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Abstract

Background

PR interval prolongation is a preliminary stage of atrial cardiomyopathy which is considered

as an intermediate phenotype for atrial fibrillation (AF). AF is a known risk factor for cerebro-

vascular adverse outcomes including stroke. Cerebral ischemia is one cause of white matter

hyperintensities (WMHs), and cognitive dysfunction.

Aim

To analyze the relationship between PR interval and WMHs.

Materials and methods

We performed a cross-sectional analysis with individuals from the LIFE-Adult-Study (a pop-

ulation-based cohort study of randomly selected individuals from Leipzig, Germany) with

available brain MRI and ECG. The Fazekas stages were used to quantify WMHs (0 = none;

1 = punctate foci; 2 = beginning confluence; 3 = large confluent areas). Stages 2–3 were

defined as advanced WMHs. The PR interval was measured from resting 12-lead ECG. PR

duration >200ms was defined as PR interval prolongation. We used a binary logistic regres-

sion for statistical analysis. We examined the relationship between MRI and ECG measures

and adjusted them for clinical risk factors.

Results

We included 2464 individuals (age 59±15 years, 47% women) into analyses. The median

PR interval was 160ms (interquartile range 143–179), and 319 (13%) individuals with
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advanced WMHs, were significantly older, had more cardiovascular comorbidities and risk

factors compared to individuals without WMHs (all p<0.005). On univariable analysis, PR

interval duration (OR 1.01, 95%CI 1.01–1.02, p�0.001) and PR interval�160 ms (OR 2.1,

95%CI 1.6–2.7, p�0.001) were associated with advanced WMHs. In multivariable analysis,

while PR interval duration was not associated with WMHs in the whole cohort, individuals

with PR�160ms had higher risk for WMHs.

Conclusion

PR interval duration is associated with advanced WMHs beside advanced age, hyperten-

sion, and history of stroke. Further research is needed to determine whether changes in PR

interval indices are clinically relevant for changes in WMHs.

Introduction

The life expectancy of the populations in industrialized countries has continued to increase.

[1]. Maintaining cognitive abilities is of immense importance for healthy aging and active par-

ticipation in social life. White matter Hyperintensities (WMHs) represent structural and func-

tional changes in the brain and are often found in older adults [2]. WMHs are significantly

associated with impairments in cognitive function and range from 27% to 87% in populations

older than 65 years in cross-sectional studies, conducted in four US communities by the Car-

diovascular Health Study [3]. Increased WMHs, brain atrophy, and volume loss are clinically

linked to several markers of cognitive decline in community-based populations [4–7].

Impaired cognitive function is often seen in patients with cardiovascular diseases, including

chronic heart failure (HF) [8]. Recent studies reported an association between HF and struc-

tural brain changes, including WMHs [9, 10]. Atrial fibrillation (AF) is also associated with

accelerated cognitive decline and higher risk of dementia [4, 11, 12]. The pathomechanisms

have not been completely elucidated, but may involve subclinical cerebral infarctions or

micro-infarctions, chronic cerebral hypoperfusion, inflammation, and shared vascular risk

factors, such as arterial hypertension and diabetes mellitus [13]. Hypertension is the most

important risk factor for cardiovascular diseases. In Germany every third citizen has a diag-

nosed hypertension [14]. Hypertension increases the risk of atrial fibrillation with age and

enlargement of the mass and size of the left atrium and predisposes to its chronification [15].

Permanently increased pressure conditions in the heart during hypertension lead to atrial

cardiomyopathy, which increases the risk of conduction disorders and arrhythmias such as

AF [16].

The electrocardiographic P-wave and PR interval mirror atrial and atrioventricular conduc-

tion. Recent studies demonstrated an association between PR interval prolongation and

underlying atrial remodelling leading to AF [17, 18], while P-wave duration was associated

with cardiovascular and all-cause mortality [19]. Also, PR interval prolongation was associated

with electro-anatomical substrate in AF patients and rhythm outcomes after catheter ablation,

assuming that PR interval could be used as a marker for atrial remodelling [20, 21]. Previously

we demonstrated that individuals with PR interval prolongation and AF shared similarities in

echocardiographic parameters, renal function, and blood biomarker levels, confirming the

assumption that PR interval prolongation might be considered as a preliminary (intermediate)

stage for AF [22]. However, the association between PR interval prolongation and structural
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brain changes (WMHs) is understudied. Therefore, the aim of the current study was to analyze

the association between PR interval duration and advanced WMHs. We hypothesized that PR

interval prolongation was associated with advanced WMHs stages.

Methods

Study population

The study comprised an age and gender stratified random sample of residents, age 20–79

years, in Leipzig, Germany [23]. As part of the Leipzig Research Center for Civilization Dis-

eases (LIFE), 10,000 residents were included in this population-based cohort study. Detailed

description of the cohort was described previously [23]. The main objective of the LIFE-Adult

Study is to investigate prevalence, early onset markers, genetic predispositions as well as the

role of lifestyle factors of major civilization diseases, especially metabolic and vascular diseases,

heart function, cognitive impairment, depression, and allergies [23].

All data generated and analyzed during this study are included in this published article. The

study was approved by the institutional ethics board of the Medical Faculty of the University

of Leipzig. All methods were performed in accordance with the relevant guidelines and regula-

tions. Written informed consent according to the Declaration of Helsinki was obtained from

all individual participants included in the study. The authors had full access to all data in the

study and take responsibility for its integrity and the data analysis.

All subjects underwent an extensive core assessment program (duration 5–6 h), including

structured medical interviews and tests, physical examinations, and bio-specimen collections.

Information about medication used by participants was collected.

We included subjects who underwent ECG and MRI assessments. Antiarrhythmic drugs

were defined as atrio-ventricular conduction decelerating medication (beta-blockers, dihydro-

pyridine calcium channel blockers, class Ic and III antiarrhythmic drugs) [22]. MRI imaging

was performed within 3 days in a subset of 2636 participants. Subjects with contraindication

for MRI study (e.g., implanted pacemakers, joint implants), absent FLAIR image, and with bad

image quality [7] were excluded from the study. A total of 2464 individuals were included in

the analysis (Fig 1).

Electrocardiographic analysis (ECG)

ECG analysis is described elsewhere [23]. Briefly, a 10-second 12-lead ECG was recorded

using the PageWriter TC50 ECG system (Philips Medical Systems DMC GmbH, Hamburg,

Germany) after a supine resting period of at least 10 min. The ECG of each participant was

manually evaluated based on published criteria with particular focus on rhythm and conduc-

tion disturbances, ST-segment and J-point changes, T and U waves, PR and QT interval,

hypertrophy, and QRS morphology [24]. AF was defined as irregular atrial rhythm with f-

waves, documented in resting ECGs recorded at the research center. PR length was measured

in milliseconds and categorized as PR prolongation if PR interval was measured>200 ms.

Neuroimaging and assessment of white matter hyperintensities

WMHs were assessed on T2-weighted fluid attenuated inversion recovery (FLAIR) MRI scans

with the four-stage Fazekas classification, which ranges from 0 to 3 [25]. All cMRI were per-

formed with the same scanner (3-Tesla MAGNETOM Verio Scanner, Siemens, Germany).

T1-weighted MPRAGE and FLAIR images were performed as part of a standardized protocol:

MPRAGE [flip angle (FA) = 9˚, relaxation time (TR) = 2300 ms, inversion time (TI) = 900 ms,

echo time (TE) = 2.98 ms, 1 mm isotropic resolution, acquisition time (AT) = 5.10 min];
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FLAIR (TR = 5,000 ms, TI = 1800 ms, TE = 395 ms, 1 × 0.49 × 0.49 mm resolution, AT = 7.02

min). Neuroradiologists were trained to rate WMHs using the Fazekas stages and were blinded

to the individual’s diagnosis. WMHs can be divided into two subgroups depending on their

location. A distinction was made between periventricular WMHs (PVWMHs), which run

along the ventricular systems, and deep WMHs (DWMHs), which are located in the subcorti-

cal white matter [26].

Punctiform lesions in the brain parenchyma represent perivascular enlargements without

substantial tissue damage. Confluent lesions, on the other hand, can show progression over

time and lead to incomplete ischemic tissue destruction [25]. The Fazekas stage classification

is the most frequently applied assessment tool for WMHs in everyday clinical care, enabling

reliable quantification of WMHs. They assess the overall burden of cerebral WMHs ranging

from zero (no WMHs) to three (severe WMHs) [27].

Fig 1. Flowchart of study population. 2636 participants underwent MRI imaging. 2464 participants had MRI imaging und ECG. The study sample of

2464 includes participants with evaluated FAZEKAS stages and ECG.

https://doi.org/10.1371/journal.pone.0269815.g001
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Laboratory measurements

Blood was drawn from all study participants after fasting>8 hours and was analyzed on the

same day. All samples were processed in a highly standardized manner; details are described else-

where [23]. Laboratory measurements of creatinine, troponin T and NT-proBNP serum concen-

trations were performed on the same day at the Institute of Laboratory Medicine, University

Hospital Leipzig (accredited by ISO 15189 and 17025) according to the Quality Standards for

Medical Laboratories of the German Chamber of Physicians (RiLiBÄK) using assays from Roche

Diagnostics on Cobas 6000 or 8000 (Roche Diagnostics) clinical chemistry analyzers.

Statistical analysis

Baseline characteristics were described as medians and interquartile ranges (25th and 75th percen-

tiles) for continuous variables as well as absolute and relative frequencies for categorical variables.

Comparisons of continuous variables were made using non-parametric tests (Mann-Whitney-

U-tests). Unordered categorical variables were compared using the Pearson χ2 test. Spearman

correlation analysis was used to examine possible association between P-wave and PR interval.

Logistic regression analysis was used for uni- and multivariable analyses to identify factors

associated with WMHs. Because PR interval is not measurable in patients with AF, we did not

include this variable into analysis. In multivariable analyses, ECG parameters were adjusted

for age, sex, and other clinically relevant parameters associated with WMHs. In addition to age

and sex, Model 1 included previous stroke, systolic and diastolic blood pressure, and PR inter-

val. Model 2 included all variables from Model 1 and the cardiac biomarker NT-proBNP, while

Model 3 included all variables from Model 1 and troponin T.

Two cut-offs for the PR interval were chosen: first cut-off was 160 ms as the median value

in our cohort, and second cut-off was 200 ms as the definition of PR interval prolongation. In

Fig 2 we present six multivariable models with 2 different cut-offs as mentioned above adjusted

for other clinically relevant factors for WMHs: (Model 1) PR interval (cut-off 160 ms) adjusted

for previous stroke, systolic and diastolic blood pressure; (Model 2) Model 1 with further

adjustment for cardiac medication; (Model 3) Model 1 with further adjustment for NT-

proBNP; (Model 4) PR interval (cut-off 200 ms) adjusted for previous stroke, systolic and dia-

stolic blood pressure; (Model 5) Model 4 with further adjustment for cardiac medication;

(Model 6) Model 4 with further adjustment for NT-proBNP.

All statistical analyses were performed with SPSS Statistics 25. A p-value < 0.05 was consid-

ered statistically significant.

Results

The study population comprised 2464 individuals. The baseline characteristics are presented

in Table 1. The median PR interval was 160ms (interquartile range 143–179). There were 319

(13%) individuals with advanced WMHs. These individuals were significantly older and more

often obese, with hypertension, diabetes, previous myocardial infarction, and stroke compared

to patients without WMHs (all p<0.005). Patients with WMHs had higher levels of NT-

proBNP, Troponin T, creatinine, cholesterol, and triglycerides (all p<0.05). Both PR interval

and P-wave duration were higher in individuals with advanced WMHs compared to individu-

als without (Table 1, Fig 3). In the multivariable analysis, age (OR 1.10, 95% CI 1.08–1.12,

p<0.001), systolic blood pressure (OR 1.01, 95% CI 1.01–1.03, p<0.004), and previous stroke

(OR 2.86, 95% CI 1.5–5.47, p< 0.002) were associated with advanced WMHs (Table 3). Diabe-

tes was not significant and not relevant (OR 1.03, 95% CI 0.73–1.47, p = 0.858) in multivariable

analysis. Previous myocardial infarction was also not significant (OR 1.51, 95%CI 0.61–3.70,

p = 0.370).
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PR interval and white matter hyperintensities

In the univariable analysis, P-wave duration (OR per ms 1.01, 95% CI 1.01–1.02, p = 0.010)

and PR interval (OR per ms 1.01, 95% CI 1.01–1.02, p<0.001) were significantly associated

with advanced WMHs (Table 2). In the multivariable analysis, after adjustment for age, previ-

ous stroke, and systolic blood pressure, PR interval duration (OR 1.01, 95%CI 1.00–1.01,

p = 0.034) was significantly associated with advanced WMHs (Table 3). However, the P-wave

duration was not associated with advanced WMHs after adjustment for age and sex (OR 1.00,

95% CI 0.99–1.01, p = 0.607) and after further adjustment for other risk factors (OR 1.00, 95%

CI 1.00–1.01, p = 0.476). We observed similar results in Model 2 for PR�200 ms after adjust-

ment for NT-proBNP (OR 1.01, 95% CI 1.00–1.01, p = 0.043) and in Model 3 after further

adjustment for troponin (OR 1.01; 95%CI 1.00, 1.01, p = 0.049) (Table 3). Using cut-offs for

PR interval, the PR interval�160 ms was associated with WMHs in all the multivariable mod-

els, whereas PR interval�200 ms was not (Fig 2).

Heart failure, PR interval, and white matter hyperintensities

There were 30 participants (1.2%) with heart failure (HF). In the univariable analysis, the risk

for advanced WMHs was 4.4-fold in participants with HF (Table 2). After adjustment for age

and sex, stroke (OR 2.90, 95% CI 1.52–5.56, p = 0.001), hypertension (OR 2.06, 95% CI 1.57–

Fig 2. Multivariable analysis. Six multivariable models with 2 different cut-offs adjusted for clinically relevant factors for WMHs. Model 1: PR interval

(cut-off 160 ms) adjusted for previous stroke, systolic and diastolic blood pressure; Model 2: Model 1 with further adjustment for cardiac medication;

Model 3: Model 1 with further adjustment for NT-proBNP; Model 4: PR interval (cut-off 200 ms) adjusted for previous stroke, systolic and diastolic

blood pressure; Model 5: Model 4 with further adjustment for cardiac medication; Model 6: Model 4 with further adjustment for NT-proBNP. PR

interval�160 ms was associated with WMHs in all the multivariable models, whereas PR interval�200 ms was not. Odd’s ratio with 95% confidence

interval and the respective P-value are shown.

https://doi.org/10.1371/journal.pone.0269815.g002
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2.70, p<0.001), HF (OR 2.88, 95% CI 1.27–6.55, p = 0.012), and PR interval�160ms (OR 1.40,

95% CI 1.05–1.86, p = 0.022) were associated with increased risk of advanced WMHs [28].

Discussion

In this cross-sectional analysis, we demonstrate significant associations between PR interval

duration and WMHs. We found that individuals with advanced stages of WMHs had longer

PR interval duration than patients without WMHs. A significant association between WMHs

and P-wave/PR interval prolongation was found in the univariable analysis.

In the multivariable analysis, only PR interval�160 ms demonstrated robust association

with WMHs in different statistical models. Our study shows moderate correlation between P

waves duration and the length of the PR interval (Spearman correlation coefficient = 0.5).

ECG is an easily available, cost effective, and informative diagnostic tool in clinical care.

ECG quantifies the magnitude and direction of electric propagation and depolarization. The PR

interval reflects comprehensive atrial conduction from sinus node activation through the atrio-

ventricular node, while atrial and interatrial electrophysiological conductions generate the P-

wave. Magnani et al. reported a significant association between P-wave duration and increased

cardiovascular and all-cause mortality [19]. In addition to PR interval prolongation, the P-wave

duration and characteristics are considered electrocardiographic endophenotypes for AF. How-

ever, the association between P-wave and its prolongation and WMHs is understudied. A popu-

lation-based longitudinal analysis identified multiple P-wave indices that are associated with

increased risk for adverse cardiovascular outcomes [29]. Increased atrial pressures due to struc-

tural heart disease also potentiate prolongation of P-wave indices. These disease states seem to

share common pathways of atrial inflammation and fibrosis leading to atrial remodeling [30].

Table 1. Baseline characteristics of the study population.

Total population White matter lesions p-value

Variables None or not relevant (Fazekas 0–1) Beginning or large confluence (Fazekas 2–3)

n = 2464 n = 2132 n = 332

Age, years 64 (47; 70) 63 (46; 70) 71 (67; 75) <0.001

Female 1144 (46.4%) 1001 (47.0%) 143 (43.1%) 0.185

Obesity (BMI�30 kg/m2) 1627 (66.2%) 1377 (64.7%) 250 (75.5%) <0.001

Systolic BP, mmHg 129 (119; 140) 128 (118; 139) 138 (127; 150) <0.001

Diastolic BP, mmHg 75 (69; 81) 75 (68; 81) 77 (71; 83) <0.001

Diabetes mellitus 269 (11.1%) 211 (10.0%) 58 (17.8%) <0.001

Current smoking 361 (15.3%) 321 (15.6%) 40 (13.0%) 0.241

Previous stroke 51 (2.1%) 32 (1.5%) 19 (5.8%) <0.001

Previous MI 26 (1.1%) 17 (0.8%) 9 (2.7%) 0.002

NT-pro BNP, pg/ml 68 (36; 124) 65 (34; 114) 106 (56; 182) <0.001

Troponin T, pg/ml 5 (3; 7) 5 (3; 7) 7 (5; 10) <0.001

Cholesterol mmol/l 5.6 (4.9; 6.3) 5.6 (4.9; 6.3) 5.8 (4.9; 6.4) 0.023

Triglyceride mmol/l 1.2 (0.8; 1.6) 1.2 (0.8; 1.6) 1.2 (0.9, 1.7) 0.018

Creatinine μmol/l 80 (70; 91) 80 (70; 91) 83 (71; 93) 0.013

P wave duration, ms 64 (58; 71) 64 (58; 71) 66 (60; 74) <0.001

PR interval duration, ms 160 (143; 179) 159 (141; 177) 170 (152; 186) <0.001

PR�200 ms 188 (7.9%) 145 (6.9%) 43 (13.5%) <0.001

Abbreviations: BMI—body mass index; BP—blood pressure; MI—myocardial infarction.

Data presented as n (%) or median (interquartile range, 25th and 75th percentile)

https://doi.org/10.1371/journal.pone.0269815.t001
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Atrial cardiomyopathy reflects abnormalities in left atrium including alterations in its structure

(on macro- and micro-level) and function (contractility) [31]. Atrial activation could be mea-

sured by changes in electrocardiographic P-wave indices (PWIs), which could be considered as

an electrophysiological component of atrial cardiomyopathy. P-wave axis, P-wave duration,

Table 2. Prediction of advanced WMHs (Fazekas stage 2–3), univariable (unadjusted) analysis.

Variables OR 95% CI p-value

Age, years 1.11 1.09, 1.13 <0.001

Women 0.86 0.68, 1.10 0.230

Previous stroke 3.82 2.08, 7.01 <0.001

Systolic BP, mmHg 1.03 1.03, 1.04 <0.001

Diastolic BP, mmHg 1.02 1.01, 1.03 0.004

NT-pro BNP, pg/ml 1.00 1.00, 1.00 <0.001

PR interval duration, ms 1.01 1.01, 1.02 <0.001

P wave duration, ms 1.01 1.00, 1.02 0.010

Heart failure 4.40 2.10, 9.22 <0.001

Abbreviations: as in Table 1; OR—odds ratio (presented per 1 unit—1 year, 1 mmHg, 1 pg/ml, 1 ms), CI—

confidence interval

https://doi.org/10.1371/journal.pone.0269815.t002

Fig 3. Association between PR interval duration and WMHs. The figure demonstrates association between white matter hyperintensities (No—

Fazekas stage 0–1, Yes—advanced Fazekas stages 2–3) and PR interval length.

https://doi.org/10.1371/journal.pone.0269815.g003
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advanced interatrial block, signal averaged P-wave, and P-wave terminal force in lead V1

(PTFV1) are some examples of PWIs [32]. It had been shown that PWIs are associated with

incident AF [33], ischemic stroke [34, 35], and sudden cardiac death [36].

In our study, we found the association between P-wave and WMHs only in univariable

analysis. Other studies with more advanced P-wave analyses (e.g., signal averaged ECG) could

be helpful proving our results. The non-invasive signal averaged electrocardiogram (SAECG)

uses a vector composite of filtered orthogonal leads and accurately measures cardiac activation

times, including delayed atrial conduction [37, 38]. In comparison with the more common

12-lead ECG analysis, the SAECG could be superior in detection of P-wave prolongation as a

risk factor of AF and related complications. However, this has not been analyzed to date and

should be addressed in future studies.

Previously, we demonstrated that individuals in a large epidemiological cohort with PR

interval prolongation and AF show similarities in echocardiographic parameters, renal func-

tion, and blood biomarker levels [23]. In the current analysis, we also considered PR interval

prolongation as an intermediate phenotype for AF. Our results are in accordance with findings

from the ARIC and the Framingham Heart Study, where an association between AF and

WMHs was not found [4, 39].

WMHs have been hypothesized to be ischemic complications of Cerebral small vessel dis-

ease (SVD), based on histopathological studies that demonstrate small vessel changes in brains

with WMHs [40]. These findings have been confirmed in clinical studies reporting associa-

tions between WMHs and microvascular risk factors such as hypertension [41] and diabetes

[42], but not atherosclerosis [43]. Due to athersclerotic vascular changes, diabetes and predia-

betes play an important role in the development of WMHs [44, 45]. However, in our study, we

did not find the association between WMHs and diabetes.

Cerebral small vessel disease is one of the pathological mechanisms by which AF could

cause cognitive impairment. White matter loss, hyperintensities, and impaired microstructural

integrity are all MRI-based markers of small vessel disease. They are also predictors of cogni-

tive function decline in older individuals [46]. Adverse effects of AF on cerebral small vessel

disease may be one mechanism by which AF contributes to cognitive impairment. However,

several studies failed to demonstrate an association between AF and WMHs [28, 47, 48]. Of

note, a cross-sectional analysis of the community-based Framingham Heart Study did not

report any associations between AF and lower total brain volume [7]. Incident AF is associated

Table 3. Prediction of advanced WMLs (Fazekas stage 2–3), multivariable analysis.

Variables Model 1 Model 2 Model 3

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Age, years 1.10 1.08, 1.12 <0.001 1.10 1.08, 1.12 <0.001 1.10 1.08, 1.12 <0.001

Sex 1.14 0.87, 1.50 0.345 1.11 0.84, 1.47 0.459 1.21 0.92, 1.60 0.169

Previous stroke 2.86 1.49, 5.47 0.002 2.87 1.51, 5.55 0.001 3.01 1.60, 5.71 0.001

Systolic BP, mmHg 1.02 1.01, 1.03 0.004 1.01 1.00, 1.03 0.007 1.02 1.01, 1.03 0.004

Diastolic BD, mmHg 1.02 1.00, 1.04 0.062 1.02 1.00, 1.04 0.054 1.02 1.00, 1.04 0.040

PR interval duration, ms 1.01 1.00, 1.01 0.034 1.01 1.00, 1.01 0.043 1.01 1.00, 1.01 0.049

NT-pro BNP, pg/ml 1.00 1.00, 1.00 0.247

Troponin T, ng/ml 1.02 1.00, 1.04 0.085

Abbreviations: as in Tables 1 and 2.

Model 1: after adjustment for age, previous stroke, and systolic blood pressure, PR interval duration is significantly associated with advanced WMHs. Model 2: after

adjustment for NT-proBNP results stay similar. Model 3: after adjustment for troponin, results stay similar

https://doi.org/10.1371/journal.pone.0269815.t003
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with structural changes in brain MRI, including worsened sulcal grade, larger ventricles, and

subclinical cerebral infarctions. However, analyses from the ARIC and the Framingham Heart

Study could not demonstrate any association between AF and WMHs or total brain volume

after adjustment for vascular risk factors [39, 47, 49]. Notably, WMHs, attributed to small ves-

sel disease and global cerebral hypoperfusion, were not associated with AF [49]. Our results

confirm previous findings. Compared to individuals with normal PR interval, the association

between WMHs and individuals with AF was not significant.

In addition to microangiopathy, cerebral hypoperfusion caused by left ventricular dysfunc-

tion may contribute equally to the development of structural and functional cerebral abnor-

malities in HF patients [10].

Strengths and limitations

The strength of the study is sample size. Of the 10,000 individuals recruited to the LIFE-Adult-

Study, over 2600 had received a brain MRI; of these, 2464 individuals also had an ECG.

Values for the majority of the subgroup came out normal because patients impaired by ill-

ness and with motor disability were more likely to refrain from participation.

Because of the cross-sectional nature of our analysis, the finding of PR interval duration

associated with WMHs allows only for hypothesis generation; no causal relationship could be

determined. Further longitudinal studies are needed to analyze whether both factors could

modulate the occurrence of dementia and AF. This study is a single center observational study

of individuals with European ancestry from a small geographic area in Eastern Germany.

Thus, generalizability of the study results to individuals of other races/ethnicities is limited.

Finally, our findings should be confirmed by other studies with continuous ECG monitoring,

advanced P-wave indices, and PR interval analyses.

Conclusions

We found that the length of PR interval is associated with advanced WMHs. Overall, a com-

plex interplay of factors lead to cerebral injury through various mechanisms affecting the cere-

bral macro- and microenvironments. However, the results indicate that ECG—a simple

diagnostic tool—could be used identifying individuals at higher risk for WMHs. Nevertheless,

despite mostly hypothesis generating findings, further studies are needed to prove our results

in longitudinal setting.
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