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Tensor networks provide extremely powerful tools for the study of complex classical and quantum
many-body problems. Over the last two decades, the increment in the number of techniques and
applications has been relentless, and especially the last ten years have seen an explosion of new ideas
and results that may be overwhelming for the newcomer. This short review introduces the basic
ideas, the best established methods and some of the most significant algorithmic developments that
are expanding the boundaries of the tensor network potential. The goal is to help the reader not
only appreciate the many possibilities offered by tensor networks, but also find their way through
state-of-the-art codes, their applicability and some avenues of ongoing progress.
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I. INTRODUCTION

Numerical methods are an essential tool to tackle
quantum many-body systems, most of which lack
analytical solutions. For these problems, though,
the dimensionality—and with it the computational
complexity—grows exponentially with the system size.

This limits the applicability of exact numerical calcula-
tions and calls for the development of numerical methods
that can efficiently deal with, at least, the most relevant
physical questions. Introduced to the field in the nineties,
tensor network (TN) techniques aim to cover this need
and have become by now, together with exact diagonal-
ization and Quantum Monte Carlo methods, a key in-
strument in the numerical study of quantum many-body
problems.

TN have been discovered independently in different
disciplines. First uncovered in statistical physics by Bax-
ter [1], in the field of quantum many-body physics their
ancestry can be traced back to the first valence bond solid
(VBS) proposed by Affleck, Kennedy, Lieb and Tasaki [2]
as exact ground state of a short-range spin chain —see [3]
for a review and historical perspective. Klümper et al. [4]
later extended the AKLT proposal for a larger set of mod-
els, and also introduced the term matrix product to desig-
nate these states. The construction was generalized and
formalized mathematically by Fannes, Nachtergaele and
Werner [5] in the finitely correlated states for infinite spin
chains.

Around the same time the density matrix renormal-
ization group (DMRG), a new algorithm proposed by
White [6], was revealing an amazing power to capture
the ground state of large quantum spin chains with only
modest numerical effort. Shortly afterwards, Östlund
and Rommer [7] identified the fixed point of the infi-
nite DMRG algorithm with precisely such matrix prod-
uct states, and Dukelsky et al. [8] pointed out the con-
nection between DMRG and a variational search over
these states. Furthermore Nishino and Okunishi [9, 10]
unified DMRG with Baxter’s corner transfer matrix ap-
proach for two dimensional classical models. And these
insights inspired further generalizations of the original
algorithm [11].

DMRG was applied to multiple scenarios and fast be-
came a method of choice to study the static properties of
quantum spin systems in low spatial dimension [12, 13].
Yet a whole new perspective was gained thanks to quan-
tum information concepts. Understanding in terms of
entanglement the matrix product ansatz [14] and the
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FIG. 1. Graphical representation of tensors: (a) Example of a TN formed by four tensors; when contracted, a 4-rank tensor
is obtained; (b) graphical representation of a TNS in each of the main families, for a system of 16 sites (note: triangles are
commonly used to indicate isometries).

DMRG algorithm [15], and reformulating the latter fully
in terms of matrix product states (MPS) [16] opened
up the possibilities for improvements and jumpstarted
the tensor network field. In particular, algorithms for
real time evolution [17–19] and finite temperature [20–22]
with matrix product states, as well as a generalization to
higher dimensions [23] were proposed soon afterwards,
revealing the potential of the tensor network picture.

Nowadays, TN algorithms are among the standard nu-
merical methods for strongly correlated low-dimensional
quantum systems. Most commonly used are the original
methods from the early 2000s, which continuously find
new applications. But the TN language continues to be
exploited to provide, not only deeper mathematical un-
derstanding of the ansatz [24], but also new numerical
techniques.

The variety of TN applications that have bloomed over
the last decade and produced state-of-the-art results is
too vast to do justice to it in these pages. Thus, the focus
of this article is the general framework of TN algorithms,
with a stress on a few selected advances in the field that

are important for cutting-edge applications. The details
of the algorithms are not explicitly shown; the interested
readers are encouraged to refer to the many excellent
reviews in the literature, such as [25–30], to name only a
few.

II. BASIC CONCEPTS

A tensor, the basic object, is simply a multidimensional
array. The graphical representation of TN, illustrated
in fig 1, provides a practical language to describe their
algorithms and properties. For instance, a k-rank tensor,
an object with k indices, is depicted as a geometrical
shape with k legs (e.g. a matrix would have two legs).
A contraction between two tensors—such as a matrix-
vector product—is represented by joining the contracted
indices. In general, a tensor network is a set of such
interconnected tensors, resulting in a rank determined
by the number of open legs (see fig 1a).

A. Tensor network states

In particular, a tensor network state (TNS) encodes all
coefficients (in a given basis) of a quantum many-body
state in such a diagram, with as many open legs as con-
stituents in the system. Each dangling leg corresponds
to the (finite) physical dimension of one site, while con-
tracted legs correspond to virtual or bond dimensions.

TNS families are defined by graphs with different con-
nectivities. For the families of interest, the number of
parameters, proportional to the number of tensors, grows
polynomially with the system size. This represents a
drastic reduction with respect to the exponentially large
dimension of the Hilbert space. But the aim of TNS is
to capture physical states, which happen to explore only
a small fraction of all possible quantum states, mainly
characterized by their low entanglement. In particular,
ground and thermal equilibrium states of local Hamilto-
nians fulfill an entanglement area law [31]: the entan-
glement between a certain subsystem and the rest scales

with the size of the boundary between both parts (or with
small corrections thereof), instead of with the size of the
bulk of the subsystems, as is the case for most states
in the Hilbert space. A rigorous proof of the area law
scaling exists for gapped one-dimensional local Hamilto-
nians [32] and for thermal equilibrium states in any di-
mension [33], whereas critical ground states can display
small (logarithmic) corrections [34, 35].

The following are the most widely used TNS families
(see their diagrams in fig. 1b).

1. MPS have a one-dimensional structure, with one
tensor per lattice site [36]. Each tensor owns one
open index corresponding to the physical dimen-
sion of the site, and two virtual legs connected to
the neighboring sites (for open boundaries, the edge
tensors only connect to one neighbor). The tensor
for site k has components A[k]iα β , where i takes

values over the physical dimension (typically de-
noted dk), and α and β respectively take values over
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the left and right virtual dimensions of the tensor
(denoted Dl and Dr)—equivalently, each A[k]i is a
Dl×Dr matrix. More explicitly, for a system of N
sites, all with physical dimension d, the state can
be written

|Ψ〉 =

d∑
i1,i2,···iN=1

tr
(
A[1]i1A[2]i2 · · ·A[N ]iN

)
|i1i2 · · · iN 〉.

(1)
MPS satisfy an entanglement area law: the half-
chain entanglement of an MPS with maximal bond
dimension D is upper-bounded by S = 2 logD.
Furthermore, they hold exponentially decaying cor-
relations, can be prepared and contracted effi-
ciently, and essentially correspond to ground states
of local one-dimensional gapped Hamiltonians [37].

2. PEPS are the natural generalization of MPS to ar-
bitrary graphs, where they can be defined with one
tensor (with a physical leg) per vertex and connec-
tions according to the graph edges [23]. They can
be expressed analogously to Eq. 1, replacing the
trace by a contraction over all connections. PEPS
fulfill the area law in higher dimensions, and are
much more complex objects than MPS. For in-
stance, they cannot—in the general case—be pre-
pared or contracted efficiently [38] and, even with
small bond dimension, they can support critical
correlations [39].

3. TTN correspond to tree graphs. Usually—but not
always—they have physical indices in the leave
nodes [40], connected to tensors with only virtual
indices at higher levels (see fig. 1b), which can cor-
respond to a renormalization direction [41]. As
MPS, TTN are loop-free and can be contracted
efficiently, but they violate the one-dimensional
area law, and can hold power-law decaying corre-
lations when averaging over spatial positions [42].
TTN can be used also for higher dimensional sys-
tems [43].

4. MERA implement a more complex renormalization
of the physical degrees of freedom [44–46], in which
layers of unitary transformations (called disentan-
glers) that remove short range correlations are al-
ternated with layers of isometries that perform the
renormalization step. This results in a TN with
cycles in which, thanks to the unitarity proper-
ties of the tensors, local expectation values can be
computed efficiently. Scale invariant MERA can
describe quantum critical ground states in one di-
mension [47, 48], where they support logarithmic
corrections to the area law. However, in two dimen-
sions they are proven to be a subset of PEPS [49],
and thus satisfy the area law. However, a general-
ization called branching MERA [50] exists that can
support up to volume-law entanglement in more
than one spatial dimension.

Any tensor network has a so-called gauge freedom,
since inserting the product of a matrix and its inverse
XX−1 in between any contracted pair of indices (i.e. in
a connected leg) leaves the whole TN invariant, but al-
lows redefining pairs of neighboring tensors. For loop-free
TNS, in which cutting a bond splits the network in two,
it is possible to define a canonical form, in which the basis
for the virtual index is chosen to be the Schmidt basis for
the bipartition corresponding to the bond, explicitly en-
coding the corresponding entanglement [36]. Besides be-
ing fundamental to characterize the properties of a TNS
family, this canonical form gives rise to more stable and
efficient numerical algorithms.

The families above can be defined for finite-size sys-
tems with site-dependent tensors, but it is also possible to
consider directly the thermodynamic limit, in which one
(or a few) tensors are repeated infinitely many times, to
produce a translationally invariant (or periodic in space)
structure. In the case of MPS, the translationally in-
variant ansatz is called uniform MPS (uMPS). In infinite
PEPS (iPEPS), a periodic iteration of a finite unit cell
is most commonly used in practice, while the transla-
tionally invariant version is fundamental for the formal
results [24]. This allows targeting bulk properties di-
rectly, without finite-size extrapolations, or, in the case
of MERA, capturing the scale invariance of critical sys-
tems [47, 48].

These families can also describe mixed states. The
simplest approach is to postulate the TNS ansatz in a
given tensor product basis of the vector space of oper-
ators, with simply doubled physical legs. In particular,
in the MPS and PEPS cases the resulting structures are
called MPO [20, 21, 51] and PEPO. But if the ansatz is
to describe a physical state, it must be positive semidef-
inite, a global property that cannot be assessed at the
level of the local tensors. An alternative is to consider
the TNS describing a purification, i.e. a pure state of the
system plus an ancilla, such that tracing out the latter
results in the desired mixed state. In the MPS and PEPS
case, this yields a locally purified form, a TN with the
same structure, where local tensors have double physical
indices, and internal structure granting positivity [20].
This is more restrictive and potentially less efficient than
the generic ansatz [52], but can be used in practice in
numerical algorithms.

B. Fundamental primitives

Virtually all TN algorithms rest on two basic blocks:
contracting (part of) the tensor network, and locally up-
dating the tensors. Together with the approximation of
(parts of a) TN by tensors with truncated dimensions,
they can be considered the fundamental primitives on
which more or less sophisticated higher-level algorithms
are built.
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1. Contracting TN

A ubiquitous problem in TN algorithms is contract-
ing a tensor network. This means explicitly evaluating
the products and sums of tensor components indicated
by the connections, to result in a tensor with dimen-
sionality corresponding to the indices that remain open
(see fig.1a). For instance, for classical statistical models,
partition functions and expectation values of local ob-
servables can be written as closed TN (without open in-
dices). For TNS representing quantum states, norms and
local expectation values are also closed tensor networks,
while reduced density matrices appear as smaller tensor
networks with operator indices. Two aspects of the con-
traction affect the implementation and performance of
the algorithm.

1. Contraction order. In general, the computational
cost of contracting a series of tensors with each
other depends on the order in which operations
are applied. For the regular networks that appear
in the most common TNS algorithms, the num-
ber of possibilities is small, and the optimal se-
quence (which minimizes the computational cost)
is known. But in the general case, finding the op-
timal contraction order is a NP-complete problem,
for which some heuristic algorithms exist [53, 54].

2. Computational cost. If a contraction order exists
whose computational cost grows only polynomially
with the size of the network, we say that the TN
can be contracted exactly. Such is the case with
TN that do not contain loops, for instance the net-
works corresponding to expectation values of multi-
point correlators in MPS and TTN. Also for TNS
with some unitary properties there are contractible
quantities, for instance the norm or few-point cor-
relators evaluated in MERA. The exact contrac-
tion of an arbitrary tensor network is however a
#P -complete problem [38]. Thus, most algorithms
involving TN in more than one dimension need to
approximate the contractions, which is referred to
as truncation (II B 3).

2. Tensor update

Many algorithms work by holding a TN description
of the quantity of interest and iteratively improving it
until some predefined level of convergence is attained.
The improvement proceeds by local changes, or updates,
in which one (or few) tensors are modified in order to
optimize the relevant cost function. Typically, the latter
depends on all tensors in the network but only one is
allowed to vary in each update step, while keeping the
others fixed, hence turning the problem into a local one.
A related concept is thus the environment of a tensor, the
part of a TN that is complementary to the tensor being

modified. This appears in the local cost function and
needs to be evaluated by a (in many cases approximate)
contraction, in order to determine the proper update for
the local tensor.

3. Truncation

Truncating a TN means reducing (some of) the dimen-
sions of its tensors, ideally in such way that the global re-
sult does not change. A truncation can be part of an ap-
proximation strategy (e.g. for a PEPS, see III A), where
it is used to control the dimension of a partial TN con-
traction. In the context of quantum states represented as
TNS, truncating typically means finding tensors to ap-
proximate the state within a given family. For instance
after acting with an operation that, if applied exactly,
would increase the tensor dimensions, as is often the
case of time evolution or non-local operators (e.g. II C 2).
And, more generally, truncating may refer to approxi-
mating a certain state with a TNS of fixed bond dimen-
sion.

In any truncation step, a decision is made as to which
degrees of freedom to keep and which to discard. In
a TNS, the fixed bond dimension upper-bounds the
amount of correlations the state can hold, and thus the
truncation step in most algorithms can be related to en-
tanglement properties.

C. Classic algorithms

Numerous TN algorithms have been introduced in the
last years, yet there are a few well-established methods
that are used to obtain state-of-the-art results in quan-
tum many-body problems. Many of them (specially for
one-dimensional problems) are available as open-source
implementations (see Related Resources at the end),
making it possible to benefit from the numerical power of
TN methods without the need to dive into implementa-
tion details. Furthermore, they are not difficult to imple-
ment, and can be easily adapted to solve other problems,
beyond the ones they were originally designed for. They
constitute the true workhorses of TNS numerical results.

1. Variational optimization of MPS

One of the most powerful strategies in the TNS toolbox
is the variational optimization of the ansatz with respect
to a given cost function, the paradigmatic example be-
ing the DMRG algorithm [6]. This can be essentially
understood as an application of the variational princi-
ple in which an ansatz for the ground state is obtained
minimizing the energy for a quantum many-body Hamil-
tonian over the set of MPS with fixed bond dimension
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FIG. 2. Graphical expression of the local problems solved by the classic algorithms: (a) variational optimization for a single
tensor in DMRG; (b) update of the local pair of tensors in TEBD (diamond-shaped tensors represent the Schmidt values,
explicit in the canonical form); (c) local optimization in tMPS.

D [15, 26],

|Φ(D)
GS 〉 = argmin|ΨD〉

〈ΨD|H|ΨD〉
〈ΨD|ΨD〉

. (2)

The problem is tackled in an iterative manner, a single
tensor being minimized at each step while the rest are
kept constant. [55] While not strictly necessary, the im-
plementation of the original method is greatly simplified
by writing the Hamiltonian as a MPO [16]. This can be
done exactly for short-range one-dimensional Hamiltoni-
ans [51], and approximation schemes exist for long-range
interactions [e.g. [56]]. In this form, the local cost func-
tion can be written as the ratio of two tensor networks
(see fig. 2a) that can be contracted efficiently with a cost
that, for N sites, only scales as O(ND3). The local prob-
lem has thus the form of a Rayleigh-Ritz quotient, and
can be solved exactly using a standard eigensolver. The
procedure is iterated, sequentially optimizing each tensor
in the ansatz, and repeatedly sweeping back and forth
over the whole chain until a predetermined convergence
criterion (usually convergence of the energy value within
certain precision) has been reached. Further gain in effi-
ciency is possible if tensors are always kept in canonical
form and intermediate calculations are stored in memory.
Because the optimum of each local problem can be found
exactly, the algorithm is guaranteed to lower the energy
monotonically, and thus to converge (even though this
might be to a local minimum).

The infinite DMRG (iDMRG) algorithm directly tar-
gets systems in the thermodynamic limit [26], and can
also be expressed in similar terms. In that case, instead
of sweeping back and forth, at each step a unit cell of
tensors is inserted and optimized in the middle of the
chain, and the procedure is iterated until a fixed point
has been reached.

The most natural scenario for the algorithm is the
search for the ground state of a local one-dimensional
Hamiltonian. The method is extremely competitive even
for critical systems (for which the MPS can only approx-
imate the correlations), thanks to finite-size and finite-
entanglement [57, 58] scaling, and has been successfully
used for long-range interactions and problems in larger
dimensions (see sec. III A). The efficiency and robustness
of the method make it one of the most powerful numeri-
cal methods available to solve quantum many-body prob-

lems. Additionally, it can be applied to any variational
optimization problem in which the cost function is ex-
pressed in terms of an effective Hamiltonian with MPO
structure [e.g. [59]].

2. Evolving MPS: TEBD, tMPS

The Time Evolved Block Decimation (TEBD) algo-
rithm [14, 17] is arguably the simplest to implement, yet
one of the most versatile methods in the TN toolbox.
The strategy was originally proposed for simulating the
evolution of an MPS under a quantum circuit, which can
be written as a sequence of two-body, nearest-neighbor
unitary gates. Since each gate can increase the entangle-
ment, its exact action on an MPS generally results in a
larger bond dimension. Maintaining an efficient descrip-
tion of the state thus requires an approximation step that
reduces (truncates) the bond dimension after the appli-
cation of each gate. The TEBD strategy proceeds via
a local update, involving only the directly affected ten-
sors, and corresponds to minimizing the distance between
the transformed and updated states under the condition
that all the remaining tensors are kept invariant. Exploit-
ing the canonical form of the MPS, this can be achieved
by a singular value decomposition of a single tensor, ob-
tained when contracting together the gate and the local
MPS tensors, including their environment, which encodes
the state of the rest of the system (see fig. 2b). In the
TEBD truncation step, only singular values above a cer-
tain threshold are kept, and the discarded weight gives a
measure of the error.

For a one-dimensional nearest-neighbour Hamiltonian,
the time evolution operator can be approximated, using a
Trotter-Suzuki expansion, as a sequence of such two-body
gates of the form exp(−iδhi), where hi is a two-body term
and δ a short time step. The method can thus be used to
simulate the dynamics of an MPS with cost that scales
as O(D3), for bond dimension D. The scheme can be
adapted for other (finite-range) Hamiltonians, although
the cost increases steeply with the interaction range.

As an alternative to the local truncation, it is also pos-
sible to vary all tensors in order to minimize the distance
to the exact state after one or more gates [39]. In this
strategy, called tMPS,[60] tensors are optimized sequen-
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tially as in the variational method II C 1, by solving a
local problem that, in this case, reduces to a system of
linear equations, also with cost O(D3) (see fig. 2c). In
this way once can apply onto the MPS vector any MPO
operator, in particular, a step of the Trotterized time-
evolution. The cost of such MPO representation also in-
creases with the range of the Hamiltonian, but long range
interactions can be treated with help of an approximation
scheme [61].

These methods are very efficient and extraordinarily
versatile. Starting from an arbitrary state, the ground
state can be approached by imaginary (or Euclidean)
time evolution, which effectively projects the state onto
its lowest energy component, and can be applied with
the same algorithm [17], only using non-unitary terms
exp(δhi). Also thermal equilibrium states can be approx-
imated using this technique [20–22], by writing a purifi-
cation of the Gibbs ensemble (namely the thermofield
state) as the evolution of a maximally entangled initial
state in imaginary time given by the inverse temperature,
|Ψ〉 ∝ e−βH/2

∑
n |n〉|n〉 (where n label a basis of the

system Hilbert space). And by treating the mixed state
as a vector in operator space, the same basic method
can be used to simulate real time evolution of open sys-
tems under master equations [20, 21]. Imaginary time
evolution of pure states can also be used to produce
a sample of minimally entangled typical thermal states
(METTS) [62] that reproduce thermal properties. These
are only a few examples: more generally, the tMPS strat-
egy approximates the action of any linear operator writ-
ten as an MPO onto an MPS. This allows reformulating
most linear algebra algorithms as approximate versions
in the framework of MPS [e.g. [63, 64]]. And TEBD and
tMPS algorithms can also be applied to translationally
invariant (or periodic) MPS, working directly in the ther-
modynamic limit [25, 65].

Even though the technique to treat all the scenarios
named above is almost identical, the entanglement in
each of them, and thus the performance of the method,
widely differs. While thermal equilibrium states satisfy
an area law [33, 66] and admit efficient TNS approxi-
mations for local Hamiltonians [67, 68], real time evolu-
tion of a far-from-equilibrium state can give rise to lin-
ear growth of entanglement, in which case approximating
the resulting state with an MPS would require the bond
dimension to grow exponentially with the total time [69–
71]. For this reason, while MPS methods are extremely
useful to study dynamics close to equilibrium, or for mod-
erate times [72], they suffer a fundamental limitation for
genuinely out-of-equilibrium scenarios.

III. ADVANCED TNS METHODS

Even though the algorithms described in the previous
section can treat a large number of problems, some more
advanced techniques, developed mostly in the last decade
and not yet freely available, are necessary to fully exploit

the power of TNS.

A. Higher dimensions

Despite the resounding success of the one-dimensional
applications of TNS, applications of higher-dimensional
ansatzes remain much less common. However, in the last
years, the situation has started to change, thanks to to a
number of algorithmic developments and an intense effort
of the community.

Treating two- and higher-dimensional problems has al-
ways been a coveted target of these numerical meth-
ods and, since the early times of DMRG, the possibil-
ity was recognized of applying the technique to two-
dimensional quantum [73] and three-dimensional classi-
cal problems [11]. MPS form a complete family, and
can be used as an ansatz for any problem, in particu-
lar in larger dimensions. For two-dimensional quantum
states, the MPS ansatz can be wrapped around the lat-
tice. This is usually done in a zig-zag or snake form,
but other choices are possible [74]. The resulting repre-
sentation of the Hamiltonian as MPO is more expensive
(since some short-range terms get mapped onto longer-
range ones), and a larger bond dimension is required to
reach the desired convergence: since cutting a single bond
partitions the state in two, to accommodate the entan-
glement of a state that satisfies an area law the bond
dimension needs to grow exponentially with one of the
dimensions of the system. Highly accurate computations
are still obtained from systems of limited size, often ex-
ploiting a long-cylinder geometry and careful finite size
extrapolations [e.g. [75, 76]].

With built-in area law, PEPS are a more suitable TNS
ansatz, which supports good approximations for equilib-
rium states of local Hamiltonians [32, 68], and allows
variational and evolution strategies as described in sec-
tion II C [23, 77]. They can also be used directly in
the thermodynamic limit, in which case they are called
iPEPS, and are parametrized by a unit cell with a finite
number (which could be as small as one) of tensors [78].
Nevertheless, numerical algorithms with PEPS are con-
siderably more involved, and have higher computational
cost in terms of the tensor dimensions.

For starters, contracting PEPS is, in contrast to the
efficient contraction of MPS, a (#P -complete) hard
computational problem [38]. Practical algorithms re-
sort to approximate contractions, in which the two-
dimensional network is approximated as a sequence of
MPO-MPS contractions from the boundary [77–79], by
a coarse-graining, or tensor renormalization [80, 81] (see
sec. IV A), or, in the case of iPEPS, by a corner transfer
matrix contraction [10, 82]. In these strategies there is a
trade-off between the numerical cost and the accuracy of
the contraction, important to determine the environment
of a tensor or the expectation values of observables.
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FIG. 3. Approximation of the environment tensor in PEPS: (a) environment (in solid colors) of a pair of tensors on which a
nearest-neighbor gate is applied (group shown in lighter shade); (b) in the simple update, the environment tensor is approximated
as a product (compare to the 1D case in fig. 2b); (c) a correlated approximation of the environment is required for the full
update.

Because of this, methods have been developed that
gain efficiency by allowing less precise environment es-
timations for tensor updates (fig. 3). The most efficient
alternative uses a so-called simple update [80] where, in
order to update a pair of tensors under the action of
a two-site gate, the environment is approximated by a
product of diagonal matrices acting on each link sur-
rounding the pair, which play a role analogous to that
of the Schmidt values in the TEBD procedure. Discard-
ing the correlations in the environment can prevent the
method from reaching the best PEPS with fixed bond
dimension in the general case [79], but the algorithm is
still popular, due to its efficiency and stability. A better
update can be found with the more expensive full up-
date [78, 83], which takes into account a more accurate
correlated environment approximation.

These approaches may improve the efficiency of the
updates, which can be particularly useful in the case of
ground state search by imaginary time evolution, where
the goal is a fixed point of the evolution. However, the
evaluation of observables still needs to be as accurate as
possible, in order to guarantee a variational result. This
yields for most of PEPS algorithms a computational cost
scaling as O(D10).

Another difference between PEPS and MPS computa-
tions is the absence of a canonical form for the former.
As a consequence, the effective norm term appearing, for
instance, in the denominator of Eq. 2, cannot be reduced
to the identity, and needs to be inverted to solve the lo-
cal problems, which results in higher computational costs
and loss of stability. The problem can be alleviated mak-
ing use of the gauge freedom to optimize the condition
of this effective matrix [84–86].

Despite the higher computational challenge, and the
still ongoing development of more efficient strategies,
PEPS already outperform MPS for two-dimensional
problems of moderate size, as explicitly shown in [87]
for Heisenberg and Hubbard models.

All in all, iPEPS has been the preferred ansatz to ad-
dress ground states of two-dimensional quantum prob-
lems in this context, due to the possibility of directly
addressing bulk properties. [88] Imaginary time evo-
lution has been the method predominantly used until

very recently, due to the highly non-linear character
of a variational approach in the line of II C. However,
in the last few years, new strategies have been intro-
duced for a stable and efficient variational optimization
of iPEPS [89, 90], which produces more accurate results.
A further step has been the precise solution of critical
systems, with the help of extrapolations in the correla-
tion length of finite D states [91–93]. Plenty of impressive
numerical results have been already obtained thanks to
these advanced methods, among them the most accurate
result for the Hubbard model [94], and the first studies
of three-dimensional problems [95].

When the focus is not on ground states, and similar
to the MPS case discussed in section II C 2, the (real
or imaginary) time evolution techniques allow address-
ing multiple problems, such as equilibrium states at finite
temperature [96], steady states of open systems [97–99]
and real time evolution [77, 96, 100].

An alternative direction has been the development and
exploitation of restricted subsets of PEPS, with more
favourable computational properties, that can be suitable
ansatzes for particular problems. It is the case, for in-
stance, of sequentially generated states [101], or the more
general isometric PEPS [102], or of Gaussian fermionic
PEPS [103].

And other TNS families that do not have an area
law, or only a restricted one, can be used to study
higher-dimensional systems of a certain size, as does two-
dimensional DMRG. For instance TTN [e.g. [43, 104]], or
the recently introduced augmented trees [105].

B. Symmetries

In case the problem under study exhibits some sym-
metry, taking advantage of it is not only of fundamental
interest, but can also boost the performance of a numeri-
cal algorithm. For instance, if the Hamiltonian commutes
with a certain operator [H,O] = 0, its eigenstates will
have well-defined eigenvalues of O, and the search can be
restricted to subspaces labelled by particular quantum
numbers.

In the case of quantum many-body systems, one is of-
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ten interested in problems with a global symmetry of
the form U⊗N |Ψ〉 = |Ψ〉, where U is a unitary trans-
formation that acts on a single site. Particularly rel-
evant is the case when the operation is a representa-
tion of a group G, namely U = Ug, for some g ∈ G.
Such Abelian symmetries were soon incorporated to the
DMRG method [16, 26], where they became of common
use, typically implemented for the conservation of parti-
cle number or total magnetization. Also the formalism
for non-Abelian symmetries was also developed [8, 106],
albeit not so commonly used.

A general framework to handle global symmetries in
higher dimensional TN was first introduced in [107], with
explicit formulations for Abelian [108, 109] and non-
Abelian [110, 111] cases following shortly. The basic
idea of these and the original DMRG constructions is to
define invariant tensors, which remain unchanged when
the symmetry operation acts on all the indices. This
requires well-defined transformation properties for each
of the indices and, in particular, choosing bases for the
virtual legs with well-defined quantum numbers, for in-
stance |qα〉, where q labels an irreducible representation
of the group,[112] and α labels the states within the same
irrep. The bond dimension of such leg will be the sum
of dimensions for each q. Assigning a direction to each
edge in the TN, outgoing and incoming indices transform
respectively with the unitary representation of the group
and its inverse and it follows that a TNS constructed out
of such invariant tensors is globally invariant.

The invariance of a tensor implies some internal struc-
ture. In the case of Abelian symmetries, the tensor can be
decomposed in a direct sum of blocks, with the only non-
vanishing ones being those for which the sum of quan-
tum numbers of incoming indices equals that of outgoing
ones. In the non-Abelian case, blocks corresponding to
a suitable combination of irreps have further structure,
as they can be further decomposed as a tensor product
of one part dictated merely by the symmetry, and an-
other one containing the free parameters of the state.
In particular, for three-legged tensors the first factor is
a Clebsch-Gordan tensor. For more general tensors, a
decomposition of the whole TN in three-legged terms
can be used [107], or more efficient precomputation of
the corresponding coefficients can be done in the algo-
rithm [111, 113, 114]. Notice that generic tensors (i.e.
without explicit symmetry) can also be used to describe
a TNS with the desired global symmetry, even produc-
ing a more compact description [115]. Using the symme-
try structure of the tensors involves a more cumbersome
implementation of the methods (described in detail in
the previous references), but in exchange allows one to
work with blocks which have smaller bond dimension,
which reduces the computational cost of contractions at
the lowest-level.

Symmetric tensors can be used to raise the global sym-
metry to a gauge one [116–118]. This is done through the
introduction of additional link tensors (analogous to link
variables in usual formulations of lattice gauge theories).

Finally, it is worth mentioning that, at the theoretical
level, a framework has been developed to characterize
MPS and PEPS in terms of the tensor symmetries [37],
a formal approach that has produced fundamental re-
sults and continues to be an active and fruitful area of
research [24].

C. Fermions

An advantage of the TN framework with respect to
other numerical methods for quantum many-body prob-
lems, is the possibility to treat problems with fermionic
degrees of freedom, of fundamental interest for condensed
matter and fundamental physics. Whereas in this case
Quantum Monte Carlo methods are often obstructed by
the sign problem, which causes the cost of convergence
to increase exponentially with the system size, TN calcu-
lations can indistinctly treat fermionic and spin setups.

In one spatial dimension, fermionic modes do not pose
a real problem, as they can be mapped to spins through
the Jordan-Wigner transformation . This maps local
fermionic models onto local spin Hamiltonians, such that
both can be treated with exactly the same algorithms.
In higher dimensions, however, a similar transformation
does not maintain the locality of the model. An alter-
native that maps local fermions to local spins and would
support a treatment with standard TNS algorithms was
introduced in [119], but at the cost of introducing addi-
tional degrees of freedom doubling the size of the system.

It is however possible to define TNS directly in terms
of fermionic degrees of freedom. The explicit construc-
tion was presented by several independent, but essen-
tially equivalent, proposals [83, 103, 120, 121]. The fun-
damental idea is to work in a representation in which
all spaces, virtual and physical, are fermionic, and have
well-defined parity, i.e. the tensors are symmetric with
respect to parity transformations, in the sense described
in III B. Then it is possible to encode the statistics of
fermionic operators in a local way, such that the scaling
of the computational cost with the system size is pre-
served.

The most intuitive formulation [83, 120] can be visual-
ized as an effective linear ordering of the fermionic modes,
fixed once a graphical representation of the TNS is cho-
sen (the order would be that obtained when projecting
all the sites of the graph onto a line). Each crossing of
legs in the diagram has to be accounted for, as it in-
volves commutations of fermionic operators. This can
be achieved substituting the crossing by a swap matrix,
which introduces a negative sign with fermionic degrees
of freedom with odd parity are exchanged. Thanks to
the symmetry of the tensors, the swap matrices can be
moved through the network and be absorbed into local
tensors, and the contraction can follow the same sequence
as in the spin case, thus keeping the leading cost. This
formalism, which can be combined with additional sym-
metries [114], has already made possible for iPEPS to
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beat any other computational method in some parame-
ter regimes of the Hubbard model [94].

D. Dynamics

Simulating time evolution is a crucial tool for un-
derstanding the out-of-equilibrium dynamics of quan-
tum many-body systems, linked to fundamental ques-
tions such as thermalization. Together with the applica-
bility to fermionic problems, being able to address real-
time evolution is precisely one of the main advantages of
TNS as compared to Monte Carlo methods.

The TNS toolbox has several different methods to
tackle these problems. Many of them produce an approx-
imation to the time-evolved state within the desired fam-
ily [see [72] for a recent detailed review]. The standard
algorithms described in II C 2 proceed by constructing an
approximation of the evolution operator U(δ) = e−iδH

for a finite time step δ and applying it onto a TNS wave
function. In general, this increases the bond dimension,
and it must be followed by a truncation step that re-
duces the tensors again. A limitation of these methods
is that they rely on approximations of the Hamiltonian
exponential operator that become exceedingly costly as
the range of the interactions increases.

Krylov-based methods, instead, directly target the re-
sult of the evolution step by approximating the applica-
tion of the operator on the state as a linear combination
of Krylov vectors [63, 122], instead of explicitly approx-
imating the evolution operator in the full space. This
in turn requires approximating the Krylov vectors them-
selves by TNS. A related approach is using Chebyshev
expansions of the exponential operators [123].

Also the more recently proposed time dependent vari-
ational principle (TDVP) [124, 125] adopts a different
strategy, in which the MPS tensors are evolved such that
the evolution never leaves the MPS manifold. This is
achieved by projecting the variation of the wave func-
tion, given by the rhs of the Schrödinger equation, onto
the local tangent plane of the MPS. Despite its different
philosophy, TDVP algorithms for finite and infinite sys-
tems can be formulated in terms of essentially the same
low level primitives as the traditional ones [125]. That
is, the tensors of the ansatz can be updated according
to the solution of a local evolution, in this case given by
effective Hamiltonians that result from the tangent plane
projection. An advantage of this method is that it pre-
serves conserved quantities of the evolved state, such as
the norm and energy.

In the uniform MPS case, the TDVP algorithm is the
first exponent of a new generation of TNS algorithms,
so-called tangent-space methods [126], based on exploit-
ing the geometric structure of the MPS manifold. These
increasingly popular methods have multiple applications
beyond time evolution, including the variational opti-
mization of uMPS or finding elementary excitations, and
have been partly adapted for PEPS [see [127] for a ped-

agogical overview]. More recently, generalizations for
TTN and other isometric TN have been introduced [128–
130].

The approaches described above provide powerful al-
gorithms to investigate the evolution of quantum systems
for moderate times, or close to equilibrium [72]. However,
they are still subject to the fundamental limitation men-
tioned in II C 2: under time evolution, entanglement can
grow fast, the bond dimension of the ansatz would need
to grow exponentially with the simulated time [70, 71],
such that after short times, the simulation becomes un-
feasible, a problem that has been termed entanglement
barrier. But for physical problems, often the interest is
not in the full description of the state, but in expectation
values of local observables, which correspond to experi-
mentally accessible quantities. There a paradoxical situ-
ation takes place, since in the long time limit observables
are expected to thermalize or equilibrate to values that
are well described by statistical ensembles, which can be
themselves efficiently approximated by (mixed) TNS, but
in most cases the entanglement barrier makes it impos-
sible to reach this regime following the evolution of the
state.

For this reason, an active effort is being dedicated to
the investigation of potentially new methods that avoid
the entanglement barrier and manage to describe the long
time dynamics of local quantities. A first proposal was
evolving operators in Heisenberg picture [131] using a
suitably adapted time evolution algorithm. Despite not
completely solving the entanglement problem, such an
approach constitutes the basis of many other strategies
for dynamical quantities. Another idea was to target the
TN that represents the time-dependent local observables,
and to approximate its contraction in the transverse di-
rection, after folding [132, 133], which can give access to
longer times, especially when exploiting the finite propa-
gation velocity of correlations [134, 135]. This remains an
active area of research, and several new strategies have
been proposed in the last years to focus on the local ob-
servables [136–138].

E. Excitations

With the variational approach for the ground state
(section II C 1) it is possible to target also low excited
states, by simply orthogonalizing the targeted state
with respect to any number of previously computed
ones [16, 26], an approach that is most useful in the case
of finite systems.

A particularly useful ansatz for elementary excitations
is to model them as local perturbations acting on the
vacuum. In the TNS framework, it is possible to con-
struct well-defined momentum states of this form by suit-
able superpositions of a locally modified ground state [7].
Tangent-space methods offer a way to generalize this con-
struction that is especially powerful in the thermody-
namic limit [126, 127]. In this framework, elementary
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excitations are written as tangent vectors with position-
dependent momentum factors, and their energies can be
optimized variationally. Also topologically non-trivial ex-
citations (such as domain walls) can be captured in this
language.

Although low-energy excitations as the ones above are
often observed to fulfill an approximate area law, the
same is not true for generic, highly excited states. An ex-
ception is the case of many-body localized Hamiltonians.
Hence, several specific algorithms have been developed
to target eigenstates at some high energy value E, for
instance using a shift and invert strategy [139], target-
ing the state at given energy that maximizes the overlap
with a particular product state [140], or searching for the
lowest eigenvalue of (H − E)2 [141].

IV. FURTHER TN APPROACHES AND
PERSPECTIVES

Other aspects of TN technologies, beyond the standard
TNS tools discussed in the previous sections offer addi-
tional ways to explore the physics of complex systems.

A. Network renormalization approaches

Some of the earliest works in the TN literature, be-
fore the quantum information perspective shaped the lan-
guage for TN, already pointed out the connection be-
tween many-body problems and tensors in the partition
functions of classical spin systems [10, 142]. In this ap-
proach, a TN represents exactly the partition function of
a classical model (which might as well correspond to a
path integral formulation of a quantum one) and tensor
contractions can be used to approximate a result.

The tensor renormalization group (TRG) method in-
troduced in [143] is based on a block renormalization of a
two-dimensional TN: in each coarse-graining step a local
group of tensors is replaced by their approximate contrac-
tion with truncated bonds, such that the size of the TN
is divided by a constant (see fig. 4). The original trunca-
tion is done by simply singular value decompositions of
the tensors being contracted. In [144] a new strategy was
introduced, called second renormalization group (SRG)
method, where a different truncation is chosen that tries
to maintain the fidelity of the contraction of the whole
network, by taking into account the environment of the
tensor that is being computed. A more efficient con-
traction and truncation strategy that can be applied to
higher dimensional systems was later proposed in [145],
using the higher order singular value decomposition.

A shortcoming of the approach, already identified
in [143] is that some short-range entanglement struc-
tures cannot be removed by the TRG coarse-graining,

in particular, the corner double line (CDL) tensor. Sev-
eral modifications have been proposed to solve this is-
sue, such as the TNR (tensor network renormalization)
that includes disentanglers, in the spirit of MERA, before
the renormalization steps [146]. Other proposals have
been the iterative optimization of the tensors around a
loop [147], or different local index truncations that take
care of internal correlations [86, 148].

TRG approaches are also useful to contract the TN cor-
responding to observables for quantum states in higher
dimensions, and can then be used as part of PEPS opti-
mization algorithms [80, 81] (see sec. III A). A related
topic is the treatment of fermionic problems in TRG
approaches. In [149] it was shown that wave functions
and expectation values of many-body fermionic (but also
bosonic) systems could be expressed and contracted as
a Grassmann tensor network, in which tensor compo-
nents are given in terms of Grassmann variables, and
for which a suitable TRG approach can be defined. A
compact ansatz of this form, together with algorithms to
renormalize the network and to evolve the tensors were
presented in [150], and have been used, for instance, to
study discretized field theories with fermionic degrees of
freedom [see references in [151, 152]].

B. Connections to other techniques

Exploring the potential connections between TN meth-
ods and other techniques is an exciting possibility that,
on the one hand, can result in new or improved algo-
rithms and, on the other, opens the door to treating new
problems with TN methods, as the following examples
illustrate.

• Monte Carlo algorithms. Monte Carlo sampling
can be used to speed up TN contractions, and varia-
tionally optimize TNS parameters [153, 154]. With
a complementary perspective, TN contractions can
be employed to directly sample configurations from
the partition function [155–157], but also to define
a Markov chain with collective updates [158].

• Machine Learning. The connections between TN
and machine learning drive some of the most re-
cent developments, including the use of TNS mod-
els for machine learning tasks [159, 160], and also
importing numerical tools, such as automatic dif-
ferentiation, into TN algorithms [161].

• Field theory. The interplay between TNS and
quantum field theory is another decidedly active
area, which has produced accurate numerical re-
sults for lattice gauge theories [151, 152], but also
motivates formal developments, such as gauge sym-
metric (see sec. III B) and continuous [162, 163] for-
mulations of TNS.
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FIG. 4. Coarse-graining step in the simplest TRG schemes: (a) TN representing a partition function of a classical spin model;
(b) original TRG; (c) higher order TRG (HOTRG).

V. OUTLOOK

The field of tensor networks has grown impressively in
the last decade and remains a vibrant research area. Cur-
rent TN research moves forward in different directions.
A rather formal approach explores the mathematical as-
pects of these ansatzes. With a more applied perspective,
significant effort is being devoted to the development of
numerical TN methods, a multifaceted enterprise, some
of whose spotlights have been highlighted in the previ-
ous pages. And the field continues to uncover syner-
gies with seemingly remote topics, and to develop in new
and creative ways. All these directions are likely to pro-
duce exciting results in the coming years, maybe finding
useful TNS subfamilies, improving the efficiency of high-
dimensional or dynamical calculations, or bridging the
gaps between formal and numerical developments.

At the same time, mature TN algorithms are well es-
tablished as competitive computational methods for the
study of many-body problems. These algorithms, re-
viewed in the first part of this article, make it easy for
the newcomer to try TN for an existing problem, and si-
multaneously serve as a platform for the more specialized
researcher to experiment with new algorithms or to draw
new connections between TN and other disciplines.
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[4] Klümper A, Schadschneider A, Zittartz J. 1993. Euro-

physics Letters (EPL) 24(4):293–297
[5] Fannes M, Nachtergaele B, Werner RF. 1992. Commun.

Math. Phys. 144(3):443–490
[6] White SR. 1992. Phys. Rev. Lett. 69(19):2863–2866
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