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RELATIVE K-THEORY VIA 0-CYCLES IN FINITE

CHARACTERISTIC

RAHUL GUPTA, AMALENDU KRISHNA

Abstract. Let R be a regular semi-local ring, essentially of finite type
over an infinite perfect field of characteristic p > 0. We show that the
known cycle class map from the Chow group of 0-cycles with modulus
to the relative K-theory induces a pro-isomorphism between the additive
higher Chow groups of relative 0-cycles and the relative K-theory of trun-
cated polynomial rings over R. This settles the problem of completely
describing the relative K-theory of such rings via the cycle class map.
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1. Introduction

Ever since the invention of additive Chow groups and higher Chow groups with mod-
ulus, it has been an open question whether these groups together would give rise to a
motivic cohomology which could describe the algebraicK-theory of non-reduced schemes.
Existence of such a motivic cohomology was conjectured in the seminal work of Bloch
and Esnault [5].

There are usually two ways to solve this question; either construct a direct cycle class
map from the Chow groups with modulus to relative K-theory, or, construct an Atiyah-
Hirzebruch type spectral sequence. For smooth schemes, both approaches have been
shown to be successful in describing the algebraic K-theory in terms of algebraic cycles.
However, this question remains unsolved for singular schemes.

In [30], Levine constructed cycle class maps with rational coefficients from Bloch’s
higher Chow groups [4] to the algebraic K-groups of a smooth scheme over a field. He
showed that these maps induce isomorphisms between the higher Chow groups and the
Adams graded pieces of the algebraic K-groups of the scheme.

Motivated by Levine’s work, the authors constructed in [10] an explicit cycle class
map (with integral coefficients) from the higher Chow groups of 0-cycles with modulus
to the relative K-theory in the setting of pro-abelian groups. The main result of [10] was
that this cycle class map induces a pro-isomorphism between the additive higher Chow
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2 RAHUL GUPTA, AMALENDU KRISHNA

groups of relative 0-cycles and relative K-theory of truncated polynomial rings over a
regular semi-local ring, essentially of finite type over a characteristic zero field. The goal
of this manuscript is to extend this result to positive characteristic.

To state our main result, recall from [2] and [27] that for a smooth scheme X of
dimension d which is essentially of finite type over a field k and an effective Cartier divisor
D ⊂ X, the higher Chow groups of codimension q-cycles with modulus are denoted by
CHq(X ∣D;n). Let K(X,D) denote the relative K-theory spectrum. In order to study
the relative algebraic K-theory in terms of 0-cycles with modulus, it was shown in [10]
that there exists a cycle class map

(1.1) cycX ∣D ∶ {CH
n+d(X ∣mD;n)}

m≥1
→ {Kn(X,mD)}m≥1

in the setting of pro-abelian groups. This cycle class map coincides with that of Levine
when D = ∅.

Recall now that for an equi-dimensional scheme X over k, the Chow group with mod-
ulus CHq(X ×A1

k∣X ×(m + 1){0}, n) is the same thing as the additive higher Chow group
of codimension q-cycles TCHq(X,n+1;m) (see [24]). Applying (1.1) to X = Spec (k) and
using the natural connecting isomorphism ∂∶Kn+1(k[x]/(xm), (x)) ≅Ð→Kn(A1

k,m{0}), we
see that (1.1) is the same thing as the map

(1.2) cyck ∶{TCHn+1(k,n + 1;m)}m≥1 → {Kn+1(k[x]/(xm), (x))}m≥1 .
The main property of cyck is that its definition is very explicit on the set of generators

Tzn+1(k,n + 1;m) (see § 2.5). This property of cyck often turns out to be very useful in
the study of K-theory via algebraic cycles. If R is, more generally, a regular semi-local
ring containing k, the map cyck directly extends to an explicit cycle class map

(1.3) cycR∶Tzn+1sfs (R,n + 1;m)→Kn+1(R[x]/(xm+1), (x)),
where Tzn+1sfs (R,n + 1;m) ⊂ Tzn+1(R,n + 1;m) is a subgroup of ‘sfs’ cycles (see § 6.2 for
the definition of sfs cycles and § 6.3 for the definition of cycR).

The initial motivation behind the discovery of additive higher Chow groups by Bloch
and Esnault [5] was to know if a cycle class map such as cycR passes through rational
equivalence and if the resulting map is an isomorphism. The main objective of this
paper is to provide the following partial answer to the question of Bloch and Esnault.
In fact, we construct a new cycle class map in the pro-setting and show that it is an
isomorphism when k is any perfect field. We subsequently show that this new cycle class
map coincides with cycR of (1.3) when k is furthermore infinite.

Theorem 1.1. Let R be a regular semi-local ring which is essentially of finite type over
a field k such that char(k) > 0. Let n ≥ 1 be an integer. Then there exists a cycle class
map

cyc′R∶{TCHn(R,n;m)}m≥1 → {Kn(R[x]/(xm), (x))}m≥1 .
This map satisfies the following.

(1) cyc′R is natural in R.
(2) cyc′R is injective.
(3) cyc′R is an isomorphism if k is perfect.
(4) The composite map

{Tznsfs(R,n;m)}m≥1 → {TCHn(R,n;m)}m≥1 cyc′
RÐÐ→ {Kn(R[x]/(xm), (x))}m≥1

coincides with cycR if R = k or k is infinite.

Using [10] in characteristic zero and Theorem 6.2 otherwise, we obtain the following.
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Corollary 1.2. Let R be a regular semi-local ring which is essentially of finite type over
an infinite perfect field. Then cycR induces an isomorphism

cycR∶{TCHn(R,n;m)}m≥1 → {Kn(R[x]/(xm), (x))}m≥1 .
We remark that the only hurdle in extending the above corollary to finite base fields

is the lack of sfs-moving lemma. The proof of this moving lemma given in [28] breaks
down if the base field is finite. However, we expect that the new Bertini theorems of [9]
may be enough to prove the sfs-moving lemma over finite base fields.

For a semi-local ring R, let KM
∗ (R) denote the Milnor K-theory of R. When R has

a finite residue field, KM
∗ (R) is taken to be the one defined by Gabber (unpublished)

and Kerz [22]. Let KM
n (R[x]/(xm), (x)) denote the kernel of the canonical restriction

map KM
n (R[x]/(xm)) →KM

n (R). Unless R is local, there may not exist a natural map
from the Milnor K-theory (à la Gabber-Kerz) to the Quillen K-theory of R[x]/(xm).
Nonetheless, we show in this manuscript (see Corollary 5.4) that there is indeed a natural
map of pro-abelian groups

ψR∶{KM
n (R[x]/(xm))}m≥1 → {Kn(R[x]/(xm))}m≥1 .

This induces a natural map between the pro-relative K-groups as well. Furthermore, this
restricts to the known canonical map when we replace R by any of its localizations. The
main step in the proof of Theorem 1.1 (except its last part) is the following extension of
[10, Theorem 1.3(1)] to positive characteristic.

Theorem 1.3. Let R be a regular semi-local ring which is essentially of finite type over
a field of characteristic p > 0. Let n ≥ 1 be an integer. Then there exists a cycle class
map

cycMR ∶{TCHn(R,n;m)}m≥1 → {KM
n (R[x]/(xm), (x))}m≥1

which is natural in R and is an isomorphism.

The cycle class map cyc′R in Theorem 1.1 is, by definition, the composition ψR ○cycMR .
We remark that by a result of Morrow [32] (which implicitly uses Theorem 4.4 of this
paper, see the proof of Proposition 5.8), one knows that the canonical map from the
relative Milnor K-theory to the relative Quillen K-theory is a pro-isomorphism when
R is local. However, there are two points to be noted regarding Theorem 1.3. First,
the pro-isomorphism between the relative Milnor K-theory and the Quillen K-theory
for semi-local rings is not a straightforward deduction from the local case. Second, and
more important, Theorem 1.3, along with Theorem 1.1(4), asserts that the cycle class
map cycR (whose study is our main interest) from the additive higher Chow groups to
the relative Quillen K-theory in (1.3) factors through the relative Milnor K-theory if
the base field if infinite and perfect. This plays a very important role in understanding
the cycle class map and in our proof. A similar result in characteristic zero was proven
in [10].

A fundamental fact in Voevodsky’s theory of motivic cohomology is that if R is an equi-
characteristic regular semi-local ring, then its motivic cohomology in the equal bi-degree
(the Milnor range) is isomorphic to the Milnor K-theory of R (see [7], [33] and [38]).
Theorem 1.3 (3) says that this isomorphism also holds for truncated polynomial algebras
over such rings. This provides a key evidence that if one could extend Voevodsky’s theory
of motives to so-called fat points (infinitesimal extensions of spectra of fields), then the
underlying motivic cohomology groups must coincide with the additive higher Chow
groups, at least in the setting of pro-abelian groups (see [25]).
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1.1. A brief outline of the proofs. Our strategy for proving Theorem 1.1 (except
part (4)) is to define the cycle class map cycR as the composition of ψR with a cycle
class map cycMR , to the relative Milnor K-theory of the truncated polynomial ring over
the underlying regular semi-local ring R. The two known results that are used to achieve
this are the ‘Chow-Witt isomorphism theorems’ of Rülling [35] and Krishna-Park [29]
and the ‘Milnor-Witt isomorphism theorem’ of Rülling-Saito [36]. But these two results
are not quite enough.

Going beyond, a fundamental result of independent interest that we need to prove
is that there is a pro-isomorphism between the Milnor K-theories of Rülling-Saito [36],
Kato-Saito [20] and Gabber-Kerz [22] (see Theorem 4.4). This allows us to define a cycle
class map from the additive higher Chow groups to the relative Milnor K-theory of the
truncated polynomial ring (see § 5.3). This map is easily seen to be an isomorphism by
its construction.

The next step is to show the existence of a canonical map from the relative Milnor
K-theory to relative Quillen K-theory of truncated polynomial rings over a regular semi-
local ring (see Corollary 5.4). This requires care if the base field is finite and the ring is not
local. The third step is show that the above described map is a pro-isomorphism. This
is done in Proposition 5.8 using Theorem 4.4 and a result of Morrow [32, Corollary 5.5].

The final step to explicitly describe this composition when R is a field or is essentially
of finite type over an infinite field. Under these assumptions, we define an explicit cycle
class map to the relative Quillen K-theory of truncated polynomials in § 2.5 and § 6.
The proof of Theorem 1.1 is then completed in Lemma 7.4.

In all the above steps, we have to pay special care if the underlying regular semi-local
ring is not local. This is because the Gabber-Kerz Milnor K-theory is not very well
behaved for such rings. This forces us to work with their sheafified versions. But this
brings in another technical problem. Namely, a local isomorphism between two pro-
sheaves does not necessarily imply an isomorphism between them. This is in contrast to
the case of sheaves. To take care of this problem, we always have to prove a stronger
assertion than merely an isomorphism whenever we work with pro-abelian groups of K-
theories and de Rham-Witt forms on a local ring (see Lemma 2.1 for a precise version
we need to prove).

2. The cycle class map

In this section, we shall recall our main object of study, the cycle class map for the
additive higher Chow groups of 0-cycles, from [10]. Before this, we shall fix our notations,
recall the basic definitions and prove some intermediate results to be used in the proofs
of the main theorems.

2.1. Notations. Given a field k, we let Schk denote the category of separated finite
type schemes over k and let Smk denote the full subcategory of non-singular schemes
over k. For X,Y ∈ Schk, we shall denote the product X ×k Y simply by X × Y . For
any point x ∈ X, we shall let k(x) denote the residue field of x. For a reduced scheme
X ∈ Schk, we shall let XN denote the normalization of X. Given a closed immersion
D ⊂ X in Schk defined by a sheaf of ideals ID ⊂ OX , we shall let mD ⊂ X denote the
closed subscheme of X defined by the sheaf of ideals ImD for m ≥ 1. In this article, we
shall always consider the Zariski topology on a Noetherian scheme whenever we talk
about sheaves.

We shall let ◻ denote the projective space P1
k = Proj(k[Y0, Y1]) and let ◻ = ◻∖{1}. We

shall let Ank = Spec (k[y1, . . . , yn]) be the open subset of ◻n, where (y1, . . . , yn) denotes
the coordinate system of ◻n with yj = Y

j
1 /Y j

0 . Given a rational map f ∶X ⇢ ◻n in Schk
and a point x ∈ X lying in the domain of definition of f , we shall let fi(x) = (yi ○ f)(x),
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where yi∶ ◻
n → ◻ is the i-th projection. For any 1 ≤ i ≤ n and t ∈ ◻(k), we let F tn,i denote

the closed subscheme of ◻n given by {yi = t}. We let F tn =
n∑
i=1

F tn,i.

All rings in this text will be commutative and Noetherian. For such a ring R and an
integer m ≥ 0, we shall let Rm = R[t]/(tm+1) denote the truncated polynomial algebra
over R. If in proving a statement in this manuscript, we have to deal with a ring R and
an ideal I ⊂ R, we shall use the notation a for the residue class in R/I of an element
a ∈ R. If there are several ideals, we shall indicate the quotient in which we consider the
residue class a. The tensor product M ⊗ZN will be denoted simply as M ⊗N . Tensor
products over other bases will be explicitly indicated. For an abelian group M and an
integer n ≥ 1, we let nM denote the n-torsion subgroup of M .

2.2. The category of pro-objects. Since we shall mostly work in the category of
pro-abelian groups, we recall here the notion of pro-objects in a general category. By a
pro-object in a category C, we shall mean a sequence of objects {Am}m≥0 together with
a map αAm∶Am+1 → Am for each m ≥ 0. We shall write this object often as {Am}. We let
Pro(C) denote the category of pro-objects in C with the morphism set given by

(2.1) Hompro(C)({Am},{Bm}) = lim←Ð
n

limÐ→
m

HomC(Am,Bn).
It follows that giving a morphism f ∶{Am} → {Bm} in Pro(C) is equivalent to finding

a function λ∶N→ N, a map fn∶Aλ(n) → Bn for each n ≥ 0 such that for each n′ ≥ n, there
exists l ≥ λ(n), λ(n′) so that the diagram

(2.2) Al //

��
❀
❀
❀
❀
❀
❀
❀
❀

Aλ(n′)
fn′

// Bn′

��

Aλ(n)
fn

// Bn

is commutative, where the unmarked arrows are the structure maps of {Am} and {Bm}.
We shall say that f is strict if λ is the identity function and l = λ(n′) = n′. If C admits
all sequential limits, we shall denote the limit of {Am} by lim←Ð

m

Am ∈ C. If C is an abelian

category, then so is Pro(C). We refer the reader to [1, Appendix 4] for further details
about Pro(C).

Let C be an abelian category and let {Am}m be a pro-object in C. We shall say that{Am} is bounded by an integer N ∈ N if the structure map Am+N → Am is zero for
all m ≥ 0. A pro-object {Am} which is bounded by an integer is classically also called
AR-zero (Artin-Rees zero), see [18, Exposé V, Definition 2.2.1]. We shall say that {Am}
is bounded by ∞ if {Am} = 0 in Pro(C).

Let X be a Noetherian scheme. By a sheaf (or pre-sheaf) of pro-abelian groups on X,
we shall mean a pro-object in the abelian category of sheaves (or pre-sheaves) of abelian
groups on X. We caution the reader that if {Fm} is a sheaf of pro-abelian groups such
that the pro-abelian group of stalks {Fm,x} is zero for all x ∈ X, then we can not in
general conclude that {Fm} is zero. However, the following is still true and will be used
repeatedly in this article.

Lemma 2.1. Let {Fm} be a sheaf of pro-abelian groups on a Noetherian scheme X.
Suppose that for every integer m ≥ 0, there is an integer N(m) ≥ 0 such that the structure
map Fm+N(m),x → Fm,x is zero for all x ∈ X. Then {Fm} = 0. If there is an integer
N ≥ 0 such that {Fm,x} is bounded by N for all x ∈ X, then {Fm} is bounded by N .
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If f ∶{Fm}→ {F ′m} is an isomorphism of sheaves of pro-abelian groups on X, then the
morphism of pro-abelian groups H i(f)∶{H i(X,Fm)}→ {H i(X,F ′m)} is an isomorphism
for all i ≥ 0.

Proof. It is elementary and is left to the reader. �

2.3. The relative algebraic K-theory. Given a closed immersion D ⊂X of schemes,
we letK(X,D) be the homotopy fiber of the restriction map between the Bass-Thomason-
Trobaugh non-connective algebraic K-theory spectra K(X) → K(D). We shall let
Ki(X) denote the homotopy groups of K(X) for i ∈ Z. We similarly define Ki(X,D).
The canonical maps of spectra K(X, (m + 1)D) → K(X,mD) together give rise to a
pro-spectrum {K(X,mD)} and hence a pro-abelian group {Ki(X,mD)} for every i ∈ Z.

If X = Spec(R) is affine and D = V (I), we shall often write K(X,mD) as K(R,Im)
and K(X) as K(R). For a ring R, we shall let K̃(Rm) denote the reduced K-theory of
Rm, defined as the homotopy fiber of the augmentation map K(Rm)→K(R).

We need to use a push-forward map between the relative K-groups in a special situ-
ation. We describe this below. Let R → R′ be a finite and flat extension of rings and
let (m,n) be a pair of integers such that m ≥ n ≥ 0. Let f ∶Spec(R′) → Spec (R) denote
the corresponding maps between the schemes. Since R′m ≅ Rm ⊗R R

′, it follows that
R′m ⊗Rm Rn ≅ R′n, where Rm ↠ Rn and R′m ↠ R′n are the canonical surjections. In
particular, the diagram of schemes

(2.3) Spec (R′n) //

��

Spec(Rn)
��

Spec (R′m) // Spec (Rm)
is Cartesian, where the vertical arrows are the closed immersions induced by the surjec-
tions Rm ↠ Rn and R′m ↠ R′n. Since the horizontal arrows in this diagram are flat, it
follows that Spec(Rn) and Spec (R′m) are Tor-independent over Spec (Rm). Since R′m
is finite and flat over Rm, it follows from [37, Proposition 3.18] that (2.3) induces a
homotopy commutative diagram of spectra

(2.4) K(R′m)fm∗//
��

K(Rm)
��

K(R′n) fn∗// K(Rn),
where the horizontal arrows are the push-forward and the vertical arrows are the pull-
back maps between K-theory spectra. Considering the map induced between the ver-
tical homotopy fibers, we get a push-forward map f(m,n)∗∶K(R′m, (xn+1)/(xm+1)) →
K(Rm, (xn+1)/(xm+1)) between the relative K-theory spectra. The special case of the

pair (m,0) yields the push-forward map fm∗∶ K̃(R′m) → K̃(Rm) between the reduced
K-theory spectra.

Lemma 2.2. Let R → R′ be as above and let m ≥ n ≥ 0 be two integers. Then the
diagram

(2.5) K̃i(R′m)fm∗//
��

K̃(Rm)
��

K̃i(R′n) fn∗// K̃i(Rn)
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is commutative for every i ∈ Z, where the vertical arrows are the pull-back maps induced
by the quotients Rm ↠ Rn and R′m ↠ Rn. In particular, there is a push-forward map

between the pro-abelian groups f∗∶{K̃i(R′m)}m → {K̃i(Rm)}m for every i ∈ Z.

Proof. We fix i ∈ Z and consider the diagram

(2.6) K̃i(R′m) fm∗
//

##❋
❋
❋
❋
❋
❋
❋
❋
❋

��

K̃i(Rm)

��

##❋
❋
❋
❋
❋
❋
❋
❋
❋

Ki(R′m)

��

fm∗
// Ki(Rm)

��

K̃i(R′n) fn∗
//

##
❋
❋
❋
❋
❋
❋
❋
❋
❋

K̃i(Rn)
##❋

❋
❋
❋
❋
❋
❋
❋
❋

Ki(R′n) fn∗
// Ki(Rn).

We have seen in (2.4) that the front face of (2.6) is commutative. The left and the
right faces clearly commute. The top and the bottom faces commute by applying (2.4)

corresponding to the pairs (m,0) and (n,0), respectively. Since the map K̃i(Rn) →
Ki(Rn) is injective, it follows that the back face commutes, as desired. �

Let us now assume that k ↪ k′ is a finite extension of fields and let f ∶Spec(k′) →
Spec (k) denote the induced morphism of schemes. In this case, k[t] ↪ k′[t] is clearly
a finite and flat extension of polynomial rings. Let A = k[t](t) denote the localization

of k[t] at the maximal ideal (t)k[t] ⊂ k[t]. Let A′ = k′[t](t) denote the localization of

k′[t] at (t)k′[t]. We claim that A ↪ A′ is a finite and flat extension of discrete valuation
rings.

Indeed, it is clear that there are ring extensions A ↪ S−1k′[t] ↪ A′ in which the first
inclusion is finite and flat if we let S = k[t] ∖ (t). For every integer m ≥ 0, we have a
sequence of isomorphisms of k-algebras:

(2.7) S−1k′[t]⊗AA/(tm+1) ≅ (k′[t]⊗k[t]A)⊗Akm ≅ k′[t]⊗k[t]km
≅ (k′ ⊗k k[t])⊗k[t] km ≅ k′ ⊗k km ≅ k′m.

If we let m = (t)k[t] ⊂ A and m = 0, it follows that A↪ S−1k′[t] is a finite extension of
regular semi-local integral domains of dimension one such that mS−1k′[t] is a maximal
ideal of S−1k′[t]. This forces S−1k′[t] to be a discrete valuation ring (since A is). Since
A′ is a also a discrete valuation ring which is a localization of S−1k′[t], different from
the fraction field of S−1k′[t], we must have S−1k′[t] = A′. This proves the claim.

For any integer m ≥ 0, we now get finite and flat ring extensions

k ↪ k′, km ↪ k′m, A↪ A′, and k(t)↪ k′(t).
Each of these extensions induces a push-forward map on the K-theory spectra. We
denote all these push-forward maps by the common notation f∗.

Lemma 2.3. For each i ∈ Z, there is a commutative diagram

(2.8) K̃i(k′m) � � //

f∗
��

Ki(k′m)
f∗

��

Ki(A′) � � //oo

f∗

��

Ki(k′(t))
f∗

��

K̃i(km) � � // Ki(km) Ki(A) � � //oo Ki(k(t)),
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where the horizontal arrows in the middle and the right side squares are the natural
maps on K-theory induced by the ring homomorphisms. The horizontal arrows in the
left square are the canonical maps.

Proof. The left square commutes by the construction of f∗ in (2.4). The horizontal
arrows in this square are split injective via the augmentation maps. The middle square
commutes by exactly the same argument as for the commutativity of (2.4) since A′

is finite and flat over A, hence A′ and km are Tor-independent over A. Furthermore,
A′ ⊗A km ≅ k′m by (2.7). The square on the right side commutes by a similar reason
once we know that k(t) ⊗A A′ ≅ k′(t). But this is obvious because k′(t) is the field of
fractions of A′ on the one hand and k(t) ⊗A A′ is a localization of the integral domain
A′ which is finite over k(t) on the other hand. It follows that k′(t) ⊂ k(t)⊗A A′ ⊂ k′(t).
The horizontal arrows in the right side square are injective by the Gersten resolution of
K-theory. �

2.4. The additive higher Chow groups. We recall the definition of the higher Chow
groups with modulus and the additive higher Chow groups (see [2], [24] and [27]). Let
k be a field and let X be an equidimensional scheme over k. Let D ⊂ X be an effective
Cartier divisor.

For any integers n, q ≥ 0, we let zq(X ∣D,n) denote the free abelian group on the set
of integral closed subschemes of X × ◻n of codimension q satisfying the following.

(1) Z intersects X ×F properly for each face F ⊂ ◻n.
(2) If Z is the closure of Z in X ×◻n and ν ∶ Z

N
→X ×◻n is the canonical map from

the normalization of Z, then the inequality (called the modulus condition)

ν∗(D × ◻n) ≤ ν∗(X × F 1
n)

holds in the group of Weil divisors on Z
N
.

An element of the group zq(X ∣D,n) will be called an admissible cycle. It is known
that {n ↦ zq(X ∣D,n)} is a cubical abelian group (see [23, § 1]). We denote this by

zq(X ∣D,∗). We let zq(X ∣D,∗) = zq(X ∣D,∗)
z
q

degn
(X ∣D,∗)

, where zq
degn
(X ∣D,∗) is the degenerate

part of the cubical abelian group zq(X ∣D,∗).
The higher Chow groups with modulus of (X,D) are defined as CHq(X ∣D,n) =

Hn(zq(X ∣D,∗)). It is clear that there is a canonical map CHq(X ∣(m + 1)D,n) →
CHq(X ∣mD,n) for every integer m ≥ 1. In particular, {CHq(X ∣mD,n)}m≥1 is a pro-
abelian group.

For an equidimensional scheme X over k and integers m,n ≥ 0, q ≥ 1, the additive
higher Chow group of X is defined by

(2.9) TCHq(X,n + 1;m) ∶= CHq(X ×A1
k∣X × (m + 1){0}, n).

As with the Chow groups with modulus, the datum (X,n, q) for n, q ≥ 1 gives rise to a
pro-abelian group {TCHq(X,n;m)}m≥0.
2.5. The cycle class map. In this subsection, we recall our main object of study, the
cycle class map for 0-cycles with modulus, which was constructed in [10]. Let X be a
smooth quasi-projective scheme of dimension d ≥ 1 over a field k and let D ⊂ X be an
effective Cartier divisor. We fix an integer n ≥ 0.

Let z ∈ X × ◻n be an admissible closed point and let f ∶ z = Spec (k(z)) → ◻n be the

projection map. For 1 ≤ i ≤ n, we let yi∶Spec (k(z)) f
Ð→ ◻n → ◻ be the projection to the

i-th factor of ◻n. It follows from the face condition of z that yi(z) does not meet 0,∞ ∈ ◻
for any i. Hence, we get an element y(z) = {y1(z), . . . , yn(z)} ∈ KM

n (k(z)). Composing

with the canonical map KM
n (k(z)) → Kn(k(z)), we get an element y(z) ∈ Kn(k(z)).
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Since Spec (k(z)) →X is finite and z ∉ D×◻n, it follows that there is a push-forward map
K(k(z)) ≅ K(z,∅) → K(X,D). Letting cycX ∣D([z]) be the image of y(z) ∈ Kn(k(z))
in Kn(X,D) and extending it linearly, we obtain a cycle class map

(2.10) cycX ∣D ∶ z
d+n(X ∣D,n) →Kn(X,D).

The key observation in the construction of the cycle class map at the level of the Chow
group of 0-cycles with modulus is that the composite map zd+n(X ∣(n + 1)D,n + 1) ↪
zd+n(X ∣D,n + 1) ∂

Ð→ zd+n(X ∣D,n) is zero. This yields for every m ≥ 1, the map

(2.11) cycX ∣mD ∶CH
d+n(X ∣(n + 1)mD,n)→Kn(X,mD).

This coincides with the cycle class maps of Levine [30] and Totaro [38] when D = ∅.
It is immediate from the above construction that the maps {cycX ∣mD}m≥1 are com-

patible with respect to the change in m ≥ 1. In particular, they together give rise to a
map of pro-abelian groups cycX ∣D ∶{CHd+n(X ∣mD,n)}m → {Kn(X,mD)}m.

Applying (2.11) to the additive higher Chow groups of the field k, we see that for
every m ≥ 0 and n ≥ 1, there is a cycle class map cyck∣m∶TCHn(k,n;n(m + 1) − 1) →
Kn−1(A1

k, (m + 1){0}). The homotopy fiber sequence K(A1
k, (m + 1){0}) → K(A1

k) →
K(Spec (km)) and the homotopy invariance of K-theory for smooth schemes together

show that the connecting homomorphism ∂∶ΩK̃(Spec (km)) → K(A1
k, (m + 1){0}) is a

functorial weak equivalence. Hence, we get a cycle class map

(2.12) cyck∣m∶TCH
n(k,n;n(m + 1) − 1) → K̃n(km).

The compatibility of these maps for varying values of m ≥ 0 yields the cycle class map
at the level of pro-abelian groups

(2.13) cyck ∶{TCHn(k,n;m)}m → {K̃n(km)}m
for which the associated function λn∶N→ N (see § 2.2) is given by λn(m) = n(m+ 1)− 1.

About the above cycle class map, the following were shown in [10] when the base field
has characteristic zero.

(1) The map cyck of (2.13) extends to the additive Chow group of relative 0-cycles
over a regular semi-local domain R, essentially of finite type over k.

(2) The resulting map cycR is an isomorphism.

In this manuscript, we wish to study this problem when k has positive characteristic.

3. The relative Milnor K-groups

The relative Milnor K-groups were defined by Kato-Saito [20, § 1.3], Kerz [22] and
Rülling-Saito [36, § 2.7]. The groups defined by Kato-Saito and Kerz agree when all
residue fields of the underlying ring are infinite. However, they differ from the one
defined by Rülling-Saito even if all residue fields are infinite. When the underlying ring
has a finite residue field, all three are in general different from each other. We need to
establish some isomorphisms between these K-groups in pro-setting in order to prove
our main results. We shall prove these isomorphisms in the next two sections.

3.1. Kato-Saito relative Milnor K-groups. For a ringR, the MilnorK-groupKM
n (R)

was defined by Kato [19] to be the n-th graded piece of the graded ring KM
∗ (R). The

latter is the quotient of the tensor algebra T∗(R×) by the two-sided graded ideal gen-
erated by the homogeneous elements a1 ⊗ ⋯ ⊗ an such that n ≥ 2 and ai + aj = 1 for

some 1 ≤ i ≠ j ≤ n. The residue class a1 ⊗⋯⊗ an ∈ Tn(R×) in KM
n (R) is denoted by the

Milnor symbol a = {a1, . . . , an}. If ai + aj = 1 for some 1 ≤ i ≠ j ≤ n, we shall usually
say that a is a Kato symbol (or Kato relation). If I ⊂ R is an ideal, the relative Milnor
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K-group KM
n (R,I) was defined by Kato-Saito [20, § 1.3] as the kernel of the natural

map KM
n (R) → KM

n (R/I). In order to give a simple description of KM
∗ (R,I), we need

the following elementary step.

Lemma 3.1. Let R be a semi-local ring containing a field of cardinality at least three.
Let I ⊂ R be a proper ideal. Suppose a ∈ R is such that a ∈ (R/I)×. We can then find an
element b ∈ I such that a+ b ∈ R×. If a,1−a ∈ (R/I)×, then we have a+ b,1− (a+ b) ∈ R×.
Proof. Let {m1, . . . ,mr} be the set of maximal ideals of R which contain I and let{n1, . . . ,ns} be the set of remaining maximal ideals of R. Since R contains a field of
cardinality at least three, we can find an element u ∈ R such that u,1 − u ∈ R×. By the
Chinese remainder theorem, we can find an element b ∈ I such that b ≡ u − a modulo ni

for 1 ≤ i ≤ s.
If a ∈ (R/I)×, then we must have that a ∉ mi for any i. It follows that a+ b ∉ mi for all

i. Since a + b is a unit modulo nj for each j, a + b can not belong to nj either. It follows
that a + b ∈ R×. Suppose now that a,1 − a ∈ (R/I)×. Then 1 − (a + b) can not be in any
mi. On the other hand, we have 1− (a+ b) ≡ 1−u, which is a unit modulo nj for every j
and hence 1− (a+ b) can not be in any nj either. It follows that a+ b,1− (a+ b) ∈ R×. �

The next lemma is due to Kato-Saito (see [20, Lemma 1.3.1]) when R is local. We
shall need a version of this also for the relative K-theory of Kerz [21] (see Lemma 3.4).

Lemma 3.2. ([20, Lemma 1.3.1]) Let R be a semi-local ring and I ⊂ R a proper ideal.
Then KM

n (R)→KM
n (R/I) is surjective. If R contains a field of cardinality at least three,

then KM
n (R,I) is generated by the Milnor symbols {a1, . . . , an} such that ai ∈ Ker(R× →(R/I)×) for some 1 ≤ i ≤ n.

Proof. The first part of the lemma follows from Lemma 3.1. The reader can check from
the proof of Lemma 3.1 that this part does not require R to contain a field (take u = 1).
To prove the second part, letN be the ideal of T∗(R) generated Kato relations (see above)
and the Milnor symbols of the type given in the statement of the lemma. It is clear that
the map T∗(R)/N → KM

∗ (R/I) is surjective. It suffices therefore to construct a map
ηI ∶KM

∗ (R/I)→ T∗(R)/N such that the composite T∗(R)/N →KM
∗ (R/I)→ T∗(R)/N is

identity.
Given a′1, . . . , a

′
n ∈ (R/I)×, we can use the first part of the lemma to find a1, . . . , an ∈ R×

such that ai = a′i for each i. We let ηI(a′1 ⊗ . . . ⊗ a′n) = {a1, . . . , an} modulo N . To show
that this does not depend on the choice of the lifts, we first let n = 2 (note that the n = 1
case is clear). We let ai, bi ∈ R× be such that aib

−1
i ≡ 1 modulo I for i = 1,2. We then

have the identities {a1, a2} = {a1, a2b−12 } + {a1, b2} and {b1, b2} = {a−11 b1, b2} + {a1, b2}.
The n = 2 case follows immediately from these two identities.

Suppose now that n ≥ 3 and we are given ai, bi ∈ R× such that aib
−1
i ≡ 1 modulo I for

1 ≤ i ≤ n. We then have the identities

{a1, . . . , an} = {a1, . . . , an−1, anb−1n } + {a1, . . . an−2} ⋅ {an−1, bn} and
{b1, . . . , bn} = {b1, . . . , a−1n−1bn−1, bn} + {b1, . . . , bn−2} ⋅ {an−1, bn}.

Using the induction and the above two identities, we conclude the proof of well-
definedness of ηI . It is easy to check that ηI is multi-linear and hence defines a ring
homomorphism ηI ∶T∗(R/I) → T∗(R)/N . Furthermore, it follows from Lemma 3.1 that
ηI kills Kato relations. In particular, we get a ring homomorphism ηI ∶K

M
∗ (R/I) →

T∗(R)/N . It is clear that the composite map T∗(R)/N → KM
∗ (R/I) → T∗(R)/N is

identity. This finishes the proof. �

Remark 3.3. Lemmas 3.1 and 3.2 hold even if R does not contain a field as long as R/m
contains at least three elements for every maximal ideal m ⊂ R not containing I. In
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particular, they hold if R is local. It is however not clear that they hold for all semi-local
rings. The problem lies in lifting Kato relations from R/I to R.

3.2. Kerz’s relative Milnor K-groups. In [21], Kerz defined the Milnor K-group
KMS
n (R) for a ring R to be the n-th graded piece of the graded ring KMS

∗ (R). The latter
is the quotient of the tensor algebra T∗(R×) by the two-sided graded ideal generated by
the Steinberg symbols a ⊗ (1 − a) ∈ T2(R×), where a,1 − a ∈ R×. This is the direct
extension of K-theory of fields defined by Milnor [31] to rings. If I ⊂ R is an ideal, we let
KMS
n (R,I) be the kernel of the natural map KMS

n (R)→KMS
n (R/I). A straightforward

imitation of the proof of Lemma 3.2 shows the following.

Lemma 3.4. Lemma 3.2 is valid for the map KMS
∗ (R) → KMS(R/I) and the group

KMS
∗ (R,I).
It is evident from the above definitions and Lemmas 3.2 and 3.4 that there are natural

surjections

(3.1) KMS
∗ (R)↠KM

∗ (R) and KMS
∗ (R,I)↠KM

∗ (R,I),
where the second surjectivity holds under the assumption that R is a semi-local ring
containing a field of cardinality at least three. It follows from [21, Lemma 2.2] that the
maps of (3.1) are isomorphisms if R is a semi-local ring with infinite residue fields. In
fact, the reader can easily check that the proof of [21, Lemma 2.2] remains valid if R is
a local ring whose residue field contains at least five elements (if a = 1 − b with b ∉ R×,
take s1 = s2 = 2 − b in Kerz’s proof). We therefore get:

Lemma 3.5. Let R be either a semi-local ring with infinite residue fields or a local ring
with residue field having cardinality at least five. Let I ⊂ R be a proper ideal. Then the
maps KMS

∗ (R)→KM
∗ (R) and KMS

∗ (R,I) →KM
∗ (R,I) are isomorphisms.

3.3. Gabber-Kerz improved relative Milnor K-groups. When the residue fields of
R are not all infinite, then the Milnor K-theories KM

∗ (R) and KMS
∗ (R) do not have good

properties. For example, the Gersten conjecture does not hold for them even if R is a
regular local ring containing a field. IfR is a finite product of local rings containing a field,
Gabber (unpublished) and Kerz [22] defined an improved version of Milnor K-theory,

which is denoted as K̂M
∗ (R). This is a graded commutative ring and [22, Proposition 10

(3), Theorem 13] imply that there are natural maps of graded commutative rings

(3.2) KMS
∗ (R)↠KM

∗ (R) ηR↠ K̂M
∗ (R) ψRÐ→K∗(R).

The first two arrows are isomorphisms if R is a field. Moreover, the Gersten resolution
holds for K̂M

∗ (R) if R is regular. Given an ideal I ⊂ R, one defines K̂M
∗ (R,I) similar

to KM
∗ (R,I). The product structures on the (improved) Milnor and Quillen K-theories

yield natural graded homomorphisms of KMS
∗ (R)-modules

(3.3) KMS
∗ (R,I)↠KM

∗ (R,I) ηR∣I
ÐÐ→ K̂M

∗ (R,I) ψRÐ→ K̂∗(R,I),
where the latter is the kernel of the canonical map K∗(R)→K∗(R/I).

If k is a field and X is a scheme over k, let KMn,X be the Zariski sheaf on X whose

stalk at a point x is KM
n (OX,x) for n ≥ 0. In [22], Kerz actually shows that there is a

Zariski sheaf K̂Mn,X on X with a natural surjective map KMn,X → K̂Mn,X such that the stalk

of K̂Mn,X at x is K̂M
n (OX,x). If X = Spec (A), we let K̂M

n (A) = H0(X, K̂Mn,X). If I ⊂ A is

an ideal, we let K̂M
n (A,I) be the kernel of the canonical map K̂M

n (A)→ K̂M
n (A/I).
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Definition 3.6. For n ≥ 0, we let KM
n (A,I) denote the image of the canonical map

KM
n (A,I) → K̂M

n (A,I). We similarly define KM
n (A) to be the image of the canonical

map KM
n (A)→ K̂M

n (A)
Remark 3.7. Observe that if A is a local ring, then KM

n (A) = K̂M
n (A) but it may happen

that KM
n (A,I) ≠ K̂M

n (A,I) if I ≠ 0 is a proper ideal in A. Moreover, for a semi-local

ring A, we may have that KM
n (A) ≠ K̂M

n (A). ◻

If R is a regular semi-local ring containing k and if F is its total ring of quotients,
then the Gersten complex [19]

(3.4) 0→ K̂M
n (R)→KM

n (F )→ ⊕
ht(p)=1

KM
n−1(k(p)) → ⋯→ ⊕

ht(p)=n
KM

0 (k(p))
coincides with the Gersten complex for higher Chow groups except at the first place.
Bloch [4] showed that the latter is exact when R is local. In general, it follows from the

above definition of K̂M
n (R) that (3.4) is exact at the first two terms.

We refer to [10, § 3] for more details about other properties of the improved Milnor
K-theory. In this paper, we shall always use the improved Milnor K-theory of rings,
whenever it is defined. For fields, we shall use the notations of Milnor and improved
Milnor K-groups interchangeably.

3.4. Rülling-Saito relative Milnor K-groups. Let R be a local domain with fraction
field F and let I = (f) be a principal ideal, where f ∈ R is a non-zero divisor. Let Rf
denote the localization R[f−1] obtained by inverting the powers of f . Let F denote the
ring of total quotients of R so that there are inclusions of rings R ↪ Rf ↪ F . We let

K̂M
1 (R∣I) =KM

1 (R,I) and for n ≥ 2, we let K̂M
n (R∣I) denote the image of the canonical

map of abelian groups

(3.5) K̂M
1 (R∣I)⊗ (Rf)× ⊗⋯⊗ (Rf)× → K̂M

n (F ),
induced by the product in the Milnor K-theory. These groups were defined by Rülling-
Saito [36, § 2.7] as stalks of a sheaf (see [36, Definition 2.4 and Lemma 2.1]). We shall

call K̂M
∗ (R∣I) the Rülling-Saito relative Milnor K-groups. The basic relation between

the Kato-Saito and Rülling-Saito relative Milnor K-groups is given by the following.

Lemma 3.8. Let R be a regular local domain and let I = (f) be a non-zero principal
ideal. Then there is a commutative diagram of graded groups

(3.6) KM
∗ (R,I)� _

��

// // KM
∗ (R,I) � � //

� _

��

K̂M
∗ (R∣I)� _

��

KM
∗ (R) // K̂M

∗ (R) � � // K̂M
∗ (Rf).

Proof. Let F be the fraction field of R. We then note that the image of KM
∗ (R,I) in

KM
∗ (F ) under the composite map KM

∗ (R) ↠ K̂M
∗ (R) ↪ K̂M

∗ (F ) is KM
∗ (R,I). We

therefore only need to verify that the image of this composite map lies in the subgroup
K̂M
∗ (R∣I) ⊂ K̂M

∗ (Rf).
To prove this claim, it suffices to show that the canonical map ζR∶K

M
n (R)→KM

n (F )
sends KM

n (R,I) into K̂M
n (R∣I) ⊂ KM

n (F ) for all n ≥ 1. We can assume n ≥ 2 as the
assertion is clear for n = 1.

Now, by Lemma 3.2, we need to show that if a = {a1, . . . , an} ∈ KM
n (R) is such that

ai ∈KM
1 (R,I) for some 1 ≤ i ≤ n, then ζR(a) ∈ K̂M

n (R∣I). In other words, we have to show

that as an element of KM
n (F ), the symbol a actually lies in K̂M

n (R∣I). However, this is
immediate (see (3.5)) because the ring KM

∗ (F ) is anti-commutative [31, Lemma 1.1]. �
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3.5. Connection between K̂M
∗ (R,I) and K̂M

∗ (R∣I). The canonical map KM
∗ (R,I) →

K̂M
∗ (R∣I) of Lemma 3.8 in general may not factor through K̂M

∗ (R,I). We shall show
however that this is indeed the case in some situations if we replace KM

∗ (R,I) and

K̂M
∗ (R∣I) by the pro-abelian groups {KM

∗ (R,Im)}m and {K̂M
∗ (R∣Im)}m, respectively.

In this subsection, we construct a map in the opposite direction, which is slightly easier.
Let R be a semi-local ring with the maximal ideals m1, . . . ,mr. Let R[T ] denote the

polynomial ring over R and let A denote the localization of R[T ] obtained by inverting
all polynomials having invertible constant term. Then A is a semi-local ring of Krull
dimension dim(R)+1 and the maximal ideals miA+(T ), for 1 ≤ i ≤ r. We now let R be a
local ring with maximal ideal m and let R(T ) be the localization of A[T −1] at maximal
ideal m[T ±1]. Then we have the inclusions R[T ] ↪ A ↪ R(T ). The ring R(T ) is local
with infinite residue field R

m
(T ). When R is a field, then A = R[T ](T ). If R is an integral

domain with fraction field F , then A is an integral domain with fraction field F (T ).
We now fix a local integral domain R containing a field. Let A be the local ring

defined above. We fix the ideal I = (T ) ⊂ A. Let F denote the fraction field of R. The

key lemma to connect K̂M
∗ (A∣I) with K̂M

∗ (A,I) is the following.

Lemma 3.9. Assume that R is a regular local ring. Then the following inclusions hold
for every pair of integers n ≥ 0,m ≥ 1.

(3.7) K̂M
n+1(A∣I) ⊂ (1 + I)K̂M

n (A) ⊂KM
n+1(A,I) ⊂ K̂M

n+1(A,I).
(3.8) K̂M

n+1(A∣Im+1) ⊂ (1 + Im)K̂M
n (A) ⊂KM

n+1(A,Im) ⊂ K̂M
n+1(A,Im).

Proof. The map KM
∗ (A) → K̂M

∗ (A) is surjective as A is local. This immediately im-
plies the second inclusions in (3.7) and (3.8). So we only need to show the first set
of inclusions. Since A/(T ) = R is a regular local ring, I defines an effective Cartier
divisor on Spec(A) which is regular (and hence simple normal crossing). The first
inclusion in (3.7) now follows from [36, Proposition 2.8(2)]. To prove (3.8), we first ob-
serve that (A[T −1])× = A× ⋅ TZ. Since {T,T} = {T,−1} in KM

2 (F (T )), it follows that

K̂M
n+1(A∣Im+1) is generated by the subgroup (1 + Im+1)K̂M

n (A) and the element of the
form {1 + aTm+1, T, u1, . . . , un−1} ∈ KM

n+1(F (T )), with a ∈ A and ui ∈ A×. It therefore
suffices to show that for a ∈ A, we have {1+aTm+1, T} ∈ (1+ Im) ⋅A× ⊂KM

2 (F (T )). But
this follows from [36, Lemma 2.7(2)]. This completes the proof of the lemma. �

Let R be a regular local ring containing a field. We let K̃M
n (Rm) ∶= Ker(K̂M

n (Rm)↠
K̂M
n (R)). To apply Lemma 3.9, we observe that the canonical injection R[T ] ↪ A

induces an isomorphism Rm
≅
Ð→ A/Im+1 for all m ≥ 0. Since the maps KM

n (A/Im+1) →
K̂M
n (A/Im+1) and KM

n (A) →KM
n (A/Im+1) are surjective, our assumption implies that

0→ K̂M
n (A,Im+1)→ K̂M

n (A) → K̂M
n (A/Im+1)→ 0

is an exact sequence. Using this, we therefore see that the canonical restriction map
K̂M
n (A)↠ K̂M

n (Rm) induces a natural (in R) isomorphism

(3.9) θRm ∶
K̂M
n (A,I)

K̂M
n (A,Im+1)

≅
Ð→ K̃M

n (Rm).
Since the map R → A/I is an isomorphism, the quotient maps KM

n (A)↠ KM
n (A/I)

and K̂M
n (A)↠ K̂M

n (A/I) compatibly split via the augmentation. This implies that the

induced map on the kernels KM
n (A,I) → K̂M

n (A,I) is also surjective. In particular, the
map

(3.10)
KM
n (A,I)

KM
n (A,Im+1) →

K̂M
n (A,I)

K̂M
n (A,Im+1)
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is surjective.

Recall from Lemma 3.8 that KM
n (A,Im) is a subgroup of K̂M

n (A∣Im) for every m ≥ 1.
The main result we wished to prove in this section is the following.

Proposition 3.10. Let R, A and F be as in Lemma 3.9 and let n ≥ 0 be an inte-
ger. Then the kernel (resp. cokernel) of the natural morphism of pro-abelian groups

{KM
n (A,Im)}m → {K̂M

n (A∣Im)}m is bounded by 0 (resp. 1). In particular, the inclu-

sions K̂M
n (A∣Im)↪ K̂M

n (F (T )) induce a morphism of pro-abelian groups

(3.11) { K̂M
n (A∣I)

K̂M
n (A∣Im)}m → {

K̂M
n (A,I)

K̂M
n (A,Im)}m

with λ(m) =m + 1 whose cokernel is bounded by zero.

Proof. For n = 0, all the groups are zero. For n ≥ 1, the first assertion is a direct conse-

quence of Lemmas 3.8 and 3.9. Since the map KM
n (A,I) → K̂M

n (A∣I) is an isomorphism,
also by Lemma 3.9, it follows that the kernel of the map⎧⎪⎪⎨⎪⎪⎩

KM
n (A,I)

KM
n (A,Im)

⎫⎪⎪⎬⎪⎪⎭m
→ { K̂M

n (A∣I)
K̂M
n (A∣Im)}m

is bounded by 1 and the cokernel is bounded by zero. Equivalently, { K̂M
n (A∣I

m)

KM
n (A,I

m)
}
m

is

bounded by 1. By combining this with (3.10), we see that the inclusions K̂M
n (A∣Im) ↪

K̂M
n (A[T −1]) induce a morphism of pro-abelian groups such as in (3.11) with λ(m) =

m+ 1. It is clear that the map
K̂M

n (A∣I)

K̂M
n (A∣I

m+1)
→ K̂M

n (A,I)

K̂M
n (A,I

m)
is surjective for each m ≥ 1 since

K̂M
n (A∣I) =KM

n (A,I) = K̂M
n (A,I). This finishes the proof. �

4. The de Rham-Witt complex and K-theory

Proposition 3.10 is not quite enough to prove our main results. We need the map (3.11)
to be actually an isomorphism. We shall prove this stronger assertion in this section
using the de Rham-Witt complex. We shall use this isomorphism in § 5.3 to obtain our
cycle class map to the relative Milnor K-theory of truncated polynomial rings. We shall
also use the de Rham-Witt complex to prove some more results on Milnor and Quillen
K-groups of truncated polynomial rings in § 5.

We shall not recall the definition of the de Rham-Witt complex here. Instead, we refer
the reader to [13] and [35, § 1] for its definition and basic properties. We only recall
that for a regular semi-local ring R and integer m ≥ 1, there are natural isomorphisms
of abelian groups

(4.1) γR,m∶Wm(R) ≅Ð→ (1 + TR[[T ]])×
(1 + Tm+1R[[T ]])×

≅
Ð→ K̃M

1 (Rm);
γR,m(a) = m∏

i=1

(1 − aiT i).
We shall often write γR,m(a) = γR,m((a1 . . . , am)) as γ(a) if the context of its usage is

clear. For any a ∈ R, we recall that [a] = (a,0, . . . ,0) ∈Wm(R) denotes the Teichmüller
lift of a. Note that γR,m is clearly natural in R and m ≥ 1. The following lemma is a
direct consequence of [29, Proposition 2.3]. We state it separately as we will need it a
few times in our proofs.

Lemma 4.1. Let R be a regular semi-local ring containing a field and let F be its total
ring of quotients. Then the canonical map WmΩ

n
R → WmΩ

n
F is injective for all m ≥ 1

and n ≥ 0.
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4.1. Generators of de Rham-Witt complex. We give a generating set of the de
Rham-Witt complex of semi-local rings in this subsection. After proving this result,
we realized that we only need it when the underlying ring is a field (see the proofs
of Lemmas 7.2 and 7.3) to prove the main results of this paper. In this special case,
a presentation of de Rham-Witt complex is already known by Hyodo-Kato [16] and
Rülling-Saito [36]. We however present this generalization here since it has independent
interest. For instance, it is indispensable for the proof of [29, Corollary 6.4].

Proposition 4.2. Let R be a regular semi-local ring containing a field k of characteristic
p > 0 and let m ≥ 1, n ≥ 0 be two integers. Assume that either k is infinite or R is local.
Then the map

(4.2) (Wm(R)⊗ n

⋀
Z

R×)⊕ (Wm(R)⊗ n−1

⋀
Z

R×)→WmΩ
n
R,

defined by

w ⊗ (a1 ∧⋯∧ an)↦ wdlog[a1]⋯dlog[an] and
w ⊗ (a1 ∧⋯∧ an−1)↦ dwdlog[a1]⋯dlog[an−1],

is surjective.

Proof. When R is a local ring, this result was proven (with a description of the kernel of
this map) by Hyodo-Kato [16, Proposition 4.6] in the p-typical case and the reduction of
the general case to the p-typical case was shown by Rülling-Saito [36, Proposition 4.4].
The new assertion is that the surjectivity part of the result of Hyodo-Kato holds for
semi-local rings as well.

It suffices to prove the proposition for the p-typical de Rham-Witt complex. This
reduction is routine (see the proof of [36, Proposition 4.4]) and requires no condition
on R. We shall use the notations of p-typical de Rham-Witt complex WmΩ

n
R, where

Wm(−) ∶=W{1,p,...,pm−1}(−).
We let EnR,m denote the abelian group on the left hand side of (4.2). We need to show

that the map θnR,m∶E
n
R,m →WmΩ

n
R is surjective. We shall fix n ≥ 0 and prove that θnR,m

is a surjection by induction on m ≥ 1.
If m = 1, then we know that WmΩ

n
R ≅ Ω

n
R. In this case, it follows from our assumption

and [10, Lemma 7.4] that R is additively generated by its units. The latter immediately
implies the desired surjectivity.

In the general case, we know by [17, I.3.15.2, p. 576] that there is an exact sequence

0→ grmCWΩnR →Wm+1Ω
n
R →WmΩ

n
R → 0,

where gr●CWΩnR is the associated graded module for the canonical filtration on the de
Rham-Witt complex of R. One knows that the canonical filtration of Wm+1Ω

n
R coin-

cides with its V -filtration (see [15, Lemma 3.2.4]). Equivalently, we have grmCWΩnR =
grmV WΩnR ∶= V

mW1Ω
n
R + dV

mW1Ω
n−1
R .

We now consider the commutative diagram with exact rows

(4.3) R⊗ (⋀nZR× ⊕⋀n−1Z R×)Vm⊗id//

��

EnR,m+1
//

��

EnR,m
//

��

0

0 // grmVWΩnR
// Wm+1Ω

n
R

// WmΩ
n
R

// 0.

The m = 1 case of the proposition and the expression of grmV WΩnR given above show
that the left vertical arrow in (4.3) is surjective. The right vertical arrow is surjective
by induction. It follows that the middle vertical arrow is surjective, as desired. �
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4.2. Milnor K-theory and de Rham-Witt complex. LetX be a Noetherian scheme.
For an integer m ≥ 0, we let Xm = X × Spec (km). We let K̂Mn,m,X be the Zariski sheaf

on X whose stalk at a point x ∈ X is the Milnor K-group K̂M
n (OX,x[t]/(tm+1)). We let

K̃M
n,m,X be the kernel of the split surjection K̂Mn,m,X ↠ K̂Mn,X . We let Kn,m,X be the Zariski

sheaf on X whose stalk at a point x ∈ X is the Quillen K-group Kn(OX,x[t]/(tm+1)).
We define K̃n,m,X just as we defined K̃M

n,m,X .

For a point x ∈ X, we shall denote the ring A(OX,x) (which is obtained exactly as in

§ 3.5, where R is replaced by OX,x) in short by Ax. Note that Ax is local. We let K̂M
n,X ∣Im

denote the Zariski sheaf on X whose stalk at a point x ∈ X is the group K̂M
n (Ax∣Im).

We let K̂M
n,(X,Im) denote the Zariski sheaf on X whose stalk at a point x ∈ X is the group

K̂M
n (Ax, Im).
We now fix a regular semi-local ring R containing a field k of characteristic p > 0

and let X = Spec (R). We let A ∶= A(R) be the semi-local ring defined in § 3.5 and
let I = (T ) ⊂ A. We shall continue to follow the notations of § 3. We shall use the
following result of Rülling-Saito which gives an explicit relation between the de Rham-
Witt complex and the Rülling-Saito relative Milnor K-theory.

Theorem 4.3. ([36, Theorem 4.8]) Let n ≥ 0 and m ≥ 1 be two integers. Then the map
of sheaves

(4.4) λX ∶WmΩ
n
X →

K̂M
n+1,X ∣I

K̂M
n+1,X ∣Im

,

which on local sections is given by

wdlog[a1]⋯dlog[an]↦ {γ(w), a1, . . . , an}
and

dwdlog[a1]⋯dlog[an−1]↦ (−1)n{γ(w), a1, . . . , an−1, T},
is an isomorphism.

By combining Proposition 3.10, Lemma 4.1 and Theorem 4.3, we now prove the fol-
lowing key result. This will play a crucial role in the proofs of the main theorems. This
result is also used in [32, § 6] without a proof when R is local.

Theorem 4.4. Let X be a regular scheme over a field k of characteristic p > 0 and let
n ≥ 0 be an integer. Then the canonical maps of sheaves of pro-abelian groups

⎧⎪⎪⎨⎪⎪⎩
K̂M
n,X ∣I

K̂M
n,X ∣Im

⎫⎪⎪⎬⎪⎪⎭m
→
⎧⎪⎪⎨⎪⎪⎩
K̂M
n,(X,I)

K̂M
n,(X,Im)

⎫⎪⎪⎬⎪⎪⎭m
→ {K̃Mn,m,X}m

are isomorphisms.

Proof. The theorem is obvious for n = 1 from the definitions of various groups. We thus
assume that n ≥ 2. Note here that the first map is induced by (3.7) and (3.8) and second

by (3.9). Indeed, note that all the sheaves K̂M
n,X ∣I , K̂Mn,X ∣Im , K̂Mn,(X,I) and K̂Mn,(X,Im) are

sub-sheaves of the constant sheaf Kn(F (T )), where F is the total ring of quotients of R.

It then follows by (3.7) and (3.8) that K̂M
n,X ∣I = K̂Mn,(X,I) and K̂Mn,X ∣Im ⊂ K̂Mn,(X,Im−n). A

similar argument yields the second map using (3.9) so that it is a level-wise isomorphism.
We only need to show that the first map is an isomorphism too. By Lemma 2.1 and
Proposition 3.10, we only need to show that if R is local, then the kernel of the level-wise
surjective map

(4.5) { K̂M
n (A∣I)

K̂M
n (A∣Im)}m↠ {

K̂M
n (A,I)

K̂M
n (A,Im)}m
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is bounded by an integer not depending on R.
We first assume that R is a field. If R is a finite field, then it is well known that

WmΩ
n−1
R = 0. It follows from Proposition 3.10 and Theorem 4.3 that both sides of (4.5)

are bounded by zero. If R is an infinite field, then A contains an infinite field. Hence,

the map KM
n (A,Im)→ K̂M

n (A,Im) is an isomorphism (see [22, Proposition 10 (5)]). We

can therefore replace K̂M
n (A,Im) by KM

n (A,Im) in (4.5). We now use the maps

{ K̂M
n (A∣I)

K̂M
n (A∣Im)}m →

⎧⎪⎪⎨⎪⎪⎩
KM
n (A,I)

KM
n (A,Im)

⎫⎪⎪⎬⎪⎪⎭m
→ { K̂M

n (A∣I)
K̂M
n (A∣Im)}m ,

where the second arrow is induced by the inclusions KM
n (A,Im)↪ K̂M

n (A∣Im). We now
note that the function λ∶N → N associated to the first arrow is λ(m) = m + 1 and it is
identity for the second arrow. More precisely, the composite arrow is induced by the

canonical surjections
K̂M

n (A∣I)

K̂M
n (A∣I

m+1)
↠ K̂M

n (A∣I)

K̂M
n (A∣I

m)
. It follows immediately that the kernel of

the composite arrow is bounded by 1. We are therefore done.
In the general case, we let F be the fraction field of R. Let B = F [T ](T ) = A(F ) and

J = IB ⊂ B. It is clear that the diagram

(4.6) {WmΩ
n−1
R }m ≅

//

��

{ K̂M
n (A∣I)

K̂M
n (A∣I

m)
}
m

//

��

{ K̂M
n (A,I)

K̂M
n (A,I

m)
}
m

��

{WmΩ
n−1
F }m ≅

// { K̂M
n (B∣J)

K̂M
n (B∣J

m)
}
m

// { K̂M
n (B,J)

K̂M
n (B,J

m)
}
m

is commutative, where the vertical arrows are the canonical base change maps.
It follows from Lemma 4.1 that the left vertical arrow in (4.6) is level-wise injective.

Since R is local, it follows from Theorem 4.3 that the left horizontal arrows on the top
and the bottom are level-wise isomorphisms. It follows that the middle vertical arrow is
level-wise injective. We showed above that the kernel of the second horizontal arrow on
the bottom is bounded by 1. We deduce that the kernel of the second horizontal arrow
on the top must also be bounded by 1. This proves the theorem. �

Combining Theorem 4.4 and (3.9), we get the following.

Corollary 4.5. Let R be a regular semi-local ring containing a field k of characteristic
p > 0 and let X = Spec (R). Let n ≥ 0 be an integer. Then there are isomorphisms of
pro-abelian groups

{WmΩ
n−1
R }m λRÐ→

≅
{H0(X, K̂Mn,X ∣I/K̂Mn,X ∣Im)}m

θRÐ→
≅
{K̃M

n (Rm)}m ,
which are natural in R.

Proof. Since U ↦WmΩ
n−1
O(U) is a Zariski sheaf on X (see [17, Proposition I.1.13.1]), the

first isomorphism follows from Theorem 4.3. We now show the second isomorphism.

Theorem 4.4 yields a map {WmΩ
n−1
R }m θR○λRÐÐÐ→ {H0(X,K̃M

n,m,X)}m whose kernel and

cokernel are bounded by 1. It suffices therefore to show that K̃M
n (Rm) ≅H0(X,K̃M

n,m,X).
Using the augmentation Rm ↠ R, it enough to show that K̂M

n (Rm) ≅ H0(X, K̂Mn,m,X).
But this is clear from the definition of the improved Milnor K-theory given in § 3.3
once we observe that K̂Mn,m,X is nothing but the direct image sheaf π∗(K̂Mn,Xm

), where
π∶Xm → X is the projection. Indeed, we have H0(X, K̂Mn,m,X) = H0(X,π∗(K̂Mn,Xm

)) =
H0(Xm, K̂Mn,Xm

) = K̂M
n (Rm). �
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If R is local, the above result is equivalent to the following.

Corollary 4.6. Let R be as in Corollary 4.5 and n ≥ 0 an integer. Assume R is local.
Then there are isomorphisms of pro-abelian groups

{WmΩ
n−1
R }m λRÐ→

≅
{ K̂M

n (A∣I)
K̂M
n (A∣Im)}m

θRÐ→
≅
{K̃M

n (Rm)}m ,
which are natural in R.

In particular, we have the following corollary stating that the improved Milnor K-
groups of the truncated polynomials over finite fields are pro-zero.

Corollary 4.7. Let k be a finite field and n ≥ 2. Then the pro-group {K̂M
n (km)}m is

zero.

Proof. It follows from Corollary 4.6, using the fact that the Milnor K-groups KM
n (k) are

zero for n ≥ 2. �

Remark 4.8. It should be noted that we actually showed in Corollaries 4.5 and 4.6 that
λR is a level-wise isomorphism while the kernel and cokernel of θR are bounded by 1.

Remark 4.9. Let R be as in Corollary 4.6, where we assume further that it is essentially
of finite type over a perfect field and dim(R) < p. In this special case, one can obtain a
direct proof of Corollary 4.6 as follows.

We consider the maps

{WmΩ
n−1
R }m θR○λR↠ {K̃M

n (Rm)}m↠ {K̃sym
n (Rm)}m ,

where K̃sym
n (Rm) is the reduced symbolic K-theory used by Bloch [3]. We observed in

Proposition 3.10 that the first arrow is surjective. It must therefore be an isomorphism
because the composite arrow is an isomorphism by [17, Thèoréme I.5.2]. We warn the
reader however that Theorem 4.4 does not follow from the local case since we can not
work with stalks in order to show that a given morphism between pro-sheaves is an
isomorphism.

5. Milnor vs Quillen relative K-theories

In this section, we shall use Theorem 4.4 to prove some relations between the relative
Milnor and Quillen K-groups for regular semi-local rings (see Proposition 5.8). As an
immediate consequence, we shall prove our main results sans Theorem 1.1(4).

5.1. Milnor to Quillen K-theory. Let R be a regular ring containing a field k and
let X = Spec(R). Let m,n ≥ 0 be two integers. Recall the sheaves K̃Mn,m,X and K̃n,m,X
from § 4.2. There is a canonical map K̃n(Rm) → H0(X, K̃n,m,X) which is functorial in
R and m ≥ 0. We shall need to know that this map is close to being an isomorphism
in order to construct a map from the relative Milnor to Quillen K-theory. To prove a
precise statement, we need another result.

Suppose that char(k) = p > 0. By the main result of [12], there is a map of pro-abelian

groups {WmΩ
n−1
R }m → {K̃n(Rm)}m which is natural in R. In particular, there is a map

of sheaves of pro-abelian groups {WmΩ
n−1
X }m → {K̃n,m,X}m. This map has the following

property.

Lemma 5.1. The maps {WmΩ
n−1
R }m → {K̃n(Rm)}m and {WmΩ

n−1
X }m → {K̃n,m,X}m

are isomorphisms.
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Proof. Let Enm and Fnm denote the kernel and cokernel of the map WmΩ
n−1
X → K̃n,m,X ,

respectively. By Lemma 2.1, it suffices to show that for every m ≥ 0, there are integers
N(m) and N ′(m) such that the maps of stalks En

m+N(m),x → Enm,x and Fnm+N ′(m),x → Fnm,x
are zero for all x ∈ X. But this follows directly from [12, Theorem A, Theorem 6.3 (iii)].
In fact, one can take N(m) = 1 for all m and N ′(m) depends only on m and p. The

identical proof works for the map {WmΩ
n−1
R }m → {K̃n(Rm)}m too because Hesselholt’s

result holds for R as well (using Néron-Popescu desingularization). �

Fix n ≥ 0. We can now prove:

Lemma 5.2. The map K̃n(Rm) → H0(X, K̃n,m,X) is an isomorphism if char(k) = 0.

The map of pro-abelian groups {K̃n(Rm)}m → {H0(X, K̃n,m,X)}m is an isomorphism if

char(k) > 0.
Proof. Assume first that char(k) = 0. In this case, it follows from [11, Theorem 10] that

K̃n(Am) ≅ ⊕
i≥1
(Ωn+1−2iA )m for any regular ring A containing k. In particular, K̃n,m,X is a

quasi-coherent sheaf on X defined by the R-module K̃n(Rm). This immediately implies
the desired result.

Suppose now that char(k) > 0 and consider the commutative diagram of pro-abelian
groups

(5.1) {WmΩ
n−1
R }m
��

// {K̃n(Rm)}m
��{H0(X,WmΩ

n−1
X )}m // {H0(X, K̃n,m,X)}m .

The left vertical arrow is an isomorphism by [17, Proposition I.1.13.1] and the usual
p-typical decomposition argument. The top horizontal arrow is an isomorphism by
Lemma 5.1. The bottom horizontal arrow is an isomorphism by Lemmas 2.1 and 5.1.
We conclude that the right vertical arrow is an isomorphism too. �

Since the Quillen K-theory sheaf on the spectrum of a regular semi-local ring contain-
ing a field is acyclic by Quillen’s Gersten resolution, Lemma 5.2 implies the following.

Corollary 5.3. Let R be a regular semi-local ring containing a field k. Then the map
Kn(Rm) → H0(X,Kn,m,X) is an isomorphism if char(k) = 0. The map of pro-abelian

groups {Kn(Rm)}m → {H0(X,Kn,m,X)}m is an isomorphism if char(k) > 0.
Recall that unless R is local, it is not known if there exists a canonical map from the

Milnor K-theory defined by Gabber and Kerz to the Quillen K-theory. We can however
now show using the previous results that such a map exists for the truncated polynomials
in the pro-setting.

Corollary 5.4. Let R be a regular semi-local ring containing a field k and let n ≥ 0 be an
integer. Then there is a map of pro-abelian groups {K̂M

n (Rm)}m → {Kn(Rm)}m which
is natural in R. The same holds for the relative K-groups.

Proof. We let X = Spec (R). At any rate, we have a natural map of sheaves K̂Mn,m,X →Kn,m,X by the main result of [22]. This gives rise to a commutative diagram

(5.2) {K̂M
n (Rm)}m //

≅

��

{Kn(Rm)}m
≅

��{H0(X, K̂Mn,m,X)}m // {H0(X,Kn,m,X)}m .
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The left vertical arrow is a level-wise isomorphism by definition and the right vertical
arrow is an isomorphism by Corollary 5.3. The corollary follows. �

5.2. Identification of relative Milnor and Quillen K-theory. We shall now show
that the canonical map from relative Milnor to Quillen K-theory that we constructed in
§ 5.1 is an isomorphism. We need the following to prove its injectivity.

Lemma 5.5. Let X be a Noetherian regular scheme over a field of characteristic p > 0.
Let q ≥ 1 be an integer. Then {qWmΩ

n
X}m = 0 for all n ≥ 0.

Proof. It suffices to show that if R is a regular semi-local ring containing a field of
characteristic p > 0, and m ≥ 1 is an integer, then the map qWm′Ω

n
R →WmΩ

n
R is zero for

some integer m′ ≥m, depending only on m and n.
Using Lemma 4.1, it suffices to prove this assertion for fields. So we let k be a field of

characteristic p > 0. Write q = prs, where p ∤ s. It is then clear that qWmΩ
n
k = prWmΩ

n
k .

We therefore need to show that given any integer m ≥ 1, the map prWm′Ω
n
k →WmΩ

n
k is

zero for all m′ ≫m.
Using the p-typical decomposition of WmΩ

n
k and the fact that this decomposition is

finite and is compatible with the restriction maps Wm′Ω
n
k →WmΩ

n
k , it suffices to prove

the last assertion for the p-typical de Rham-Witt forms WmΩ
n
k . We thus have to show

that given m ≥ 1, the map prWm′Ω
n
k → WmΩ

n
k is zero for all m′ ≫ m, depending only

on m and n. However, this is an immediate consequence of a theorem of Illusie (see [17,
Proposition I.3.4, p. 569], see also [35, Lemma 2.3]) that the canonical and p-filtrations
(and also the V -filtration) of WrΩ

n
k coincide. �

Lemma 5.6. Let X be a Noetherian regular scheme over a field k of characteristic p > 0.
Let n ≥ 0 be an integer. Then the canonical map {K̃Mn,m,X}m → {K̃n,m,X}m is injective.

Proof. For n ≤ 1, the lemma is obvious. So we assume n ≥ 2. We fix an integer m ≥ 1. It
suffices to show that if R is regular local ring containing k and Fnm is the kernel of the

map K̃M
n (Rm) → K̃n(Rm), then there exists an integer m′ ≫ m, depending only on m

and n, such that the map Fnm′ → Fnm is zero.

It follows from Lemma 4.1 and Corollary 4.5 that the kernel of the map {K̃M
n (Rm)}m →{K̃M

n (Fm)}m is bounded by 1. Using the commutativity of this map with the similar
map the between Quillen K-groups, it suffices therefore to prove our assertion for a field
k with char(k) > 0.

If k is finite, then {K̃M
n (km)}m is bounded by 1, again by Corollary 4.5. We can

therefore assume that k is infinite. In this case, we know that Fnm is a torsion group of
exponent (n − 1)! (see [33] or [22, Proposition 10 (6)]). On the other hand, it follows

from Corollary 4.5 that the map {qWmΩ
n−1
k }m → {qK̃M

n (km)}m has kernel and cokernel
bounded by 1 for all q. It suffices therefore to show that for every pair of integers
m,q ≥ 1, there exists an integer m′ ≫m, depending only on m and n, such that the map

qWm′Ω
n−1
k →q WmΩ

n−1
k is zero. But this is shown in the proof of Lemma 5.5. �

The above result implies the following (see the proof of Proposition 5.8).

Corollary 5.7. Let R be a regular semi-local ring containing a field of characteristic
p > 0. Then the canonical map {K̃M

n (Rm)}m → {K̃n(Rm)}m (see Corollary 5.4) is
injective for all n ≥ 0.

Recall that a ring R containing a field of characteristic p > 0 is called F -finite, if it
is a finitely generated algebra (equivalently, a finitely generated module) over Rp. One
knows that R is F -finite if it is essentially of finite type over a perfect field. This is also
true for the Henselization or completion of R along any ideal. In particular, any field
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which is a finitely generated over a perfect field is F -finite. We say that a scheme is
locally F -finite if all its local rings are so.

The main result of this section that we shall use later is the following.

Proposition 5.8. Let R be an F -finite regular semi-local ring containing a field of char-
acteristic p > 0. Then the canonical map {K̃M

n (Rm)}m → {K̃n(Rm)}m of Corollary 5.4
is an isomorphism for all n ≥ 0.

Proof. If R is local, this follows from Theorem 4.4 and [32, Theorem 6.1] (which implicitly
uses Theorem 4.4 or Remark 4.9). To prove the general case, we write X = Spec(R)
and Xm = Spec(Rm) as before. We then have the strict map of sheaves of pro-abelian

groups ψX ∶{K̃Mn,m,X}m → {K̃n,m,X}m on X. Using Lemmas 2.1, 5.2 and (the proof of)

Corollary 4.5, it suffices to show that ψX is an isomorphism. Note that X is locally
F -finite. In view of Lemma 5.6, we only have to show that ψX is surjective.

We consider the commutative diagram of exact sequences of sheaves

(5.3) 0 // K̃Mn,m,X //

ψX

��

K̂Mn,m,X //

��

K̂Mn,X //

��

0

0 // K̃n,m,X // Kn,m,X // Kn,X // 0.

It follows by [8, Theorem 8.1] and the exactness of Gersten complexes for K̂Mn,X and

K̂n,X (see [22, Proposition 10(8)]) that these sheaves have no p-torsion. In particular,
the two rows of (5.3) remain exact with Z/pr-coefficients.

We first show that ψX is surjective with Z/pr-coefficients. Since the right vertical
arrow in (5.3) is an isomorphism with Z/pr-coefficients by [8, Theorem 8.1], we need to
show that the middle vertical arrow is surjective with Z/pr-coefficients. But this follows
from [32, Corollary 5.5] (which uses the F -finiteness assumption). Morrow states this
corollary in the case when X is the spectrum of a local ring. However, as he explains in
[32, Remark 5.8], the result holds at the level of sheaves too and the proof is obtained by
repeating the proof of the local ring case verbatim and observing that the bounds in the
pro-systems are controlled while going from one point to another point of the underlying
scheme.

Indeed, Morrow shows that there are maps

{K̂Mn,m,X/pr}m → {Kn,m,X/pr}m dlog
ÐÐ→ {WrΩ

n
(Xm,X),log

}
m

whose composition is level-wise surjective, where the last term is the relative p-typical
logarithmic de Rham-Witt complex [17]. He then shows that the second map is an
isomorphism. The main argument (one which involves the usages of pro-systems) in
the proof of this isomorphism is the pro-HKR theorem of Dundas-Morrow [6]. And one
checks that this pro-HKR theorem holds at the level of sheaves (see the footnote below
§ 5.3 in [32]).

To prove the surjectivity of ψX , we now claim that prK̃n,m,X = 0 for some r, depending
only onm and n. For this, we first note that Wm+nΩ

n−1
X is a sheaf of Wm+n(Fp)-modules.

Hence, pm+nWm+nΩ
n−1
X = 0. We next use the Hesselholt-Madsen exact sequence [14]:

⊕
i≥0

W(m+1)(i+1)Ω
n−1−2i
X

ǫ
Ð→ K̃n,m,X ∂

Ð→ ⊕
i≥0

Wi+1Ω
n−2−2i
X .

We have seen above that the two end terms are annihilated by some power of p (depending
only onm and n). It follows that the the middle term has the same property. This proves
the claim.
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We now let Enm = Coker(K̃Mn,m,X → K̃n,m,X). We have shown previously that {Enm/pr}m =
0 for every r ≥ 1. On the other hand, for a fixed integer m ≥ 0, the claim implies that
prEnm = 0 for some r ≫ 0. It follows that the map Enm′ → Enm is zero for all m′ ≫ m. In
particular, {Enm}m = 0. This shows that ψX is surjective and finishes the proof of the
proposition. �

5.3. The cycle class map to Milnor K-theory. It was shown by Rülling [35] (for
fields) and Krishna-Park [29] (for semi-local rings) that the additive higher Chow groups
TCHn(R,n;m) for m,n ≥ 1 together form the universal restricted Witt-complex (see
[35, § 1] for definition) over R. In particular, there is an isomorphism of restricted
Witt-complexes

(5.4) τR∶WmΩ
n−1
R

≅
Ð→ TCHn(R,n;m)

for every m,n ≥ 1. This map is given by

(5.5) τR(wdlog[a1]⋯dlog[an−1]) = V (γ(w), y1 − a1, . . . , yn−1 − an−1),
where ai ∈ R×, γ(w) ∈ R[T ] is the polynomial defined in (4.1) and V (I) denotes the
closed subscheme of Spec (R) × ◻n−1 ≅ Spec (R[T, y1, . . . , yn−1]), defined by the ideal
I. We shall call τR by the name ‘the de Rham-Witt-Chow isomorphism’. This is the
additive analog of the Milnor-Chow isomorphism of [7], [33] and [38].

Using the Chow-Witt isomorphism and Corollary 4.5, we define our cycle class map
from the additive higher Chow group of relative 0-cycles to relative Milnor K-theory as
follows.

Definition 5.9. Let R be as above and n ≥ 1 an integer. We define the cycle class map
to Milnor K-theory to be the composite map of pro-abelian groups

(5.6) cycMR = θR ○ λR ○ τ
−1
R ∶{TCHn(R,n;m)}m → {K̃M

n (Rm)}m .
It follows from [29, Theorem 1.1] that τR is functorial with respect to any k-algebra

homomorphism between regular semi-local rings R → R′ essentially of finite type over k.
The maps λR and θR are clearly functorial in R by their construction. It follows that
cycMR is functorial in R. Notice also that cycMR is an isomorphism.

5.4. Proofs of Theorems 1.1((1)-(3)) and 1.3. We let k and R be as in the these
theorems. We define the cycle class map as the following composition

(5.7) cyc′R = ψR ○ cyc
M
R ∶{TCHn(R,n;m)}m → {K̃n(Rm)}m ,

where the map ψR is as in Corollary 5.4. The proofs of Theorem 1.3 and parts (1) to
(3) of Theorem 1.1 follow immediately. ◻

6. The cycle class map for semi-local rings

The goal of the remaining two sections is to define cycR at the level of additive higher
Chow groups and prove the final part of Theorem 1.1. In this section, we shall define
cycR which generalizes the construction of (2.13) from fields to regular semi-local rings
over a field. In the next section, we shall show the agreement between cycR and cyc′R
under our assumptions.

We fix a field k of characteristic p > 0 and let R be a regular semi-local ring which
is essentially of finite type over k. We let F denote the total ring of quotients of R.
Let Σ denote the set of maximal ideals of R. Recall our function λ∶Z+ → Z+ given by
λ(m) = n(m + 1) − 1 in (2.13).



RELATIVE K-THEORY VIA 0-CYCLES IN FINITE CHARACTERISTIC 23

6.1. A pro-Gersten for K-theory. In [10, Theorem 10.2] (see its proof), it was shown

that if R contains Q, the base change map K̃n(Rm)→ K̃n(Fm) is injective for allm,n ≥ 0,
where F is the total ring of quotients of R. However, we do not know if this inclusion
holds in positive characteristic. We shall use a result of Hesselholt-Madsen [14] to prove
the following partial result which will imply the validity of this inclusion in the pro-
setting. We shall need this result in order to construct our cycle class map.

Lemma 6.1. Let n ≥ 0 be any integer and let e ≥ 1 be an integer not divisible by p. Then
the base change map ηR,e∶ K̃n(Re−1) → K̃n(Fe−1) is injective. In particular, for every

m ≥ 1, the canonical map Ker(K̃n(Rmp)→ K̃n(Fmp)) → K̃n(Rm) is zero.

Proof. We only have to show that ηR,e is injective as the second assertion of the lemma
immediately follows from this. We can assume that R is an integral domain so that F is
a field. We now fix an integer n ≥ 0. It was shown by Hesselholt-Madsen [14] that there
is a natural exact sequence

(6.1) ⊕
i≥0

Wi+1Ω
n−2i
R

VeÐ→ ⊕
i≥0

We(i+1)Ω
n−2i
R

ǫ
Ð→ K̃n+1(Re−1) ∂

Ð→ ⊕
i≥0

Wi+1Ω
n−1−2i
R ,

where Ve is the Verschiebung map. By comparing this exact sequence with the analogous
exact sequence for F and using Lemma 4.1, the proof of the injectivity of ηR,e reduces
to showing that for every n ≥ 0 and m ≥ 1, the square

(6.2) WmΩ
n
R� _

��

Ve
// WmeΩ

n
R� _

��

WmΩ
n
F

Ve
// WmeΩ

n
F

is Cartesian.
To show this, let α ∈WmeΩ

n
R and β ∈WmΩ

n
F be such that α = Ve(β) ∈ WmeΩ

n
F . We

consider the commutative diagram

WmΩ
n
R� _

��

Ve
// WmeΩ

n
R� _

��

Fe
// WmΩ

n
R� _

��

WmΩ
n
F

Ve
// WmeΩ

n
F

Fe
// WmΩ

n
F ,

where Fe is the Frobenius map. Since Fe ○ Ve(β) = eβ (see [35, Definition 1.4]), we get
Fe(α) = eβ. Since p ∤ e, we have that e ∈ (Wm(R))×. We thus get β = e−1Fe(α) ∈WmΩ

n
R.

Since the all vertical arrows in the above diagram are inclusions, it follows that β ∈WmΩ
n
R

and Ve(β) = α. This finishes the proof. �

6.2. The sfs cycles. We need the notion of sfs-cycles in order to generalize the cycle
class map of (2.13) from fields to semi-local rings. Let m ≥ 0 and n ≥ 1 be two integers.
Recall (see § 2.4) that TCHn(R,n;m) is defined as the middle homology of the complex

Tzn(R,n + 1;m) ∂
Ð→ Tzn(R,n;m) ∂

Ð→ Tzn−1(R,n;m). Note that a cycle in Tzn(R,n;m)
has relative dimension zero over R. We shall say that an extension of regular semi-local
rings R ⊂ R′ is simple if there is an irreducible monic polynomial f ∈ R[t] such that
R′ = R[t]/(f(t)).

Let X = Spec (R) and Σ the set of all maximal ideals of R. Let Z ⊂ X × A1
k × ◻

n−1

be an irreducible admissible relative 0-cycle. Recall from [29, Definition 3.4] that Z is
called an sfs-cycle if the following hold.

(1) Z intersects Σ ×A1
k ×F properly for all faces F ⊂ ◻n−1.

(2) The projection Z →X is finite and surjective.
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(3) Z meets no face of X ×A1
k × ◻

n−1.
(4) Z is closed in X ×A1

k ×A
n−1
k = Spec (R[t, y1, . . . , yn−1]) (by (2) above) and there

is a sequence of simple extensions of regular semi-local rings

R = R−1 ⊂ R0 ⊂ ⋯ ⊂ Rn−1 = k[Z]
such that R0 = R[t]/(f0(t)) and Ri = Ri−1[yi]/(fi(yi)) for 1 ≤ i ≤ n − 1.

Note that an sfs-cycle has no boundary by (3) above. We let Tznsfs(R,n;m) ⊂ Tzn(R,n;m)
be the subgroup of cycles whose irreducible components are sfs-cycles and define

(6.3) TCHnsfs(R,n;m) = Tznsfs(R,n;m)
∂(Tzn(R,n + 1;m)) ∩Tznsfs(R,n;m) .

It is clear that the canonical map TCHnsfs(R,n;m)→ TCHn(R,n;m) is injective. The
following result from [28, Theorem 1.1] says more.

Theorem 6.2. The canonical map TCHnsfs(R,n;m) → TCHn(R,n;m) is an isomor-
phism if k is infinite and perfect.

6.3. The cycle class map to Quillen K-theory. The construction of the map cycR
for TCHnsfs(R,n;m) is obtained by word by word repetition of the construction of the
cycle class map for fields described in § 2.5. So let Z ⊂X×A1

k×◻
n−1 be an irreducible sfs-

cycle and let R′ = k[Z]. Let f ∶Z → X ×A1
k be the projection map. Let gi∶Z → ◻ denote

the i-th projection. Then the sfs property implies that each gi defines an element of R′
×

and this in turn gives a unique element {g1, . . . , gn−1} ∈ KM
n−1(R′). We let cycR′([Z])

be its image in Kn−1(R′) under the map KM
n−1(R′)→Kn−1(R′). Since Z does not meet

X ×{0}, we see that the finite map f defines a push-forward map of spectra f∗∶K(R′)→
K(R[t], (tm+1)). We let cycR([Z]) = f∗(cycR′([Z])) ∈ Kn−1(R[t], (tm+1)). We extend
this definition linearly to get a cycle map cycR∶Tz

n
sfs(R,n;m)→Kn−1(R[t], (tm+1)).

Lemma 6.3. The assignment [Z]↦ cycR([Z]) defines a cycle class map

cycR∶TCH
n
sfs(R,n;λ(pm)) →Kn−1(R[t], (tm+1))

which is functorial for the inclusion R ↪ F .

Proof. Let π∶Spec (F ) ↪ Spec(R) be the inclusion. We consider the diagram
(6.4)

∂−1(Tznsfs(R,n;λ(pm))) ∂ //
π∗

��

Tznsfs(R,n;λ(pm))
π∗

��

cycR
// Kn−1(R[t], (tpm+1))

π∗

��

// Kn−1(R[t], (tm+1))
π∗

��

Tzn(F,n + 1;λ(pm)) ∂
// Tzn(F,n;λ(pm))cycF// Kn−1(F [t], (tpm+1)) // Kn−1(F [t], (tm+1)),

where the horizontal arrows in the square on the right are the structure maps of the
pro-abelian group {Kn−1(R[t], (tm))}m≥1 (and for F ) because mp ≥ m. In particular,
this square is commutative. It was shown in [10, Theorem 10.2] that all the other squares
are commutative. It follows from the case of fields (see (2.12)) that the composite map
cycF ○ ∂ ○π

∗ is zero. We deduce from Lemma 6.1 that the composite cycR ○ ∂ is zero. It
follows that the composition of all horizontal arrows in the top row of (6.4) is zero. This
proves the lemma. �

Since the map cyck is clearly functorial in m ≥ 1, using the natural isomorphism

∂∶ K̃n(Rm) ≅Ð→Kn−1(R[t], (tm+1)), we get

Theorem 6.4. For every n ≥ 1, there is a cycle class map between pro-abelian groups

cycR∶{TCHnsfs(R,n;m)}m → {K̃n(Rm)}m
which is functorial for the inclusion R ↪ F and coincides with (2.13) if R is a field.
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7. End of the proof of Theorem 1.1

We shall now complete the proof of Theorem 1.1 by proving its remaining part (4).
After § 5.4, the key lemma that remains to be proven for this purpose is Lemma 7.4.
We shall prove this in few steps. We let our ring R and other notations be the same as
in § 6. Since R is a product of integral domains and our proofs for the case of integral
domains directly generalize to products of such rings, we shall assume that R is a regular
semi-local integral domain.

Hence the standing assumption of this section is that R is a regular semi-local integral
domain which is essentially of finite type over a field k of characteristic p > 0. We let
F denote the fraction field of R. Recall from Corollary 5.4 that we have a well-defined
map ψR ∶ {K̂M

∗ (Rm)}m → {K∗(Rm)}m. If R is a field, then this map is induced by the

canonical map ψRm ∶ K̂
M
∗ (Rm)→K∗(Rm) from Milnor to Quillen K-theory.

7.1. The case of fields. We first consider the case when R is a field. So we let k be a
field of characteristic p > 0. We fix an integer n ≥ 1 and consider the diagram

(7.1) {TCHn(k,n;m)}mcyck//
cycM

k

��

{Kn−1(A1
k, (m + 1){0})}m

{K̃M
n (km)}m ψkm

// {K̃n(km)}m ,
∂

OO

where cyck is the map of (2.13).

Our goal is to show that this diagram is commutative. We shall use the shortened
notation ψk for ψkm even if it is meant to be used for km for different values of m ≥ 1 in
different parts of the proofs.

Lemma 7.1. The diagram (7.1) is commutative for n = 1.

Proof. It follows from (2.13) and (3.8) that all maps in (7.1) are strict maps of pro-abelian
groups, i.e., the associated function λ∶Z+ → Z+ is identity (see § 2.2). Furthermore, it
was shown in the initial part of the proof of [10, Proposition 5.1] that cyck is a level-
wise isomorphism. It follows from (4.1) and (5.4) that all other maps are also level-wise
isomorphisms. Clearly, all these are functorial in k.

Finally, to show that (7.1) commutes level-wise for n = 1, let w ∈ Wm(k) and let
f(T ) = 1 + Tp(T ) ∈ k[T ] be a polynomial such that γ(w) = f(T ) modulo Tm+1. The
construction of the cycle class map in § 2.5 then shows that cyck(γ(w)) is the class of
the finitely generated k[T ]-module k[T ]/(f(T )) in K0(A1

k, (m + 1){0}) (see [10, §2C]).
Since τk is an isomorphism, it suffices to show that this class coincides with ∂(γ(w)).
But this follows from [10, Lemma 2.1]. This proves the lemma and also proves stronger
versions of Theorems 1.1 and 1.3 when n = 1. �

Our next goal is to prove the commutativity of (7.1) when n ≥ 2. We let n ≥ 2 and
let λn∶Z+ → Z+ be given by λn(m) = n(m + 1) − 1. It is then easy to see using (2.13)
and (3.8) that all maps in (7.1) are morphisms of pro-abelian groups all of whose asso-
ciated functions are same, namely, the function λn above (note that this requires n ≥ 2).
Moreover, for m′ ≥ m, the diagram (2.2) already commutes when l = λn(m′). In the
proofs below, we shall write λn(m) simply as λ(m) since n is fixed.

To prove that the diagram (7.1) is commutative for k and n ≥ 2, it suffices therefore
to show that for every m ≥ 1, the square on the right in the diagram

(7.2) Wλ(m)Ω
n−1
k

τk
//

θk○λk ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

TCHn(k,n;λ(m))cyck//
cycM

k

��

Kn−1(A1
k, (m + 1){0})

K̃M
n (km) ψkm

// K̃n(km)
∂

OO
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is commutative. Since τk is an isomorphism, this is equivalent to showing that the outer
trapezium is commutative.

To show the commutativity of the trapezium, we shall use Proposition 4.2 for fields
(due to Hyodo-Kato [16] and Rülling-Saito [36]). Using this, it suffices to show that
the above diagram commutes for the generators of the two groups on the left hand side
of (4.2).

We know from (4.1) that any element w ∈ Wλ(m)(k) is of the form γ−1(1 − Tp(T ))
with p(T ) ∈ k[T ] and f(T ) = f(T ) modulo T λ(m)+1. Since we can write 1 − Tp(T ) as
a product of irreducible polynomials of the form 1 − Tq(T ), we see that w is a sum of

elements of the form γ−1(1 − Tp(T )) such that 1−Tp(T ) is irreducible. We can therefore

assume that w = γ−1(f(T )), where f(T ) = 1 − Tp(T ) is irreducible.
In what follows below, we write φk = θk ○ λk and ψkm = ψk to simplify the notations,

where the value of m ≥ 1 is allowed to vary. We also write f(T ) = f(t) in any km. We
let A = k[T ](T ).
Lemma 7.2. For n ≥ 2, we have

∂ ○ψk ○ φk(wdlog[a1]⋯dlog[an−1]) = cyc′k ○ τk(wdlog[a1]⋯dlog[an−1]).
Proof. With the above notations, we have
(7.3)

∂ ○ψk ○ φk(wdlog[a1]⋯dlog[an−1]) =1 ∂ ○ψk({γ(w), a1 , . . . , an−1})
= ∂ ○ψk({1 − tp(t), a1, . . . , an−1})
=2 (∂ ○ ψk({1 − tp(t)})) ⋅ ψk({a1, . . . , an−1})
=3 π∗(1) ⋅ ψk({a1,⋯, an−1})
=4 π∗({a1,⋯, an−1})
=5 cyc′k(V (f(T ), y1 − a1, . . . , yn−1 − an−1))
=6 cyc′k ○ τk(wdlog[a1]⋯dlog[an−1]),

where π∶Spec (k[T ]/(f(T )))↪ A1
k is the closed immersion.

We explain various equalities. First, θk being the restriction map K̂M
∗ (A, (T )) →

K̂M
∗ (km) (see (3.9)), it is clear that θk({f(T ), a1,⋯, an−1}) = {γ(w), a1,⋯, an−1}, where

f(T ) is viewed as an element of (1 + (T )) ⊂ A×. The equality =1 therefore follows from
the definition of the map λk in (4.4). The equality =2 follows because ∂ is a KM

∗ (k)-
linear map. The equality =3 follows from the n = 1 case shown in Lemma 7.1 and =4

follows because π∗ is K
M
∗ (k)-linear (see [10, Lemma 2.2]). The equality =5 follows from

the definition of the cycle class map in (2.10) and =6 follows from (5.5). This finishes
the proof. �

The final step is the following.

Lemma 7.3. The diagram (7.1) is commutative for n ≥ 2.

Proof. Using the above reductions and Lemma 7.2, we only have to show that

(7.4) ∂ ○ψk ○ φk(dwdlog[a1]⋯dlog[an−2]) = cyck ○ τk(dwdlog[a1]⋯dlog[an−2]).
We shall continue to use the above simplified notations and make another simpli-

fication by setting w̃ = dwdlog[a1]⋯dlog[an−2]. It is clear from the definition of the
differential for the Witt-complex structure on the additive higher Chow groups (see
[26, § 6.1]) that if we let γ(w) = f(t) = 1 − tp(t), then τk(dw) = dτk(w) is the class
of the cycle V (f(T ), T y1 − 1) ⊂ A1

k × ◻ in TCH2(k,2;λ(m)). As f(T ) is irreducible,

V (f(T ), y1T − 1, y2 − a1, . . . , yn−1 − an−2) is a closed point z ∈ A1
k × ◻

n−1 such that
l = k(z) ≅ k[T ]/(f(T )). We therefore have an admissible l-rational point z0 = V (1 −
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α−1T, y1 −α
−1, y2 −a1, . . . yn−1−an−2) of A1

l ×l◻
n−1
l such that [z] = π∗([z0]), where we let

α = T modulo (f(T )) and π∶Spec (l)→ Spec (k) the projection.
We can now write

cyck ○ τk(w̃) = cyck([z])
=1 π∗ ○ cycl([z0])
= π∗ ○ cycl(V (1 −α−1T, y1 −α−1, y2 − a1, . . . , yn−1 − an−2))
=2 π∗ ○ ∂l ○ψl ○ φl(wldlog[α−1]dlog[a1]⋯dlog[an−2])
=3 ∂k ○ π∗ ○ψl ○ φl(wldlog[α−1]dlog[a1]⋯dlog[an−2]),

where wl = γ
−1(1 −α−1T ) ∈Wλ(m)(l).

The equality =1 follows from the construction of the cycle class map (see [10, Lemma 4.4]),
=2 follows from Lemma 7.2 for Spec (l) and =3 follows because the connecting homomor-
phism ∂ commutes with the push-forward map π∗. Note that this push-forward map
exists on the relative K-theory by (2.4). It suffices therefore to show that

(7.5) ψk ○ φk(w̃) = π∗ ○ ψl ○ φl(wldlog[α−1]dlog[a1]⋯dlog[an−2]).
However, we have

ψk ○ φk(w̃) = ψk ○ θk ○ λk(w̃)
= (−1)n−1ψk ○ θk({γ(w), a1 , . . . , an−2, T})
=1 −ψk ○ θk({γ(w), T, a1 , . . . , an−2})
= (−ψk ○ θk({γ(w), T})) ⋅ ψk({a1, . . . , an−2}),

where =1 follows from [21, Lemma 2.2] as k(T ) is infinite. On the other hand, letting
w̃l = wldlog[α−1]dlog[a1]⋯dlog[an−2], we also have

π∗ ○ ψl ○ φl(w̃l) = π∗ ○ψl({γ(wl), α−1, a1, . . . , an−2})
= (π∗ ○ ψl({γ(wl), α−1})) ⋅ ψk({a1, . . . , an−2}),

where the last equality holds by the projection formula. Thus, (7.5) is reduced to showing
that for every m ≥ 1, we have

(7.6) ψk ○ θk({1 − Tp(T ), T}) = −π∗ ○ ψl({γ(w), α−1}) = −π∗ ○ψl({1 −α−1T,α−1})
in K̃2(km) under the composite map

K̂M
2 (A,(T ))

K̂M
2
(A,(Tm+1))

θkÐ→ K̃M
2 (km) ψkÐ→ K̃2(km). Here,

{1 − Tp(T ), T} is viewed as an element of K̂M
2 (A, (T )) via the inclusion K̂M

2 (A∣(T )) ⊂
K̂M

2 (A, (T )) of Lemma 3.9.
The commutative diagram

(7.7)
K̂M

2 (A,(T ))

K̂M
2
(A,(Tm+1))

θk

≅
//

ψA

��

K̃M
2 (km)

ψk

��

K2(A,(T ))
K2(A,(Tm+1))

θk

≅
// K̃2(km)

shows that verifying (7.6) is equivalent to showing that

(7.8) θk({1 − Tp(T ), T}) = −π∗({1 −α−1T,α−1})
in K̃2(km) under the map

K2(A,(T ))
K2(A,(Tm+1))

θkÐ→ K̃2(km), if we use the identical notation

for {1 − Tp(T ), T} ∈ K̂M
2 (A, (T )) (resp., {1 − α−1T,α−1} ∈ K̃M

2 (lm)) and its image in

K2(A, (T )) via ψA (resp., in K̃2(lm) via ψl). We shall use this convention in the rest of
the proof.
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To show (7.8), we let A′ = l[T ](T ) as in the notations of Lemma 2.3. We showed in § 2.3

that A′ is finite (and flat) over A and km ⊗A A
′ ≅ lm. Using (2.4), we get push-forward

maps π∗∶K2(A′, (T i))→K2(A, (T i)) for all i ≥ 0 and a commutative diagram

(7.9)
K2(A′,(T ))

K2(A′,(Tm+1))

θl

≅
//

π∗

��

K̃2(lm)
π∗

��

K2(A,(T ))
K2(A,(Tm+1))

θk

≅
// K̃2(km).

It suffices therefore to show that π∗({1 −α−1T,α−1}) = −{1 − Tp(T ), T} holds under the
left vertical arrow in (7.9).

Since {1−Tp(T ), T} ∈K2(A, (T )) ⊂K2(A) and {1−α−1T,α−1} ∈K2(A′, (T )) ⊂K2(A′)
(note that these inclusions use the splitting of A↠ A/(T ) and A′↠ A′/(T )), it suffices
to show that π∗({1 − α−1T,α−1}) = −{1 − Tp(T ), T} in K2(A). Using Lemma 2.3, we
further reduce to showing that this equality holds in K2(k(T )) under the push-forward
map π∗∶K2(l(T )) →K2(k(T )).

But in K2(k(T )), we have

−π∗({1 − α−1T,α−1}) = π∗({1 −α−1T,T})
=1 π∗({1 − p(α)T,T})
=2 Nl(T )/k(T )({1 − p(α)T,T})
=3 {Nl(T )/k(T )(1 − p(α)T ), T}
=4 {1 − p(T )T,T}.

Here, =1 follows because 1 − αp(α) = 0 in l, the equality =2 follows by the compatibility
between the Norm in Milnor K-theory and push-forward in Quillen K-theory (see the
proof of [10, Lemma 4.4]), =3 follows from the projection formula for norm as T ∈ k(T )×,
and =4 is a straightforward calculation of the norm of 1 − p(α)T ∈ l(T )×. This finishes
the proof of the lemma. �

7.2. Back to the case of semi-local ring. The following is our last key lemma before
we prove the main results. Let cycR be the cycle class map of Theorem 6.4. Here, R is
the semi-local integral domain satisfying the standing assumptions of this section.

Lemma 7.4. The diagram

(7.10) {TCHnsfs(R,n;m)}m
cycR

((P
PP

PP
PP

PP
PP

P

cycMR
��{K̃M

n (Rm)}m ψR
// {K̃n(Rm)}m

is commutative. Equivalently, cycR = cyc′R.

Proof. When R is a field, the lemma is equivalent to the commutativity of (7.1). We
now prove the general case. Let π∶Spec (F ) ↪ Spec (R) be the inclusion of the generic
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point. We consider the diagram

(7.11) {TCHnsfs(R,n;m)}m π∗
//

cycMR

��

cycR

((P
PP

PP
PP

PP
PP

P

{TCHn(F,n;m)}m

cycMF

��

cycF

''P
PP

PP
PP

PP
PP

P

{K̃n(Rm)}m π∗
// {K̃n(Fm)}m

{K̃M
n (Rm)}m π∗

//

ψR

77♥♥♥♥♥♥♥♥♥♥♥♥ {K̃n(Fm)}m .
ψF

77♦♦♦♦♦♦♦♦♦♦♦

We check the commutativity of various faces of (7.11). The front face clearly commutes
and the back face commutes by Theorem 6.4. The right (triangular) face commutes
because F is a field. The commutativity of the bottom face was shown in the construction
of cycMR in § 5.3. A diagram chase shows that π∗ ○ ψR ○ cyc

M
R = π

∗ ○ cycR. We can now
apply Lemma 6.1 to conclude that (7.10) commutes. We use here an elementary fact
that if a morphism between two pro-abelian groups factors through the zero pro-group,
then this morphism itself is zero (see § 2.2). �
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