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Abstract

Tensor networks provide extremely powerful tools for the study of complex
classical and quantum many-body problems. Over the past two decades, the
increment in the number of techniques and applications has been relentless,
and especially the last ten years have seen an explosion of new ideas and
results that may be overwhelming for the newcomer. This short review in-
troduces the basic ideas, the best established methods, and some of the most
significant algorithmic developments that are expanding the boundaries of
the tensor network potential. The goal of this review is to help the reader
not only appreciate the many possibilities offered by tensor networks but
also find their way through state-of-the-art codes, their applicability, and
some avenues of ongoing progress.
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DMRG: density
matrix renormalization
group

MPSs: matrix product
states

1. INTRODUCTION

Numerical methods are an essential tool for tackling quantummany-body systems, most of which
lack analytical solutions. For these problems, though, the dimensionality—and with it the com-
putational complexity—grows exponentially with the system size. This limits the applicability of
exact numerical calculations and calls for the development of numerical methods that can effi-
ciently deal with, at least, the most relevant physical questions. Introduced to the field in the
nineties, tensor network (TN) techniques aim to cover this need and have become, together with
exact diagonalization and quantumMonte Carlomethods, a key instrument in the numerical study
of quantum many-body problems.

TNs have been discovered independently in different disciplines. First uncovered in statistical
physics by Baxter (1), in the field of quantummany-body physics their ancestry can be traced back
to the first valence bond solid (VBS) proposed byAffleck,Kennedy,Lieb,&Tasaki (AKLT; 2) as the
exact ground state of a short-range spin chain—see Reference 3 for a review and historical perspec-
tive. Klümper et al. (4) later extended the AKLT proposal for a larger set of models and also intro-
duced the termmatrix product to designate these states.The construction was generalized and for-
malized mathematically by Fannes et al. (5) in the finitely correlated states for infinite spin chains.

Around the same time, the density matrix renormalization group (DMRG), a new algorithm
proposed by White (6), revealed an amazing power to capture the ground state of large quantum
spin chains with only modest numerical effort. Shortly afterward, Östlund & Rommer (7) iden-
tified the fixed point of the infinite DMRG algorithm with precisely such matrix product states
(MPSs), and Dukelsky et al. (8) pointed out the connection between DMRG and a variational
search over these states. Furthermore, Nishino & Okunishi (9, 10) unified DMRG with Baxter’s
corner transfer matrix approach for two-dimensional classical models. And these insights inspired
further generalizations of the original algorithm (11).

DMRGwas applied tomultiple scenarios and fast became amethod of choice to study the static
properties of quantum spin systems in low spatial dimension (12, 13). Yet a whole new perspective
was gained thanks to quantum information concepts.Understanding in terms of entanglement the
matrix product ansatz (14) and the DMRG algorithm (15), and reformulating the latter fully in
terms ofMPSs (16) opened up the possibilities for improvements and jumpstarted the TNfield. In
particular, algorithms for real-time evolution (17–19) and finite temperature (20–22) with MPSs,
as well as a generalization to higher dimensions (23), were proposed soon afterward, revealing the
potential of the TN picture.

Nowadays, TN algorithms are among the standard numerical methods for strongly correlated
low-dimensional quantum systems.Most commonly used are the original methods from the early
2000s, which continuously find new applications. But the TN language continues to be exploited
to provide not only deeper mathematical understanding of the ansatz (24) but also new numerical
techniques.

The variety of TN applications that have bloomed over the past decade and produced state-
of-the-art results is too vast to do justice to it in these pages. Thus, the focus of this article is the
general framework of TN algorithms, with a stress on a few selected advances in the field that are
important for cutting-edge applications. The details of the algorithms are not explicitly shown;
interested readers are encouraged to refer to the many excellent reviews in the literature, such as
References 25–30, to name only a few.

2. BASIC CONCEPTS

The basic object, a tensor, is simply a multidimensional array. The graphical representation of
a TN, illustrated in Figure 1, provides a practical language to describe their algorithms and
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Figure 1

Graphical representation of tensors. (a) Example of a tensor network formed by four tensors; when contracted, a 4-rank tensor is
obtained. (b) Graphical representation of a tensor network state in each of the main families, for a system of 16 sites. (Note: Triangles
are commonly used to indicate isometries.) Abbreviations: MERA, multiscale entanglement renormalization ansatz; MPS, matrix
product state; PEPS, projected entangled pairs state; TTN tree tensor networks.

properties. For instance, a k-rank tensor, an object with k indices, is depicted as a geometrical
shape with k legs (e.g., a matrix would have two legs). A contraction between two tensors—such
as a matrix–vector product—is represented by joining the contracted indices. In general, a TN is
a set of such interconnected tensors, resulting in a rank determined by the number of open legs
(see Figure 1a).

2.1. Tensor Network States

In particular, a tensor network state (TNS) encodes all coefficients (in a given basis) of a quantum
many-body state in such a diagram, with as many open legs as constituents in the system. Each
dangling leg corresponds to the (finite) physical dimension of one site, whereas contracted legs
correspond to virtual or bond dimensions.

TNS families are defined by graphs with different connectivities. For the families of interest,
the number of parameters, proportional to the number of tensors, grows polynomially with the
system size. This represents a drastic reduction with respect to the exponentially large dimen-
sion of the Hilbert space. But the aim of TNSs is to capture physical states, which happen to
explore only a small fraction of all possible quantum states, mainly characterized by their low en-
tanglement. In particular, ground and thermal equilibrium states of local Hamiltonians fulfill an
entanglement area law (31): The entanglement between a certain subsystem and the rest scales
with the size of the boundary between both parts (or with small corrections thereof ), instead of
with the size of the bulk of the subsystems, as is the case for most states in the Hilbert space. A
rigorous proof of the area law scaling exists for gapped one-dimensional local Hamiltonians (32)
and for thermal equilibrium states in any dimension (33),whereas critical ground states can display
small (logarithmic) corrections (34, 35).

The following are the most widely used TNS families (see their diagrams in Figure 1b).

1. MPSs have a one-dimensional structure, with one tensor per lattice site (36). Each tensor
owns one open index corresponding to the physical dimension of the site, and two virtual
legs connected to the neighboring sites (for open boundaries, the edge tensors only connect
to one neighbor). The tensor for site k has components A[k]iα β , where i takes values over
the physical dimension (typically denoted dk), and α and β, respectively, take values over the
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PEPSs: projected
entangled pairs states

TTNs: tree tensor
networks

MERAs: multiscale
entanglement
renormalization
ansatzes

Uniform MPSs
(uMPSs):
parametrized by a
single tensor

Infinite PEPSs
(iPEPSs): periodic
repetition of a finite
unit cell

left and right virtual dimensions of the tensor (denotedDl andDr)—equivalently, each A[k]i

is a Dl × Dr matrix. More explicitly, for a system of N sites, all with physical dimension d,
the state reads as

|9⟩ =
d∑

i1 ,i2 ,···iN=1

tr
(
A[1]i1A[2]i2 · · ·A[N ]iN

) |i1i2 · · · iN ⟩. 1.

MPSs satisfy an entanglement area law: The half-chain entanglement of an MPS with
maximal bond dimension D is upper-bounded by S = 2 logD. They hold exponentially de-
caying correlations, can be prepared and contracted efficiently, and essentially correspond
to ground states of local one-dimensional gapped Hamiltonians (37).

2. Projected entangled pairs states (PEPSs) are the natural generalization of MPSs to arbi-
trary graphs, where they can be defined with one tensor (with a physical leg) per vertex
and connections according to the graph edges (23). They can be expressed analogously to
Equation 1, replacing the trace by a contraction over all connections. PEPSs fulfill the area
law in higher dimensions and are much more complex objects than MPSs. For instance,
they cannot—in the general case—be prepared or contracted efficiently (38) and, even with
small bond dimension, they can support critical correlations (39). PEPSs are conjectured to
be the right set to describe ground states of local gapped Hamiltonians (24).

3. Tree tensor networks (TTNs) correspond to tree graphs. Usually—but not always—they
have physical indices in the leave nodes (40), connected to tensors with only virtual indices
at higher levels (see Figure 1b), which can correspond to a renormalization direction (41).
Like MPSs, TTNs are loop-free and can be contracted efficiently, but they violate the one-
dimensional area law, and can hold power-law decaying correlations when averaging over
spatial positions (42). TTNs can be used also for higher-dimensional systems (43).

4. Multiscale entanglement renormalization ansatzes (MERAs) implement a more complex
renormalization of the physical degrees of freedom (44–46), in which layers of unitary trans-
formations (called disentanglers) that remove short-range correlations are alternated with
layers of isometries that perform the renormalization step. This results in a TN with cycles
in which, thanks to the unitarity properties of the tensors, local expectation values can be
computed efficiently. Scale invariant MERAs can describe quantum critical ground states in
one dimension (47, 48), where they support logarithmic corrections to the area law. How-
ever, in two dimensions they are proven to be a subset of PEPS (49) and, thus, satisfy the
area law.However, a generalization called the branching MERA (50) exists that can support
up to volume-law entanglement in more than one spatial dimension.

AnyTNhas a so-called gauge freedom,because inserting the product of a matrix and its inverse
XX−1 in between any contracted pair of indices (i.e., in a connected leg) leaves the whole TN
invariant, but at the same time allows redefining pairs of neighboring tensors. For loop-free TNSs,
in which cutting a bond splits the network in two, it is possible to define a canonical form, in which
the basis for the virtual index is chosen to be the Schmidt basis for the bipartition corresponding
to the bond, explicitly encoding the corresponding entanglement (36). Besides being fundamental
to characterize the properties of a TNS family, this canonical form gives rise to more stable and
efficient numerical algorithms.

The families above can be defined for finite-size systems with site-dependent tensors, but it
is also possible to consider directly the thermodynamic limit, in which one (or a few) tensors are
repeated infinitely many times, to produce a translationally invariant (or periodic in space) struc-
ture. In the case of MPSs, the translationally invariant ansatz is called uniform MPSs (uMPSs).
In infinite PEPSs (iPEPSs), a periodic iteration of a finite unit cell is most commonly used in
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MPOs: matrix
product operators

PEPOs: projected
entangled pairs
operators

NP: the complexity
class of decision
problems for which a
solution can be
verified efficiently

#P: the complexity
class of counting
problems associated to
problems in NP

practice, whereas the translationally invariant version is fundamental for the formal results (24).
This allows targeting bulk properties directly, without finite-size extrapolations, or, in the case of
MERAs, capturing the scale invariance of critical systems (47, 48).

These families can also describe mixed states. The simplest approach is to postulate the TNS
ansatz in a given tensor product basis of the vector space of operators,with simply doubled physical
legs. In particular, in the MPS and PEPS cases the resulting structures are called matrix product
operators (MPOs; 20, 21, 51) and projected entangled pairs operators (PEPOs). But if the ansatz
is to describe a physical state, it must be positive semidefinite, a global property that cannot be
assessed at the level of the local tensors. An alternative is to consider the TNS describing a purifi-
cation, i.e., a pure state of the system plus an ancilla, such that tracing out the latter results in the
desired mixed state. In the MPS and PEPS case, this yields a locally purified form, a TN with the
same structure, where local tensors have double physical indices, and internal structure granting
positivity (20). This is more restrictive and potentially less efficient than the generic ansatz (52)
but can be used in practice in numerical algorithms.

2.2. Fundamental Primitives

Virtually all TN algorithms rest on two basic blocks: contracting (part of ) the TN, and locally
updating the tensors. Together with the approximation of (parts of ) a TN by tensors with trun-
cated dimensions, they can be considered the fundamental primitives on which more or less
sophisticated higher-level algorithms are built.

2.2.1. Contracting tensor networks. A ubiquitous problem in TN algorithms is contracting
a TN. This means explicitly evaluating the products and sums of tensor components indicated
by the connections, to result in a tensor with dimensionality corresponding to the indices that
remain open (see Figure 1a). For instance, for classical statistical models, partition functions
and expectation values of local observables can be written as closed TNs (without open indices).
For TNSs representing quantum states, norms and local expectation values are also closed TNs,
whereas reduced density matrices appear as smaller TNs with operator indices. Two aspects of the
contraction affect the implementation and performance of the algorithm.

1. Contraction order. In general, the computational cost of contracting a series of tensors with
each other depends on the order in which operations are applied. For the regular networks
that appear in the most common TNS algorithms, the number of possibilities is small, and
the optimal sequence (whichminimizes the computational cost) is known.But in the general
case, finding the optimal contraction order is an NP-complete problem, for which some
heuristic algorithms exist (53, 54).

2. Computational cost. If a contraction order exists whose computational cost grows only poly-
nomially with the size of the network, we say that the TN can be contracted exactly. Such
is the case with TNs that do not contain loops, for instance, the networks correspond-
ing to expectation values of multipoint correlators in MPSs and TTNs. Also for TNSs
with some unitary properties there are contractible quantities, for instance, the norm or
few-point correlators evaluated in MERAs. The exact contraction of an arbitrary TN is,
however, a #P-complete problem (38). Thus, most algorithms involving TNs in more than
one dimension need to approximate the contractions, which is referred to as truncation
(Section 2.2.3).

2.2.2. Tensor update. Many algorithms work by holding a TN description of the quantity of
interest and iteratively improving it until some predefined level of convergence is attained. The
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improvement proceeds by local changes, or updates, in which one (or few) tensors are modified
in order to optimize the relevant cost function. Typically, the latter depends on all tensors in
the network, but only one is allowed to vary in each update step while keeping the others fixed,
hence turning the problem into a local one. A related concept is thus the environment of a tensor,
the part of a TN that is complementary to the tensor being modified. This appears in the local
cost function and needs to be evaluated by a (in many cases approximate) contraction in order to
determine the proper update for the local tensor.

2.2.3. Truncation. Truncating a TN means reducing (some of ) the dimensions of its tensors,
ideally in such a way that the global result does not change. A truncation can be part of an ap-
proximation strategy (e.g., for a PEPS, see Section 3.1), where it is used to control the dimension
of a partial TN contraction. In the context of quantum states represented as a TNS, truncating
typically means finding tensors to approximate the state within a given family, for instance, after
acting with an operation that, if applied exactly, would increase the tensor dimensions, as is often
the case of time evolution or nonlocal operators (e.g., 2.3.2). And, more generally, truncating may
refer to approximating a certain state with a TNS of fixed bond dimension.

In any truncation step, a decision is made as to which degrees of freedom to keep and which
to discard. In a TNS, the fixed bond dimension upper-bounds the amount of correlations the
state can hold, and thus the truncation step in most algorithms can be related to entanglement
properties.

2.3. Classic Algorithms

Numerous TN algorithms have been introduced in recent years, yet there are a few well-
established methods that are used to obtain state-of-the-art results in quantum many-body
problems. Many of them (specially for one-dimensional problems) are available as open-source
implementations (see the Related Resources at the end of this article), making it possible to ben-
efit from the numerical power of TN methods without the need to dive into implementation
details. Furthermore, they are not difficult to implement and can be easily adapted to solve other
problems beyond the ones they were originally designed for. They constitute the true workhorses
of TNS numerical results.

2.3.1. Variational optimization of matrix product states. One of the most powerful strate-
gies in the TNS toolbox is the variational optimization of the ansatz with respect to a given cost
function, the paradigmatic example being the DMRG algorithm (6). This can be essentially un-
derstood as an application of the variational principle in which an ansatz for the ground state is
obtained, minimizing the energy for a quantum many-body Hamiltonian over the set of MPSs
with fixed bond dimension D (15, 26),

|8(D)
GS ⟩ = argmin|9D⟩

⟨9D|H |9D⟩
⟨9D|9D⟩ . 2.

The problem is tackled in an iterative manner, a single tensor being minimized at each step while
the rest are kept constant.1 Although not strictly necessary, the implementation of the original
method is greatly simplified by writing the Hamiltonian as anMPO (16). This can be done exactly
for short-range one-dimensional Hamiltonians (51), and approximation schemes exist for long-
range interactions (e.g., 55). In this form, the local cost function can be written as the ratio of two

1This corresponds to the single-site algorithm, which is most natural in the TN framework. Some modifica-
tions can be made to connect to the classic two-site DMRG (see References 3 and 26 for details on DMRG
variants and their historical development).
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Time-evolving block
decimation (TEBD):
updates only the
tensors under a local
gate

Figure 2

Graphical expression of the local problems solved by the classic algorithms. (a) Variational optimization for a single tensor in density
matrix renormalization group. (b) Update of the local pair of tensors in time-evolving block decimation (diamond-shaped tensors
represent the Schmidt values, which are explicit in the canonical form). (c) Local optimization in tMPSs (time evolution with matrix
product states). Abbreviation: SVD, singular value decomposition.

TNs (see Figure 2a) that can be contracted efficiently with a cost that, for N sites, only scales
as O(ND3). The local problem has thus the form of a Rayleigh–Ritz quotient and can be solved
exactly using a standard eigensolver.The procedure is iterated, sequentially optimizing each tensor
in the ansatz and repeatedly sweeping back and forth over the whole chain, until a predetermined
convergence criterion (usually convergence of the energy value within certain precision) has been
reached. Further gain in efficiency is possible if tensors are always kept in canonical form and
intermediate calculations are stored in memory. Because the optimum of each local problem can
be found exactly, the algorithm is guaranteed to lower the energy monotonically and, thus, to
converge (even though this might be to a local minimum).

The infinite DMRG (iDMRG) algorithm directly targets systems in the thermodynamic
limit (26), and it can also be expressed in similar terms. In that case, instead of sweeping back
and forth, at each step a unit cell of tensors is inserted and optimized in the middle of the chain,
and the procedure is iterated until a fixed point has been reached.

The most natural scenario for the algorithm is the search for the ground state of a local
one-dimensional Hamiltonian. For critical systems the finite bond dimension introduces an ef-
fective correlation length, but extremely competitive results are still possible using finite-size and
finite-entanglement (56, 57) scaling. And the method has been successfully used for long-range
interactions and problems in higher spatial dimensions (see Section 3.1). The efficiency and ro-
bustness of the method make it one of the most powerful numerical methods available for solving
quantum many-body problems. Additionally, it can be applied to any variational optimization
problem in which the cost function is expressed in terms of an effective Hamiltonian with MPO
structure (e.g., 58).

2.3.2. Evolving matrix product states: TEBD, tMPS. The time-evolving block decimation
(TEBD) algorithm (14, 17) is arguably the simplest to implement yet one of the most versatile
methods in the TN toolbox. The strategy was originally proposed for simulating the evolution
of an MPS under a quantum circuit, which can be written as a sequence of two-body, nearest-
neighbor unitary gates. Because each gate can increase the entanglement, its exact action on an
MPS generally results in the bond dimension growing. Maintaining an efficient description of
the state thus requires an approximation step that reduces (truncates) the bond dimension after
the application of each gate. The TEBD strategy proceeds via a local update, involving only the
directly affected tensors, and corresponds tominimizing the distance between the transformed and
updated states under the condition that all the remaining tensors are kept invariant. Exploiting
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tMPS: a similar
algorithm to TEBD
for time evolution, but
allows all tensors to
change after a time
step before truncating

the canonical form of the MPS, this can be achieved by a singular value decomposition (SVD) of
a single tensor, obtained when contracting together the gate and the local MPS tensors, including
their environment, which encodes the state of the rest of the system (see Figure 2b). In the TEBD
truncation step, only singular values above a certain threshold are kept, and the discarded weight
gives a measure of the error.

For a one-dimensional nearest-neighbor Hamiltonian, the time evolution operator can be ap-
proximated, using a Trotter–Suzuki expansion, as a sequence of such two-body gates of the form
exp (−iδhi), where hi is a two-body term and δ a short time step. The method can thus be used
to simulate the dynamics of an MPS with cost that scales as O(D3) for bond dimension D. The
scheme can be adapted for other (finite-range) Hamiltonians, although the cost increases steeply
with the interaction range.

As an alternative to the local truncation, it is also possible to vary all tensors in order tominimize
the distance to the exact state after one or more gates (39). In this strategy, called tMPS,2 tensors
are optimized sequentially as in the variational method (Section 2.3.1) by solving a local problem
that, in this case, reduces to a system of linear equations, also with cost O(D3) (see Figure 2c). In
this way, one can apply onto theMPS vector any operator inMPO form, in particular, a step of the
Trotterized time evolution. The cost of such MPO representation also increases with the range
of the Hamiltonian, but long range interactions can be treated with help from an approximation
scheme (59).

These methods are very efficient and extraordinarily versatile. Starting from an arbitrary state,
the ground state can be approached by imaginary (or Euclidean) time evolution, which effec-
tively projects the state onto its lowest energy component, and can be applied with the same
algorithm (17), only using nonunitary terms exp(δhi). Also, thermal equilibrium states can be ap-
proximated using this technique (20–22) by writing a purification of the Gibbs ensemble (namely
the thermofield state) as the evolution of a maximally entangled initial state in imaginary time
given by the inverse temperature, |9⟩ ∝ e−βH/2∑

n|n⟩|n⟩ (where n labels a basis of the system
Hilbert space). By treating the mixed state as a vector in operator space, the same basic method
can be used to simulate real-time evolution of open systems undermaster equations (20, 21). Imag-
inary time evolution of pure states can also be used to produce a sample of minimally entangled
typical thermal states (METTSs) (60) that reproduce thermal properties. These are only a few ex-
amples; more generally, the tMPS strategy approximates the action of any linear operator written
as anMPOonto anMPS.This allows reformulatingmost linear algebra algorithms as approximate
versions in the framework of MPSs (e.g., 61, 62). And TEBD and tMPS algorithms can also be ap-
plied to translationally invariant (or periodic) MPSs, working directly in the thermodynamic limit
(25, 63).

Even though the technique to treat all the scenarios named above is almost identical, the en-
tanglement in each of them, and thus the performance of the method, widely differs. Although
thermal equilibrium states satisfy an area law (33, 64) and admit efficient TNS approximations
for local Hamiltonians (65, 66), real-time evolution of a far-from-equilibrium state can give rise
to linear growth of entanglement, in which case approximating the resulting state with an MPS
would require the bond dimension to grow exponentially with the total time (67–69). For this
reason, though MPS methods are extremely useful to study dynamics close to equilibrium, or
for moderate times (70), they suffer a fundamental limitation for genuinely out-of-equilibrium
scenarios.

2Notice that the term is used loosely in the literature, sometimes interchanged with tDMRG—see
Reference 26 for the details.
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3. ADVANCED TENSOR NETWORK STATES METHODS

Even though the algorithms described in the previous section can treat a great number of prob-
lems, some more advanced techniques, developed mostly in the past decade and not yet freely
available, are necessary to fully exploit the power of TNSs.

3.1. Higher Dimensions

Despite the resounding success of the one-dimensional applications of TNSs, applications of
higher-dimensional ansatzes remain much less common. However, in recent years, the situation
has started to change, thanks to a number of algorithmic developments and an intense effort by
the community.

Treating two- and higher-dimensional problems has always been a coveted target of these nu-
merical methods and, since the early days of DMRG, researchers recognized it might be possible
to apply the technique to two-dimensional quantum (71) and three-dimensional classical prob-
lems (11).MPSs form a complete family and can be used as an ansatz for any problem, in particular,
in higher spatial dimensions.For two-dimensional quantum states, theMPS ansatz can bewrapped
around the lattice. This is usually done in a zig-zag or snake form, but other choices are possi-
ble (72). The resulting representation of the Hamiltonian as MPOs is more expensive (because
some short-range terms get mapped onto longer-range ones), and a greater bond dimension is re-
quired to reach the desired convergence: because cutting a single bond partitions the state in two,
in order to accommodate the entanglement of a state that satisfies an area law, the bond dimension
needs to grow exponentially with one of the dimensions of the system. Highly accurate compu-
tations are still obtained from systems of limited size, often exploiting a long-cylinder geometry
and careful finite-size extrapolations (e.g., 73, 74).

With built-in area law, PEPSs are a more suitable TNS ansatz, which supports good approxi-
mations for equilibrium states of local Hamiltonians (32, 66) and allows variational and evolution
strategies as described in Section 2.3 (23, 75). They can also be used directly in the thermody-
namic limit, in which case they are called iPEPS, and are parameterized by a unit cell with a finite
number (which could be as small as one) of tensors (76). Nevertheless, numerical algorithms with
PEPSs are considerably more involved and have higher computational cost in terms of the tensor
dimensions.

For starters, contracting PEPSs is, in contrast to the efficient contraction of MPSs, a
(#P-complete) hard computational problem (38). Practical algorithms resort to approximate con-
tractions, in which the two-dimensional network is approximated as a sequence of MPO–MPS
contractions from the boundary (75–77), by a coarse-graining, or tensor renormalization (78, 79;
see Section 4.1), or, in the case of iPEPS, by a corner transfer matrix contraction (10, 80). In
these strategies there is a trade-off between the numerical cost and the accuracy of the contrac-
tion, which is important for determining the environment of a tensor or the expectation values of
observables.

Because of this,methods have been developed that gain efficiency by allowing less precise envi-
ronment estimations for tensor updates (Figure 3). The most efficient alternative uses a so-called
simple update (78), where, in order to update a pair of tensors under the action of a two-site gate,
the environment is approximated by a product of diagonal matrices acting on each link surround-
ing the pair, which play a role analogous to that of the Schmidt values in the TEBD procedure.
Discarding the correlations in the environment can prevent the method from reaching the best
PEPSs with fixed bond dimension in the general case (77), but the algorithm is still popular, due
to its efficiency and stability. A better update can be found with the more expensive full update
(76, 81), which takes into account a more accurate correlated environment approximation.
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Figure 3

Approximation of the environment tensor in projected entangled pairs states. (a) Environment (solid colors) of a pair of tensors on which
a nearest-neighbor gate is applied (group shown in lighter color shade). (b) In the simple update, the environment tensor is approximated
as a product (compare to the 1D case in Figure 2b). (c) A correlated approximation of the environment is required for the full update.

These approaches may improve the efficiency of the updates, which can be particularly useful
in the case of ground state search by imaginary time evolution, where the goal is a fixed point of
the evolution. However, the evaluation of observables still needs to be as accurate as possible, in
order to guarantee a variational result. This yields for most PEPS algorithms a computational cost
that scales as O(D10).

Another difference between PEPS and MPS computations is the absence of a canonical form
for the former. As a consequence, the effective norm term appearing, for instance, in the denom-
inator of Equation 2, cannot be reduced to the identity and needs to be inverted to solve the
local problems, which results in higher computational costs and loss of stability. The problem
can be alleviated by making use of the gauge freedom to optimize the condition of this effective
matrix (82–84).

Despite the higher computational challenge, and the still ongoing development of more effi-
cient strategies, PEPSs already outperformMPSs for two-dimensional problems of moderate size,
as explicitly shown in Reference 85 for Heisenberg and Hubbard models.

All in all, iPEPS has been the preferred ansatz to address ground states of two-dimensional
quantum problems in this context, owing to the possibility of directly addressing bulk proper-
ties.3 Until very recently, imaginary time evolution was the preferred method, owing to the highly
nonlinear character of a variational approach along the lines of that described in Section 2.3. But
in the past few years, new strategies have been introduced for a stable and efficient variational
optimization of iPEPS (86, 87), which produces more accurate results. A further step has been
the precise solution of critical systems, with the help of extrapolations in the correlation length of
finite D states (88–90). Plenty of impressive numerical results have been already obtained thanks
to these advanced methods, among them the most accurate result for the Hubbard model (91) and
the first studies of three-dimensional problems (92).

When the focus is not on ground states, and similar to theMPS case discussed in Section 2.3.2,
the (real or imaginary) time evolution techniques allow addressing multiple problems, such as
equilibrium states at finite temperature (93), steady states of open systems (94–96), and real-time
evolution (75, 93, 97).

An alternative direction has been the development and exploitation of restricted subsets of
PEPSs, with more favorable computational properties, that can be suitable ansatzes for particular

3Notice that, although finite-size extrapolation from PEPSs is possible, the great number of tensors to de-
termine (e.g., L2 for a two-dimensional system) makes the calculations exceedingly long already for relatively
small sizes.

182 Bañuls

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
3.

14
:1

73
-1

91
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
04

/2
5/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



CO14CH09_Banuls ARjats.cls February 17, 2023 9:42

problems. This is the case, for instance, of sequentially generated states (98), or the more general
isometric PEPSs (99), or of Gaussian fermionic PEPS (100).

Also other TNS families without an area law, or with only a restricted one, can be used to study
higher-dimensional systems of limited size. This is the case of two-dimensional DMRG, but also
TTNs (e.g., 43, 101) or the recently introduced augmented trees (102).

3.2. Symmetries

In the case in which the problem under study exhibits some symmetry, taking advantage of it is
not only of fundamental interest but can also boost the performance of a numerical algorithm. For
instance, if the Hamiltonian commutes with a certain operator [H,O] = 0, its eigenstates will have
well-defined eigenvalues of O, and the search can be restricted to subspaces labeled by particular
quantum numbers.

In the case of quantum many-body systems, one is often interested in problems with a global
symmetry of the form U�N|9⟩ = |9⟩, where U is a unitary transformation that acts on a single
site. Particularly relevant is the case in which the operation is a representation of a group G,
namely U = Ug, for some g � G. Such abelian symmetries were soon incorporated to the DMRG
method (16, 26), where they became common use, typically implemented for the conservation
of particle number or total magnetization. The formalism for non-abelian symmetries was also
developed (8, 103), albeit not so commonly used.

A general framework to handle global symmetries in higher dimensional TNs was first intro-
duced in Reference 104, with explicit formulations for abelian (105, 106) and non-abelian (107,
108) cases following shortly. The basic idea of these and the original DMRG constructions is to
define invariant tensors, which remain unchanged when the symmetry operation acts on all the
indices. This requires well-defined transformation properties for each of the indices and, in par-
ticular, choosing bases for the virtual legs with well-defined quantum numbers, for instance |qα⟩,
where q labels an irreducible representation of the group,4 and α labels the states within the same
irrep. The bond dimension of such a leg is the sum of dimensions for each q. Assigning a direction
to each edge in the TN, outgoing and incoming indices transform respectively with the unitary
representation of the group and its inverse, and it follows that a TNS constructed out of such
invariant tensors is globally invariant.

The invariance of a tensor implies some internal structure. In the case of abelian symmetries,
the tensor can be decomposed in a direct sum of blocks, with the only nonvanishing ones be-
ing those for which the sum of quantum numbers of incoming indices equals that of outgoing
ones. In the non-abelian case, blocks corresponding to a suitable combination of irreps have fur-
ther structure, as they can be further decomposed as a tensor product of one part dictated merely
by the symmetry and another one containing the free parameters of the state. In particular, for
three-legged tensors the first factor is a Clebsch–Gordan tensor. For more general tensors, a
decomposition of the whole TN in three-legged terms can be used (104), or more efficient pre-
computation of the corresponding coefficients can be done in the algorithm (108–110). Notice
that generic tensors (i.e., without explicit symmetry) can also be used to describe a TNS with
the desired global symmetry, and even producing a more compact description (111). Using the
symmetry structure of the tensors involves a more cumbersome implementation of the methods
(described in detail in the previous references), but in exchange this allows one to work with blocks
that have smaller bond dimension, which reduces the computational cost of contractions at the

4In the non-abelian case, q is actually a composite index, including not only the label for the irrep but also
additional quantum numbers to account for its inner (and potentially outer) multiplicity (109).
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lowest level. In a spontaneously broken symmetry scenario, however, unconstrained tensors are at
an advantage, because a symmetric superposition of the degenerate ground states requires greater
bond dimension (110).

Symmetric tensors can be used to raise the global symmetry to a gauge one (112–114). This
is done through the introduction of additional link tensors (analogous to link variables in usual
formulations of lattice gauge theories).

Finally, at the theoretical level, a framework has been developed to characterize MPSs and
PEPSs in terms of the tensor symmetries (37), a formal approach that has produced fundamental
results and continues to be an active and fruitful area of research (24).

3.3. Fermions

An advantage of the TN framework with respect to other numerical methods for quantum many-
body problems is the possibility of treating problems with fermionic degrees of freedom, which
is of fundamental interest for condensed matter and fundamental physics. Whereas in this case
quantum Monte Carlo methods are often obstructed by the sign problem, which causes the cost
of convergence to increase exponentially with the system size, TN calculations can indistinctly
treat fermionic and spin setups.

In one spatial dimension, fermionic modes do not pose a real problem, as they can be mapped
to spins through the Jordan–Wigner transformation. This maps local fermionic models onto lo-
cal spin Hamiltonians such that both can be treated with exactly the same algorithms. In higher
dimensions, however, a similar transformation does not maintain the locality of the model. An al-
ternative thatmaps local fermions to local spins and would support a treatment with standardTNS
algorithms was introduced in Reference 115, but at the cost of introducing additional degrees of
freedom and doubling the size of the system.

However, it is possible to define TNSs directly in terms of fermionic degrees of freedom. The
explicit construction was presented by several independent, but essentially equivalent, propos-
als (81, 100, 116, 117). The fundamental idea is to work in a representation in which all spaces,
virtual and physical, are fermionic and have well-defined parity; i.e., the tensors are symmetric with
respect to parity transformations, in the sense described in Section 3.2. Then it is possible to en-
code the statistics of fermionic operators in a local way such that the scaling of the computational
cost with the system size is preserved.

The most intuitive formulation (81, 116) can be visualized as an effective linear ordering of the
fermionic modes, which is fixed once a graphical representation of the TNS is chosen (the order
would be that obtained when projecting all the sites of the graph onto a line). Each crossing of legs
in the diagram has to be accounted for, as it involves commutations of fermionic operators. This
can be achieved by substituting the crossing by a swap matrix, which introduces a negative sign
when fermionic degrees of freedomwith odd parity are exchanged.Thanks to the symmetry of the
tensors, the swap matrices can be moved through the network and be absorbed into local tensors,
and the contraction can follow the same sequence as in the spin case, thus keeping the leading
cost. This formalism, which can be combined with additional symmetries (109), has already made
it possible for iPEPS to beat every other computational method in some parameter regimes of the
Hubbard model (91).

3.4. Dynamics

Simulating time evolution is a crucial tool for understanding the out-of-equilibrium dynamics of
quantum many-body systems, which is linked to fundamental questions such as thermalization.
Together with the applicability to fermionic problems, being able to address real-time evolution
is precisely one of the main advantages of TNSs as compared to Monte Carlo methods.
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TDVP:
time-dependent
variational principle

The TNS toolbox has several different methods to tackle these problems.5 Many of them pro-
duce an approximation to the time-evolved state within the desired family (see Reference 70 for a
recent detailed review). The standard algorithms described in Section 2.3.2 proceed by construct-
ing an approximation of the evolution operatorU(δ) = e−iδH for a finite time step δ and applying it
onto a TNS wave function. In general, this increases the bond dimension, and it must be followed
by a truncation step that reduces the tensors again. A limitation of these methods is that they rely
on approximations of the Hamiltonian exponential operator that become exceedingly costly as the
range of the interactions increases.

Krylov-based methods, instead, directly target the result of the evolution step by approximat-
ing the application of the operator on the state as a linear combination of Krylov vectors (61,
119), instead of explicitly approximating the evolution operator in the full space. This in turn re-
quires approximating the Krylov vectors themselves by TNSs. A related approach uses Chebyshev
expansions of the exponential operators (120).

The more recently proposed time-dependent variational principle (TDVP; 121, 122) adopts
a different strategy, in which the MPS tensors are evolved such that the evolution never leaves
the MPS manifold. This is achieved by projecting the variation of the wave function, given by the
right-hand side of the Schrödinger equation, onto the local tangent plane of the MPS. Despite its
different philosophy, TDVP algorithms for finite and infinite systems can be formulated in terms
of essentially the same low-level primitives as the traditional ones (122). That is, the tensors of the
ansatz can be updated according to the solution of a local evolution, in this case given by effective
Hamiltonians that result from the tangent plane projection. An advantage of this method is that
it preserves conserved quantities of the evolved state, such as the norm and energy.

In the uMPS case, the TDVP algorithm is the first exponent of a new generation of TNS
algorithms, so-called tangent-space methods (123), based on exploiting the geometric structure
of theMPSmanifold.These increasingly popularmethods havemultiple applications beyond time
evolution, including the variational optimization of uMPSs or finding elementary excitations, and
have been partly adapted for PEPSs (see Reference 124 for a pedagogical overview).More recently,
generalizations for TTNs and other isometric TNs have been introduced (125–127).

The approaches described above provide powerful algorithms to investigate the evolution of
quantum systems formoderate times, or close to equilibrium (70).However, they are still subject to
the fundamental limitation mentioned in Section 2.3.2: Under time evolution, entanglement can
grow fast; the bond dimension of the ansatz would need to grow exponentially with the simulated
time (68, 69) such that after short times, the simulation becomes unfeasible. This is a problem
that has been termed entanglement barrier. But for physical problems, often the interest is not in
the full description of the state but in expectation values of local observables, which correspond to
experimentally accessible quantities.There, a paradoxical situation takes place, because in the long
time limit observables are expected to thermalize or equilibrate to values that are well described
by statistical ensembles, which can be themselves efficiently approximated by (mixed) TNSs, but
in most cases the entanglement barrier makes it impossible to reach this regime following the
evolution of the state.

For this reason, active effort is being dedicated to the investigation of potentially new methods
that avoid the entanglement barrier and manage to describe the long-time dynamics of local
quantities. A first proposal evolved operators in the Heisenberg picture (128) using a suitably
adapted time evolution algorithm. Despite not completely solving the entanglement problem,
such an approach constitutes the basis of many other strategies for dynamical quantities. Another

5This discussion focuses on the most developed MPS and PEPS methods, but time evolution algorithms for
other TNSs exist (118).
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Tensor
renormalization
group (TRG):
coarse-graining of a
partition function

SRG: second
renormalization group

HOTRG: TRG based
on higher-order
singular value
decomposition

idea was to target the TN that represents the time-dependent local observables, and to approx-
imate its contraction in the transverse direction, after folding (129, 130), which can give access to
longer times, especially when exploiting the finite propagation velocity of correlations (131, 132).
This remains an active area of research, and several new strategies have been proposed in recent
years to focus on the local observables (133–135).

3.5. Excitations

With the variational approach for the ground state (Section 2.3.1), it is possible to also target
low-excited states by simply orthogonalizing the targeted state with respect to any number of
previously computed ones (16, 26). This is most useful in the case of finite systems.

A particularly useful ansatz for elementary excitations is to model them as local perturbations
acting on the vacuum. In the TNS framework, it is possible to construct well-defined momentum
states of this form by suitable superpositions of a locally modified ground state (7). Tangent-space
methods offer a way to generalize this construction that is especially powerful in the thermody-
namic limit (123, 124). In this framework, elementary excitations are written as tangent vectors
with position-dependent momentum factors, and their energies can be optimized variationally.
Also topologically nontrivial excitations (such as domain walls) can be captured in this language.

Although low-energy excitations as the ones above are often observed to fulfill an approximate
area law, the same is not true for generic, highly excited states. An exception is the case of many-
body localized Hamiltonians. Hence, several specific algorithms have been developed to target
eigenstates at some high-energy value E, for instance, using a shift and invert strategy (136), tar-
geting the state at a given energy that maximizes the overlap with a particular product state (137)
or searching for the lowest eigenvalue of (H − E)2 (138).

4. FURTHER TENSOR NETWORK APPROACHES AND PERSPECTIVES

Other aspects of TN technologies, beyond the standard TNS tools discussed in the previous sec-
tions, offer additional ways to explore the physics of complex systems. Some are discussed in this
section.

4.1. Network Renormalization Approaches

Some of the earliest works in the TN literature, before the quantum information perspective
shaped the language for TNs, already pointed out the connection between many-body problems
and tensors in the partition functions of classical spin systems (10, 139). In this approach, a TN
represents exactly the partition function of a classical model (which might as well correspond to a
path integral formulation of a quantum one), and tensor contractions can be used to approximate
a result.

The tensor renormalization group (TRG) method introduced in Reference 140 is based on
a block renormalization of a two-dimensional TN: In each coarse-graining step, a local group
of tensors is replaced by their approximate contraction with truncated bonds such that the size
of the TN is divided by a constant (see Figure 4). The original truncation is done by applying
an SVD to each tensor before contracting them together. In Reference 141, a new strategy was
introduced, called the second renormalization group (SRG) method, where a different truncation
is chosen that tries to maintain the fidelity of the contraction of the whole network by taking into
account the environment of the tensor that is being computed. A more systematic contraction
and truncation strategy that uses the higher-order SVD, and is thus denoted HOTRG, was later
proposed in Reference 142. This can be applied to higher dimensional systems.
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TNR: tensor network
renormalization

Figure 4

Coarse-graining step in the simplest TRG schemes: (a) TN representing a partition function of a classical
spin model; (b) original TRG; (c) higher-order TRG (HOTRG); (d) a step in TNR, showing the additional
disentanglers. Abbreviations: TN, tensor network; TNR, tensor network renormalization; TRG, tensor
renormalization group.

A shortcoming of the approach, already identified in Reference 140, is that some short-range
entanglement structures cannot be removed by the TRG coarse-graining, in particular, the corner
double line (CDL) tensor. Several modifications have been proposed to solve this issue, such as
the TNR (tensor network renormalization) that includes disentanglers, in the spirit of MERAs,
before the renormalization steps (143). Other proposals have been the iterative optimization of
the tensors around a loop (144) or different local index truncations that take care of internal
correlations (84, 145).

TRG approaches are also useful to contract the TN corresponding to observables for quantum
states in higher dimensions and can then be used as part of PEPS optimization algorithms (78, 79;
see Section 3.1). A related topic is the treatment of fermionic problems in TRG approaches. Ref-
erence 146 showed that wave functions and expectation values of many-body fermionic (but also
bosonic) systems could be expressed and contracted as a Grassmann TN, in which tensor compo-
nents are given in terms of Grassmann variables, and for which a suitable TRG approach can be
defined.A compact ansatz of this form, together with algorithms to renormalize the network and to
evolve the tensors, were presented in Reference 147 and have been used, for instance, to study dis-
cretized field theories with fermionic degrees of freedom (see 148 and 149 and references therein).

4.2. Connections to Other Techniques

Exploring the potential connections between TN methods and other techniques is an exciting
possibility that, on the one hand, can result in new or improved algorithms and, on the other hand,
opens the door to treating new problems with TNmethods, as the following examples illustrate.

■ Monte Carlo algorithms. Monte Carlo sampling can be used to speed up TN contractions
and variationally optimize TNS parameters (150, 151). With a complementary perspec-
tive, TN contractions can be employed to directly sample configurations from the partition
function (152–154) but also to define a Markov chain with collective updates (155).

■ Machine learning. The connections between TNs and machine learning drive some of
the most recent developments, including the use of TNS models for machine learning
tasks (156, 157) and also importing numerical tools, such as automatic differentiation, into
TN algorithms (158).

■ Field theory. The interplay between TNSs and quantum field theory is another decid-
edly active area, which has produced accurate numerical results for lattice gauge theories

www.annualreviews.org • Tensor Network Algorithms 187

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
3.

14
:1

73
-1

91
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
04

/2
5/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



CO14CH09_Banuls ARjats.cls February 17, 2023 9:42

(148, 149) but alsomotivates formal developments, such as gauge symmetric (see Section 3.2)
and continuous (159, 160) formulations of TNSs.

5. OUTLOOK

The field of TNs has grown impressively in the past decade and remains a vibrant research area.
Current TN researchmoves forward in different directions. A rather formal approach explores the
mathematical aspects of these ansatzes.With a more applied perspective, significant effort is being
devoted to the development of numerical TN methods, a multifaceted enterprise, some of whose
key aspects have been highlighted in the previous pages. The field continues to uncover synergies
with seemingly remote topics and to develop in new and creative ways. All these directions are
likely to produce exciting results in the coming years, which may include finding useful TNS
subfamilies, improving the efficiency of high-dimensional or dynamical calculations, or bridging
the gaps between formal and numerical developments.

At the same time, mature TN algorithms are well established as competitive computational
methods for the study of many-body problems. These algorithms, reviewed in the first part of
this article, make it easy for the newcomer to try TNs for an existing problem and simultaneously
serve as a platform for the more specialized researcher to experiment with new algorithms or to
draw new connections between TNs and other disciplines.
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