag.org/content/349/6250/842.abstract
https://www.nature.com/articles/nature15750
https://science.sciencemag.org/content/364/6437/256
https://science.sciencemag.org/content/364/6437/256
https://www.nature.com/articles/nphys3783
https://www.nature.com/articles/nphys3783
http://science.sciencemag.org/content/358/6367/1175
http://science.sciencemag.org/content/358/6367/1175
https://link.aps.org/doi/10.1103/PhysRevLett.120.050507
https://link.aps.org/doi/10.1103/PhysRevLett.120.050507
https://link.aps.org/doi/10.1103/PhysRevLett.120.070501
https://link.aps.org/doi/10.1103/PhysRevLett.120.070501
http://link.aps.org/doi/10.1103/PhysRevLett.114.140401
http://link.aps.org/doi/10.1103/PhysRevLett.114.140401


Bibliography
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