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Relative K-theory via 0-cycles in finite characteristic

Rahul Gupta and Amalendu Krishna

Let R be a regular semilocal ring, essentially of finite type over an infinite perfect
field of characteristic p > 0. We show that the known cycle class map from the
Chow group of 0-cycles with modulus to the relative K-theory induces a pro-
isomorphism between the additive higher Chow groups of relative O-cycles and
the relative K-theory of truncated polynomial rings over R. This settles the
problem of completely describing the relative K-theory of such rings via the
cycle class map.
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1. Introduction

Ever since the invention of additive Chow groups and higher Chow groups with
modulus, it has been an open question whether these groups together would give
rise to a motivic cohomology which could describe the algebraic K-theory of non-
reduced schemes. Existence of such a motivic cohomology was conjectured in the
seminal work of Bloch and Esnault [2003].

There are usually two ways to solve this question: either construct a direct cycle
class map from the Chow groups with modulus to relative K-theory, or construct an
Atiyah—Hirzebruch type spectral sequence. For smooth schemes, both approaches
have been shown to be successful in describing the algebraic K-theory in terms of
algebraic cycles. However, this question remains unsolved for singular schemes.
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Levine [1994] constructed cycle class maps with rational coefficients from Bloch’s
higher Chow groups [1986] to the algebraic K-groups of a smooth scheme over a
field. He showed that these maps induce isomorphisms between the higher Chow
groups and the Adams graded pieces of the algebraic K-groups of the scheme.

Motivated by Levine’s work, the authors constructed in [Gupta and Krishna
2020] an explicit cycle class map (with integral coefficients) from the higher Chow
groups of 0-cycles with modulus to the relative K-theory in the setting of pro-
abelian groups. The main result of [Gupta and Krishna 2020] was that this cycle
class map induces a pro-isomorphism between the additive higher Chow groups of
relative 0-cycles and relative K-theory of truncated polynomial rings over a regular
semilocal ring, essentially of finite type over a characteristic zero field. The goal
of this manuscript is to extend this result to positive characteristic.

To state our main result, recall from [Binda and Saito 2019; Krishna and Park
2017] that for a smooth scheme X of dimension d which is essentially of finite type
over a field k£ and an effective Cartier divisor D C X, the higher Chow groups of
codimension g-cycles with modulus are denoted by CH?(X|D; n). Let K (X, D)
denote the relative K-theory spectrum. In order to study the relative algebraic K-
theory in terms of O-cycles with modulus, it was shown in [Gupta and Krishna
2020] that there exists a cycle class map

CYCx|p * [CH" M (X|mD; n)}ms1 — {Ku(X, mD)} > (1.1)

in the setting of pro-abelian groups. This cycle class map coincides with that of
Levine when D = &.

Recall now that for an equidimensional scheme X over k, the Chow group
with modulus CH? (X x A,HX x (m 4+ 1){0}, n) is the same thing as the additive
higher Chow group of codimension g-cycles TCH? (X, n + 1; m) [Krishna and
Park 2012b]. Applying (1.1) to X = Spec(k) and using the natural connecting iso-
morphism 9 : K,,+1(k[x]/(x™), (x)) = K, (Ak, m{0}), we see that (1.1) 1s the same
thing as the map

cyey  {TCH" ! (k, n 4+ 1: m) b1 = {Kps1 (k[x1/ (™), (X)) }m=1- (1.2)

The main property of cyc, is that its definition is very explicit on the set of
generators Tzt (k, n + 1; m) (see Section 2E). This property of cyc; often turns
out to be very useful in the study of K-theory via algebraic cycles. If R is, more
generally, a regular semilocal ring containing k, the map cyc; directly extends to
an explicit cycle class map

cycp : T2 N R, n+ 1;m) — K,y (R[x]/(x™Th), (x)), (1.3)

sfs

where Tz’s’f':l(R, n+1; m) C TZ"7Y(R, n+1; m) is a subgroup of “sfs” cycles (see

Section 6B for the definition of sfs cycles and Section 6C for the definition of cycg).



RELATIVE K-THEORY VIA 0-CYCLES IN FINITE CHARACTERISTIC 675

The initial motivation behind the discovery of additive higher Chow groups by
Bloch and Esnault [2003] was to know if a cycle class map such as cyc, passes
through rational equivalence and if the resulting map is an isomorphism. The main
objective of this paper is to provide the following partial answer to the question of
Bloch and Esnault. In fact, we construct a new cycle class map in the pro-setting
and show that it is an isomorphism when k is any perfect field. We subsequently
show that this new cycle class map coincides with cycp of (1.3) when k is further-
more infinite.

Theorem 1.4. Let R be a regular semilocal ring which is essentially of finite type
over a field k such that char(k) > 0. Let n > 1 be an integer. Then there exists a
cycle class map

cyck : {TCH" (R, n; m)}m>1 — {Kn(R[x1/(x™), (X))} m=>1-
This map satisfies the following:
(1) cycy is natural in R.
(2) cycy is injective.
(3) cycy is an isomorphism if k is perfect.

(4) The composite map
(T2 (R, 75 M)zt — (TCH (R, 13 m) )zt —> (K, (RIX]/ ("), (X)) hn=
coincides with cycy if R =k or k is infinite.

Using [Gupta and Krishna 2020] in characteristic zero and Theorem 6.5 other-
wise, we obtain the following.

Corollary 1.5. Let R be a regular semilocal ring which is essentially of finite type
over an infinite perfect field. Then cycg induces an isomorphism

cycg {TCH" (R, n; m)}m=1 = {Kn(R[x1/(x™), (X))}m=1.

We remark that the only hurdle in extending the above corollary to finite base
fields is the lack of sfs-moving lemma. The proof of this moving lemma given
in [Krishna and Park 2020] breaks down if the base field is finite. However, we
expect that the new Bertini theorems of [Ghosh and Krishna 2020] may be enough
to prove the sfs-moving lemma over finite base fields.

For a semilocal ring R, let K fl (R) denote the Milnor K-theory of R. When
R has a finite residue field, Ki” (R) 1s taken to be the one defined by Gabber
(unpublished) and Kerz [2010]. Let KM (R[x]/(x™), (x)) denote the kernel of the
canonical restriction map KM (R[x]/(x™)) — KM(R). Unless R is local, there
may not exist a natural map from the Milnor K-theory (a la Gabber—Kerz) to the
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Quillen K-theory of R[x]/(x™). Nonetheless, we show in this manuscript (see
Corollary 5.5) that there is indeed a natural map of pro-abelian groups

Vg AKY (RIXT/ "N m=1 = (Ka(RIX1/(X™) 1

This induces a natural map between the pro-relative K-groups as well. Further-
more, this restricts to the known canonical map when we replace R by any of its
localizations. The main step in the proof of Theorem 1.4 (except its last part) is
the following extension of [Gupta and Krishna 2020, Theorem 1.3(1)] to positive
characteristic.

Theorem 1.6. Let R be a regular semilocal ring which is essentially of finite type
over a field of characteristic p > 0. Let n > 1 be an integer. Then there exists a
cycle class map

cycy {TCH' (R, n; m)}n=1 = (K (RIX1/ (™), (06)hm1
which is natural in R and is an isomorphism.

The cycle class map cycy in Theorem 1.4 is, by definition, the composition
Yro cyc%’ . We remark that by a result of Morrow [2019] (which implicitly uses
Theorem 4.8 of this paper; see the proof of Proposition 5.10), one knows that the
canonical map from the relative Milnor K-theory to the relative Quillen K-theory
is a pro-isomorphism when R is local. However, there are two points to be noted
regarding Theorem 1.6. First, the pro-isomorphism between the relative Milnor
K-theory and the Quillen K-theory for semilocal rings is not a straightforward
deduction from the local case. Second, and more important, Theorem 1.6, along
with Theorem 1.4(4), asserts that the cycle class map cycp (whose study is our
main interest) from the additive higher Chow groups to the relative Quillen K-
theory in (1.3) factors through the relative Milnor K-theory if the base field is
infinite and perfect. This plays a very important role in understanding the cycle
class map and in our proof. A similar result in characteristic zero was proven in
[Gupta and Krishna 2020].

A fundamental fact in Voevodsky’s theory of motivic cohomology is that if R
1s an equicharacteristic regular semilocal ring, then its motivic cohomology in the
equal bidegree (the Milnor range) is isomorphic to the Milnor K-theory of R (see
[Elbaz-Vincent and Miiller-Stach 2002; Nesterenko and Suslin 1989; Totaro 1992]).
Theorem 1.6(3) says that this isomorphism also holds for truncated polynomial
algebras over such rings. This provides a key evidence that if one could extend
Voevodsky’s theory of motives to so-called fat points (infinitesimal extensions of
spectra of fields), then the underlying motivic cohomology groups must coincide
with the additive higher Chow groups, at least in the setting of pro-abelian groups
(see [Krishna and Park 2012a]).
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1A. A brief outline of the proofs. Our strategy for proving Theorem 1.4 (except
part (4)) is to define the cycle class map cycy as the composition of ¥r with a cycle
class map cyc¥, to the relative Milnor K-theory of the truncated polynomial ring
over the underlying regular semilocal ring R. The two known results that are used
to achieve this are the “Chow—Witt isomorphism theorems” of Riilling [2007] and
Krishna and Park [2021] and the “Milnor—Witt isomorphism theorem” of Riilling
and Saito [2018]. But these two results are not quite enough.

Going beyond, a fundamental result of independent interest that we need to
prove is that there is a pro-isomorphism between the Milnor K-theories of Riilling
and Saito [2018], Kato and Saito [1986] and Gabber and Kerz [Kerz 2010] (see
Theorem 4.8). This allows us to define a cycle class map from the additive higher
Chow groups to the relative Milnor K-theory of the truncated polynomial ring (see
Section 5C). This map is easily seen to be an isomorphism by its construction.

The next step is to show the existence of a canonical map from the relative
Milnor K-theory to relative Quillen K-theory of truncated polynomial rings over
a regular semilocal ring (see Corollary 5.5). This requires care if the base field is
finite and the ring is not local. The third step is to show that the above described
map is a pro-isomorphism. This is done in Proposition 5.10 using Theorem 4.8
and a result of Morrow [2019, Corollary 5.5].

The final step is to explicitly describe this composition when R is a field or is
essentially of finite type over an infinite field. Under these assumptions, we define
an explicit cycle class map to the relative Quillen K-theory of truncated polynomi-
als in Section 2E and Section 6. The proof of Theorem 1.4 is then completed in
Lemma 7.13.

In all the above steps, we have to pay special care if the underlying regular
semilocal ring is not local. This is because the Gabber—Kerz Milnor K-theory is not
very well behaved for such rings. This forces us to work with their sheafified ver-
sions. But this brings in another technical problem. Namely, a local isomorphism
between two pro-sheaves does not necessarily imply an isomorphism between them.
This is in contrast to the case of sheaves. To take care of this problem, we always
have to prove a stronger assertion than merely an isomorphism whenever we work
with pro-abelian groups of K-theories and de Rham—Witt forms on a local ring (see
Lemma 2.3 for a precise version we need to prove).

2. The cycle class map

In this section, we recall our main object of study, the cycle class map for the
additive higher Chow groups of 0O-cycles, from [Gupta and Krishna 2020]. Before
this, we fix our notations, recall the basic definitions and prove some intermediate
results to be used in the proofs of the main theorems.
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2A. Notations. Given a field k, we let Sch; denote the category of separated fi-
nite type schemes over k and let Sm; denote the full subcategory of nonsingular
schemes over k. For X, Y € Schy, we denote the product X x; ¥ simply by X x Y.
For any point x € X, we let k(x) denote the residue field of x. For a reduced scheme
X € Schy, we let XV denote the normalization of X. Given a closed immersion
D C X in Schy defined by a sheaf of ideals Zp C Oy, we let mD C X denote the
closed subscheme of X defined by the sheaf of ideals Z7) for m > 1. In this article,
we always consider the Zariski topology on a Noetherian scheme whenever we talk
about sheaves.

We let [ denote the projective space P! = Proj(k[Yy, ¥1]) and let O =0\ {1}.
We let A = Spec(k[yi, ..., y»]) be the open subse;t of ", where V1seevs Yn)
denotes the coordinate system of (1" with y =Y 1] / Y({ . Given a rational map
f:X --» 0" in Schy and a point x € X lying in the domain of definition of f, we
let f;(x) = (yi o f)(x), where y; : 0" — O is the i-th projection. For any 1 <i <n
and ¢ € O(k), we let F! . denote the closed subscheme of 0" given by {y; =1}. We
let Fyy =) iy Fy ;- |

All rings in this text are commutative and Noetherian. For such a ring R and an
integer m > 0, we let R,, = R[t]/(t"*') denote the truncated polynomial algebra
over R. If, in proving a statement in this manuscript, we have to deal with a ring R
and an ideal I C R, we use the notation a for the residue class in R/I of an element
a € R. If there are several ideals, we indicate the quotient in which we consider the
residue class a. The tensor product M @z N 1is denoted simply as M @ N. Tensor
products over other bases are explicitly indicated. For an abelian group M and an
integer n > 1, we let , M denote the n-torsion subgroup of M.

2B. The category of pro-objects. Since we mostly work in the category of pro-
abelian groups, we recall here the notion of pro-objects in a general category. By a
pro-object in a category C, we mean a sequence of objects {A,, },,>0 together with
a map oc,ﬁ : Aps1 = Ay, for each m > 0. We write this object often as {A,,}. We
let Pro(C) denote the category of pro-objects in C with the morphism set given by

Hompro(C)({Am}, {Bn}) = LiLnli_r>nH0mC (Am, By). (2.1)
n m
It follows that giving a morphism f : {A,,} — {B,} in Pro(C) is equivalent to
finding a function A : N — N, amap f, : Ay — B, for each n > 0 such that for
cach n’ > n, there exists [ > A(n), A(n") so that the diagram

S
Al — Ak(n/) — B,

\ l (2.2)
fn

Ak(n) — Bn
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1s commutative, where the unmarked arrows are the structure maps of {A,,} and { B, }.
We say that f is strict if A is the identity function and [ = A(n") = n’. If C admits
all sequential limits, we denote the limit of {A,,} by lim, A, € C. If C is an
abelian category, then so is Pro(C). We refer the reader to [Artin and Mazur 1986,
Appendix 4] for further details about Pro(C).

Let C be an abelian category and let {A,,},, be a pro-object in C. We say that
{A,;} is bounded by an integer N € N if the structure map A,,+ny — A, is zero for
all m > 0. A pro-object {A,,} which is bounded by an integer is classically also
called AR-zero (Artin—Rees zero) [SGA 5 1977, exposé V, definition 2.2.1]. We
say that {A,,} is bounded by oo if {A,,} = 0 in Pro(C).

Let X be a Noetherian scheme. By a sheaf (or pre-sheaf) of pro-abelian groups
on X, we mean a pro-object in the abelian category of sheaves (or pre-sheaves) of
abelian groups on X. We caution the reader that if {#,,} is a sheaf of pro-abelian
groups such that the pro-abelian group of stalks {F;, .} is zero for all x € X, then
we cannot in general conclude that {F,,} is zero. However, the following is still
true and used repeatedly in this article.

Lemma 2.3. Let {F,,} be a sheaf of pro-abelian groups on a Noetherian scheme X.
Suppose that for every integer m > 0, there is an integer N (m) > 0 such that the
structure map FuNm).x —> Fm.x 1S zero for all x € X. Then {F,,} = 0. If there
is an integer N > 0 such that {F,, .} is bounded by N for all x € X, then {F,} is
bounded by N.

If f {Fw} — {F,,} is an isomorphism of sheaves of pro-abelian groups on X,
then the morphism of pro-abelian groups H' (f) : {H (X, Fn)} — (H (X, Fo)}is
an isomorphism for all i > 0.

Proof. 1t 1s elementary and is left to the reader. [

2C. The relative algebraic K-theory. Given a closed immersion D C X of schemes,
we let K (X, D) be the homotopy fiber of the restriction map between the Bass—
Thomason—Trobaugh nonconnective algebraic K-theory spectra K (X) — K (D).
We let K;(X) denote the homotopy groups of K (X) fori € Z. We similarly de-
fine K;(X, D). The canonical maps of spectra K(X, (m + 1)D) — K(X, mD)
together give rise to a pro-spectrum {K (X, m D)} and hence a pro-abelian group
{Ki(X,mD)} foreveryi € Z.

If X = Spec(R) is affine and D = V (1), we often write K (X, mD) as K(R, ')
and K(X) as K(R). For aring R, we let K (R,,) denote the reduced K-theory
of R,,, defined as the homotopy fiber of the augmentation map K (R,,) — K(R).

We need to use a push-forward map between the relative K-groups in a special
situation. We describe this below. Let R — R’ be a finite and flat extension of rings
and let (m, n) be a pair of integers such that m >n > 0. Let f : Spec(R’) — Spec(R)
denote the corresponding maps between the schemes. Since R, = R,, ®g R, it
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follows that R, ®g,, R, = R),, where R,, - R, and R) — R, are the canonical

surjections. In particular, the diagram of schemes

Spec(R))) — Spec(R,)

]

Spec(R;,) — Spec(Ry,)

1s Cartesian, where the vertical arrows are the closed immersions induced by the
surjections R,, — R, and R, — R . Since the horizontal arrows in this diagram are
flat, it follows that Spec(R,,) and Spec(R),) are Tor-independent over Spec(R,,).
Since R/, is finite and flat over Ry, it follows from [Thomason and Trobaugh 1990,

Proposition 3.18] that (2.4) induces a homotopy commutative diagram of spectra

fm*

J J 2.5)

K(R,) —— K(Ry)

where the horizontal arrows are the push-forward and the vertical arrows are the
pull-back maps between K-theory spectra. Considering the map induced between
the vertical homotopy fibers, we get a push-forward map

fonnye s K(Rb, (" /(™)) — K (R, (" /(x™ )

between the relative K-theory spectra. The special case of the pair (m, 0) yields
the push-forward map
Szt K(Ry,) — K (Rin)

between the reduced K-theory spectra.

Lemma 2.6. Let R — R’ be as above and let m > n > 0 be two integers. Then the
diagram

e fm* ot
Ki(R;,) — K(Ry)

L

oy fnx oy

Ki(R)) —— Ki(Ry)
is commutative for every i € Z, where the vertical arrows are the pull-back maps
induced by the quotients R,, — R, and R, — R,. In particular, there is a push-
forward map between the pro-abelian groups fi : {K;(R )} — {Ki(Ryp)}m for
everyi € /.
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Proof. We fix i € Z and consider the diagram

Kl(Rl/n) Kl(Rm)
/ fl’ﬂ*
2.8)
~ foe o~
Kl (Rn) > Kl (Rﬂ)
Ki(R)) » Ki(Rp)

We have seen in (2.5) that the front face of (2.8) is commutative. The left
and the right faces clearly commute. The top and the bottom faces commute by
applying (2.5) corresponding to the pairs (m, 0) and (n, 0), respectively. Since the
map E,-(Rn) — K;(R,) is injective, it follows that the back face commutes, as
desired. [

We now assume k < k’ is a finite field extension and let f : Spec(k’) — Spec(k)
denote the induced morphism of schemes. In this case, k[t] < k'[t] is clearly a
finite and flat extension of polynomial rings. Let A = k[f](;) denote the localization
of k[¢] at the maximal ideal (¢)k[t] C k[]. Let A" = k'[t](;) denote the localization
of k'[t] at (¢)k'[t]. We claim that A — A’ is a finite and flat extension of discrete
valuation rings.

Indeed, it is clear that there are ring extensions A < § —1/'[#] = A’ in which
the first inclusion is finite and flat if we let § = k[7]\ (). For every integer m > 0,
we have a sequence of isomorphisms of k-algebras:

STUt1 @4 A/ = (K[£] @ipry A) @ ki = K [t] Rpr) ki
>~ (k/ Qi klt]) Qklr] ky = k' Qi ki = k,’n. (2.9)

If we let m = (1)k[t] € A and m = 0, it follows that A — S~'k[¢] is a fi-
nite extension of regular semilocal integral domains of dimension one such that
mS~'k'[] is a maximal ideal of S~'k'[¢]. This forces S™!k’[¢] to be a discrete
valuation ring (since A is). Since A’ is also a discrete valuation ring which is a
localization of S™1k’[¢], different from the fraction field of S~ 4'[¢], we must have
S—k'[t]= A’. This proves the claim.

For any integer m > 0, we now get finite and flat ring extensions

k— k', km < k., A<— A, and k()<= k'(t).

Each of these extensions induces a push-forward map on the K-theory spectra. We
denote all these push-forward maps by the common notation f,.
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Lemma 2.10. For eachi € Z, there is a commutative diagram

Ki(kl)—— K, (k) +—— Ki(A")— K;(K'(r))

fl lf lf* lf* @.11)

Ki (k) K; (k) +—— Ki(A)—— K, (k(1))

where the horizontal arrows in the middle and the right squares are the natural
maps on K-theory induced by the ring homomorphisms. The horizontal arrows in
the left square are the canonical maps.

Proof. The left square commutes by the construction of f, in (2.5). The horizontal
arrows 1in this square are split injective via the augmentation maps. The middle
square commutes by exactly the same argument as for the commutativity of (2.5)
since A’ is finite and flat over A. Hence, A" and k,, are Tor-independent over A.
Furthermore, A’ ® 4 k,, = k), by (2.9). The square on the right side commutes by a
similar reason once we know that k(1) ® 4 A" = k’(¢). But this is obvious because
k' () is the field of fractions of A’ on the one hand and k(1) ® 4 A’ is a localization of
the integral domain A’, which is finite over k(¢), on the other hand. It follows that
k'(t) Ck(t)®4 A" C k’'(t). The horizontal arrows in the right square are injective
by the Gersten resolution of K-theory. O

2D. The additive higher Chow groups. We recall the definition of the higher Chow
groups with modulus and the additive higher Chow groups [Binda and Saito 2019;
Krishna and Park 2012b; 2017]. Let k be a field and let X be an equidimensional
scheme over k. Let D C X be an effective Cartier divisor.

For any integers n, g > 0, we let z7(X|D, n) denote the free abelian group on
the set of integral closed subschemes of X x [1" of codimension ¢ satisfying the
following:

(1) Z intersects X x F properly for each face F C [1".

(2) If Z is the closure of Z in X x 0" and v : Z¥ — X x 0" is the canonical
map from the normalization of Z, then the inequality (called the modulus

condition)
v (D x 0" <v*(X x F))

holds in the group of Weil divisors on ZV.

An element of the group z7(X|D, n) is called an admissible cycle. It is known
that {n — z9(X|D, n)} is a cubical abelian group [Krishna and Levine 2008, §1].
We denote this by z(X|D, x). We let z9(X|D, x) = z4(X|D, *)/ggegn(X|D, %),
where ggegn(X | D, x) 1s the degenerate part of the cubical abelian group z7(X|D, ).
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The higher Chow groups with modulus of (X, D) are defined as
CHY(X|D, n) = H,(z?(X|D, %)).

It is clear that there is a canonical map CH? (X |(m + 1)D, n) — CH?(X|mD, n)
for every integer m > 1. In particular, {CH? (X|m D, n)},,>1 is a pro-abelian group.

For an equidimensional scheme X over k and integers m,n > 0,qg > 1, the
additive higher Chow group of X is defined by

TCH?(X, n+ 1; m) := CHY(X x Al|X x (m + 1){0}, n). 2.12)

As with the Chow groups with modulus, the datum (X, n, g) for n, g > 1 gives rise
to a pro-abelian group {TCH?(X, n; m)},>0.

2E. The cycle class map. In this subsection, we recall our main object of study,
the cycle class map for O-cycles with modulus, which was constructed in [Gupta
and Krishna 2020]. Let X be a smooth quasiprojective scheme of dimension d > 1
over a field k and let D C X be an effective Cartier divisor. We fix an integer n > 0.

Let z € X x [J" be an admissible closed point and let f : z = Spec(k(z)) — "
be the projection map. For 1 <i < n, we let y; : Spec(k(z)) L5 0" = O be the
projection to the i-th factor of [1*. It follows from the face condition of z that y;(z)
does not meet 0, oo € [ for any i. Hence, we get an element

y(@) = 1@, ... @)} € K (k(2)).

Composing with the canonical map K ,ﬁ” (k(z)) — K,(k(z)), we get an element
y(z) € K, (k(z)). Since Spec(k(z)) — X is finite and z ¢ D x [1", it follows that
there is a push-forward map K (k(z)) = K(z, @) - K (X, D). Letting cycxp([z])
be the image of y(z) € K,,(k(z)) in K,,(X, D) and extending it linearly, we obtain
a cycle class mal_)

CyCx|p 29 (X|D, n) —> K,(X, D). (2.13)

The key observation in the construction of the cycle class map at the level of the
Chow group of 0-cycles with modulus is that the composite map

X |+ 1)D,n+ 1) = 4X|ID,n+1) > 4 (X|D, n)
is zero. This yields, for every m > 1, the map
cyCxmp : CH ™ (X|(n+ hmD, n) = K,(X, mD). (2.14)

This coincides with the cycle class maps of Levine [1994] and Totaro [1992]
when D = &.

It is immediate from the above construction that the maps {cycy ,, plm>1 are
compatible with respect to the change in m > 1. In particular, they together give rise
to a map of pro-abelian groups cycy p, : {CH"™(X|mD, n)}y — {Ku(X, mD)}n.
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Applying (2.14) to the additive higher Chow groups of the field k, we see that
for every m > 0 and n > 1, there is a cycle class map

CYCpym : TCH" (k, n; n(m 4+ 1) — 1) > K,—1 (A, (m + 1){0}).

The homotopy fiber sequence KA}, (m + 1H{0}) — K(A,ﬁ) — K (Spec(k;,)) and
the homotopy invariance of K-theory for smooth schemes together show that the
connecting homomorphism 9 : QK (Spec(k,;,)) — K (AL, (m+1){0}) is a functorial
weak equivalence. Hence, we get a cycle class map

cyCypm : TCH (k, n; n(m +1) — 1) — K, (k). (2.15)

The compatibility of these maps for varying values of m > 0 yields the cycle
class map at the level of pro-abelian groups

cyc, : {TCH" (k, n; m) ) = {Kp (k) b (2.16)

for which the associated function 4, : N — N (see Section 2B) is given by A, (m) =
nm—+1)—1.

About the above cycle class map, the following were shown in [Gupta and Kr-
1ishna 2020] when the base field has characteristic zero:

(1) The map cyc,, of (2.16) extends to the additive Chow group of relative 0-cycles
over a regular semilocal domain R, essentially of finite type over k.

(2) The resulting map cycy is an isomorphism.

In this manuscript, we wish to study this problem when k has positive charac-
teristic.

3. The relative Milnor K-groups

The relative Milnor K-groups were defined in [Kato and Saito 1986, §1.3; Kerz
2010; Riilling and Saito 2018, §2.7]. The groups defined by Kato—Saito and Kerz
agree when all residue fields of the underlying ring are infinite. However, they
differ from the one defined by Riilling—Saito even if all residue fields are infinite.
When the underlying ring has a finite residue field, all three are in general different
from each other. We need to establish some isomorphisms between these K-groups
in pro-setting in order to prove our main results. We prove these isomorphisms in
the next two sections.

3A. Kato-Saito relative Milnor K-groups. In [Kato 1986] the Milnor K-group
K ,11” (R) was defined for aring R to be the n-th graded piece of the graded ring KM(R).
The latter is the quotient of the tensor algebra 7, (R>) by the two-sided graded
ideal generated by the homogeneous elements a; ® - - - ® a,, such that n > 2 and
a;+aj=1forsome 1 <i# j<n. Theresidue class a1 ® ---®a, € T,(R*) in
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K,i” (R) is denoted by the Milnor symbol a = {ay, ..., a,}. If a; +a; =1 for some
1 <i # j <n, we usually say that a is a Kato symbol (or Kato relation). If / C R
is an ideal, the relative Milnor K-group K ,],W (R, I was defined in [Kato and Saito
1986, §1.3] as the kernel of the natural map K (R) — KM (R/I). In order to give
a simple description of K (R, I), we need the following elementary step.

Lemma 3.1. Let R be a semilocal ring containing a field of cardinality at least
three. Let I C R be a proper ideal. Suppose a € R is such thata € (R/I)*. We
can then find an element b € I such thata+b € R*. Ifa,1 —a € (R/I)*, then we
havea+b,1 — (a+b) € R*.

Proof. Let {my, ..., m,} be the set of maximal ideals of R which contain / and let
{ni1, ..., ng} be the set of remaining maximal ideals of R. Since R contains a field
of cardinality at least three, we can find an element u € R such thatu, 1 —u € R*.
By the Chinese remainder theorem, we can find an element b € I suchthatb=u—a
modulo n; for 1 <i <.

Ifae (R/I)*, then we must have that a ¢ m; for any i. It follows that a+b ¢ w;
for all i. Since a + b is a unit modulo n; for each j, a + b cannot belong to n;
either. It follows that a + b € R*. Suppose now that a, 1 —a € (R/I)*. Then
1 — (a 4+ b) cannot be in any m;. On the other hand, we have 1 — (a +b) =1 —u,
which is a unit modulo n; for every j and hence 1 — (a + b) cannot be in any n;
either. It follows that a +b, 1 — (a +b) € R*. L]

The next lemma is [Kato and Saito 1986, Lemma 1.3.1] when R is local. We
need a version of this also for the relative K-theory of [Kerz 2009] (see Lemma 3.4).

Lemma 3.2 [Kato and Saito 1986, Lemma 1.3.1]. Let R be a semilocal ring and
[ C R a proper ideal. Then KM(R) — KM(R/I) is surjective. If R contains
a field of cardinality at least three, then KM (R, I) is generated by the Milnor
symbols {ay, ..., a,} such that a; € Ker(R* — (R/I1)™) for some 1 <i <n.

Proof. The first part of the lemma follows from Lemma 3.1. The reader can check
from the proof of Lemma 3.1 that this part does not require R to contain a field
(take u = 1). To prove the second part, let N be the ideal of 7, (R) generated Kato
relations (see above) and the Milnor symbols of the type given in the statement of
the lemma. It is clear that the map T,(R)/N — K i” (R/I) is surjective. It suffices
therefore to construct a map n; : KM (R/1) — T.(R)/N such that the composite
T.(R)/N — KM(R/I) — T,(R)/N is identity.

Given aj, ..., a, € (R/I)*, we can use the first part of the lemma to find
ai,...,a, € R* suchthata; =a; foreachi. Weletn;(a|®- --®a,) ={ai, ..., an}
modulo N. To show that this does not depend on the choice of the lifts, we first let
n =2 (note that the n = 1 case is clear). We let a;, b; € R* be such that a,-bl._1 =1
modulo / for i =1, 2. We then have the identities {a;, a2} = {a1, azbz_l} ~+ {ay, by}
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and {b,, by} = {al_lbl, by} 4+ {ay, by}. The n =2 case follows immediately from
these two identities.

Suppose now that n > 3 and we are given a;, b; € R* such that aibi_] =1
modulo [ for 1 <i < n. We then have the identities

{al, tee all} - {ala v an—la Cl”bgl} + {ala et an—z} : {an—17 bn}a

{b]7 '-"bll}:{b]7 "-aan__llbl’l—]7bl’l}+{b]7 ---abn—Z}'{an—l’bn}-

Using the induction and the above two identities, we conclude the proof of
well-definedness of n;. It is easy to check that n; is multilinear and hence de-
fines a ring homomorphism n; : To.(R/I) — T.(R)/N. Furthermore, it follows
from Lemma 3.1 that n; kills Kato relations. In particular, we get a ring ho-
momorphism 1; : KM(R/I) — T.(R)/N. It is clear that the composite map
T.(R)/N — KM(R/I) — T,(R)/N is identity. This finishes the proof. O

Remark 3.3. Lemmas 3.1 and 3.2 hold even if R does not contain a field as long
as R/m contains at least three elements for every maximal ideal m C R not con-
taining /. In particular, they hold if R is local. It is however not clear that they
hold for all semilocal rings. The problem lies in lifting Kato relations from R /1
to R.

3B. Kerz’s relative Milnor K-groups. Kerz [2009] defined the Milnor K-group
K }st(R) for a ring R to be the n-th graded piece of the graded ring K iVIS(R). The
latter is the quotient of the tensor algebra 7, (R ™) by the two-sided graded ideal gen-
erated by the Steinberg symbols a @ (1 —a) € T,(R™), where a, 1 —a € R*. This is
the direct extension to rings of K-theory of fields defined by Milnor [1970]. If ] C R
is an ideal, we let KMS(R, I) be the kernel of the natural map KMS(R)— KMS(R/1).
A straightforward imitation of the proof of Lemma 3.2 shows the following.

Lemma 3.4. Lemma 3.2 is valid for the map K }Q/IS(R) — KMS(R/I) and the group
KMS(R, D).

It is evident from the above definitions and Lemmas 3.2 and 3.4 that there are
natural surjections

KMS(R)y - KM(R) and KMS(R, D) — KM(R, D), (3.5)

where the second surjectivity holds under the assumption that R is a semilocal
ring containing a field of cardinality at least three. It follows from [Kerz 2009,
Lemma 2.2] that the maps of (3.5) are isomorphisms if R is a semilocal ring with
infinite residue fields. In fact, the reader can easily check that the proof of [Kerz
2009, Lemma 2.2] remains valid if R is a local ring whose residue field contains
at least five elements (if a = 1 — b with b ¢ R*, take s; = s, =2 — b in Kerz’s
proof). We therefore get the following lemma.
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Lemma 3.6. Let R be either a semilocal ring with infinite residue fields or a local
ring with residue field having cardinality at least five. Let I C R be a proper
ideal. Then the maps Kj}”s(R) — K#{W(R) and K},{VIS(R, I — ij(R, 1) are iso-
morphisms.

3C. Gabber-Kerz improved relative Milnor K-groups. When the residue fields
of R are not all infinite, then the Milnor K-theories K fk” (R) and K >1kvls (R) do not
have good properties. For example, the Gersten conjecture does not hold for them
even if R is a regular local ring containing a field. If R is a finite product of
local rings containing a field, Gabber (unpublished) and Kerz [2010] defined an
improved version of Milnor K-theory, which is denoted K M(R). This is a graded
commutative ring and [Kerz 2010, Proposition 10(3), Theorem 13] imply that there
are natural maps of graded commutative rings

KMS(R) — KM(R) 2% KM(R) L5 K. (R). (3.7)

The first two arrows are isomorphisms if R is a field. Moreover, the Gersten
resolution holds for K f}/’ (R) if R is regular. Given an ideal I C R, one defines
K )ﬁ” (R, I) similarly to K i” (R, I). The product structures on the (improved) Milnor
and Quillen K-theories yield natural graded homomorphisms of KM5(R)-modules

KMS(R, 1) —» KM(R, I) 225 RM(R, 1) X% K.(R, ), (3.8)

where the latter is the kernel of the canonical map K,(R) — K.(R/I).

If k is a field and X is a scheme over k&, let IC% y be the Zariski sheaf on X whose
stalk at a point x is K (Ox.x) for n > 0. Kerz [2010] actually shows that there is
a Zariski sheaf ICM 'x on X with a natural surjective map ICM — ICM _x such that
the stalk of IC%X at x is KM((’)X,X). If X = Spec(A), we let

~ 0, =
KY(A) =H(X,K)/x
If I C A is an 1deal, we let I/{\,IIW (A, I) be the kernel of the canonical map
=M =M
K,”(A) — K, (A/]).

Definition 3.9. For n > 0, we let K,ﬁ” (A, I) denote the image of the canonical
map KM(A,I) - KM(A, I). We similarly define K (A) to be the image of the
canonical map KM(A) — KM(A)

Remark 3.10. Observe that if A is a local ring, then KM (A) = I/(\ M(A), but it may
happen that KM (A, I) # K, KM (A, )if I #0isa proper ideal in A. Moreover, for
a semilocal ring A, we may have that KM(A) # K, KM (A). []
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If R is a regular semilocal ring containing k and if F' is its total ring of quotients,
then the Gersten complex [Kato 1986]

0—>KY(@R)—> KN(F)> @ K k(@) = -~ P K (k(p)) (3.11)
he(p)=1 ht(p)=n

coincides with the Gersten complex for higher Chow groups except at the first
place. Bloch [1986] showed that the latter is exact when R is local. In general,
it follows from the above definition of K ,ﬁ” (R) that (3.11) 1s exact at the first two
terms.

We refer to [Gupta and Krishna 2020, §3] for more details about other properties
of the improved Milnor K-theory. In this paper, we always use the improved Milnor
K-theory of rings, whenever it is defined. For fields, we use the notations of Milnor
and improved Milnor K-groups interchangeably.

3D. Riilling—Saito relative Milnor K-groups. Let R be a local domain with frac-
tion field F and let I = (f) be a principal ideal, where f € R is a nonzero divisor.
Let R, denote the localization R[ f ~!7 obtained by inverting the powers of f.
Let F denote the ring of total quotients of R so that there are inclusions of rings
R<> Ry <> F. Welet KM(R|I) = KM (R, I) and for n > 2, we let KM (R|I)
denote the image of the canonical map of abelian groups

KMYRID®R) Q- ® (R — KM(F), (3.12)

induced by the product in the Milnor K-theory. These groups were defined by
[Riilling and Saito 2018, §2.7] as stalks of a sheaf (see [Riilling and Saito 2018,
Definition 2.4 and Lemma 2.1]). We call I/{\f (R|I) the Riilling—Saito relative
Milnor K-groups. The basic relation between the Kato—Saito and Riilling—Saito
relative Milnor K-groups is given by the following.

Lemma 3.13. Let R be a regular local domain and let I = (f) be a nonzero
principal ideal. Then there is a commutative diagram of graded groups

KM(R,I) —» KM(R, )— KM(R|I)
[ ] s
KM(R) ——— KM(R)—— KM(Ry)

Proof. Let F be the fraction field of R. We then note that the image of KM (R, I)
in KM (F) under the composite map
KY(R) - K} (R) = K} (F)

is KM(R, I). We therefore only need to verify that the image of this composite
map lies in the subgroup K},{W(R|I) C Ky(Rf).
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To prove this, it suffices to show that the canonical map ¢g : K,Zl” (R) — K,]l” (F)
sends KM (R, I) into KM(R|I) ¢ KM (F) for all n > 1. We can assume n > 2 as
the assertion is clear for n = 1.

Now, by Lemma 3.2, we need to show that if a = {ay,...,a,} € K,Q/I(R) 18
such that aq; € KfW(R, I) for some 1 <i < n, then ¢r(a) € I/(\,Il‘/[(RH). In other
words, we have to show that as an element of K ¥ (F), the symbol a actually lies
in KM (R|I). However, this is immediate (see (3.12)) because the ring KM (F) is
anticommutative [Milnor 1970, Lemma 1.1]. L]

3E. Connection between K i” (R, I)and K i” (R|I). In general, the canonical map
KM(R, 1) — KM(R|I) of Lemma 3.13 may not factor through K (R, I). We
show, however, that this is indeed the case in some situations if we replace KM (R, I)
and KM (R|I) by the pro-abelian groups {KM (R, I")},, and {KM (R|I"™)},p, re-
spectively. In this subsection, we construct a map in the opposite direction, which
is slightly easier.

Let R be a semilocal ring with the maximal ideals my, ..., m,. Let R[T] denote
the polynomial ring over R and let A denote the localization of R[7'] obtained by
inverting all polynomials having invertible constant term. Then A is a semilo-
cal ring of Krull dimension dim(R) + 1 and the maximal ideals m; A + (T), for
I <i <r. We now let R be a local ring with maximal ideal m and let R(T) be
the localization of A[T~!] at maximal ideal m[T*!]. Then we have the inclusions
R[T] <> A — R(T). The ring R(T) is local with infinite residue field (R/m)(T).
When R is a field, then A = R[T|(r). If R is an integral domain with fraction
field F, then A is an integral domain with fraction field F (7).

We now fix a local integral domain R containing a field. Let A be the local ring
defined above. We fix the ideal I = (T)) C A. Let F denote the fraction field of R.
The key lemma to connect KM (A|I) with KM (A, I) is the following.

Lemma 3.15. Assume that R is a regular local ring. Then the following inclusions
hold for every pair of integers n >0, m > 1:

KX (AID Cc(+DKM(A) c KM (A, D) CKY (A, D), (3.16)

A~

RM (A" € (14 1M RM(A) C K (A, I") c Y

MOA T, (317)

Proof. The map KM (A) — KM (A) is surjective as A is local. This immediately
implies the second inclusions in (3.16) and (3.17). So we only need to show the
first set of inclusions. Since A/(T) = R is a regular local ring, I defines an
effective Cartier divisor on Spec(A) which is regular (and hence simple normal
crossing). The first inclusion in (3.16) now follows from [Riilling and Saito 2018,
Proposition 2.8(2)]. To prove (3.17), we first observe that (A[T )X = A* - TZ.
Since {T, T}={T, —1} in Ké‘/I(F(T)), it follows that I/{\%rl(AUmH) is generated
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by the subgroup (1+ 1/ ’”“)I?,i” (A) and the element of the form {1 + aT™*!,
T,uy,....un1} € KM (F(T)), with a € A and u; € A*. It therefore suffices
to show that for a € A, we have {1 +aT™t!, T} e 1 +1")- AX C Ké”(F(T)).
But this follows from [Riilling and Saito 2018, Lemma 2.7(2)]. This completes the

proof of the lemma. ]

Let R be a regular local ring containing a field. We let
KM(Ry) :=Ker(KM(R,) — KM (R)).

To apply Lemma 3.15, we observe that the canonical injection R[T] < A induces
an isomorphism R,, => A/I"*' for all m > 0. Since the maps KM (A/I"*") —
I/{\é‘/[ (A/I"*1y and K,ﬁ” (A) —> K,i” (A/I"*1Y are surjective, our assumption implies
that

0— KM, I - KM(A) - KM/ -0

is an exact sequence. Using this, we therefore see that the canonical restriction
map K,i” (A) —» K}L‘/[(Rm) induces a natural (in R) isomorphism

KMA, D) =

= KM(Ry). (3.18)

Ry, - E%(A’ ]m—|—1)
Since R — A/I is an isomorphism, the quotient maps K (A) - KM (A/I) and
KM(A)—KM(A/I) compatibly split via the augmentation. This implies that the
induced map on the kernels K (A, I) — KM (A, I) is also surjective. In particular,
the map R
KM(A, ) . AK,QW(A, )
KM(A, 1+ KM(A, I

(3.19)

1S surjective.
Recall from Lemma 3.13 that KM (A, I™) is a subgroup of K,Il” (A|I™) for every
m > 1. The main result we wished to prove in this section is the following.

Proposition 3.20. Let R, A and, F be as in Lemma 3.15 and let n > 0 be an

integer. Then the kernel (resp. cokernel) of the natural morphism of pro-abelian
groups {KM (A, I')},,— {Kflw (A[I™)},, is bounded by O (resp. 1). In particular,
the inclusions K,i‘/[ (A|I™) — K,i” (F(T)) induce a morphism of pro-abelian groups
KM(A|I KM(A, 1
{—A”( ')}9{3( >} (3:21)
KM(AIT™) ), LKM(A T™) ),

with A(m) = m + 1 whose cokernel is bounded by zero.

Proof. For n =0, all the groups are zero. For n > 1, the first assertion is a direct
consequence of Lemmas 3.13 and 3.15. Since the map KM (A, I) — K,i‘/[ (AlI) 1s
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an isomorphism, also by Lemma 3.15, it follows that the kernel of the map

{ K)(A.T) } %{ KM (Al }
KM, I ), KM A ),

is bounded by 1 and the cokernel by zero. Equivalently, {I/{\ J(AIIM)/KMA, T}
is bounded by 1. By combining this with (3.19), we can see that the inclusions
KM(A|I™) < KM(A[T~"]) induce a morphism of pro-abelian groups such as
in (3.21) with A(m) =m 4+ 1. It is clear that the map
KX@aln KMA D
[’(\rlz\/I(Aum—l-l) — E%(A, Im)

is surjective for each m > 1 since KM (A|I)=KM(A, I)= KM (A, I). This finishes
the proof. [

4. The de Rham—-Witt complex and K-theory

Proposition 3.20 is not quite enough to prove our main results. We need the
map (3.21) to be actually an isomorphism. We prove this stronger assertion in this
section using the de Rham—-Witt complex. We use this isomorphism in Section 5C
to obtain our cycle class map to the relative Milnor K-theory of truncated polyno-
mial rings. We also use the de Rham—Witt complex to prove some more results on
Milnor and Quillen K-groups of truncated polynomial rings in Section 5.

We do not recall the definition of the de Rham—Witt complex here. Instead, we
refer the reader to [Hesselholt 2015; Riilling 2007, §1] for its definition and basic
properties. We only recall that for a regular semilocal ring R and integer m > 1,
there are natural isomorphisms of abelian groups

(1 +TRITD™ ~

. = = M .
YR,m -Wm(R) — (1 4 Tm—HR[[T]])x — Kl (Rm)’ (41)

1

m
yrm(@) =[] —aT".
i=1
We often write yg n(a) = yr.m((ay, ..., ay)) as y(a) if the context of its usage
is clear. For any a € R, we recall that [a] = (a, 0, ...,0) € W,,(R) denotes the
Teichmiiller lift of a. Note that yz ,, is clearly natural in R and m > 1. The fol-
lowing lemma is a direct consequence of [Krishna and Park 2021, Proposition 2.3].
We state it separately as we need it a few times in our proofs.

Lemma 4.2. Let R be a regular semilocal ring containing a field and let F be its
total ring of quotients. Then the canonical map W,, Q% — W,, Q"% is injective for
allm>1andn > 0.
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4A. Generators of de Rham—Witt complex. In this subsection we give a generat-
ing set of the de Rham—Witt complex of semilocal rings. After proving this result,
we realized that we only need it when the underlying ring is a field (see the proofs
of Lemmas 7.4 and 7.6) to prove the main results of this paper. In this special case,
a presentation of the de Rham—Witt complex is already known from [Hyodo and
Kato 1994; Riilling and Saito 2018]. We however present this generalization here
since it has independent interest. For instance, it is indispensable for the proof of
[Krishna and Park 2021, Corollary 6.4].

Proposition 4.3. Let R be a regular semilocal ring containing a field k of charac-
teristic p > 0 and let m > 1, n > 0 be two integers. Assume that either k is infinite
or R is local. Then the map

n n—1
(wm<R> ® N\ RX) ® (wm(m ® /\ RX) — W, 2%, (4.4)
z z

defined by
w®(ay A---ANay) — wdlogla] - - - dlog[a,],

w®(ag A---ANay—1) — dwdlogla,]---dlogla,—_]
Is surjective.

Proof. When R is a local ring, this result was proven (with a description of the
kernel of this map) in [Hyodo and Kato 1994, Proposition 4.6] in the p-typical case
and the reduction of the general case to the p-typical case was shown in [Riilling
and Saito 2018, Proposition 4.4]. The new assertion is that the surjectivity part of
the result of Hyodo and Kato holds for semilocal rings as well.

It suffices to prove the proposition for the p-typical de Rham—Witt complex.
This reduction is routine (see the proof of [Riilling and Saito 2018, Proposition 4.4])
and requires no condition on R. We use the notations of p-typical de Rham—Witt
complex W, Q%, where Wy, (=) :==W |, m-1y(=).

We let £ |, denote the abelian group on the left-hand side of (4.4). We need
to show that the map 0, : E% | — W, Q% is surjective. We fix n > 0 and prove
that 6% , is a surjection by induction on m > 1.

Ifm= 1, then we know that W, Q2% = Q%. In this case, it follows from our as-
sumption and [Gupta and Krishna 2020, Lemma 7.4] that R is additively generated
by its units. The latter immediately implies the desired surjectivity.

In the general case, we know by [Illusie 1979, 1.3.15.2, p. 576] that there is an
exact sequence

0— grgWQE = W1 Q = W,, Q% — 0,

where grg. W', is the associated graded module for the canonical filtration on the
de Rham-Witt complex of R. One knows that the canonical filtration of W, 1%
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coincides with its V-filtration [Hesselholt and Madsen 2003, Lemma 3.2.4]. Equiv-

alently, we have grfy WQ%, = grf WQL == VW Q% +d V"W, Q’;{l.
We now consider the commutative diagram with exact rows
Eﬂ

®</\%Rx@/\%_l R* R,m+1 —>E%,m%0

| [ [

0 > gry Wk » W1 Q% —— Wy, Q —— 0

) Vm ®id

The m =1 case of the proposition and the expression of gry W% given above
show that the left vertical arrow in (4.5) is surjective. The right vertical arrow is
surjective by induction. It follows that the middle vertical arrow is surjective, as
desired. [

4B. Milnor K-theory and de Rham—Witt complex. Let X be a Noetherian scheme.
For an integer m > 0, let X, = X x Spec(k,,). Let ICM be the Zariski sheaf
on X whose stalk at a point x € X is the Milnor K—group K (Ox xl1] 1/@™th).
Let K é”m x be the kernel of the split surjection }Cn m. X—»ICM We let ICp m.x
be the Zariski sheaf on X whose stalk at a point x € X 1s the Quillen K-group
K, (Ox [t]1/(#™t1)). We define K,, . x just as we defined Kn X

For a point x € X, we denote the ring A(Oyx_,) (which is obtained exactly as in
Section 3E, where R is replaced by Oy ) in short by A,. Note that A, is local.
We let IC” X|Im denote the Zariski sheaf on X whose stalk at x € X is the group
K, KM (Ac|1™). We let K (X1 denote the Zariski sheaf on X whose stalk at x € X
is the group KM(AX, I’")

We now fix a regular semilocal ring R containing a field k of characteristic p > 0
and let X = Spec(R). We let A := A(R) be the semilocal ring defined in Section 3E
and let / = (T') C A. We continue to follow the notations of Section 3. We use the
following result of Riilling—Saito which gives an explicit relation between the de
Rham—Witt complex and the Riilling—Saito relative Milnor K-theory.

Theorem 4.6 [Riilling and Saito 2018, Theorem 4.8]. Let n > 0 and m > 1 be two
integers. Then the map of sheaves

M
ICn—l—] X|1
M 9

rx W, Q5% —
ICn—H,X|I”'

4.7)

which on local sections is given by

wdlog[a] - - - dlogla,] — {y(w),ay, ..., a,}

and
dw dlog[al] o dlog[an—l] = (_l)n{y(w)a ar,...,dp—1, T}7

is an isomorphism.
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By combining Proposition 3.20, Lemma 4.2, and Theorem 4.6, we now prove
the following key result. This plays a crucial role in the proofs of the main theorems.
This result is also used in [Morrow 2019, §6] without a proof when R is local.

Theorem 4.8. Let X be a regular scheme over a field k of characteristic p > 0 and
let n > 0 be an integer. Then the canonical maps of sheaves of pro-abelian groups

oM M

ICn,X|I ICn J(X, ) M

EM — EM {ICn m X}
n,X|I™m n,(X,Im)

are isomorphisms.

Proof. The theorem is obvious for n = 1 from the definitions of various groups. We
thus assume that n > 2. Note here that the first map is induced by (3.16) and (3.17)
and the second by (3.18). Indeed, note that all the sheaves ICM X|1° ICIQW X|m }Cflw( X.1)>
and ICn (x.pm are subsheaves of the constant sheaf K,,(F( T)) where F 1s the total
rmg of quotlents of R. It then follows by (3.16) and (3.17) that ICn x| = K%X D
and ICM nxm C ICM(X fmeny- A similar argument yields the second map using (3.18)
¢ that it is a level-wise isomorphism. We only need to show that the first map is
an isomorphism too. By Lemma 2.3 and Proposition 3.20, we only need to show

that if R is local, then the kernel of the level-wise surjective map

{ KM(A|D } { KM, 1) }
o b o YT (4.9)
KMalrmy ), LKA},

is bounded by an integer not depending on R.

We first assume that R is a field. If R is a finite field, then it is well-known that
W, Q’}{l = 0. It follows from Proposition 3.20 and Theorem 4.6 that both sides
of (4.9) are bounded by zero. If R is an infinite field, then A contains an infinite
field. Hence, the map KM (A, I") — KM (A, I") is an isomorphism [Kerz 2010,
Proposition 10(5)]. We can therefore replace I/{ZW(A, I") by KM(A, I'") in (4.9).
We now use the maps

{ KM(A|I } _>{ KM(A,T) } _>{ KM(A|I) }
KMl ), kM ), LM @A |,

where the second arrow is induced by the inclusions KM (A, I'*) — I/{Z” (A|T').
We now note that the function A : N — N associated to the first arrow 1s A(m) =m+1
and it is identity for the second arrow. More precisely, the composite arrow is
induced by the canonical surjections

KM (A KM (A
— — P -
K’]l\/I(A”m—H) K%(AH’")
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It follows immediately that the kernel of the composite arrow is bounded by 1. We

are therefore done.
In the general case, we let F be the fraction field of R. Let B = F[T |7) = A(F)
and J = IB C B. It is clear that the diagram

{ KM(AID } { KM(A, D) }
kM, T LKMA ],

l l (4.10)

{ KM(B|J) } { KM (B, J) }
kM@Blm |, LKMB, I,

12

W, %1,

12

W, %1,

1s commutative, where the vertical arrows are the canonical base change maps.

It follows from Lemma 4.2 that the left vertical arrow in (4.10) is level-wise
injective. Since R is local, it follows from Theorem 4.6 that the left horizontal
arrows on the top and the bottom are level-wise isomorphisms. It follows that the
middle vertical arrow is level-wise injective. We showed above that the kernel of
the second horizontal arrow on the bottom is bounded by 1. We deduce that the
kernel of the second horizontal arrow on the top must also be bounded by 1. This
proves the theorem. [

Combining Theorem 4.8 and (3.18), we get the following.

Corollary 4.11. Let R be a regular semilocal ring containing a field k of char-
acteristic p > 0 and let X = Spec(R). Let n > 0 be an integer. Then there are
isomorphisms of pro-abelian groups

AR

n— 0 =
{WmQR l}m {HO(X IC X|]/,Cn X|I”‘)}m ?R) {K,iw(Rm)}m,

which are natural in R.

Proof. Since U +—> WmQ’é(zlj) is a Zariski sheaf on X [Illusie 1979, Proposi-
tion [.1.13.1], the first isomorphism follows from Theorem 4.6. We now show
the second isomorphism.

Theorem 4.8 yields a map {W,, er{] Y —> {HO(X, Kn m, x)}m whose kernel
and cokernel are bounded by 1. It suffices therefore to show that K, KM (Ry) =
HO(X Kn m.x)- Usmg the augmentation R,, — R, it is enough to show that
K, KM (Rn) = HY(X, lCn m.x)- But this is clear from the definition of the improved
Milnor K-theory given in Section 3C once we observe that ICn m.x 18 nothing but
the direct 1 1mage sheaf 7, (lCn x,)» Where 7 : X,, — X is the pI‘O]eCUOIl Indeed, we

have HO(X, KM )= HO(X, n*(IC )= HO(Xm,ICMX )= KM(R,,). O

QROXR

n,m,X

If R is local, the above result is equivalent to the following.
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Corollary 4.12. Let R be as in Corollary 4.11 and n > 0 an integer. Assume R is
local. Then there are isomorphisms of pro-abelian groups

Ax {I?%(AII)} o
KM ],

(W, %1}, (KM (R}

~

which are natural in R.

In particular, we have the following corollary stating that the improved Milnor
K-groups of the truncated polynomials over finite fields are pro-zero.

Corollary 4.13. Let k be a finite field and n > 2. Then the pro-group {I/(\ ,11‘4 (k) hin
is zero.

Proof. 1t follows from Corollary 4.12, using the fact that the Milnor K-groups
K,ﬁ” (k) are zero for n > 2. []

Remark 4.14. It should be noted that we actually showed in Corollaries 4.11
and 4.12 that Ag 1s a level-wise isomorphism while the kernel and cokernel of
Og are bounded by 1.

Remark 4.15. Let R be as in Corollary 4.12, where we assume further that it is
essentially of finite type over a perfect field and dim(R) < p. In this special case,
one can obtain a direct proof of Corollary 4.12 as follows.
We consider the maps
(W 2 o 25 R Y R — LR (R

where Ef,ym(Rm) is the reduced symbolic K-theory used in [Bloch 1977]. We
observed in Proposition 3.20 that the first arrow is surjective. It must therefore be
an isomorphism because the composite arrow is an isomorphism by [Illusie 1979,
theoréme 1.5.2]. We warn the reader however that Theorem 4.8 does not follow
from the local case since we can not work with stalks in order to show that a given
morphism between pro-sheaves is an isomorphism.

5. Milnor vs Quillen relative K-theories

In this section, we use Theorem 4.8 to prove some relations between the relative
Milnor and Quillen K-groups for regular semilocal rings (see Proposition 5.10).
As an immediate consequence, we prove our main results sans Theorem 1.4(4).

SA. Milnor to Quillen K-theory. 1et R be a regular ring containing a field k and
let X = Spec(R). Let m, n > 0 be two integers. Recall from Section 4B the sheaves
Iﬂéfm.x and IEnmX There is a canonical map I?n(Rm) — HO(X, ’%n,m,X) which
is functorial in R and m > 0. We need to know that this map is close to being
an isomorphism in order to construct a map from the relative Milnor to Quillen

K-theory. To prove a precise statement, we need another result.
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Suppose that char(k) = p > 0. By the main result of [Hesselholt 2008], there
is a map of pro-abelian groups {W,, Q’};l}m — {En(Rm)},n which is natural in R. In
particular, there is a map of sheaves of pro-abelian groups {W,, Q’)’(_l b — I%n, m. X tm-
This map has the following property.

Lemma 5.1. The maps {Wm Qy;g_l }m — {En (Rm)}m and {Wm Qr)l(_] }m - {Izn,m,X}m
are isomorphisms.

Proof. Let £, and F) denote the kernel and cokernel of the map W, Q’;{l = Km0
respectively. By Lemma 2.3, it suffices to show that for every m > 0, there are
integers N(m) and N'(m) such that the maps of stalks &£ N () — &y, and
FoaN'(my.x —> Fm.x are zero for all x € X. But this follows directly from [Hessel-
holt 2008, Theorem A, Theorem 6.3(iii)]. In fact, one can take N (m) = 1 for all
m and N'(m) depends only on m and p. The identical proof works for the map
(W, Q% l}m — {K,l(Rm)}m too because Hesselholt’s result holds for R as well

(using Néron—Popescu desingularization [Popescu 1986]). ]
Fix n > 0. We can now prove:

Lemma 5.2. The map K 2(Rpy) — HO(X, ?c’n‘ m.x) is an isomorphism if char(k) =
The map of pro-abelian groups {K,(Ry)}m — {H°(X, Kn.m.x)}m is an isomor-
phism if char(k) > O.

Proof. Assume first that char(k) = 0. In this case, it follows from [Hesselholt
2003, Theorem 10] that K, (An) = D= (Q’AJFl_Zi)’” for any regular ring A con-
taining k. In particular, IACJ,Lm,X s a qugsicoherent sheaf on X defined by the R-
module fn(Rm). This immediately implies the desired result.

Suppose now that char(k) > 0 and consider the commutative diagram of pro-
abelian groups

W, %", s {K (Ron)}m

l l (5.3)

{HO(Xv Wle;(_])}m — {HO(Xv Izn,m,X)}m

The left vertical arrow is an isomorphism by [Illusie 1979, Proposition 1.1.13.1]
and the usual p-typical decomposition argument. The top horizontal arrow is an
isomorphism by Lemma 5.1. The bottom horizontal arrow is an isomorphism by
Lemmas 2.3 and 5.1. We conclude that the right vertical arrow is an isomorphism
too. [

Since the Quillen K-theory sheaf on the spectrum of a regular semilocal ring
containing a field is acyclic by Quillen’s Gersten resolution, Lemma 5.2 implies
the following.
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Corollary 5.4. Let R be a regular semilocal ring containing a field k. Then the
map K,(R,) — H°(X, Kn.m.x) is an isomorphism if char(k) = 0. The map of pro-
abelian groups {K, (Ry,)}m — (H(X, Kn.m,x)}m is an isomorphism if char(k) > 0.

Recall that unless R is local, it is not known if there exists a canonical map
from the Milnor K-theory defined by Gabber and Kerz to the Quillen K-theory.
We can however now show using the previous results that such a map exists for the
truncated polynomials in the pro-setting.

Corollary 5.5. Let R be a regular semilocal ring containing a field k and let n > 0
be an integer. Then there is a map of pro-abelian groups { K fl‘/[ (R} — {K (R Y
which is natural in R. The same holds for the relative K-groups.

Proof. We let X = Spec(R). At any rate, we have a natural map of sheaves
ICQ/[m ¥ = Ku,m.x by the main result of [Kerz 2010]. This gives rise to a commu-

tative diagram

(KM (R K (R b

zl lz (5.6)

(HOX, KM Ny —— (HO(X, Kypom. X))}

n,m,X

The left vertical arrow is a level-wise isomorphism by definition and the right
vertical arrow is an isomorphism by Corollary 5.4. The corollary follows. ]

SB. Identification of relative Milnor and Quillen K-theory. We now show that
the canonical map from relative Milnor to Quillen K-theory that we constructed in
Section 5A is an isomorphism. We need the following to prove its injectivity.

Lemma 5.7. Let X be a Noetherian regular scheme over a field of characteristic
p > 0. Let g > 1 be an integer. Then {;W,, Q2 },, =0 foralln > 0.

Proof. It suffices to show that if R is a regular semilocal ring containing a field of
characteristic p > 0, and m > 1 is an integer, then the map ,W,, Q7% — W, Q7% is
zero for some integer m’ > m, depending only on m and n.

Using Lemma 4.2, it suffices to prove this assertion for fields. So we let k be
a field of characteristic p > 0. Write ¢ = p’s, where p 1 s. It is then clear that
g W, 2 = W, ;. We therefore need to show that given any integer m > 1, the
map ,» W, Q} — W,,Q} is zero for all m’' > m.

Using the p-typical decomposition of W,, €27 and the fact that this decompo-
sition is finite and is compatible with the restriction maps W,, )’ — W, Q, it
suffices to prove the last assertion for the p-typical de Rham—Witt forms W, €2}
We thus have to show that given m > 1, the map ,» W, Q) — W, 2] is zero for all
m’ > m, depending only on m and n. However, this is an immediate consequence
of a theorem of Illusie [1979, Proposition 1.3.4, p. 569] (see also [Riilling 2007,
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Lemma 2.3]) that the canonical and p-filtrations (and also the V -filtration) of W, 2}/
coincide. ]

Lemma 5.8. Let X be a Noetherian regular scheme over a field k of characteristic
p > 0. Let n > 0 be an integer. Then the canonical map {/%%m, xim = {/’En,m, X b
Is injective.

Proof. For n < 1, the lemma is obvious. So we assume n > 2. We fix an integer
m > 1. It suffices to show that if R is a regular local ring containing k and F,, is
the kernel of the map K ,ﬁ” (R,) — K 2 (R, then there exists an integer m’ > m,
depending only on m and n, such that the map F,, — F,, is zero.

We note that it follows from Lemma 4.2 and Corollary 4.11 that the kernel of
the map {]?é” (R)}m — {I?,]l” (Fn)}m 1s bounded by 1. Using the commutativity
of this map with the similar map between Quillen K-groups, it suffices therefore
to prove our assertion for a field £ with char(k) > 0.

If k is finite, then {IA{ZW (ki) }m 1s bounded by 1, again by Corollary 4.11. We
can therefore assume that & is infinite. In this case, we know that F)’ is a tor-
sion group of exponent (n — 1)! (see [Nesterenko and Suslin 1989] or [Kerz 2010,
Proposition 10(6)]). On the other hand, it follows from Corollary 4.11 that the map
{qWp QZ_' Jm = {g K ,ZZ” (km)}m has kernel and cokernel bounded by 1 for all g. It
suffices therefore to show that for every pair of integers m, g > 1, there exists an in-
teger m’ >>m, depending only on m and n, such that the map ,W,, €2}~ 1—>an, QZ_l
is zero. But this 1s shown in the proof of Lemma 5.7. [

The above result implies the following (see the proof of Proposition 5.10).

Corollary 5.9. Let R be a regular semilocal ring containing a field of characteris-
tic p > 0. Then the canonical map {K%(Rm)}m —> {K,,(R;;,)}m (see Corollary 5.5)
is injective for all n > 0.

Recall that a ring R containing a field of characteristic p > 0 is called F-finite, if
it is a finitely generated algebra (equivalently, a finitely generated module) over R”.
One knows that R is F-finite if it is essentially of finite type over a perfect field.
This is also true for the Henselization or completion of R along any ideal. In
particular, any field which is finitely generated over a perfect field is F-finite. We
say that a scheme is locally F-finite if all its local rings are so.

The main result of this section that we use later is the following.

Proposition 5.10. Let R be an F-finite regular semilocal ring containing a field
of characteristic p > 0. Then the canonical map {K,iW (R} — {Kn(Ry)}m of
Corollary 5.5 is an isomorphism for all n > Q.

Proof. 1f R is local, this follows from Theorem 4.8 and [Morrow 2019, Theo-
rem 6.1] (which implicitly uses Theorem 4.8 or Remark 4.15). To prove the general
case, we write X = Spec(R) and X,,, = Spec(R,,) as before. We then have the strict
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map of sheaves of pro-abelian groups ¥y : {’Egm,x}m — {/En_m,x}m on X. Using
Lemmas 2.3 and 5.2 and (the proof of) Corollary 4.11, it suffices to show that ¥y
is an isomorphism. Note that X is locally F-finite. In view of Lemma 5.8, we only
have to show that 1y is surjective.

We consider the commutative diagram of exact sequences of sheaves

0 K:n,m,X ,Cn,m,X lCn,X 0

le l l (5.11)

0 —> lCI’l,”'l,X % Kn7m7x —> ICI’l,X % O

It follows by [Geisser and Levine 2000, Theorem 8.1] and the exactness of
Gersten complexes for 75,12”}( and 75,1, x (see [Kerz 2010, Proposition 10(8)]) that
these sheaves have no p—tofsion. In particular, the two rows of (5.11) remain exact
with Z/p"-coefficients.

We first show that ¥y is surjective with Z/p"-coefficients. Since the right ver-
tical arrow in (5.11) is an isomorphism with Z/p”-coefficients by [Geisser and
Levine 2000, Theorem 8.1], we need to show that the middle vertical arrow 1s sur-
jective with Z/ p”-coefficients. But this follows from [Morrow 2019, Corollary 5.5]
(which uses the F'-finiteness assumption). Morrow states this corollary in the case
when X is the spectrum of a local ring. However, as he explains in [Morrow 2019,
Remark 5.8], the result holds at the level of sheaves too and the proof is obtained
by repeating the proof of the local ring case verbatim and observing that the bounds
in the pro-systems are controlled while going from one point to another point of
the underlying scheme.

Indeed, Morrow shows that there are maps

- dl
{IC;[qV_Im,)(/pr}m - {ICn.m,X/pr}m =5 {WrQ?Xm,X),]og}m

whose composition is level-wise surjective, where the last term is the relative p-
typical logarithmic de Rham—Witt complex [Illusie 1979]. He then shows that the
second map is an isomorphism. The main argument (which involves the use of
pro-systems) in the proof of this isomorphism is the pro-HKR theorem of [Dundas
and Morrow 2017]. And one checks that this pro-HKR theorem holds at the level
of sheaves (see the footnote below §5.3 in [Morrow 2019]).

To prove the surjectivity of ¥ x, we now claim that p’”l%,hm,x = ( for some r,
depending only on m and n. For this, we first note that W, Q’;{l is a sheaf of
W,y 4, (F )-modules. Hence, prW,, 1 Q’}{l = 0. We next use the Hesselholt—
Madsen exact sequence [Hesselholt and Madsen 2001]:

—1-2i Dz ) —2-2i
@W(m—i—l)(i—f—l)gg( i ICn,m,X - @Wi—i—lgl;( "

i>0 i>0
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We have seen above that the two end terms are annihilated by some power of p
(depending only on m and n). It follows that the middle term has the same property.
This proves the claim.

We now let £ = Coker(l%%m. x = /%m, x). We have shown previously that
{&/p" Ym =0 forevery r > 1. On the other hand, for a fixed integer m > 0, the
claim implies that p" &) = 0 for some r >> 0. It follows that the map £, — &,/ is
zero for all m’ 3> m. In particular, {£}},, = 0. This shows that ¥ x is surjective and

finishes the proof of the proposition. 0

S5C. The cycle class map to Milnor K-theory. It was shown in [Riilling 2007] (for
fields) and [Krishna and Park 2021] (for semilocal rings) that the additive higher
Chow groups TCH" (R, n; m) for m, n > 1 together form the universal restricted
Witt-complex (see [Riilling 2007, §1] for the definition) over R. In particular, there
is an isomorphism of restricted Witt-complexes

g : W, Q%1 = TCH"(R, n; m) (5.12)
for every m, n > 1. This map is given by

tr(wdlog[ai] - - -dlogla,—1]) = V(y(w), y1 —ai, ..., yo—1 —an—-1), (5.13)

where a; € R, y(w) € R[T] is the polynomial defined in (4.1) and V (/) denotes
the closed subscheme of Spec(R) x -1~ Spec(RI[T, yi, ..., Yo—1]), defined
by the ideal 7. We call g the “de Rham—Witt—Chow isomorphism”™. This is the
additive analog of the Milnor—Chow isomorphism of [Elbaz-Vincent and Miiller-
Stach 2002; Nesterenko and Suslin 1989; Totaro 1992].

Using the Chow—Witt isomorphism and Corollary 4.11, we define our cycle class
map from the additive higher Chow group of relative 0-cycles to relative Milnor
K-theory as follows.

Definition 5.14. Let R be as above and n > 1 an integer. We define the cycle class
map to Milnor K-theory to be the composite map of pro-abelian groups

cyc%’ —=60roAgo ‘L’I;] : {TCH”(R, n;m)y, — {E,Ilw(Rm)}m (5.15)

It follows from [Krishna and Park 2021, Theorem 1.1] that T is functorial with
respect to any k-algebra homomorphism between regular semilocal rings R — R’
essentially of finite type over k. The maps Ag and 6y are clearly functorial in R by
their construction. It follows that cyc]){ is functorial in R. Notice also that cyc% is
an isomorphism.

SD. Proofs of Theorems 1.4(1)-(3) and 1.6. We let k and R be as in the these
theorems. We define the cycle class map as the composition

(:yc:}e = YR ocyc%’ ATCH"(R, n; m)},, — {En(Rm)}m, (5.16)
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where the map {x is as in Corollary 5.5. The proofs of Theorem 1.6 and parts (1)
to (3) of Theorem 1.4 follow immediately.

6. The cycle class map for semilocal rings

The goal of the remaining two sections is to define cycy at the level of additive
higher Chow groups and prove the final part of Theorem 1.4. In this section, we
define cycp, which generalizes the construction of (2.16) from fields to regular
semilocal rings over a field. In the next section, we show the agreement between
cycg and cyc) under our assumptions.

We fix a field k of characteristic p > 0 and let R be a regular semilocal ring which
1s essentially of finite type over k. We let F' denote the total ring of quotients of R.
Let ¥ denote the set of maximal ideals of R. Recall our function A : 7, — 7
given by A(m) =n(m+1) —11n (2.16).

6A. A pro-Gersten for K-theory. In [Gupta and Krishna 2020, proof of Theo-
rem 10.2], it was shown that if R contains Q, the base change map K " (Rm)—>E w(F)
is injective for all m, n > 0, where F is the total ring of quotients of R. However,
we do not know if this inclusion holds in positive characteristic. We use a result of
[Hesselholt and Madsen 2001] to prove the following partial result, which implies
the validity of this inclusion in the pro-setting. We need this result in order to
construct our cycle class map.

Lemma 6.1. Let n > 0 be any integer and let e > 1 be an integer not divisible by p.
Then the base change map ng . K (R.— 1) — K (F,_ 1) is m]ectzve In particular,
for every m > 1, the canonical map Ker(K (Rmp) — K (Fmp)) — K (R,,) is zero.

Proof. We only have to show that ng . 1s injective, as the second assertion of the
lemma immediately follows from this. We can assume that R is an integral domain,
so that F' is a field. We now fix an integer n > 0. It was shown in [Hesselholt and
Madsen 2001] that there is a natural exact sequence

Pwip ™ o B Weiis1y @ 7S Knpt1 (Re-) > EP Wi 7%, (6.2)
i>0 i>0 i>0
where V, is the Verschiebung map. By comparing this exact sequence with the

analogous exact sequence for F' and using Lemma 4.2, the proof of the injectivity
of ng . reduces to showing that for every n > 0 and m > 1, the square

W, Q" —2 W, Q"
mesp mendp

i

Ve
W,, Q7 — s W, "

is Cartesian.
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To show this, let « € W, 2%, and B € W,,, Q7. be such that « = V,(8) € W,,, Q2.
We consider the commutative diagram

Ve F,

[ [ [

Ve F,
W’n QI;’;* % W’neQ];;' % Wm Q,}'

where F, is the Frobenius map. Since F, o V,(8) = ¢f [Riilling 2007, Defini-
tion 1.4], we get F,(a) = ef. Since p { e, we have that e € (W,,,(R))>. We thus
get B=e"'F,(a) e W,, Q5. Since all the vertical arrows in the above diagram are
inclusions, it follows that 8 € W,, 2% and V,(B) = «. This finishes the proof. [

6B. The sfs cycles. We need the notion of sfs-cycles in order to generalize the
cycle class map of (2.16) from fields to semilocal rings. Let m > 0 and n > 1 be
two integers. Recall (see Section 2D) that TCH" (R, n; m) is defined as the middle
homology of the complex Tz" (R, n + 1; m) KN Tz"(R, n; m) 9, TZ" Y (R, n; m).
Note that a cycle in Tz" (R, n; m) has relative dimension zero over R. We say that
an extension of regular semilocal rings R C R’ is simple if there is an irreducible
monic polynomial f € R[] such that R" = R[t]/(f(2)).

Let X = Spec(R) and X the set of all maximal ideals of R. Let Z C X x A x [1"~!
be an irreducible admissible relative O-cycle. Recall from [Krishna and Park 2021,
Definition 3.4] that Z is called an sfs-cycle if the following hold:

(1) Z intersects X x A,i x F properly for all faces F c (0"~

(2) The projection Z — X is finite and surjective.

(3) Z meets no face of X x A,l x 01,

(4) Z is closed in X x Al x A = Spec(RI[t, y1, ..., ya—1]) (by (2) above) and
there is a sequence of simple extensions of regular semilocal rings

R=R {CRyC---CR,_1=k[Z]

such that Ry = R[t]/(fo(?)) and R; = R; _([y;]1/(fi(yi)) for 1 <i <n—1.
Note that an sfs-cycle has no boundary by (3) above. We let Tz (R, n; m) C

sfs
Tz" (R, n; m) be the subgroup of cycles whose irreducible components are sfs-

cycles and define

n N Tz (R, n; m)
TCHy (R, n; m) = :
d0(TZ"(R,n+1,m))NTz. (R, n; m)

sfs

(6.4)

It is clear that the canonical map TCH{; (R, n; m) — TCH" (R, n; m) is injective.

The following result from [Krishna and Park 2020, Theorem 1.1] says more.

Theorem 6.5. The canonical map TCH (R, n; m) — TCH"(R, n; m) is an iso-
morphism if k is infinite and perfect.
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6C. The cycle class map to Quillen K-theory. The construction of the map cycg
for TCH; (R, n; m) is obtained by word-for-word repetition of the construction of
the cycle class map for fields described in Section 2E. So let Z C X x A,i x 1"~ be
an irreducible sfs-cycle and let R" =k[Z]. Let [ : Z —> X x A,l be the projection
map. Let g; : Z — [ denote the i-th projection. Then the sfs property implies
that each g; defines an element of R’ and this in turn gives a unique element
{g1,...,8n1} € Ké”_l(R’). We let cycp ([Z]) be its image in K,,—;(R") under the
map K,]l”_l (R") - K,_1(R’). Since Z does not meet X x {0}, we see that the finite
map f defines a push-forward map of spectra f, : K(R') — K(R[t], (#""+1)). We
let cycpr([Z]) = fi(cycp ([Z])) € K, —1 (R[], (#"+1)). We extend this definition

linearly to get a cycle map cycp : Tz (R, n; m) — K,_ (R[], (¢"T1)).

sfs

Lemma 6.6. The assignment [Z] — cycg([Z]) defines a cycle class map

cycp : TCHY (R, n; A(pm)) — K,_1(R[t], (")),

sfs
which is functorial for the inclusion R — F.

Proof. Let i : Spec(F') — Spec(R) be the inclusion. We consider the diagram

9-1(T2" (R, n: M(pm))) —— Tz" (R, n; A(pm))

sfs sfs

.| |

TZ"(F, n + 1; M(pm)) —— T2"(F, n; A(pm))

co 2 Ky (RIE], (P — Koy (RIE], (£741))

l,,* l”* (6.7)

o R Ky (FI2], (1P 4)) — K (FL2], (1))

where the horizontal arrows in the square on the right are the structure maps of
the pro-abelian group {K,_;(R[t], (#""))}m>1 (and for F) because mp > m. In
particular, this square is commutative. It was shown in [Gupta and Krishna 2020,
Theorem 10.2] that all the other squares are commutative. It follows from the case
of fields (see (2.15)) that the composite map cycy od o™ is zero. We deduce from
Lemma 6.1 that the composite cycp 0d is zero. It follows that the composition of
all horizontal arrows in the top row of (6.7) is zero. This proves the lemma. [

Since the map cyc; is clearly functorial in m > 1, using the natural isomorphism
d: K,(Ry) = K,_1(R[t], #™T1)), we get the following theorem.

Theorem 6.8. For every n > 1, there is a cycle class map between pro-abelian
groups -
cycg  {TCHg (R, n; m)}n — {Kn(Rp)}m

sfs

which is functorial for the inclusion R — F and coincides with (2.16) if R is a

field.
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7. End of the proof of Theorem 1.4

We now complete the proof of Theorem 1.4 by proving its remaining part (4).
After Section 5D, the key lemma that remains to be proven for this purpose is
Lemma 7.13. We prove this in few steps. We let our ring R and other notations be
the same as in Section 6. Since R is a product of integral domains and our proofs
for the case of integral domains directly generalize to products of such rings, we
assume that R is a regular semilocal integral domain.

Hence the standing assumption of this section is that R is a regular semilocal
integral domain, which is essentially of finite type over a field k of characteristic
p > 0. We let F denote the fraction field of R. Recall from Corollary 5.5 that we
have a well-defined map v : {I/(\ i” (R = {K« (R} If R 1s a field, then this
map is induced by the canonical map g, : K i” (R,;,) = K.(R,,) from Milnor to
Quillen K-theory.

m

7TA. The case of fields. We first consider the case when R is a field. So we let k
be a field of characteristic p > 0. We fix an integer n > 1 and consider the diagram

(TCH" (k, 1 m)}yy —— (K1 (AL, (4 D{OD
exelf | Ta (7.1)
(R ()~ (Rl
where cyc; 1s the map of (2.16).
Our goal is to show that this diagram is commutative. We use the shortened

notation ;. for ¥y even if it is meant to be used for &, for different values of
m > 1 in different parts of the proofs.

Lemma 7.2. The diagram (7.1) is commutative for n = 1.

Proof. 1t follows from (2.16) and (3.17) that all maps in (7.1) are strict maps of pro-
abelian groups, i.e., the associated function A : 7, — Z is identity (see Section 2B).
Furthermore, it was shown in the initial part of the proof of [Gupta and Krishna
2020, Proposition 5.1] that cyc, is a level-wise isomorphism. It follows from (4.1)
and (5.12) that all other maps are also level-wise isomorphisms. Clearly, all these
are functorial in k.

Finally, to show that (7.1) commutes level-wise forn =1, let w € W,,, (k) and let
f(T)=14+Tp(T) € k[T] be a polynomial such that ¥ (w) = f(7T) modulo 7"+
The construction of the cycle class map in Section 2E then shows that cyc; (y (w)) 1s
the class of the finitely generated k[T ]-module k[T]/(f(T)) in Ko(A}, (m +1){0})
[Gupta and Krishna 2020, §2C]. Since t; is an isomorphism, it suffices to show
that this class coincides with d(y (w)). But this follows from [Gupta and Krishna
2020, Lemma 2.1]. This proves the lemma and also proves stronger versions of
Theorems 1.4 and 1.6 when n = 1. ]
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Our next goal is to prove the commutativity of (7.1) when n > 2. We let n > 2
and let A, : Zy — Z4 be given by A, (m) =n(m 4+ 1) — 1. It is then easy to see
using (2.16) and (3.17) that all maps in (7.1) are morphisms of pro-abelian groups
all of whose associated functions are the same, namely, the function A, above (note
that this requires n > 2). Moreover, for m’ > m, the diagram (2.2) already commutes
when [ = A, (m’). In the proofs below, we write A, (m) simply as A(m) since n is
fixed.

To prove that the diagram (7.1) is commutative for k and n > 2, it suffices
therefore to show that for every m > 1, the square on the right in the diagram

Wiy 20— TCH" (k, n; A(m)) —— K_1 (AL, (m + 1){0})

\ cycl{v J/ Ta (7 . 3)
Or oAy
Viom

KM (k) s Ky (k)

1s commutative. Since 7 is an isomorphism, this is equivalent to showing that the
outer trapezium is commutative.

To show the commutativity of the trapezium, we use Proposition 4.3 for fields
(due to [Hyodo and Kato 1994; Riilling and Saito 2018]). Using this, it suffices to
show that the above diagram commutes for the generators of the two groups on the
left-hand side of (4.4).

We know from (4.1) that any w € W, () (k) 1s of the form y 11 = Tp(T)) with
p(T)ek[T]and f(T) = f(T) modulo T*"*! Since we can write 1 — Tp(T) as
a product of irreducible polynomials of the form 1 —T¢q(T), we see that w is a sum
of elements of the form ¥ ~!(1 — Tp(T)) such that 1 — Tp(T) is irreducible. We
can therefore assume that w = y‘l(f(—T)), where f(T)=1—Tp(T) is irreducible.

In what follows, we write ¢y = 6 o Ay and v, = ¥ to simplify the notation,
where the value of m > 1 is allowed to vary. We also write f(T) = f(¢) in any k.
We let A = k[T |(1).

Lemma 7.4. Forn > 2, we have

9 o Yy o ¢ (w dlog[ai] - - - dlogla,—1]) = cyc; ot (w dlogai ] - - - dlogla,—1]).

Proof. With the above notation, we have

9 o Yi o ¢y (w dloglai] - - - dlog[a,—1])
='doy(ly(w), ar, ..., a,_1})
= doyr({l —tp(), a1, ..., an-1})
=% (@ oy ({1 —tpOD) - vi(ar, ..., an—1})
=3 (D) - y({ar, ... an_1})
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4

="nm.({ay, ...,an—1})
=3 ey, (V(f(T), y1 — a1, ..., Yn1—an_1))
=5 cyc}, oti(w dlogai ] - - - dlog[a,_11), (7.5)

where 7 : Spec(k[T]/(f(T))) — A,l 1s the closed immersion.
We explain various equalities. First, 6; being the restriction map KM (A, (T)) —
K i” (k) (see (3.18)), it is clear that

O f(T),ay,...,an—1}) ={y(w),ay,...,an1},

where f(T) is viewed as an element of (1 + (7)) C A*. The equality =! therefore
follows from the definition of the map Ay in (4.7). The equality => follows because
d is a KM (k)-linear map. The equality => follows from the n = 1 case shown in
Lemma 7.2 and =* follows because 7, is K i” (k)-linear (see [Gupta and Krishna
2020, Lemma 2.2]). The equality => follows from the definition of the cycle class
map in (2.13) and =9 follows from (5.13). This finishes the proof. []

The final step 1s the following.
Lemma 7.6. The diagram (7.1) is commutative for n > 2.

Proof. Using the above reductions and Lemma 7.4, we only have to show that

d o Y o ¢ (dw dlog[a] - - - dlog[a,—2])
= cyc, ot (dw dlog[ap] - - - dlogla,—2]). (7.7)

We continue to use the above simplified notations and make another simplifica-
tion by setting w = dw dlog[a;] - - - dlog[a,_»]. It is clear from the definition of the
differential for the Witt-complex structure on the additive higher Chow groups (see
[Krishna and Park 2016, §6.1]) thatif we let y (w) = f(¢) = 1—tp(t), then 7; (dw) =
dti(w) 1s the class of the cycle V(f(T), Ty, —1) C A,l x [ in TCHz(k, 2; A(m)).
As f(T) is irreducible, V(f(T), wT —1,y, —ay, ..., yn—1 — ap—2) 1s a closed
point z € A,i x 0"~ such that [ = k(z) = k[T]/(f(T)). We therefore have an
admissible /-rational point zo = V(1 — oI, yi — a” !, V2 —Aly.evs Yu—1—dp_2)
of All X D;’_] such that [z] = m,.([z0]), where we let « = T modulo (f (7)) and
7 : Spec(l) — Spec(k) be the projection.

We can now write

cyc; ot (w) = cyc, ([z])

="' 7, o cye,([z0])

= meocyq(V(L—a T,y —a™ ', ya—ai, ..., Yu1 = dy-2))
=2, 0 d; o Yy o g (wy dlog[ot_]] dloglai] - - - dlogla,—2])

=> O 0 7, 0 Yy 0 ¢y (wy dlogler '] dlog[ay] - - - dlog[a,—2]),

where w; =y "1 —a~'T) e Wi i)y ().
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The equality =! follows from the construction of the cycle class map (see [Gupta
and Krishna 2020, Lemma 4.4]), =2 follows from Lemma 7.4 for Spec(l), and =3
follows because the connecting homomorphism d commutes with the push-forward
map 1,. Note that this push-forward map exists on the relative K-theory by (2.5).
It suffices therefore to show that

Y 0 P (W) = 774 0 Yy 0 ¢y (wy dlog[ee ™' 1 dlog[ay ] - - - dlog[a,_»]). (7.8)
However, we have

Yk 0 dx (W) = Y 0 G 0 (W)
= (D" Yoy, ai,...,ap—2, T}
= —yYrob(lyw), T, ai,...,a,-2})
= (=Y o O ({y W), TH) - Y(far, - . ., an—2)}),

where =! follows from [Kerz 2009, Lemma 2.2] as k(7) is infinite. On the other
hand, letting w; = w; dlog[a‘l] dlog[ai] - - - dlog[a,—»], we also have

e oY o (W) =m0y ({y (wp), @ Ly ar, ..., an—2})

= (e o Y ({y (wp), &' D) -y ay, - - ., an—2)),

where the last equality holds by the projection formula. Thus, (7.8) is reduced to
showing that for every m > 1, we have

Yo ({1 = Tp(T), T}) = —my 0 Y ({y (w), &'}
=m0 ({1 —a 'T, a7} (7.9)

in K 2 (k) under the composite map

KM(A, (T))
KM(A, (Tm+1y)

G KM (k) L5 Ky (kon).-

Here, {1 — Tp(T), T} is viewed as an element of I/{\é” (A, (T)) via the inclusion
K§4(A|(T)) C Ké‘/I(A, (T)) of Lemma 3.15.
The commutative diagram

KM, (1)  a

—~ >E£V[ km

Ké‘/I(A,(Terl)) = = (Kim)
wl Vi (7.10)

K> (A, (T)) O Ez(k )

Ky(A,(T"th)) =
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shows that verifying (7.9) is equivalent to showing that
({1 —Tp(T), T =—m({l —a'T,a™'}) (7.11)

in I?z(km) under the map K> (A, (T))/K2(A, (T"*1)) LN I?z(km), if we use the
same notation for {1—Tp(T), T} € KM (A, (T)) (resp. {1—a~'T,a~ '} € KM (l,))
and its image in K7 (A, (T')) via ¥4 (resp. in Ez (I;x) via ;). We use this convention
in the rest of the proof.

To show (7.11), we let A" = [[T](t) as in the notations of Lemma 2.10. We
showed in Section 2C that A’ is finite (and flat) over A and k,, ®4 A’ = [,,,. Us-
ing (2.5), we get push-forward maps 7, : K>(A’, (T")) — K»>(A, (T")) forall i >0
and a commutative diagram

K> (A", (T)) 0
Ky(A', (Tm+h)) =
nl . (7.12)

K> (A, (T)) 6k
Ky(A, (THh)) =

s Ko (L)

” E2(km)

It suffices therefore to show that 7, ({1 —a~!T, a7 1}) = —{1 — Tp(T), T} holds
under the left vertical arrow in (7.12).

Since
{1-Tp(T), T} e Kx(A, (T)) C Kz2(A),

M—a 'T, a7} e Ky(A', (T)) C Ko(A)

(note that these inclusions use the splitting of A — A/(T) and A" - A’/(T)), it
suffices to show that 7, ({1 —a~'T, a7 1}) = —{1 — Tp(T), T} in K»(A). Using
Lemma 2.10, we further reduce to showing that this equality holds in K> (k(T'))
under the push-forward map 7, : Ko(I(T)) — Ko(k(T)).
But in K,(k(T")), we have
—m({l—a"'T, a7 ') =7({1 —a ' T, T})

='m.({1-p@T, T}

=> Nuryry({1 = p@)T, T})

=" (Nierywry (1= p@)T), T}

=" {1-p(T., T).
Here, =! follows because 1 — ap(a) = 0 in I, the equality =2 follows by the
compatibility between the norm in Milnor K-theory and push-forward in Quillen
K-theory (see the proof of [Gupta and Krishna 2020, Lemma 4.4]), => follows
from the projection formula for norm as T € k(T)*, and =* is a straightforward
calculation of the norm of 1 — p(x)T € I(T)*, finishing the proof of the lemma. []
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7B. Back to the case of semilocal ring. The following lemma, with Theorem 6.5,
completes the proof of Theorem 1.4. Let cycy be the cycle class map of Theorem 6.8.
Here, R is the semilocal integral domain satisfying the standing assumptions of this
section.

Lemma 7.13. The diagram

{TCH{ (R, n; m)}m

sfs

cycggl & (7.14)

{I?y]zw(Rm)}m L) {I?n(Rm)}m

is commutative. Equivalently, cycp = cycy,.

Proof. When R is a field, the lemma is equivalent to the commutativity of (7.1).
We now prove the general case. Let 7w : Spec(F) — Spec(R) be the inclusion of
the generic point. We consider the diagram

n,*

{TCH (R, n; m)}

sfs

s {TCH" (F, n; m)}m

& &

CYC%I {En(Rm)}m s ’ {En(Fm)}m (715)

VR cyc¥
~N ~- WF

(KM (R, - s (KM (F))

¥

We check the commutativity of various faces of (7.15). The front face clearly
commutes and the back face commutes by Theorem 6.8. The right (triangular)
face commutes because F is a field. The commutativity of the bottom face was
shown in the construction of cyc% in Section 5C. A diagram chase shows that
T*oYgo cycj‘lg = m*ocycp. We can now apply Lemma 6.1 to conclude that (7.14)
commutes. We use here an elementary fact that if a morphism between two pro-
abelian groups factors through the zero pro-group, then this morphism itself is zero
(see Section 2B). ]
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