
Stimulated vacuum emission and photon absorption in strong electromagnetic fields

I. A. Aleksandrov,1, 2 A. Di Piazza,3 G. Plunien,4 and V. M. Shabaev1

1Department of Physics, Saint Petersburg State University,
Universitetskaya Naberezhnaya 7/9, Saint Petersburg 199034, Russia

2Ioffe Institute, Politekhnicheskaya street 26, Saint Petersburg 194021, Russia
3Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, Heidelberg D-69117, Germany

4Institut für Theoretische Physik, TU Dresden, Mommsenstrasse 13, Dresden D-01062, Germany

According to quantum electrodynamics (QED), a strong external field can make the vacuum state decay
producing electron-positron pairs. Here we investigate emission of soft photons which accompanies a nonper-
turbative process of pair production. Our analysis is carried out within the Furry picture to first order in the
fine-structure constant. It is shown that the presence of photons in the initial state gives rise to an additional
(stimulated) channel of photon emission besides the pure vacuum one. On the other hand, the number of fi-
nal (signal) photons includes also a negative contribution due to photon absorption within the pair production
process. These contributions are evaluated and compared. To obtain quantitative predictions in the domain of
realistic field parameters, we employ the WKB approach. We propose to use an optical probe photon beam,
whose intensity changes as it traverses a spatial region where a strong electric component of a background laser
field is present. It is demonstrated that relative intensity changes on the level of 1% can be experimentally
observed once the intensity of the strong background field exceeds 1027 W/cm2 within a large laser wavelength
interval. This finding is expected to significantly support possible experimental investigations of nonlinear QED
phenomena in the nonperturbative regime.

I. INTRODUCTION

As early as the 1930s [1–3], it became evident that the quan-
tum nature of the electromagnetic interaction manifests itself
in an effective violation of the superposition principle taking
place in the classical theory based on Maxwell’s equations in
vacuum. It was found that Maxwell’s Lagrangian gains ad-
ditional quantum corrections which lead to remarkable non-
linear phenomena such as light-by-light scattering [1–4] and
Sauter-Schwinger electron-positron pair production [2, 5, 6]
(for review, see, e.g., Refs. [7–15]). To galvanize the quan-
tum fluctuations, one basically strives to make them interact
with a strong background field. In this context, the rapid de-
velopments of the technology for generating high-power laser
pulses has continuously encouraged active theoretical and ex-
perimental research. Although some of the nonlinear phenom-
ena of strong-field quantum electrodynamics (QED) were al-
ready practically observed [16–19], the nonperturbative pro-
cess of electron-positron pair production, i.e., the Sauter-
Schwinger effect, is still experimentally unexplored. Whereas
one can investigate analogous phenomena in condensed mat-
ter systems (see, e.g., Refs. [20–27]), in standard QED the
Sauter-Schwinger mechanism is exponentially suppressed un-
less the electric field strength approaches the critical value
Ec = m2c3/(|e|~) ≈ 1.3 × 1016 V/cm (m and e < 0 are
the electron mass and charge, respectively). This corresponds
to an intensity of 2.3 × 1029 W/cm2, while the maximum in-
tensity achieved so far amounts to 1023 W/cm2 [28].

As was proposed in Ref. [29], one can attempt to exper-
imentally study the process of vacuum photon emission ac-
companying the Sauter-Schwinger mechanism as illustrated
in Fig. 1. Measuring this additional radiation would allow
one to indirectly probe nonperturbative pair production. This
vertex diagram exactly incorporates the interaction with the
classical electromagnetic background, which is reflected by
the double fermionic lines. The process described by the

diagram is of the first order in the fine-structure constant
α = e2/(4π~c) and predicts emission of a huge number of
soft photons [29–31]. In the present study, we revisit the quan-
titative features of this phenomenon providing closed-form
expressions and numerical estimates describing the number
density of photons emitted in the domain of realistic field pa-
rameters. Furthermore, we propose another experimental sce-
nario which is closely related to vacuum photon emission but
involves additional (probe) photons already in the initial state.
It turns out that the presence of these photons induces two
additional contributions besides the purely vacuum one dis-
cussed above. One of them is exactly the same diagram as that
displayed in Fig. 1 with the outgoing-photon state coinciding
with that of the initial (probe) photon. The other contribution
is negative and describes the absorption of the initial photon
with the production of an electron-positron pair. As will be
shown in what follows, the sum of these two photon-induced
terms can lead to notable change of the probe beam inten-
sity. Measuring this change is another tool for investigating
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Figure 1. Vertex diagram describing vacuum emission of soft pho-
tons accompanying the Sauter-Schwinger effect. The double lines
represent the exact electron wavefunction in the presence of the ex-
ternal field, i.e., the external classical background is treated nonper-
turbatively.
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the Sauter-Schwinger mechanism in the experiment. In this
paper, we argue that this scenario proves to be more favor-
able than measuring the vacuum radiation itself or detecting
pairs directly since the probe-beam technique corresponds to
a lower threshold with respect to the laser intensity.

Since we are interested in the nonperturbative regime, the
interaction with the classical external field is taken into ac-
count exactly, i.e., we work within the Furry picture. The
quantized part of the electromagnetic field is treated within
perturbation theory (PT). To compute the Feynman diagrams,
we first employ our numerical technique developed previously
in the context of pair production [32–34] and subsequently
generalized for studying radiative processes [31]. Second,
we also perform calculations using perturbation theory with
respect to the classical background in order to benchmark
our nonperturbative numerical procedures. Finally, to obtain
quantitative predictions in the domain of realistic field param-
eters, we construct the necessary wavefunctions by means of
the WKB approach and complete the evaluation of the dia-
grams analytically. The closed-form final expressions are then
used to examine the experimental feasibility of our proposal.

The paper has the following structure. In Sec. II we re-
cap the main general features of vacuum photon emission. In
Sec. III we discuss the photon-induced contributions in the
case of one initial photon or many identical photons. Mov-
ing on to specific calculations, in Sec. IV we first describe
our nonperturbative procedure in more detail and then em-
ploy PT to benchmark our technique. In Sec. V we examine
the photon emission process within the framework of scalar
QED. In Sec. VI we perform WKB calculations and obtain
closed-form expressions for the necessary quantities. The ex-
perimental prospects of our proposal as well as the feasibil-
ity of measuring the vacuum radiation and Sauter-Schwinger
mechanism itself are discussed in Sec. VII. Finally, we con-
clude in Sec. VIII. We will employ the units ~ = c = 1.

II. VACUUM PHOTON EMISSION WITHIN THE FURRY
PICTURE

In our study, the external classical field is treated nonpertur-
batively, i.e., within the Furry picture. The quantized electron-
positron field ψ interacts with both the classical background
Aµ and quantized part of the electromagnetic field Âµ. The
photons emitted as well as the probe photons are quanta of the
latter. The quantized part is incorporated by PT within the in-
teraction picture [35]. The corresponding S operator has the
form

S = T exp

(
− i
∫
d4x jµ(x)Âµ(x)

)
, (1)

where x = (t,x), T is the time-ordering operator, and jµ is
a current operator in the presence of the external background
Aµ. The external field strength is assumed to vanish outside
the interval t ∈ [tin, tout], and in Eq. (1) one integrates over
this temporal region. In our case the field is switched on and
off adiabatically, so we will imply tin/out → ∓∞.

The quantized part of the electromagnetic field has the fol-
lowing standard decomposition in terms of the photon mode
functions:

Âµ(x) =

3∑
λ=0

∫
dk
[
ck,λfk,λ,µ(x) + c†k,λf

∗
k,λ,µ(x)

]
, (2)

where c†k,λ and ck,λ are the photon creation and an-
nihilation operators, respectively, and fk,λ,µ(x) =

(2π)−3/2(2k0)−1/2 e−ikxεµ(k, λ) is the photon wave-
function corresponding to momentum k (k0 = |k|) and
polarization λ. The electron-positron field operator ψ can
be decomposed either in terms of the so-called in one-
particle solutions ±ϕn(x) or in terms of the out solutions
±ϕn(x). The in (out) wavefunctions are determined by their
asymptotic form for t 6 tin (t > tout), where they have a
well-defined sign of energy denoted by ±. Quantum number
n incorporates momentum and spin. In what follows, we will
need the expansion of the electron-positron field operator in
terms of the in solutions of the Dirac equation,

ψ(x) =
∑
n

[
an +ϕn(x) + b†n −ϕn(x)

]
, (3)

where we have introduced the electron (positron) creation
and annihilation operators a†n (b†n) and an (bn), respectively.
These operators obey the usual anticommutation relations.
The vacuum state will be denoted by |0, in〉. The current op-
erator involved in Eq. (1) can now be constructed via jµ(x) =
(e/2)[ψ̄(x)γµ, ψ(x)].

In this section, we assume that the initial state is a pure
vacuum one, i.e., we do not introduce any additional photons,
|in〉 = |0, in〉. To describe the process of photon emission, we
will evaluate the number density of photons in the final state,
which can be obtained by evolving |0, in〉 with the aid of the
S operator (1):

n(vac)
k,λ = 〈0, in|S†c†k,λck,λS|0, in〉. (4)

Note that this quantity is an inclusive observable, i.e., the
final state is not specified here and it may contain an ar-
bitrary number of pairs. The “mean number” n(vac)

k,λ repre-
sents the number density of photons in the momentum space,
n(vac)
k,λ = dN (vac)

k,λ /dk. In the present study, we evaluate the ex-
pression (4) to first order in the fine-structure constant using
the series expansion of the exponential (1). Straightforward
calculations yield [31]:

n(vac)
k,λ =

∣∣∣∣ ∫ d4x jµin(x)f∗k,λ,µ(x)

∣∣∣∣2
+ e2

∑
n,m

∣∣∣∣ ∫ d4x+ϕ̄n(x)γµf∗k,λ,µ(x)−ϕm(x)

∣∣∣∣2,(5)

where jµin(x) = 〈0, in|jµ(x)|0, in〉 is the vacuum current. This
expression can also be derived by computing transition am-
plitudes and summing over the possible final states containing
various numbers of electrons and positrons. This alternative,
if tedious, scheme is presented in Ref. [35].
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The first term in Eq. (5) corresponds to the so-called tad-
pole (reducible) contribution explored in numerous studies
(see, e.g., Refs. [30, 31, 35–44]). It predicts emission of
photons similar to those constituting the external field or
higher harmonics. The most robust technique for comput-
ing this term is based on the locally-constant field approxi-
mation (LCFA) [38–43]. This technique is expected to be ac-
curate once the external-field frequency ω is much less than
m, which was evidently confirmed in our recent investiga-
tion [31], where it was also shown that the LCFA prediction
may considerably differ from the exact values of the photon
yield if (ω/m)2 & 0.3.

In this study, we focus on the process of soft photon emis-
sion accompanying the Sauter-Schwinger mechanism of pair
production. This process is described by the second term
in Eq. (5), which can be illustrated by the vertex diagram
in Fig. 1. Since it is responsible for the low-energy part of
the radiation spectrum, we refrain from discussing the tadpole
contributions in what follows. In Ref. [29] the vertex dia-
gram was examined in the case of a spatially uniform external
background. Recently [31], it was demonstrated that taking
into account the spatiotemporal inhomogeneities of the exter-
nal field in the case of a standing electromagnetic wave leads
to a notable anisotropy of the emitted photons providing ad-
ditional signatures that can be, in principle, measured in the
experiment.

Here we will also assume that the external field does not
depend on the spatial coordinates, Aµ = Aµ(t). This will al-
low us to obtain relatively simple estimates approximating a
combination of two counterpropagating (high-intensity) laser
pulses in the vicinity of a maximal electric field amplitude by
a uniform background. As was shown in Refs. [29, 31], the
photon number density for low energies k0 � m is propor-
tional to 1/k30 . In the case of a spatially homogeneous field,
Eq. (5) yields factor V , the volume of the system, so we iso-
late it and present the photon number density in the following
form:

n(vac)
k,λ

V
=
An,λ

k30
+
Bn,λ

k20
+ ..., (6)

where n = k/k0, i.e., the coefficients An,λ and Bn,λ de-
pend on the photon polarization λ and the propagation direc-
tion. Note that although the photon number density diverges
as k0 → 0, the energy emitted is finite. The function fγ(k) in-
troduced in Ref. [29] corresponds to the sum of Eq. (6) over λ.
In quantitative estimates, the interaction volume V is treated
as a volume of the focal spot of laser radiation. The experi-
mental prospects will be discussed in detail in Sec. VII.

One might also ask whether it is necessary to take into ac-
count the vertex diagram in Fig. 1 when computing the num-
ber of electron-positron pairs. In this case, one has to inte-
grate over the photon momentum k, which leads to an in-
frared divergence. However, according to Ref. [45], the di-
vergent higher-order contributions, in fact, do not affect the
leading order result (see also Ref. [46]; this issue was exam-
ined in the context of other nonperturbative processes in, e.g.,
Refs. [47–49]). The same holds true with regard to radiative
corrections to the process of soft photon emission considered

in the present study. As we always specify the signal photon
energy k0 > 0, the leading contribution (6) is finite, whereas
the higher-order infrared divergences are irrelevant. On the
other hand, the number of photons can be affected by higher-
order diagrams where multiple k0-quanta are emitted simulta-
neously. Nevertheless, these corrections are small since they
are suppressed by powers of α ln(m/k0) [45, 46]. In what
follows, we will assume that k0 > 10−6m, which leads to
α ln(m/k0) < 0.1, so the higher-order terms will be disre-
garded.

III. ADDITIONAL PHOTONS IN THE INITIAL STATE

In this section, we will analyze the process of photon emis-
sion in the presence of additional (probe) photons in the initial
state, which were absent in the vacuum state |0, in〉 considered
previously.

A. One-photon state

Consider now a one-photon state |in〉 = c†q,κ |0, in〉. Calcu-
lating the photon number density to first order in α via

n
(1)
k,λ = 〈0, in|cq,κS†c†k,λck,λSc†q,κ |0, in〉, (7)

one obtains a sum of two contributions. The first one is exactly
n(vac)
k,λ given in Eq. (5). Note that this part does not involve the

quantum numbers of the probe photon. The second contribu-
tion to nk,λ appears due to the presence of the additional pho-
ton and represents the difference shown in Fig. 2. The photon
wavefunctions correspond to the quantum numbers q and κ
of the initial photon, so these terms contribute only when k, λ
coincide with q, κ. Together with the process without addi-
tional quanta, the three parts can be interpreted as spontaneous
emission, stimulated emission, and photon absorption, respec-
tively, similarly to the atomic physics notions. To properly
treat the “resonance” character of the photon-induced terms,
one should introduce a smearing function for the initial pho-
ton state. We assume that it is localized in a small vicinity of
q which has volume Vq (in momentum space). Another im-
portant point is the fact that the difference between the two
diagrams in Fig. 2 appears due to complex conjugation of the

2

Σ
n,m

1

m

n

− Σ
n,m

1

2m

n

q,κ q,κ

1

Figure 2. Two additional contributions which appear in the case of
a one-photon initial state. The sum over the final fermionic states
involves integration over momentum and summation over spin. The
photon lines correspond to the quantum numbers q and κ of the ini-
tial photon.
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photon wavefunction, which is equivalent to the substitution
kµ → −kµ. It means that the second diagram in Fig. 2 (pho-
ton absorption) has the same behavior (6) with the opposite
sign of the 1/k20 term. One factor 1/k0 relates to the normal-
ization of the photon wavefunctions, so one should change the
sign of the even powers. Whereas the difference in Fig. 2 no
longer has the 1/k30 term, the next-to-leading-order term dou-
bles. Note that there are no stimulated tadpole contributions,
which is no surprise as the vacuum current is real, so con-
jugating the photon wavefunction, one does not change the
absolute value of the diagram.

We assume that the probe photons will be measured within
the whole Vq region, i.e., we integrate the photon number den-
sity over the small momentum volume, where the initial pho-
ton was localized. It brings us to the following number of
photons (l = q/q0):

N (1) = 1+

(
Al,κ

q30
+
Bl,κ

q20
+...

)
V Vq+

2(2π)3Bl,κ

q20
+... (8)

Here the first term corresponds to the trivial zeroth-order con-
tribution and merely indicates that the initial state contains one
photon. The second vacuum term is enhanced by the large
factor V since the vacuum emission takes part in the whole
interaction region. On the other hand, it is suppressed by Vq
since we have integrated only over this small momentum re-
gion. In the quantitative estimates concerning this vacuum
term, we will take into account that this radiation is emitted at
all the other directions (see Sec. VII). The vacuum contribu-
tion is essentially determined by the first term in parentheses
in Eq. (8). Finally, the last term in Eq. (8) comes from the
difference in Fig. 2 and governs the photon-induced contribu-
tion. Here the factor 2 appears since the B term doubles in
the difference of the two Feynman diagrams. Let us briefly
discuss the origin of the factor (2π)3. When introducing a
photon smearing function, one has to perform two additional
integrations in Eq. (7). Assuming that the smearing function
is equal to some constant C in a small vicinity of momentum
q, one can simply multiply the integrand by factor V 2

q and re-
place the smearing function with C. This leads to an overall
factor C2V 2

q . Since the initial state contains one quantum, the
zeroth-order photon number density integrated over Vq yields
unity, i.e, C2Vq = 1. The external field is homogeneous in
space, so the number density will be proportional to the vol-
ume V as in Eq. (6). However, here V is determined by the
spatial volume occupied by the initial photon, i.e., V should
be replaced with (2π)3/Vq . Accordingly, we arrive at the fac-
tor (2π)3 in the last term in Eq. (8). Note that unlike the vac-
uum contribution, this one is enhanced once the initial state
contains many probe photons. This will be discussed next.

B. N -photon state

The stimulated emission and absorption parts give rise to
the number of signal photons corresponding to the third term
in Eq. (8). It is not enhanced by V since the probe photon

does not “feel” the boundaries of the interaction region. How-
ever, the crucial point is that in the case of N photons in the
initial state, this term will be proportional to N , which can
be verified by direct calculations of the mean number density
of photons as was discussed above. Accordingly, the photon-
induced contribution yields

N (ph) =
2(2π)3|Bl,κ |

q20
N. (9)

As will be seen later, the coefficient Bl,κ can be positive or
negative depending on the field configuration, i.e., the domi-
nant contribution can arise from either the process of stimu-
lated emission or from the absorption channel.

Here we propose to measure the relative change of the op-
tical probe beam intensity given by the ratio N (ph)/N . In
Sec. VII we will assess this scenario together with the pro-
posal to detect the vacuum radiation and with possible obser-
vations of the pair production process. In order to provide
quantitative estimates and discuss the feasibility of measuring
the signal experimentally, one should evaluate the coefficients
An,λ and Bn,λ. This will be a subject of the following sec-
tions.

IV. FURRY-PICTURE CALCULATIONS VERSUS
PERTURBATION THEORY

In this section, we will perform numerical calculations of
the coefficients An,λ and Bn,λ and benchmark the results by
means of PT. In what follows, the external background is as-
sumed to be a Sauter pulse

Ez(t) =
E0

cosh2(t/τ)
, (10)

so the classical potential reads

A3(t) = −E0τ tanh(t/τ). (11)

The other components vanish. We also introduce A0 ≡
A3(+∞) = −E0τ and A0 = A0ez .

A. Nonperturbative calculations

To calculate the coefficients An,λ and Bn,λ, one has to
compute the second term in Eq. (5). Since the external field
does not depend on the spatial coordinates, the in solutions
involved in Eq. (5) can be represented as

ζϕp,s(x) = (2π)−3/2 eiζpxζχp,s(t), (12)

where ζ = ± and s = ±1 defines the spin state. Then the
vacuum contribution to the number density of soft photons
takes the following form [29, 31]:
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(2π)3

V
n(vac)
k,λ =

α

4π2

1

k0

∑
s,s′

∫
dp

∣∣∣∣ ∫ dt+χ̄p,s(t)γ
µε∗µ(k, λ)−χ−p−k,s′(t)e

ik0t

∣∣∣∣2, (13)

When integrating over t ∈ (−∞, tin] and t ∈ [tout,+∞), one
has to introduce a factor e−ε|t| (ε → 0). In fact, the leading
contribution An,λ/k

3
0 arises from the region [tout,+∞) [29],

so one does not need to perform numerical integration over
the intermediate time domain. Moreover, the coefficient An,λ

can be evaluated analytically (see Appendix A),

An,λ =
α

4π5

∫
dp

(P , eλ)2p20(P )[
p20(P )− (P ,n)2

]2 np(1− np), (14)

where P ≡ p − eA0, p0(p) ≡
√
m2 + p2, and eλ is a

three-dimensional photon polarization vector. To derive the
expression (14), we have employed the explicit formulas for
the one-particle transitions, which can be obtained in the case
of the Sauter pulse (10) since the Dirac equation can be solved
analytically [35, 50]. The number density np of the electrons
produced is also known exactly [35, 50, 51]. Note that this
quantity does not depend on spin s and never esceeds unity.

To evaluate the coefficient Bn,λ, we use the general ex-
pression (13) and subtract the term with the opposite sign of
kµ from the p integrand and then divide the result by 2.

B. Perturbation theory

We also employ a PT approach to test our nonperturbative
procedure. The leading contribution of the vertex diagram can
be evaluated as displayed in Fig. 3. The ordinary thin lines
correspond here to the free solutions of the Dirac equation or
to the free propagator in the case of the internal line. The
crosses denote the interaction with the classical background
Aµ.

Computing directly the Feynman diagrams in Fig. 3, we
arrive at

A
(PT)
n,λ =

α

4π3
(eE0τ

2)2
∫
dp

1

sinh2(πτp0)

(p, eλ)2(p20 − p2z)[
p20 − (p,n)2

]2 ,

(15)
where p0 = p0(p) =

√
m2 + p2. This expression coin-

cides with the leading term of the perturbative expansion of
Eq. (14), as it should. To calculate Bn,λ, we utilize the sub-
traction procedure as described in the previous section. The
PT approach is only accurate if |eE0|τ � m, i.e., the so-
called Keldysh parameter γ = m/(|eE0|τ) is sufficiently
large, which is obviously not a realistic condition. For this rea-
son, one has to perform nonperturbative calculations as was
stated above.

However, to benchmark our exact numerical approach, we
compare the results with the PT predictions. As an example,
in Fig. 4 we display the coefficients An,λ and Bn,λ for n =
ey and photon polarization along the z axis, eλ = ez (we use
index yz). The coefficients are presented as functions of E0

2

≈

2

1

Figure 3. Perturbative expansion of the vertex diagram.

for τ = 1.0m−1. We observe that the PT approach provides
quite accurate predictions for sufficiently weak pulses.

Finally, we point out that unlike the PT approach, one can-
not employ the so-called locally-constant field approximation
(LCFA) as it is not suitable for computing the number density
of soft photons. In fact, one usually utilizes the LCFA, for
instance, to describe the nonlinear Breit-Wheeler mechanism
of high-energy-photon decay in strong external fields. Note
that according to Refs. [52, 53], in the case of a plane wave
background the second diagram in Fig. 2 is exponentially sup-
pressed. The first diagram in Fig. 2 does not even contribute
in a plane wave in accordance with the fact that plane waves
do not produce pairs. Our direct nonperturbative calculations
taking into account the temporal dependence of the external
field capture the effect of interest unlike the LCFA. To incor-
porate spatial inhomogeneities, one should either evaluate di-
agrams in the presence of space-time-dependent fields, which
is a formidable task, or sum the results over the spatial profile
according to the local approximation employed in Ref. [31]
(see also Ref. [54]). However, here we assume the field to be
spatially uniform to save computational time and obtain the
necessary estimates. The spatial finiteness of the interaction
region is taken into account by the volume factor V as will be
discussed in Sec. VII.

V. PHOTON EMISSION IN SCALAR QED

Since we are interested in computing the coefficients An,λ

and Bn,λ for more realistic parameters of the external field,
it is possible to simplify calculations by using the WKB ap-
proach. This is particularly important for calculating Bn,λ

as in this case, we do not have a closed-form expression like
Eq. (14). As we assume that the external field is linearly po-
larized and spatially homogeneous, the spin effects should be
insignificant, which allows one to consider scalar QED, where
the calculations are simpler. The result will be multiplied by a
factor of 2. Note that the total particle yield in spinor and
scalar QED can possess different quantitative patterns also
due to effects of statistics [55]. However, these effects come
into play only for E0 & Ec, so here they can be completely
disregarded.

It turns out that in scalar QED the general expression for
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Figure 4. CoefficientsAyz andByz as functions of the field amplitude E0 of the Sauter pulse (10) for τ = 1.0m−1. The results were obtained
by means of the nonperturbative expression (13) and within perturbation theory to second order in E0.

the vertex contribution is similar to the second term in Eq. (5).
It reads

n(sc)
k,λ = e2

∑
n,m

∣∣∣∣ ∫ d4xf∗k,λ,µ(x) +ϕ
∗
n(x)
←→
∂µ −ϕm(x)

∣∣∣∣2,
(16)

where ϕ1
←→
∂µϕ2 ≡ ϕ1(∂µϕ2)−(∂µϕ1)ϕ2. The quantum num-

bers n and m correspond to momentum only. In the case

of a spatially homogeneous background, the solutions of the
Klein-Fock-Gordon equation can be represented as

ζϕn(x) = ζϕp(x) =
1

(2π)3/2
eζipx ζχp(t). (17)

Then Eq. (16) takes the following form:

(2π)3

V
n(sc)
k,λ =

α

4π2

1

k0

∫
dp

∣∣∣∣ ∫ dt+χ∗p(t)e∗λ(2p + k)−χ−p−k(t)eik
0t

∣∣∣∣2, (18)

which represents a scalar-QED version of Eq. (13). We as-
sume that (eλ,k) = 0. The leading 1/k30 contribution can be
evaluated exactly yielding

A(sc)
n,λ =

α

8π5

∫
dp

(p, eλ)2p20(P )[
p20(P )− (P ,n)2

]2 n(sc)
p (1 + n(sc)

p ),

(19)
where n(sc)

p is a number density of bosons produced. One ob-
serves that in the spinor case, there is also an additional factor
of 2 corresponding to the spin degeneracy and the integrand
involves (P , eλ) instead of (p, eλ). The latter point will not
be important as we will focus on the case (A0, eλ) = 0.
Note that the number density of particles becomes identical
in spinor and scalar QED in the realistic regime E0 � Ec,
τ � m−1, |eE0|τ � m [51]. The factor 1 + n(sc)

p reflects the
statistics of bose particles, cf. Eq. (14). In what follows, this
factor will be completely inessential as the number density of
particles is much smaller than unity in the regime of interest.

AlthoughBn,λ can be obtained numerically by the subtrac-
tion scheme, we will need the results in the realistic domain,
where our direct computations become very time consuming.
To overcome this obstacle, we will obtain closed-form expres-

sions forAn,λ andBn,λ within the WKB approach. Since the
spin effects are unimportant here, it is sufficient to carry out
the WKB calculations in the case of scalar QED, which is a
subject of the next section.

VI. WKB ANALYSIS

As was stated above, we focus on the realistic domain of the
field parameters E0 � Ec, τ � m−1, |eE0|τ � m, where
the WKB approximation is well justified. As we know the
asymptotic behavior of the in solutions for t 6 tin, we can eas-
ily calculate the contribution from the region (−∞, tin]. The
wavefunctions for t > tin can be constructed approximately.
The leading 1/k30 term comes from the region [tout, +∞). To
evaluate it, one should decompose the in solutions in Eq. (18)
in terms of the out solutions and use the asymptotic behavior
of the latter. Within the WKB approach, one has to combine
the functions with different signs of the energy when cross-
ing the Stokes line since it is the Stokes phenomenon that
gives rise to nonzero particle yield and also governs photon
emission and absorption examined in this study (see, e.g.,



7

Refs. [56, 57]). It turns out that both An,λ and Bn,λ are
proportional to |αp|2, where αp is the WKB transition am-
plitude between the positive-energy state with momentum p
and the corresponding negative-energy state (see Appendix B
for more details). Obviously, |αp|2 coincides with np from
Eq. (14) and with n(sc)

p from Eq. (19) once the WKB approach
is applicable. The coefficients An,λ can be calculated quite
straightforward and read

A(WKB)
n,λ =

α

8π5

∫
dp

(p, eλ)2p20(P )[
p20(P )− (P ,n)2

]2 |αp|2. (20)

This expression immediately follows from Eq. (19) and it is
very accurate in the case of realistic field parameters. For
instance, if E0 = 0.1Ec, then the expression (20) deviates
from Eq. (19) on the level of 1% already for τ & 30m−1.
Although one can directly evaluate the exact formula (19) in-
stead of using semiclassical approximations, it is the WKB
technique that allows us to obtain a closed-form expression
for Bn,λ. We arrive at (see Appendix B)

B(WKB)
n,λ =

α

8π5

∫
dp

(p, eλ)2(P ,n)[
p20(P )− (P ,n)2

]2 |αp|2. (21)

The explicit form of |αp|2 in the domain of interest reads

|αp|2 = e−πτ(ω++ω−+2eE0τ), (22)

where ωζ =
√
m2 + p2x + p2y + (pz + ζeE0τ)2.

Note that the integrands in Eqs. (20) and (21) contain
the difference p20(P ) − (P ,n)2 in the denominator. Since
|eE0|τ � m, one has to cancel the term (pz + eE0τ)2 in
this difference in order to maximize the coefficients An,λ and
Bn,λ. Accordingly, we will assume n = ez . Furthermore,
due to the presence of the factor (P ,n), the expression (21)
vanishes if one chooses n = ex or n = ey . The polarization
vector eλ can now point at any direction in the xy plane as the
external background is symmetric, so we choose eλ = ex.

To calculate Azx and Bzx, one can perform integration in
Eqs. (20) and (21) numerically. Nevertheless, in the realistic
regime, one can also evaluate the integrals approximately by
means of Laplace’s method since the main contribution arises
from a small vicinity of p = 0 due to the exponential suppres-
sion of |αp|2. One obtains

Azx ≈
α

16π6
m3(mτ)3

(
E0

Ec

)11/2

e−πEc/E0 , (23)

Bzx ≈ −
α

16π6
m2(mτ)2

(
E0

Ec

)9/2

e−πEc/E0 . (24)

Although these formulas contain the exponential factor which
arises in the quantitative analysis of the Sauter-Schwinger
mechanism, the factors τ3 and τ2 substantially enhance the
coefficients. Note that measuring photons emitted along the
y axis is a completely unfavorable scenario since Ayx ≈
(m/|eE0τ |)4Azx = γ4Azx � Azx. Accordingly, for more
realistic field parameters, the process of vacuum photon emis-
sion predicts a huge number of photons traveling parallel to
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Figure 5. Coefficient Azx as a function of the pulse duration τ in
the case of scalar QED for E0 = 0.05Ec. The asymptotic behavior
(dashed line) is given by Eq. (23).

the electric field. This means that almost isotropic radiation
revealed in Ref. [29] can be observed only outside the domain
considered here. Finally, we note that the coefficient (24)
changes its sign if the probe photon travels in the opposite
direction.

As an illustration, we present the coefficient Azx as a func-
tion of τ for E0 = 0.05Ec (see Fig. 5). One observes that
the approximate expression (23), which predicts the scaling
Azx ∼ τ3, is in good agreement with the full WKB calcula-
tion.

In what follows, we will examine the experimental scenar-
ios based on measuring either vacuum photon emission or
changes in the optical probe beam intensity. We will employ
Eqs. (23) and (24) multiplied by a factor of 2. Both these pro-
posals will also be compared with a direct observation of pairs
produced, i.e., the Sauter-Schwinger effect itself. To estimate
the total particle yield, one can integrate |αp|2 over p taking
into account the factor V/(2π)3. This integration can also be
carried out by means of Laplace’s method. One finds

N (pairs) ≈ 1

(2π)3
(m3V )(mτ)

(
E0

Ec

)5/2

e−πEc/E0 . (25)

VII. DISCUSSION AND EXPERIMENTAL PROSPECTS

Having evaluated the coefficients An,λ and Bn,λ, we can
now assess the experimental feasibility of the three follow-
ing scenarios: (a) direct observation of the Sauter-Schwinger
pairs, (b) measuring vacuum radiation, (c) measuring changes
in the probe beam intensity. Let us discuss each of these in
more detail.
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A. Pair production

The total particle yield can be obtained by means of
Eq. (25). Let us introduce a laser wavelength and approx-
imate it by λ ≈ 2τ . Assuming that the laser radiation is
tightly focused, we note that the volume factor V is propor-
tional to λ3. However, taking into account the spatial pro-
file of the external field will definitely reduce the number of
pairs since the external field does not have a maximal ampli-
tude in the whole interaction region. To estimate the effect
of the spatial inhomogeneities, one can examine the local val-
ues of the particle yield since the realistic laser wavelength is
very large [55]. Moreover, the pair production process in the
nonperturbative regime is mainly governed by the exponential
function exp[−πEc/|E(x)|]. One can easily verify that for a
profile E(x) = E0 cos(2πx/λ), this exponential contributes
only within the vicinity |x| . 0.08λ once E0 . 0.1Ec. Ac-
cordingly, in what follows, we will assume that the effective
interaction volume amounts to V = (0.1λ)3.

Computing now the number of pairs (25), we will identify
the threshold value of the field amplitude E0 depending on τ
by the condition N (pairs) = 10. Finally, we point out that the
expression (25) is quite universal with respect to the choice of
the temporal profile of the external field. For instance, in the
case of an oscillating background with duration T = τ , one
obtains a similar expression which differs from Eq. (25) only
by factor 23/2/π ≈ 0.9 (see, e.g., Refs. [55, 58–61]).

B. Vacuum emission of soft photons

As was demonstrated above, the major part of the soft pho-
tons emitted from vacuum travels parallel to the z axis. The
number of photons can be obtained by integrating Eq. (6).
Here dk = k20 sin θdk0dθdϕ, so the number of signal pho-
tons in this scenario reads

N (vac) = 2πV
∑
λ

π/2∫
0

dθ sin θ

k0max∫
k0min

dk0
An,λ

k0
, (26)

where we imply n = sin θex + cos θez replacing the integra-
tion over ϕ with the factor 2π. The upper limit regarding the θ
integration is inessential as the main contribution arises from
a small vicinity of θ = 0. For this reason, we also assume
eλ = ex in the expression for An,λ and take into account the
second polarization by multiplying the results by a factor of 2.
This brings us to the following result:

N (vac) ≈ α

4π5
(m3V )(mτ) ln

(
k0max

k0min

)(
E0

Ec

)7/2

e−πEc/E0 .

(27)
The interval [k0min, k

0
max], where one measures the signal pho-

tons, is assumed to obey ln(k0max/k
0
min) = ln 4, which corre-

sponds to, e.g., a frequency interval twice as large as the full
width of the visible spectrum. The threshold of the process
is defined via N (vac) = 10, i.e., one has to be able to detect
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Figure 6. Threshold values of the laser peak intensity that are nec-
essary for measuring vacuum photon emission (upper curve), the
Sauter-Schwinger effect itself (middle curve), and changes in the in-
tensity of the probe photon beam (lower curve).

at least ten signal photons. It is already seen that the num-
ber of soft photons is suppressed by additional factor E0/Ec
compared to the particle yield (25). In what follows, we will
find out how this affects the experimental prospects of this
scenario.

C. Probe beam intensity

Here we propose to measure a relative change in the inten-
sity of the probe photon beam, which can be evaluated via

η ≡ N (ph)

N
=

2(2π)3|Bzx|
q20

, (28)

where we will employ Eq. (24). Note that the probe beam
is orthogonal to the propagation direction of the lasers that
we treat here as a classical background, so the primary laser
beams as well as the photons emitted via the tadpole diagram
will not obscure the probe quanta. Moreover, the vacuum
term (27) is many orders of magnitude smaller than the initial
number of probe photons N even if we sum over all spatial
directions.

The ratio (28) can be enhanced by choosing a low frequency
of the probe photons. We will assume q0 = 10−6m, which
corresponds to a wavelength of 2.4 µm. The realistic thresh-
old of this scenario is set to η = 0.01, i.e., the relative intensity
change should amount to at least one percent.

D. Comparison

In Fig. 6 we present the threshold values of the external
field amplitude in terms of the laser intensity for various val-
ues of the laser wavelength. The curves were found to be sta-
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ble with respect to the changes of the parameters involved in
the pre-exponential factors and threshold values of N (pairs),
N (vac), and η, respectively. First, one observes that although
the peak intensity corresponding to the field strength Ec is
2.3 × 1029 W/cm2, the real threshold of the pair production
process is about two orders of magnitude lower due to the
presence of a large pre-exponential factor (it was examined
also, e.g., in Ref. [62]). Second, it turns out that measuring
vacuum photon emission is not that promising compared to a
direct detection of the Sauter-Schwinger pairs. Note that both
of these contributions are proportional to τ4, so the thresh-
old values of the laser intensity decrease rather rapidly with
increasing λ. Nevertheless, the probe-photon technique turns
out to be more advantageous, especially for smaller values of
λ.

Finally, let us provide several additional remarks concern-
ing the experimental implementation of the three setups. If
the external field contains several cycles for a given half pe-
riod τ = λ/2, the particle yield as well as the number of soft
photons will be enhanced by the corresponding factor, which
will also slightly lower the position of the curves in Fig. 6. On
the other hand, it is crucial to have a unipolar laser background
to achieve notable changes in the intensity of the probe pho-
ton beam. Further developments in the practical generation
of such unipolar pulses (see Ref. [63]), especially in the do-
main λ . 0.1 µm should make the probe-beam technique an
efficient tool for measuring nonperturbative strong-field QED
effects.

VIII. CONCLUSION

In this study, we computed the number density of soft pho-
tons emitted in the presence of a strong electric background.
The main goals were (a) to examine the role of additional
(probe) photons in the initial state and (b) to assess the ex-
perimental prospects of two proposals with regard to measur-
ing electromagnetic radiation instead of detecting electron-
positron pairs. To perform the necessary computations, we
employed the Furry picture formalism together with the WKB
approach allowing one to investigate a realistic regime of
the field parameters. It was demonstrated that the technique
which was proposed here and is based on using an additional
optical probe photon beam can be utilized in order to lower
the pair production threshold although the pure vacuum radia-
tion is unlikely to be detected prior to the onset of the Sauter-
Schwinger effect.
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Appendix A: Calculation of An,λ in spinor QED

Let us first represent the expression (13) in the following
form:

(2π)3

V
n(vac)
k,λ =

α

4π2

1

k0

∑
s,s′

∫
dp

∣∣∣∣as,s′k0
+ bs,s′ + ...

∣∣∣∣2. (A1)

Then the coefficient An,λ reads

An,λ =
α

32π5

∑
s,s′

∫
dp |as,s′ |2. (A2)

As was stated in the text, the leading contribution as,s′/k0
arises from integrating over t ∈ [tout,+∞) in Eq. (13). To
perform this integration, one has to express the in solutions in
terms of the out ones and make use of the asymptotic behavior
of the latter. Here we will need the following scalar products:

G
(
ζ

∣∣κ)
p,s,p′,s′

= (ζϕp,s,
κϕp′,s′), (A3)

where ζ, κ = ±. In the case of a spatially homogeneous ex-
ternal background, one finds

G
(
ζ

∣∣κ)
p,s,p′,s′

= δs,s′δ(ζp− κp′)g
(
ζ

∣∣κ)
p,s
. (A4)

Integrating over t ∈ [tout,+∞), one obtains

as,s′ =
i(ūP ,sγ

µε∗µuP ,s′)

1− (P ,n)/p0(P )
g
(
+

∣∣+)
p,s

g∗
(
−
∣∣+)
−p,s′

+
i(v̄P ,sγ

µε∗µvP ,s′)

1 + (P ,n)/p0(P )
g
(
+

∣∣−)
p,s

g∗
(
−
∣∣−)
−p,s′ ,(A5)

where P = p − eA0 and up,s (vp,s) are constant bispinors
corresponding to the positive (negative) energy solutions of
the free Dirac equation [cf. Eq. (B2) in Ref. [29]]. Taking
the mod-square of Eq. (A5), one has to compute standard
traces involving bispinors and the gamma matrices. The cru-
cial point here is that in the case of a Sauter profile (10), the
g coefficients are known explicitly [35]. The coefficients with
opposite signs yields the number density np of the electrons
(positrons) produced:

np =
∣∣g(+∣∣−)p,s∣∣2 =

∣∣g(−∣∣+)−p,s∣∣2. (A6)

The coefficients with only positive (negative) signs obey∣∣g(+∣∣+)p,s∣∣2 =
∣∣g(−∣∣−)−p,s∣∣2 = 1− np. (A7)

Then straightforward calculations bring us to Eq. (14).
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Appendix B: WKB calculation of Bn,λ

As was done in Appendix A, it is again convenient to rep-
resent the photon number density (18) in the following form:

(2π)3

V
n(sc)
k,λ =

α

π2

1

k0

∫
dp (p, eλ)2

∣∣∣∣ ak0 + b+ ...

∣∣∣∣2. (B1)

Performing calculations similar to those outline in Ap-
pendix A, one can first derive the expression (19). In fact,
these computations are easier as one deals only with scalar
functions instead of matrices. The coefficient Bn,λ should be
evaluated via

Bn,λ =
α

4π5

∫
dp (p, eλ)2Re(a∗b). (B2)

Within the WKB approximation, one can explicitly construct
the solutions taking into account the Stokes phenomenon and

then find a and b. One obtains

a =
i

p0

αp

1− (p,n)2/p20
, (B3)

where

αp = −i exp

[
2i

tp∫
tin

p0(p− eA)dt

]
cosh(πτβp/2)

sinh(πτγp)
,(B4)

βp = (ω+ − ω−) sgn pz − 2eE0τ, (B5)

γp =
√
m2 + p2x + p2y + (|pz|+ eE0τ)2. (B6)

Here tp is the time instant where the Stokes line intersects
the real axis. Decomposing the amplitude of the process with
respect to k0, one finds that the term b in Eq. (B1) contains
numerous contributions. However, the real part in Eq. (B2)
leaves only one of them given in Eq. (21). In the semiclassical
approximation, the absolute value of Eq. (B4) coincides with
Eq. (22).
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