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A derivation of fully polarization-resolved probabilities is provided for high-energy photon emission and

electron-positron pair production in ultrastrong laser fields. The probabilities resolved in both electron spin and

photon polarization of incoming and outgoing particles are indispensable for developing QED Monte Carlo and

QED-Particle-in-Cell codes, aimed at the investigation of polarization effects in nonlinear QED processes in

ultraintense laser-plasma and laser-electron beam interactions, and other nonlinear QED processes in external

ultrastrong fields, which involve multiple elementary processes of a photon emission and pair production. The

quantum operator method introduced by Baier and Katkov is employed for the calculation of probabilities within

the quasiclassical approach and the local constant field approximation. The probabilities for the ultrarelativistic

regime are given in a compact form and are suitable to describe polarization effects in strong laser fields of

arbitrary configuration, rendering them very well suited for applications.

I. INTRODUCTION

The investigation of spin dynamics of leptons driven by ex-

ternal fields and the polarization characteristics of their emis-

sions have important implications in many fields, including

high-energy [1, 2] and nuclear physics [3–6], and material sci-

ence [7, 8]. Apart from the potential of generating polarized

ultrarelativistic particle beams for various applications, for in-

stance, spin polarized electron (positron) beams for probing

nuclear structure and new physics beyond the standard model

[9–12], or γ-photon beams for meson photoproduction [13]

and vacuum birefringence measurement in ultrastrong laser

fields [14–18], the understanding of the polarization depen-

dence of nonlinear Compton scattering and Breit-Wheeler pro-

cesses is of great interest for modelling high-order QED ef-

fects such as the trident process [19–21] and double nonlinear

Compton scattering [22–25], as well as polarized QED cas-

cades [26, 27].

The problem of radiation by an ultrarelativistic electron

in a strong laser field can be split into two characteristic

regimes depending on the classical strong-field parameter

a0 = eE0/(mω0) [28, 29]. For a0 . 1, the total angle of the

electron deflection in the external field (∼ a0/γ) is lower or of

the order of the characteristic angle of radiation (∼ 1/γ), and

the radiation of the particle is determined by a significant part

or nearly the whole trajectory of the particle. In this case, the

characteristics of radiation is more sensitive to the features of

the external field, such as the pulse shape and polarization [30–

32]. Here, E0 and ω0 are the laser field and frequency, respec-

tively, −e, m, and γ the electron charge, mass, and the Lorentz-

factor, respectively, while relativistic units with c = ~ = 1 are

used throughout.

Recent progress in laser technology [33–39] enables obser-

vation of nonlinear QED processes in ultrastrong fields and

has stimulated the interest of theoretical investigations to the
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highly nonperturbative domain with a0 ≫ 1 [40, 41]. The ra-

diation spectra in the strong field regime can be calculated in

the Furry picture within the quantum theory if the solution of

wave equations in the given external field is known, see e.g.

[42–47]. However, such solutions are known only for a few

specific fields [48] and not in most realistic field configura-

tions. The Volkov wave function for a relativistic electron in a

monochromatic plane wave field [49] has been fully exploited

within the Furry picture for calculations as polarization av-

eraged [28], as well as for polarization-resolved processes.

In particular, the electron spin-resolved radiation probability

is calculated in Refs. [50, 51] with averaging over the emit-

ted photon polarization, and the photon polarization resolved

probability in Refs. [43, 52, 53], averaging over the electron

spin variable. Orbital angular momentum transfer in the non-

linear Compton process is discussed in [54]. A comprehensive

description of polarization dependent nonlinear Compton scat-

tering in a monochromatic plane-wave background has been

given in Ref. [55], including both the electron spin and photon

polarization, which however yields rather unwieldy analytical

expressions for probabilities as a sum over high-order Bessel

functions and are difficult to apply in QED-PIC codes. Re-

cently, polarization resolved probabilities in plane-wave laser

pulses have been numerical evaluated in [42].

In ultrastrong field regime one can employ the approximate

asymptotic expressions for probabilities at a0 ≫ 1. In physi-

cal terms this approximation stems from the fact that the for-

mation length of the process becomes much smaller in this

limit than the typical scale of the trajectory: l f ∼ λ0/a0 . λ0

[28]. In other words, the total angle of the particle deflection

in external fields is much larger than the characteristic angle of

radiation, and in the given direction the particle radiates from

a small fraction of its trajectory. In this case, the variation of

the external field acting on the particle within the formation

length can be neglected, leading to the local constant field

approximation (LCFA) [28, 42, 43, 56–60]. More accurate

conditions for the LCFA are a0 ≫ 1 and a3
0
/χe ≫ 1, which

stem from the saddle-point approximation in calculations of

the time-integral for the amplitude of the process [61, 62].

Here, χe = |Fµνpν|/mFcr with F being the field strength tensor,
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p electron momentum, and Fcr = m2/|e| = 1.3 × 1016 V/cm

the critical field of QED.

The collisions of a strong laser field and high-energy parti-

cles also enable the production of e−e+ pairs, which has been

successfully observed at the Stanford Linear Accelerator Cen-

ter (SLAC) in 1990s [63, 64]. The creation of pairs has been

attributed to the nonlinear Breit-Wheeler process, where the

single γ-photon absorption is accompanied with a simultane-

ous absorption of multiple laser photons. The spin effects

in this process in a monochromatic plane laser wave have

been analyzed in Refs. [65, 66], averaging over the γ-photon

polarization, while the photon polarization effects have been

studied in Refs. [67–69], averaging over the electron-positron

spins. The same processes in a constant crossed field have

been considered in Refs. [52, 68, 70]. A more comprehensive

analytical treatment of the nonlinear Breit–Wheeler process

in a monochromatic plane-wave laser field, including both

electron-positron spins and photon polarizations, has been pre-

sented in Ref. [71] (the description of this process via helicity

amplitudes is given in [72]), and the numerical analysis of the

process in Ref. [42].

The semiclassical QED operator method has been devel-

oped by Baier and Katkov [29] for efficient calculations of

probabilities of strong-field QED processes in strong back-

ground fields, and provides a powerful major alternative to

the QED calculations in the Furry picture. The QED operator

method is applicable when the electron dynamics in the exter-

nal field is quasiclassical (amenable to the Wentzel-Kramers-

Brillouin approximation), however it accounts fully for the

quantum features of the QED process, in particular, the pho-

ton recoil at radiation, as well as the possibility of the pair

creation by a γ-photon. The amplitude of the QED process

in the operator method is derived assuming commutativity of

operators describing the particles due to the quasiclassical dy-

namics, and taking into account the noncommutativity of the

particle operators with those of the photon field [73]. Finally,

the process amplitude is derived as a functional of the electron

classical trajectory in the given background field. Especially

simple analytical expressions for the amplitude are obtained

in the ultrarelativistic regime, applying the 1/γ-expansion up

to the leading order, which provides the process description

within the LCFA. Recently, the semiclassical QED operator

method beyond LCFA has been applied numerically to inves-

tigate the polarization effects in laser fields of moderate inten-

sity [74], where the calculation of radiation spectra was car-

ried out with numerical integrations using the electron exact

classical trajectories.

In this paper, we derive the spin- and polarization-resolved

radiation and pair production probabilities applicable for in-

vestigations of polarization effects in realistic ultrastrong laser

fields with a0 ≫ 1. The fully polarization-resolved quasiclas-

sical formulas are obtained using the QED operator method

of Baier and Katkov within the LCFA. While in the semi-

nal book by Baier, Katkov, and Strakhovenko [29], the radi-

ation and pair production probabilities are given only for the

case when the spin state of one of the outgoing particles is

summed over, here we obtain the fully polarization resolved

formulas and without specification of the spin quantization

axis. These probabilities are indispensable to develop Monte

Carlo codes applied for detailed investigations of polarization

phenomena in QED processes in ultrastrong laser fields [75–

80], in particular, during nonlinear Compton scattering and

nonlinear Breit-Wheeler processes. In our previous publica-

tions [75–77], we have used a spin-resolved but photon polar-

ization averaged QED Monte Carlo code. In [78] the Monte

Carlo code was based on the probabilities averaged over the

outgoing particle polarization, while in Refs. [79, 80] we used

the fully polarization-resolved probabilities, however without

giving the derivation of corresponding formulas. The aim of

this paper is to provide the derivation of the fully polarization-

resolved probabilities, allowing their straightforward verifica-

tion and a reliability check.

II. SPIN AND POLARIZATION RESOLVED RADIATION

PROBABILITY

The problem of radiation of ultrarelativistic electrons in an

external electromagnetic field can be solved with the quasi-

classical operator approach, developed by Baier and Katkov

[81, 82] and inspired by [83]. It is based on the analysis of

two types of quantum effects at the radiation of high-energy

particle in an external field. The first type originates from the

quantization of particle motion in the field. The latter yields

noncommutativity of operators of the particle dynamical vari-

ables, with the nonvanishing order of the commutator scaling

as χ/γ3 (for instance in a constant magnetic field). Therefore,

at high energies γ ≫ 1 (χ . 1) the motion of the particle is

quasiclassical. The second type of quantum effects is related

to the quantum recoil of a particle (with an energy ǫ) during

a photon emission (with an energy ω) and it is of the order

ω/ε ∼ χ . At χ & 1 the energy of emitted photon is ω ∼ ε.

This means that the noncommutativity of operators of the par-

ticle dynamical variables can be disregarded, while their com-

mutators with the operators associated with the field of the ra-

diated photons should be accounted for. In this case operator

formulation of quantum mechanics is particularly convenient.

More details on the quasiclassical operator approach are given

in books [29, 73]. By using this method Baier and Katkov ob-

tained following expression for the emission probability

dwrad =
α

(2π)2

d3k

ω

∫
dt1

∫
dt2R∗2R1 exp

[
−i
ε (kx2 − kx1)

ε′

]
,

(1)

where kµ = ω {1, n} and xµ = {t, r(t)} are the 4-momentum

and 4-coordinate of the emitted photon. The indices 1 and 2

denote the dependence on the radiation time moments t1 and

t2 along n direction, respectively, n is the radiation direction,

ε and ε′ the electron energies before and after emission, re-

spectively, and

R(t) = ϕ+f (ζ f ) [A(t) + iσ · B(t)] ϕi(ζi), (2)

where ϕi and ϕ f are the two-component spinors that describe

the initial and final polarization states of the electron, respec-

tively. The unit vectors ζi and ζ f are the corresponding polar-
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ization vectors. Taking into account Eq.(2), we obtain

R∗2R1 =
1

4
Tr

[
(1 + ζi · σ)

(
A∗2 − iσ · B∗2

) (
1 + ζ f · σ

)
(A1 + iσ · B1)

]

=
1

2

[
A1A∗2

(
1 + ζi · ζ f

)
+ B1 · B∗2

(
1 − ζi · ζ f

)

+ i
(
ζ f − ζi

)
· (B1 × B∗2) + i

(
ζi + ζ f

)
·
(
B1A∗2 − A1B∗2

)

−
(
A1B∗2 + B1A∗2

)
· (ζi × ζ f )

+
(
ζi · B∗2

) (
ζ f · B1

)
+ (ζi · B1)

(
B∗2 · ζ f

)]
, (3)

where the expressions of A(t) and B(t) are

A(t) =
e∗ · p(t)

2
√
εε′


(
ε′ + m

ε + m

)1/2

+

(
ε + m

ε′ + m

)1/2
 ,

B(t) =
1

2
√
εε′


(
ε′ + m

ε + m

)1/2

e∗ × p(t) +

(
ε + m

ε′ + m

)1/2

e∗×

(p(t) − k)
]
, (4)

with p(t) = γmυ being the momentum of the electron, γ =

ε/m the Lorenz factor, e the polarization vector of the emit-

ted photon. This expression can be used for calculation of

any radiation characteristics, including polarization and spin

characteristics.

In LCFA the time of radiation in the given direction is much

shorter than the time characteristic of particle motion, and the

variation of the external field acting on the particle at the for-

mation length can be neglected. In this case, it is convenient

to introduce the following variables

t = (t1 + t2) /2, τ = t2 − t1, (5)

and the functions in the probability expression expand over τ:

v(t ± τ/2) = v(t) ± wτ/2 + ẇτ2/8 + · · · ,
r(t ± τ/2) = r(t) ± vτ/2 + wτ2/8 ± ẇτ3/48 + · · · , (6)

with w being the acceleration of electron. Taking into account

that the produced particles are ultrarelativistic, one obtains

with an accuracy up to the terms ∼ O
(
1/γ2

)

v · w = O
(
1/γ2

)
, n · ẇ = −w2. (7)

Then

v1v2 = 1 − 1

γ2
− w2τ2

2
,

kx2 − kx1 = ωτ
(
1 − n · v + w2τ2/24

)
. (8)

For further calculation of probability dwrad in Eq. (1), we

introduce β, an angle between the plane (v,w) and vector n;

ψ, an angle between the projection of vector n on the plane
(v,w) and vector v. The scalar combinations involving vector

n have the form

n · v = v cos β cosψ,

n · w⊥ = w⊥ cos β sinψ,

n· [v × w⊥] = vw⊥ sin β. (9)

Since the ultrarelativistic particle radiates mainly forward into

a narrow cone, the angles β and ψ are of the order of 1/γ. With

the adopted accuracy

1 − n · v =
(
β2 + ψ2 + 1/γ2

)
/2,

n · s = ψ, n· [v × s] = β. (10)

where s = w/|w|. Using Eqs.(10) and Eq.(8) in Eq.(1), the

photon radiation probability per unit time, dWrad ≡ dwrad/dt,

reads

dWrad =
αω

(2π)2
dω

∫ ∞

−∞

∫ ∞

−∞
dβdψ

∫ ∞

−∞
dτR∗2R1 (11)

exp

{
−i
ε

ε′
ω

[(
β2

2
+
ψ2

2
+

1

2γ2

)
τ +

w2τ3

24

]}
.

Because of the rapid decreasing of functions at large angles

and time, the integration limits have been extended to infinity.

To investigate the radiation of a polarized photon by a po-

larized electron in the constant field, we project the photon

polarization on the unit vectors

e1 = s − (n · s)n,

e2 = [n × s] . (12)

We shall proceed to the calculation of Eq.(11) by integrating

over τ and all angles. Substituting the expressions in Eq.(3)

into the radiation probability and integrating over τ and all

angles with the integrals shown in Appendix , we obtain the

polarization matrix of radiation probability per unit time:

dW11 + dW22 =
C0

2
dω



ε2 + ε′2

ε′ε
K 2

3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)



+

2K 2
3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)

 ζi · ζ f

−
[
ω

ε
ζi · b +

ω

ε′
ζ f · b

]
K 1

3

(
zq

)

+
ω2

ε′ε

K 2
3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)

 (ζi · v̂)
(
ζ f · v̂

) ,

dW12 + dW21 =
C0

2
dω

{
ε2 − ε′2

2ε′ε
K 2

3

(
zq

) (
v̂
[
ζ f × ζi

])

+

[
ω

ε′
(ζi · s) +

ω

ε

(
ζ f · s

)]
K 1

3

(
zq

)

− ω2

2ε′ε

∫ ∞

zq

dxK 1
3

(x)
[
(ζi · s)

(
ζ f · b

)
+ (ζi · b)

(
ζ f · s

)] ,
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dW12 − dW21 = i
C0

2
dω

{
ε2 − ε′2

2ε′ε
K 1

3

(
zq

) (
s ·

[
ζ f × ζi

])

+

−
ε2 − ε′2

ε′ε
K 2

3

(
zq

)
+
ω

ε

∫ ∞

zq

dxK 1
3

(x)

 (ζi · v̂)

+

−
ε2 − ε′2

ε′ε
K 2

3

(
zq

)
+
ω

ε′

∫ ∞

zq

dxK 1
3

(x)


(
ζ f · v̂

)

+
ω2

2ε′ε
K 1

3

(
zq

) [
(ζi · v̂)

(
ζ f · b

)
+ (ζi · b)

(
ζ f · v̂

)]}
,

dW11 − dW22 =
C0

2
dω

{
K 2

3

(
zq

)
+
ε2 + ε′2

2ε′ε
K 2

3

(
zq

)
ζi · ζ f

−
[
ω

ε′
(ζi · b) +

ω

ε

(
ζ f · b

)]
K 1

3

(
zq

)

+
ω2

2ε′ε

(
−K 2

3

(
zq

)
(ζi · v̂)

(
ζ f · v̂

)

+

∫ ∞

zq

dxK 1
3

(x)
[
(ζi · b)

(
ζ f · b

)
− (ζi · s)

(
ζ f · s

)]
 ,

(13)

where zq =
2
3
ω
χε′

, C0 =
α√

3πγ2
and v̂ = v/ |v|, b = v̂ × s. The

radiation probability including all the polarization and spin

characteristic takes the form

dWrad =
1

2
(F0 + ξ1F1 + ξ2F2 + ξ3F3) , (14)

where F0 = dW11 + dW22, F1 = dW12 + dW21, F2 =

i (dW12 − dW21), F3 = dW11 − dW22, and the 3-vector ξ =

(ξ1, ξ2, ξ3) is the Stokes parameter of emitted photon defined

with respect to e1 and e2. For an arbitrarily polarised photon

with polarisation vector e = a1e1+a2e2 Stokes parameters are

given by

ξ1 = a1a∗2 + a2a∗1; ξ2 = i
(
a1a∗2 − a2a∗1

)
; ξ3 = |a1|2 − |a2|2

(15)

After summing over the polarization of emitted photon, we

get

dWrad(ζi, ζ f ) = a + b · ζ f

a =
C0

2
dω


ε2 + ε′2

ε′ε
K 2

3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x) − ω
ε
ζi · bK 1

3

(
zq

) ,

b =
C0

2
dω


2K 2

3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)

 ζi −
ω

ε′
K 1

3

(
zq

)
b

+
ω2

ε′ε

K 2
3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)

 (ζi · v̂) v̂

 ,

where ζ f is the final electron polarization defined by the de-

tector. The final polarization vector of the electron resulting

from the scattering process itself is

ζR
f =

b

a
=

[
2K 2

3

(
zq

)
−

∫ ∞
zq

dxK 1
3

(x)

]
ζi − ω

ε′K 1
3

(
zq

)
b + ω2

ε′ε

[
K 2

3

(
zq

)
−

∫ ∞
zq

dxK 1
3

(x)

]
(ζi · v̂) v̂

ε2+ε′2

ε′ε
K 2

3

(
zq

)
−

∫ ∞
zq

dxK 1
3

(x) − ω
ε
ζi · bK 1

3

(
zq

) . (16)

Taking the sum over the final electron polarizations, the radia-

tion probability maintains the same form as Eq.(14) but with

the following coefficients:

F̃0 = C0dω


ε2 + ε′2

ε′ε
K 2

3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x) − ω
ε
ζi · bK 1

3

(
zq

) ,

F̃1 = C0dω
ω

ε′
(ζi · s) K 1

3

(
zq

)
,

F̃2 = −C0dω

−
ε2 − ε′2

ε′ε
K 2

3

(
zq

)
+
ω

ε

∫ ∞

zq

dxK 1
3

(x)

 (ζi · v̂) ,

F̃3 = C0dω

{
K 2

3

(
zq

)
− ω

ε′
(ζi · b) K 1

3

(
zq

)}
. (17)

The polarization of the emitted photon resulting from the

scattering process itself takes the form ξ
f

1
= F̃1/F̃0, ξ

f

2
=

F̃2/F̃0 and ξ
f

3
= F̃3/F̃0. In linear Compton scattering the

polarization of photons is determined by the driving laser po-

larization, such that circularly polarized γ photons can be ob-

tained by linear Compton scattering of unpolarized electrons

and a circularly polarized laser field. Otherwise in the non-

linear regime, see Eq.(17), the circular polarization of emitted

photons is solely determined by the longitudinal polarization

of initial electrons ξ2 ∼ ζi · ev. Thus, circularly polarized

γ-photons can be generated with nonlinear Compton scatter-

ing only if electrons are initially longitudinally polarized. As

an example we calculate the emission probabilities for an ini-

tially polarized electron, see Fig. 1. When the electron emits

a low energy photon, the probabilities dW↑,ǫ+ and dW↑,ǫ− dom-

inate, leading to a small circular polarization of emitted pho-

tons. In the high energy region, dW↑,ǫ+ and dW↓,ǫ+ play leading

roles, generating highly polarized gamma photons. In particu-

lar, when the emitted photon takes away nearly all the energy

of the initial electron δe ∼ 1, ξ2 → 1, i.e., the helicity of the

electron is transferred to the emitted photon.

After averaging over initial electron polarizations, Eq.(17)
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(a) (b)

δe δe

dW↑,ǫ+
dW↑,ǫ−
dW↓,ǫ+
dW↓,ǫ−

ζ f

ξ2
d

W
ra

d
(a

rb
.

u
n

it
s)

FIG. 1. (a) The radiation probability log10dW vs emitted photon energy δe = ωγ/εi for different final spins ζ f ∈ {↑, ↓} and photon polarizations

ǫ ∈ {ǫ+, ǫ−}, where ǫ± =
1√
2
(e1 ± ie2). (b) The longitudinal polarization of electrons ζ f =

dW↑−dW↓
dW↑+dW↓

(blue solid) and circular polarization of

photons ξ2 =
dWǫ+ −dWǫ−
dWǫ+ +dWǫ−

(red dashed) vs δe; χe = 1.0, ζi = (0, 0, 1).

becomes

F0 = C0dω


ε2 + ε′2

ε′ε
K 2

3

(
zq

)
−

∫ ∞

zq

dxK 1
3

(x)

 ,

F1 = 0, F2 = 0, F3 = C0dωK 2
3

(
zq

)
, (18)

which indicates that the emitted photon is always linearly po-

larized when electrons spin is unresolved.

III. SPIN AND POLARIZATION RESOLVED PAIR

PRODUCTION PROBABILITY

We start from the general form of pair production probabil-

ity given in Ref. [29]:

dWp =
dwp

dt
=

α

(2π)2

d3 p−

ω

∫
dτR∗p

(
t − τ

2

)
Rp

(
t +

τ

2

)

× exp

{
i
ε

ε f

[
kx

(
t +

τ

2

)
− kx

(
t −

τ

2

)]}
, (19)

where kµ = ω (1, n) and xµ = (t, r (t)) are four momentum

and coordinate of the incoming photon, respectively, n is the

unit vector in the photon propagation direction, which can be

written as n = cosψ cos βυ̂ + sinψ cos βs+ sin βb in the angle

reference system (υ̂, s, b). Here, υ̂ is the unit vector along ve-

locity of produced particles, s the unit vector along transverse

component of acceleration w, and b = υ̂×s. For ultrarelativis-

tic particles, the angle between vector n and υ is of the order

1/γ, therefore ψ, β ∼ 1/γ. ε+ and ε− are the energy of the

created positron and electron, respectively. The integration is

performed over the electron momentum p− = γmυ. The ex-

pression of Rp (t) is represented with the form

Rp (t) = iϕ+s (ζ(t)) (A (t) − iσ · B (t)) ϕs̄

(
ζ′ (t)

)
, (20)

ϕs (ζ) and ϕs̄ (ζ′) are the two-component spinors describing

polarizations for particle and antiparticle, with ζ (ζ = ζ−) and

ζ′ (ζ′ = −ζ+) being the corresponding polarization vectors.

With Eq.(20), we obtain

Rp(t2)R∗p(t1) =
1

2

[
A∗1A2(1 − ζ− · ζ+) + B∗1B2(1 + ζ− · ζ+)

+ (ζ− × ζ+) ·
(
B∗1A2 + B2A∗1

)

− (ζ− · B∗1)(ζ+ · B2) − (ζ+ · B∗1)(ζ− · B2)

+ i(ζ− − ζ+) ·
(
B∗1A2 − B2A∗1

)

−i(ζ+ + ζ−) · (B∗1 × B2)
]
. (21)

where

A = Ne · (k × p (t)) ,

B (t) = N
{
e
[(
ε′ + m

)
(ε + m) − p′ (t) · p (t)

]

+ (e · p (t))
(
p′ (t) − p (t)

)}
,

N =
[
4εε′ (ε + m)

(
ε′ + m

)]−1/2
,

with e being the photon polarization vector.

From now on we shall investigate pair production in a

strong laser field (a0 ≫ 1), where the LCFA is valid. In this

case, the field inhomogeneity can be neglected when calculat-

ing the pair production rate at time t. Using LCFA, the terms

of υ
(
t ± τ

2

)
and r

(
t ± τ

2

)
entering the pair production probabil-

ity can be expanded as Eq. (6). Repeating the same steps for

calculating the radiation probability, the pair production prob-

ability can be obtained with an accuracy of ∼ 1/γ. Specif-

ically, projecting the photon polarization on the unit vectors
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e1 = (n ×H +E⊥) / (|n ×H +E⊥|) and e2 = n × e1, sub-

stituting Eq. (21) into the pair production probability Eq. (19),

converting to angles ψ and β with Eq. (9) and integrating

over τ and the solid angle, see Appendix , one can obtain the

electron spin and photon polarization resolved pair production

probability for a photon with energy ω and Stokes parameters

ξi(i = 1, 2, 3) :

dWp =
1

2
(dW11 + dW22) +

ξ1

2
(dW11 − dW22)

− i
ξ2

2
(dW21 − dW12) +

ξ3

2
(dW11 − dW22)

=
1

2
(G0 + ξ1G1 + ξ2G2 + ξ3G3) , (22)

where

G0 =
C0

2
dε

{
∫ ∞

zp

dxK 1
3

(x) +
ε2
+ + ε

2

ε+ε
K 2

3

(
zp

)

+


∫ ∞

zp

dxK 1
3

(x) − 2K 2
3

(
zp

) (ζ− · ζ+)

+

[
ω

ε+
(ζ+ · b) − ω

ε
(ζ− · b)

]
K 1

3

(
zp

)

+


ε2
+ + ε

2

εε+

∫ ∞

zp

dxK 1
3

(x) −
(ε+ − ε)2

εε+
K 2

3

(
zp

)

(ζ− · υ̂) (ζ+ · υ̂)

}

G3 =
C0

2
dε

{
− K 2

3

(
zp

)
+
ε2
+ + ε

2

2ε+ε
K 2

3

(
zp

)
(ζ− · ζ+)

+

[
−ω
ε

(ζ+ · b) +
ω

ε+
(ζ− · b)

]
K 1

3

(
zp

)

−
(ε+ − ε)2

2ε+ε
K 2

3

(
zp

)
(ζ− · υ̂) (ζ+ · υ̂)

+
ω2

2ε+ε

∫ ∞

zp

dxK 1
3

(x) [(ζ− · b) (ζ+ · b) − (ζ− · s) (ζ+ · s)]

}

G1 =
C0

2
dε

{
−
ε2
+ − ε2

2ε+ε
K 2

3

(
zp

)
υ̂ · (ζ+ × ζ−)

+

[
ω

ε
(ζ+ · s) − ω

ε+
(ζ− · s)

]
K 1

3

(
zp

)

− ω2

2ε+ε

∫ ∞

zp

dxK 1
3

(x) {(ζ− · b) (ζ+ · s) + (ζ− · s) (ζ+ · b)}
}

G2 =
C0

2
dε

{
− ω2

2ε+ε
K 1

3

(
zp

)
[s · (ζ− × ζ+)]

+


ω

ε+

∫ ∞

zp

dxK 1
3

(x) +
ε2
+ − ε2

ε+ε
K 2

3

(
zp

) (ζ+ · υ̂)

+


ω

ε

∫ ∞

zp

dxK 1
3

(x) −
ε2
+ − ε2

ε+ε
K 2

3

(
zp

) (ζ− · υ̂)

−
ε2
+ − ε2

2ε+ε
K 1

3

(
zp

)
[(ζ− · υ̂) (ζ+ · b) + (ζ− · b) (ζ+ · υ̂)]

}
.

(23)

Here C0 =
αm2dε√

3πω2
and zp =

2
3χγ

ω2

ε+ε−
. After taking the sum

over positron polarizations, we arrive at the results given in

Ref. [29]:

G̃0 = C0dε

{∫ ∞

zp

dxK 1
3

(x) +
ε2
+ + ε

2

ε+ε
K 2

3

(
zp

)
− ω
ε

(ζ− · b) K 1
3

(
zp

) }

G̃3 = C0dε

{
− K 2

3

(
zp

)
+
ω

ε+
(ζ− · b) K 1

3

(
zp

) }

G̃1 = −C0dε
ω

ε+
(ζ− · s) K 1

3

(
zp

)

G̃2 = C0dε

{ 
ω

ε

∫ ∞

zp

dxK 1
3

(x) −
ε2
+ − ε2

ε+ε
K 2

3

(
zp

) (ζ− · υ̂)

}
.

The polarization of the final electron can be expressed as

ζ
f
− = −

ξ1K 1
3

(
zp

)
ω
ε+

s + ξ2υ̂

(
−ω
ε

∫ ∞
zp

dxK 1
3

(x) +
ε2
+−ε2

εε+
K 2

3

(
zp

))
+

(
ω
ε
− ξ3

ω
ε+

)
bK 1

3

(
zp

)

∫ ∞
zp

dxK 1
3

(x) +
ε2+ε2

+

εε+
K 2

3

(
zp

)
− ξ3K 2

3

(
zp

) . (24)
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(a) (b)

δ− δ−

dW↑↑

dW↓↑

dW↑↓

dW↓↓

ζ
f
+

ζ
f
−

d
W

p
(a

rb
.

u
n

it
s)

FIG. 2. (a) The pair production probability dWζ−ζ+ vs relative energy of electron δ− = ε/ω for different final spins of electron ζ
f
− ∈ {↑, ↓}

and positron ζ
f
+ ∈ {↑, ↓}. (b) The longitudinal polarization of electrons ζ

f
− =

∑
i dW↑,i−

∑
i dW↓,i∑

i dW↑,i+
∑

i dW↓,i
(blue solid) and positrons ζ

f
+ =

∑
i dWi,↑−

∑
i dWi,↓∑

i dWi,↑+
∑

i dWi,↓
(red

dashed) vs δ−; χγ = 1.0, ξ = (0, 1, 0).

In nonlinear Breit-Wheeler process, see Eq.(24), the longitu-

dinal polarization of the created electrons is solely determined

by circular polarization of initial gamma photons ζ‖ ≡ ζ− ·ev ∝
ξ2. Thus, longitudinal polarized electrons can be generated

via the nonlinear Breit-Wheeler process only if initial gamma

photons are circularly polarized. As an example we calculate

the pair production probabilities for an circularly polarized

gamma photon, see Fig. 2. When a low energy electron is

created, the probabilities dW↑↑ and dW↓↑ dominate, leading to

a small longitudinal polarization of created electrons. In the

high energy region, dW↑↑ and dW↑↓ play leading roles, gen-

erating highly longitudinally polarized electron. In particular,

ζ
f
− = ξ2ev when ε ≈ ω. This is the case when helicity transfer

occurs. For this reason, it is possible to produce longitudinally

polarized positrons via the Breit-Wheeler process [78]. After

taking the sum over positron and electron polarizations, we

get the spin unresolved pair production probability:

G0 = 2C0dε

{∫ ∞

zp

dxK 1
3

(x) +
ε2
+ + ε

2

ε+ε
K 2

3

(
zp

) }
,

G3 = −2C0dεK 2
3

(
zp

)
,G1 = 0,G2 = 0. (25)

As expected, the dependence on circular polarization of the

photon is vanishing if the spin is unresolved.

IV. CONCLUSION

Some of the results are already applied to the simulation

codes in our previous works but without derivation [75–80].

In this paper, we give a rigorous derivation of the electron

spin and photon polarization fully resolved radiation and pair

production probabilities. Using Baier-Katkov semiclassical

method, we obtain the complete set of the radiation and pair

production probabilities for arbitrary initial and final electron-

positron spins and arbitrary polarization of the incoming and

outgoing photons within the LCFA and quasiclasscial approx-

imation. The fully polarization-resolved probabilities are writ-

ten in a compact form, and are applicable for arbitrary pulse

shapes and polarization as long as a0 ≫ 1 and γ ≫ 1. There-

fore, the formulas can be easily implemented into QED Monte

Carlo simulation codes for investigating polarization effects

during nonlinear Compton scattering and Breit-Wheeler pro-

cesses, and are essential for polarization effect studies in

strong field QED precesses.
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Appendix: Calculation of the integrals

The integration over τ in Eq. (11) employs the following

results:

∫ ∞

−∞
dx cos

(
bx + ax3

)
=

2

3

√
b

a
K 1

3


2

3
√

3

b
3
2

√
a

 ,
∫ ∞

−∞
dx x sin

(
bx + ax3

)
=

2

3
√

3

b

a
K 2

3


2

3
√

3

b
3
2

√
a

 ,

∫ ∞

−∞
dx x2 cos

(
bx + ax3

)
= −

2

9

(
b

a

) 3
2

K 1
3


2

3
√

3

b
3
2

√
a

 . (A.1)

Therefore, we have

I0 =

∫ ∞

−∞
dτ exp

{
−i
εω

ε f

[
(1 − nv) τ +

τ3

24
w2

]}

=
2
√

24

3w

√
(1 − nv)K 1

3
(ξ) ,

I1 =

∫ ∞

−∞
dττ exp

{
−i
εω

ε f

[
(1 − nv) τ +

τ3

24
w2

]}

= −i
16
√

3

1

w2
(1 − nv) K 2

3
(ξ) ,

I2 =

∫ ∞

−∞
dττ2 exp

{
−i
εω

ε f

[
(1 − nv) τ +

τ3

24
w2

]}

= −2 (24)
3
2

9w3
(1 − nv)

3
2 K 1

3
(ξ) . (A.2)

Integrating Eq.(14) over solid angles, one obtains the integrals

for deriving the radiation probability:

∫
dΩI0 =

4
√

3

3
π
ε′

εω

∫ ∞

zq

dxK 1
3

(x) ,

∫
dΩI1 = −i

8
√

3

1

w
π

1

γ

ε′

εω
K 1

3

(
zq

)
,

∫
dΩI2 = −

16
√

3w2
π

1

γ2

ε′

εω
K 2

3

(
zq

)
. (A.3)

Similarly, the pair production probability can be obtained with

the integration over τ:

I0 =

∫ ∞

−∞
dτ exp

{
i
εω

ε+

[
(1 − nv) τ +

τ3

24
w2

]}

=
2
√

24

3w

√
(1 − nv)K 1

3
(ξ) ,

I1 =

∫ ∞

−∞
dττ exp

{
i
εω

ε+

[
(1 − nv) τ +

τ3

24
w2

]}

= i
16
√

3

1

w2
(1 − nv) K 2

3
(ξ) ,

I2 =

∫ ∞

−∞
dττ2 exp

{
i
εω

ε+

[
(1 − nv) τ +

τ3

24
w2

]}

= −
2 (24)

3
2

9w3
(1 − nv)

3
2 K 1

3
(ξ) . (A.4)

and the solid angle integrations give

∫
dΩI0 =

4
√

3

3
π
ε+

εω

∫ ∞

zp

dxK 1
3

(x) ,

∫
dΩI1 = i

8
√

3

1

w
π

1

γ

ε+

εω
K 1

3

(
zp

)
,

∫
dΩI2 = −

16
√

3w2
π

1

γ2

ε+

εω
K 2

3

(
zp

)
.
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