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Abstract

We systematically investigate the robustness of symmetry protected topological (SPT) order in open
quantum systems by studying the evolution of string order parameters and other probes under noisy
channels. We find that one-dimensional SPT order is robust against noisy couplings to the environment
that satisfy a strong symmetry condition, while it is destabilized by noise that satisfies only a weak
symmetry condition, which generalizes the notion of symmetry for closed systems. We also discuss
“transmutation” of SPT phases into other SPT phases of equal or lesser complexity, under noisy channels
that satisfy twisted versions of the strong symmetry condition.
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1 Introduction

The realization that the interplay of symmetries and entanglement can give rise to novel physics beyond
the Landau paradigm has led to an expanding zoo of topologically-ordered phases of matter. A particularly
prominent role among those phases, in particular in one dimension (1D), is played by symmetry protected
topological (SPT) phases, which have their root in Haldane’s original work elucidating the gapped nature of
the spin-1 Heisenberg chain and its topological origin, nowadays known as the Haldane phase [1–3].

SPT phases consist of systems with a unique ground state and a gap, yet which are distinct from the trivial
(mean-field) gapped phase, as witnessed by a number of characteristic fingerprints: most prominently, string
order [4–6], specific degeneracies in the entanglement spectrum [7], and fractionalized edge excitations [3]. A
key step toward the comprehensive understanding of SPT phases was made by using Matrix Product State
(MPS) representations [8, 9] of their ground states. This step was based on the fact that MPS faithfully
approximate ground states of gapped systems [10–12] and that they allow one to realize global symmetries
locally on tensors that carry physical and entanglement degrees of freedom [9,13]. Namely, it was understood
that in nontrivial SPT phases, the physical symmetry that protects the phase acts on entanglement as a
projective, rather than linear, representation. This insight was key in several ways. First, it provided a
unified explanation for the aforementioned fingerprints of SPT phases in terms of this projective action.
Second, it allowed one to obtain a comprehensive classification of SPT phases, based on the classification
of projective representations by group cohomology. And finally, it connected the characterization of SPT
phases based on fingerprints like string order and edge modes to the characterization based on the equivalence
relation by which two systems are in the same phase if they can be connected by a path of gapped, symmetric
Hamiltonians [14–16]. Altogether, the representation of SPT states by MPS clarified and unified the various
definitions for SPT order (SPTO) for the ground states of gapped Hamiltonian systems and allowed for their
complete classification [9, 17].

The situation becomes much less clear when moving from pure ground states to mixed states, which are
the states we expect to appear in realistic physical systems. Several questions arise. First, which states should
we consider? Depending on the scenario, relevant states might be thermal states of Hamiltonians [18–20],
equilibrium states of dissipative evolutions (steady states of Lindbladians) [21–25], or states – for instance,
originally pure states with SPT order – which have been subjected to noise, which could be either Markovian
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or discrete-time non-Markovian noise. Second, what is the correct generalization of the symmetry condition?
For Lindbladian noise, at least two different symmetry conditions have been considered [26–29]; they differ
in how the symmetry is imposed on the joint system-bath interaction, and for discrete noise, even further
symmetry conditions are conceivable. Third, which notion should one use for SPTO? The various fingerprints
of SPTO could give divergent results, or might even be ill-defined, on mixed states. String order parameters
can be defined for any state, but it is a priori not clear whether the patterns they exhibit are meaningful.
For other fingerprints, such as entanglement spectra or edge modes, it is even unclear how to define them
for mixed states. Fourth, are any of these fingerprints, which are defined on individual systems, compatible
with the notion of SPT phase based on equivalence relations, analogous to paths of symmetric gapped
Hamiltonians? All in all, in the quest to understand SPTO in the presence of noise, any approach must
address these questions.

In this paper, we systematically investigate the robustness of SPTO under various types of symmetric
noise. To this end, we characterize SPTO through string order parameters. These are constructed by plac-
ing local order parameters (labeled by irreducible representations) at the endpoints of strings of symmetry
operators (labeled by group elements). In gapped phases, any string order parameter either decays expo-
nentially to zero as the separation of the endpoints is increased, or converges to a constant whose value
depends on the specific order parameter chosen, and which is generically nonzero. For ground states, the
resulting pattern of zeros and nonzeros, as a function of the irrep and group element labels of the string,
is a fingerprint of the SPT phase. In many cases, including all abelian symmetry groups, the pattern is in
one-to-one correspondence with the SPT phases protected by the symmetry [6]. We say that a mixed state
has some SPT order if it exhibits the same pattern of zeros and nonzeros as pure states with the same SPTO;
if a symmetric mixed state (such as a mixture of different pure SPT phases) exhibits a pattern which cannot
appear in pure symmetric states, it is said to have no SPTO at all (not even trivial SPTO). This definition
has several advantages: it coincides with the pure state definition in the limit of pure states, and, being an
expectation value of an operator with tensor product structure, it is both simple to compute and to measure.

We study the robustness of SPTO, as witnessed by string order, for systems subject to evolution by gen-
eral symmetric and locality-preserving noise. We consider both discrete-time evolutions, that is, quantum
channels, as well as continuous noise described by Lindbladians. The Lindbladian evolution forms a special
case of quantum channels, where the semigroup structure constrains the possibilities for the action of the
symmetry on the channels at finite times. Locality-preservation encompasses both noise obtained from local
Lindbladians and locality-preserving evolutions which are not locally generated but which appear, for ex-
ample, at the boundaries of two-dimensional systems, in driven systems, and via coupling to non-Markovian
baths. We introduce two different notions of symmetry of quantum channels – strong symmetry and weak
symmetry. Weakly symmetric channels are invariant under the symmetry action, which seems the natural
definition of a symmetric channel, and corresponds to symmetric system-bath interactions where the symme-
try acts simultaneously on the system and the bath. Strongly symmetric channels, on the other hand, have
the property that each Kraus operator individually commutes with the symmetry up to a constant phase
factor, and correspond to symmetric system-bath interactions where the symmetry only acts on the sys-
tem. Specializing these concepts to Lindbladian channels, where the semigroup structure imposes additional
restrictions, we recover the notions of strong and weak symmetry studied by Albert and others [26–29].

Our main result is that SPTO is robust against locality-preserving noise that satisfies the stronger of
these two symmetry conditions. To be precise, we prove that the (local) strong symmetry condition on
locality-preserving noise is sufficient to preserve SPTO (Lemma 2) and, conversely, that strong symmetry is
necessary for channels generated in finite time by strictly local Lindbladian evolution (Theorem 1), which we
conjecture to hold for all local Lindbladian evolutions (§5.4). This result might appear surprising in light of
the work of Coser and Pérez-Garćıa, who show that symmetric local Lindbladian noise, applied for a short
amount of time, destroys SPTO [30]. As we demonstrate, this is due to the fact that their noise is only
weakly symmetric, and not strongly symmetric. We thus find that SPTO is robust to noise that satisfies a
sufficiently strong yet natural symmetry condition; namely that the system-bath coupling is invariant under
the symmetries acting on the system alone, as opposed to jointly on the system and bath.

Finally, we extend our analysis to the scenario where the noise does not commute with the symmetry
but rather acts by exchanging symmetries, either permuting them or identifying their group actions. We
term channels with this property twisted strongly symmetric. In the case of permutation of symmetries,
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we demonstrate that the noise acts by permuting SPT phases with the same complexity, whereas, in the
other case, the noise reduces complexity (Theorem 2). Symmetric channels with a nontrivial twist cannot
be generated by continuous evolution by a symmetric Lindbladian in finite time; thus, they are only relevant
to scenarios with discrete noise and to infinite time evolution.

The paper is structured as follows. In §2, we review states with SPT order, and how their SPT phase is
characterized through string order parameters. In §3, we introduce the weak and strong symmetry conditions
on arbitrary quantum channels, discuss interpretations of the conditions in terms of conservation laws,
purifications, and couplings between the system and the environment, and finally investigate the form of
the symmetry conditions when applied to Lindbladians. In §4, we focus on uncorrelated noise, for which
there is a decomposition of the channel as a tensor product over sites of the lattice. Several SPT order
parameters – string operators, twisted sector charges, edge modes, and irrep probabilities – are studied
analytically and numerically, and it is proven that strong symmetry is necessary and sufficient for a noisy
evolution to preserve SPTO. In §5, we discuss the extension of this result from uncorrelated noise to causal
(that is, locality-perserving) noise, which includes the case of fast, local Lindbladians. In §6, we broaden
our investigation to causal channels which act by exchanging symmetry actions. Channels satisfying twisted
symmetry conditions are shown to transform between SPT phases, and we state a necessary and sufficient
condition for a channel to preserve a given SPTO.

2 SPT states and their invariants

Let us begin by reviewing the invariants of pure SPT states, including their manifestation in tensor networks
and in patterns of zeros of string operators. After this review, we will discuss how these invariants appear
in a special class of mixed states we dub coherent SPT mixtures.

2.1 SPTO of matrix product states

Symmetry protected topological phases of gapped, local Hamiltonians in one dimension, for a symmetry group
G, are classified by an invariant [ω], a class in the second group cohomology group H2(G,U(1)) [14–16]. A
useful method for determining the SPT invariant of a given Hamiltonian is to represent its ground state as
a tensor network and study the symmetries of its tensor [9]. Let us review this procedure.

Our analysis of one-dimensional SPT states makes use of matrix product states (MPS), which efficiently
approximate states obeying an entanglement entropy area law, and as such are applicable to ground states
of gapped, local Hamiltonians [10, 31]. A translation-invariant MPS is defined by a single rank-three tensor
A as

|Ψ[A]〉 =
∑

i1,...,iN

Tr
(
Ai1 . . . AiN

)
|i1 . . . iN 〉 , (2.1)

where Ai are matrices such that A =
∑
iA

i ⊗ |i〉. As a tensor diagram, the MPS is written as

. (2.2)

An MPS tensor is said to be injective if its transfer matrix T =
∑
iA

i ⊗Ai has a nondegenerate eigenspace
of highest weight. For a refresher on MPS technology, we refer readers to more comprehensive introductory
literature [32–34] as well as to a recent review [9].

Injective MPS satisfy a fundamental theorem [9], which implies the following. If a state is invariant under
a global symmetry U⊗Ng |Ψ[A]〉 = |Ψ[A]〉, the action of the onsite symmetry Ug on its local tensor A results
in an action on the virtual level ∑

j

(Ug)ijA
j = eiφgVgA

iV †g , (2.3)

where Vg is a projective representation of the symmetry [35], satisfying

VgVh = ω(g, h)Vgh , (2.4)
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for some values ω(g, h). As a tensor diagram, Eq. (2.3) is written as

. (2.5)

For a given state, there is always a tensor in a canonical form, where Vg is unitary and ω(g, h) is a phase [9].
The collection of phases ω(g, h) constitutes a group cocycle and is defined up to a group coboundary, meaning
it determines a cohomology class [ω] [15,16]. It turns out that [ω] is invariant along smooth paths of gapped,
local, symmetric Hamiltonians, which is to say it is an SPT phase invariant; moreover, it is a complete
invariant [16]. Physically, the virtual space of the MPS tensor may be interpreted as the space of edge
modes; the fact that there is a minimal bond dimension on which Vg can realize the invariant [ω] means that
some of the edge modes are protected by the symmetry.

Essential to this definition of the SPT invariant [ω] is that the state is well-approximated by an MPS of
bond dimension constant in the system size, a property which comes from the state being a ground state
of a gapped, local Hamiltonian. Generic states in one dimension are not well-approximated by MPS, so for
them a projective action Vg – and therefore an invariant [ω] – cannot be defined this way.

2.2 String order

String order provides an alternate definition of the SPT invariant that does not rely on an MPS representation
of the state. The string order parameter is a set of expectation values of string operators that can be defined
on any state. On certain well-behaved states, such as the ground states of gapped Hamiltonians, it yields a
well-defined pattern of zeros that uniquely determines the SPT invariant [ω].

Assume G is a finite abelian group, and let Ug denote the action of G on an individual site. The string
operator is defined as

s(g,Olα, O
r
α) = 1⊗Olα ⊗ U⊗jg ⊗Orα ⊗ 1 , (2.6)

for some length j, where the end operators Ol,r live in opposite irreps of the adjoint action

U†hO
l
αUh = χα(h)Olα , U†hO

r
αUh = χ∗α(h)Orα . (2.7)

On some states, the string order parameter obeys a selection rule [6]. This rule says that, for each g ∈ G,
there is a unique character αg such that the expectation value 〈s(g,Olα, Orα)〉 vanishes, for all end operators,
except for α = αg. The values forced to vanish by the selection rule form what is called the pattern of zeros
of the state. An SPT state can be defined as a state for which this selection rule holds; that is, a state with
a well-defined pattern of zeros. The SPT invariant of an SPT state is extracted by defining the ratios ω/ω
in terms of the unique character αg for each g as follows:

ω(h, g)

ω(g, h)
= χαg (h) . (2.8)

The invariant [ω] may then be recovered from these ratios, as we argue in §6.2. We remark that string order
is also defined when G is nonabelian; however, it may not determine [ω] uniquely [6].

Now let us consider a state represented as an MPS and show that the definition of the SPT invariant [ω]
by the projective action on edge modes agrees with its definition by string order parameters [6]. Injectivity
may be achieved by blocking, which does not change the form of the string operator as long as its length is
assumed to be large compared to the size of the blocks. On such a state, the string operator evaluates to

〈s(g,Olα, Orα)〉 = El(g,O
l
α)Er(g,O

r
α) , (2.9)

where
El,r(g,O

l,r
α ) = Tr

[
Ng
l,rO

l,r
α

]
(2.10)
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are defined as

. (2.11)

Here, ρR is the unique (by injectivity) right fixed point of the MPS transfer matrix, and we have used the
canonical form where the left fixed point is the identity. The evaluation (2.9) can be seen with the following
diagrammatic argument (due to Ref. [6]):

. (2.12)

Evaluating the above

. (2.13)

The operators Ng
l,r transform as

U†hN
g
l Uh =

ω(g, h)

ω(h, g)
Ng
l , U†hN

g
rUh =

(
ω(g, h)

ω(h, g)

)∗
Ng
r , (2.14)

The operators Ng†
l,r and Ol,rα are orthogonal (and so El,r is zero) unless they transform the same way; that

is, unless the selection rule (2.8) is satisfied. This completes the argument.

If the operators Ng†
l,r and Ol,rα transform the same way, then they are not orthogonal generically (and so

El,r is nonzero generically). This is because Ng
l,r picks out a single direction in the multiplicity space for α,

so the subspace orthogonal to this direction is codimension one in the full space of end operators Ol,rα . In
other words, for a generic choice of end operators, the only expectation values 〈s(g,Olα, Orα)〉 that vanish are
those that belong to the pattern of zeros determined by the SPT invariant. The nonzero values of the string
order parameter depend on the choice of end operators, but the pattern of zeros does not.

2.3 Coherent SPT mixtures

Now we turn to SPT invariants of open systems. In the formalism of Lindbladian evolution [30], phases of
open systems are defined in terms of states, as opposed to with some open systems analog of gapped paths
of Hamiltonians. We do not attempt to answer the questions of which mixed states generalize the ground
states of gapped, local Hamiltonians and what is their phase classification under an appropriate equivalence
relation. Instead we seek to motivate the strong symmetry condition on Lindbladian evolution by focusing
on a special class of mixed states for which we can define an invariant:

Definition: A coherent SPT mixture is a mixed state with
a well-defined pattern of zeros.

(2.15)

Such states have a well-defined SPT invariant [ω] that can be extracted from the pattern of zeros, as discussed
above. Mixed states that are ensembles

ρ =
∑
i

pi|ψωi 〉〈ψωi | (2.16)
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of SPT pure states |ψωi 〉 all in the same SPT phase [ω] are examples of coherent SPT mixtures. We leave
open the possibility that there exist exotic coherent SPT mixtures that are not covered by this example.1

The main claim of the paper is that translation-invariant pure SPT states (and more generally, states
of the form (2.16) where each component |ψωi 〉 is translation-invariant) are transformed into coherent SPT
mixtures (2.15) with the same SPT invariant by a Lindbladian evolution if and only if the evolution is strongly
symmetric. We prove this claim for uncorrelated noise in §4 and show its ‘if’ direction (while conjecturing
its ‘only if’ direction) for fast, local Lindbladians in §5. In particular, this result means that SPTO of pure
states is robust in open systems described by strongly symmetric Lindbladians.

3 A strong symmetry condition on channels

We begin by introducing the weak (3.2) and strong (3.8) symmetry conditions and discussing their various
formulations. The latter is motivated by showing that weak symmetry is insufficient to preserve SPTO. The
argument that strong symmetry is necessary and sufficient to preserve SPTO is reserved for §4, §5.

The symmetry conditions are first formulated and studied for arbitrary quantum channels. Then in §3.4,
for the particularly important case of Lindbladian evolution Et = etL, the conditions are reformulated in
terms of L; the Lindbladian formulations have been discussed previously [26–29]. The definitions and results
in this section apply to general systems on finite-dimensional Hilbert spaces, not just spin chains; Ug denotes
the action of the symmetry on the full system, not on a single site of a spin chain.

3.1 Weak and strong symmetry conditions

A channel E is said to satisfy the weak symmetry (WS) condition if it commutes, as a superoperator, with
the symmetry-implementing channels

Ug(ρ) = UgρU
†
g ; (3.1)

that is, if

Ug ◦ E ◦ U†g = E , ∀ g . (weak symmetry condition) (3.2)

The channel E can be expressed in terms of a Kraus representation, E(ρ) =
∑
KiρK

†
i , where we can interpret

the Ki as representing different trajectories. In terms of a Kraus representation of E , the weak symmetry
condition reads ∑

i

(UgKiU
†
g ) ρ (UgKiU

†
g )† =

∑
i

KiρK
†
i , ∀ g . (3.3)

Since Ki and UgKiU
†
g define Kraus representations of the same channel, they are related by a unitary xg [36]:

UgKiU
†
g =

∑
j

xgjiKj , ∀ i, g . (3.4)

Since Ug forms a representation of G, so does xg:∑
k

xghkiKk = UghKiU
†
gh = UgUhKiU

†
hU
†
g =

∑
jk

xhjix
g
kjKk = , ∀ i, g . (3.5)

In a basis of Kraus operators Kg
i that diagonalizes xg as a collection of phases θi(g), (3.4) amounts to

UgK
g
i U
†
g = eiθi(g)Kg

i , ∀ i, g . (3.6)

The existence of a basis Kg
i , for each g, such that this relation holds is equivalent to the WS condition.

1Components of the ensemble that have a different SPTO or no SPTO at all could cancel exactly the expectation values of
the string operators, yielding a well-defined pattern of zeros.
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Observe that the phases θi in the WS condition (3.6) may differ across the trajectories (labeled by i). It
will be demonstrated in §4 that this interference between the trajectories is the source of the destruction of
SPTO, as eliminating it by setting the phases equal is sufficient to ensure that a channel preserves SPTO.
Let us now take the phases to be equal: θi(g) = θ(g) for all i, g. Under this restriction, the condition (3.6)
is independent of the basis of Kraus operators because Kg

i
′ =

∑
j vijK

g
j (for any unitary vij) satisfies

UgK
g
i
′U†g =

∑
j

vijUgK
g
j U
†
g = eiθ(g)

∑
j

vijK
g
j = eiθ(g)Kg

i
′ . (3.7)

Basis-independence means we can also drop the group label on the Kraus operators: Kg
i = Ki for all i, g.

We arrive at what we call the strong symmetry (SS) condition:

UgKiU
†
g = eiθ(g)Ki , ∀ i, g . (strong symmetry condition) (3.8)

Note that there is no distinction between the WS and SS conditions for a reversible (unitary) channel, as
such a channel is realized by a single Kraus operator, and so it has only a single phase θ(g).

By Schur’s lemma, the SS condition (3.8) may be restated as the condition that each Ki is block-diagonal
in the irrep basis: Ki = ⊕αKα

i , where Kα
i acts on the multiplicity space of the (isomorphism class of the)

irrep α. The completeness relation
∑
iK
†
iKi = 1 is equivalent to a completeness relation on each block, so

the channel decomposes as E = ⊕αEα, where Eα is the channel with Kraus operators Kα
i . This decomposition

is a stronger constraint than the decomposition of WS channels, which, when viewed as matrices on the space
of operators, have a block-diagonal form E =

∑
α Φα in the irrep basis of the action Ug ⊗ U†g ; note that the

operators Φα are different from Eα and are not themselves channels.

3.2 Charge conservation

The strong symmetry condition may be alternatively characterized as

E†(Ug) = eiθ(g)Ug , ∀ g . (strong symmetry condition) (3.9)

where the dual channel E† is the channel with Kraus operators K†i , E†(X) =
∑
K†iXKi. This alternative

statement may be interpreted as conservation of symmetry charge. The charge of a state under a symmetry g
is the expectation value 〈Ug〉ρ = Tr[ρUg] of the operator Ug on the state, and the strong symmetry condition
means this expectation value is the same (up to a phase) for ρ and E(ρ):

〈Ug〉E(ρ) = 〈E†(Ug)〉ρ
SS
= eiθ(g)〈Ug〉ρ . (3.10)

The connection between strong symmetry and conservation laws has been noted previously [26].

The equivalence of the two statements may be seen as follows. If a channel satisfies Eq. (3.8), then

E†(Ug) =
∑
i

K†i UgKi = eiθ(g)
∑
i

K†iKiUg = eiθ(g)Ug , (3.11)

which is Eq. (3.9). For the converse, we need a lemma: if E†(X) = Y and E†(X†X) = Y †Y , thenXKi = KiY .
If this is true, the statement that Eq. (3.9) implies Eq. (3.8) follows from taking X = Ug and Y = eiθ(g)Ug.
The lemma is proved by borrowing the argument for Theorem 6.13 of Ref. [37]:∑

i

(XKi −KiY )†(XKi −KiY ) = E†(X†X)− E†(X†)Y − Y †E†(X) + Y †E†(1)Y = 0 . (3.12)

Then, since the left hand side is a sum of positive terms, each of them must individually vanish: XKi = KiY .
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3.3 Symmetric purifications

The symmetry conditions can be restated in terms of purifications:

Claim: A channel is weakly symmetric if it has a purification to a unitary that
commutes, up to a phase, with some diagonal symmetry Ug ⊗ UAg , for which the

action UAg on the ancillary space leaves the ancilla state invariant.
(3.13)

Claim: A channel is strongly symmetric if and only if it has a purification to a
unitary that commutes, up to the phase eiθ(g), with the symmetry Ug ⊗ 1A.

(3.14)

We do not prove a converse to the first claim, though we expect it or a similar statement to hold. The
second claim means that one may take UAg = 1A precisely when the channel is strongly symmetric. These
statements will come in handy in §5, when we discuss causal channels in terms of their purifications to matrix
product unitaries. The statements also have interpretations in terms of couplings between the system and
environment, which we discuss here. First let us review the basics of purifications and justify the claims.

Let E be a channel on a system with Hilbert space H. A purification of E is a unitary W on a space
H⊗A – the original space appended with an ancillary space – such that, for some ancilla state |a〉 ∈ A,

TrA(W (ρ⊗ |a〉〈a|)W †) = E(ρ) . (3.15)

A purification W always exists. Given a set of Kraus operators Ki, indexed in a set I, form the ancillary
space A spanned by an orthonormal basis |ei〉, i ∈ I and the operator V : H → H⊗A that acts as

V : |ψ〉 7→
∑
i

Ki|ψ〉 ⊗ |ei〉 . (3.16)

The operator V is called a Stinespring dilation of E and is an isometry since

〈φ|V †V |ψ〉 =
∑
ij

〈ei|〈φ|K†jKi|ψ〉|ej〉 =
∑
i

〈φ|K†iKi|ψ〉 = 〈φ|ψ〉 . (3.17)

Then use the fact that any isometry V on H ∼= H⊗ |a〉, |a〉 ∈ A, can always be extended to a unitary W on
H⊗A. Conversely, if we expand the expression (3.15) in an orthonormal basis |ei〉 of A to obtain∑

i

〈ei|W |a〉ρ〈a|W †|ei〉 = E(ρ) , (3.18)

we see that Ki := 〈ei|W |a〉 are candidates for a set of Kraus operators for E . To see that they are actually
Kraus operators, check completeness:∑

i

K†iKi =
∑
i

〈a|W †|ei〉〈ei|W |a〉 = 〈a|(1⊗ 1A)|a〉 = 1 . (3.19)

The purification can be expressed diagrammatically as a tensor

. (3.20)
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The claim (3.13) about weak symmetry (3.2) may be expressed as

, (3.21)

while the claim (3.14) about strong symmetry (3.8) may be expressed as

. (3.22)

Let us now prove the claim (3.13). Suppose W is symmetric with the symmetry Ug ⊗ UAg and the state |a〉
is invariant: UAg |a〉 = |a〉. Then the Ki = 〈ei|W |a〉 satisfy weak symmetry (3.4):

, (3.23)

where xgji are the matrix elements xgji = eiθ(g)〈ei|(UAg )†|ej〉 = eiθ(g)(UAg )∗ji.

One direction of the claim (3.14) follows from a similar argument. Suppose W is symmetric with Ug⊗1A.
Then the Ki = 〈ei|W |a〉 satisfy the strong symmetry condition (3.8):

. (3.24)

Conversely, suppose the Kraus operators satisfy the SS condition and construct a symmetric W as follows.
Without loss of generality, take |a〉 to be |e1〉. A unitary extension of the Stinespring dilation V is a square
matrix W consisting of blocks Kj

i , where the blocks of the first column are the Kraus operators K1
i := Ki,

and we choose the remaining blocks so that W is unitary:∑
i

Kj†
i K

k
i = δjk1H . (3.25)

The remaining blocks may be chosen to be symmetric (so that W is symmetric) as follows. Build linear
independent columns by adding signs like Kj

i := (−1)δ(i<j)Ki, then make them orthogonal by applying the
Gram-Schimdt process, and finally normalize. The result is manifestly symmetric.

The claims (3.13) and (3.14) may be interpreted in terms of the coupling between the system and the
environment (the ancillary space). Suppose W represents unitary evolution by a Hamiltonian:

W = e−itH/~ , H =
∑
i

HS
i ⊗HE

i , (3.26)

where the HS
i and HE

i are each assumed to be linearly independent. If the unitary evolution W satisfies the
formulation of the weak symmetry condition in the claim (3.13) at all times t, then Ug ⊗ UAg is a symmetry
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of H. If the unitary evolution W satisfies the strong symmetry condition (3.14) at all times t, then

0 = (Ug ⊗ 1A)H − eiθ(g)H(Ug ⊗ 1A) =
∑
i

(UgH
S
i − eiθ(g)HS

i Ug)⊗HE
i , ∀ g , (3.27)

which, since the HE
i are linearly independent, implies UgH

S
i = eiθ(g)HS

i Ug , ∀ i, g. By conjugating both sides
of the equation, we find that eiθ(g) = e−iθ(g), so θ(g) = 0, π. Since W is a continuous function of t, the phase
θ(g) must vary continuously from zero at t = 0 to its values at nonzero times (this can be formalized by
including the constant order in the expansion of (3.26) in the symmetry condition (3.27)); this means it must
be zero at all times. Therefore, for channels arising from a continuous coupling of system to environment,

UgH
S
i = HS

i Ug , ∀ i, g , (3.28)

which is to say that the system alone, rather than merely its composite with the environment, is symmetric.

3.4 Symmetry conditions on Lindbladians

Let us now discuss semigroups of channels generated by continuous time evolution by a Lindbladian

L(ρ) = − i
~

[HS , ρ] +
∑̀
i=1

(
LiρL

†
i −

1

2
L†iLiρ−

1

2
ρL†iLi

)
. (3.29)

Here, the Li are jump operators and HS is the Hamiltonian of the system. If a semigroup consists of channels
satisfying the weak or strong symmetry condition, the Lindbladian generating it satisfies, respectively,

Ug ◦ L ◦ U†g = L , ∀ g . (WS condition on L) (3.30)

UgLi = LiUg , UgH
S = HSUg , ∀ i, g . (SS condition on L) (3.31)

In particular, this implies that semigroups of strongly symmetric channels generated by Lindbladian evolution
necessarily have θ(g) = 0, ∀ g at all times.

To see the weak symmetry condition (3.30), observe that the channels Et = etL commute with Ug at all
times t if and only if L commutes with Ug. To see the strong symmetry condition (3.31), observe that

Eδt(ρ) = ρ+ δtL(ρ)

= ρ+ δt

[(
− i
~
HS − 1

2

∑̀
i=1

L†iLi

)
ρ+ ρ

(
i

~
HS − 1

2

∑̀
i=1

L†iLi

)]
+
∑̀
i=1

δt LiρL
†
i ,

(3.32)

at small times δt, and thus

Eδt(ρ) =
∑̀
i=0

Ki(δt) ρKi(δt)
† (3.33)

with Kraus operators

K0(δt) = 1+ δt

(
− i
~
HS − 1

2

∑̀
i=1

L†iLi

)
, Ki>0(δt) =

√
δt Li . (3.34)

This relationship between Kraus operators and jump operators lets us translate our strong symmetry con-
dition (3.8) on channels into the strong symmetry condition (3.31) on the Lindbladians that generate them:
First, from the commutation relation UgKi>0 = eiθ(g)Ki>0Ug, we infer that UgLi = eiθ(g)LiUg. It follows

that X := 1− δt 1
2

∑
L†iLi commutes with Ug. Second, from the commutation relation UgK0 = eiθ(g)K0Ug,

we get Ug(−(i/~)HSδt + X)U†g = eiθ(g)(−(i/~)HSδt + X). Taking the Hermitian part and using that X

commutes with Ug, we obtain X = UgXU
†
g = cos θ(g)X + sin θ(g) (δt/~)HS , or

(1− cos θ(g))X = sin θ(g) (δt/~)HS . (3.35)
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As this must hold for all g ∈ G simultaneously, the proportionality factor (1 − cos θ(g))/ sin θ(g) must not
depend on g, which is only possible if θ(g) is constant. As θ(g) is a representation, this implies θ(g) ≡ 0
for all g ∈ G (and in particular, the above equation then imposes no constraints on X and HS).2 It thus
follows that both Li and HS must commute with Ug. We conclude that a Lindbladian generates a family of
SS channels if and only if it satisfies the condition (3.31).

We also obtain a characterization of strong symmetry for Lindbladians by applying the charge conserva-
tion condition (3.9) to Eδt = eδtL (using that we now know that θ(g) ≡ 0 for Lindbladian channels):

Ug = E†δt(Ug) = Ug + δtL†(Ug) , (3.36)

and thus

L†(Ug) = 0 . (SS condition on L) (3.37)

The Lindblad master equation (3.29) can also be recovered from the Hamiltonian that couples the system
to the environment, under the Born (weak coupling, large environment) and Markov (memoryless environ-
ment) approximations. We refer readers to Chapter 6.2.1 of Ref. [38] for a detailed analysis of this procedure.
The jump operators appear in the coupling Hamiltonian as

H = HS ⊗ 1E + 1S ⊗HE +
∑
i>0

Li ⊗Bi . (3.38)

In this picture, the strong symmetry condition (3.31) on Lindbladians is equivalent to our previous result
about the strong symmetry condition on purifications (3.28).

3.4.1 Destruction of SPTO by weakly symmetric coupling

Let us now demonstrate that having merely weakly symmetric noise is insufficient to preserve SPTO. Specif-
ically, the fast, local Lindbladian evolution defined by Coser and Pérez-Garćıa [30], which they showed to
destroy SPTO, is weakly symmetric. However, as we will also see, it lacks the strong symmetry condition,
leaving open the possibility that the latter preserves SPTO.

The local Lindbladian of Ref. [30] is given as a sum over sites on a spin chain

L =
∑
s

Ls , (3.39)

where
Ls = Ts − 1s , Ts(ρ) = Trs[ρ]|φ〉s〈φ| (3.40)

for some single-site state |φ〉. It is shown to drive any one-dimensional SPT state toward the product state
|φ〉⊗L, approximating it well in short time. This result suggests that no SPTO is robust in open systems.

Any time L is given as a sum of single site terms (3.39), the SS condition (3.37) reads

0 = L†(U⊗Lg ) =
∑
s

L†s(U⊗Lg ) =
∑
s

L†s(U (s)
g ⊗ 1(L\s))⊗ U (L\s)

g , (3.41)

where Ug now denotes the action of the symmetry on a single site. This condition is equivalent to each of

the single site terms satisfying the local condition L†s(U
(s)
g ⊗ 1(L\s)) = 0. The channel (3.40) has L†s(X) =

〈φ|X|φ〉s ⊗ 1(L\s) −X, so it fails this condition for any g 6= 1 and therefore is not SS. On the other hand, L
commutes with Ug and so is WS, as long as |φ〉 is taken to be symmetric.

2There is an alternative topological argument for θ(g) = 0. Since the Ki(t) are continuous functions in t, the phase θ(g) in
their commutation relations must also be continuous in t. But eiθ is a one-dimensional representation of G, and there are only
discretely many of these (even if G is continuous), so θ(g) must be a constant function in t. Then, since θ(g) = 0 for all g at
t = 0 (because W (t = 0) = 1), the condition θ(g) = 0 must also be true at all times t.
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4 Strongly symmetric uncorrelated noise

We begin by considering uncorrelated noise – channels that decompose into onsite operations as E = ⊗sEs.
If {Ks

is
} is a Kraus representation of Es, a Kraus representation of E is by operators

Ki = ⊗sKs
is . (4.1)

The full channel satisfies the WS or SS condition if and only if all of the single site channels do. Uncorrelated
noise is the simplest class of channels, and include the example of §3.4.1, so they are a natural place to start.

The following subsections consider several typical probes of SPTO, in particular, string order, twisted
sector charges, edge modes, and irrep probabilities. We demonstrate that these probes are preserved by
strongly symmetric uncorrelated noise, indicating that SPTO is preserved. We show in Theorem 1 that, for
semigroups of noise generated by Lindbladians, the strong symmetry condition on the Lindbladians is both
necessary and sufficient for string order to be preserved at all finite times. We present analytical arguments
as well as numerical investigations of example states and channels.

4.1 Preservation of string order by strongly symmetric channels

The first indicator of SPTO we consider is the string order parameter, which was introduced in §2.2. A
channel E preserves string order if the evolved state E(ρ) has the same pattern of zeros as the initial state ρ.
In the Heisenberg picture, this means that the collection of values 〈E†(s(g,Olα, Orα))〉 has the same pattern
of zeros as 〈s(g,Olα, Orα)〉, where E† is the dual channel to E . We save for §6.4 the question of precisely which
channels preserve the string order of a state in a given SPT phase. For now, we show

Lemma 1: A channel of uncorrelated noise maps string
operators to other string operators of the same type (g, α)

if and only if the channel is strongly symmetric.

Note that the evolved string operators are not guaranteed to be nonvanishing.3

To see the lemma, consider evolving the string operator (2.6) by the uncorrelated noise. It becomes

E†(s(g,Olα, Orα)) = 1⊗ E†l (Olα)⊗
(⊗

E†s (Ug)
)
⊗ E†r (Orα)⊗ 1 . (4.2)

If Es is SS, each of the terms in the bulk of the string becomes E†s (Ug) = eiθs(g)Ug. Since an SS channel is in

particular WS (3.2), it maps the end operators to other end operators with the same charge: Õl,rα := E†s (Ol,rα )
has U†g Õ

l
αUg = χα(g)Õlα and similarly for Õrα. Then in total, we have

E†(s(g,Olα, Orα)) = ei
∑
s θs(g)s(g, Õlα, Õ

r
α) . (4.3)

Conversely, asking that E†(s(g,Olα, Orα)) is a string operator of type (g, α) for all (g, α) requires,4 in particular,
that E†s (Ug) is proportional to Ug, which is the strong symmetry condition.

4.1.1 A necessary and sufficient condition on Lindbladians

Our discussion has so far focused on the string operators. We now turn toward analyzing their expectation
values, which encode the invariant of SPT states. In the following, a coherent SPT mixture is a mixed state
with a well-defined pattern of zeros (and thus a well-defined invariant [ω]), in the sense of Definition (2.15).
A “coherent SPT phase” is a class consisting of all coherent SPT mixtures with a given invariant. Preserving

3It is possible that a strongly symmetric channel annihilates some string operators by mapping their end operators to zero.
This phenomenon is unrelated to the symmetry selection rules for string order, discussed in §2.2, which happens on the level of
expectation values. For channels that are generic in the sense of Eq. (6.24), it does not occur for generic end operators.

4The choice Ol,rα = 1 always results in nonvanishing Õl,rα , so the bulk E†s (Ug) can be compared to Ug .
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a phase means that every mixture of translation-invariant pure SPT states in the phase (states of the form
Eq. (2.16)) is mapped to a coherent SPT mixture in the same phase.5

Our main result is stated as a theorem:

Theorem 1: Fix any coherent SPT phase. A semigroup
of channels of uncorrelated noise generically preserves the

phase at all finite times if and only if the semigroup is
generated by a strongly symmetric Lindbladian.

In other words, the notion of coherent SPT phase defined by patterns of zeros coincides with the notion of
phase defined by strongly symmetric Lindbladian evolution.

To make a claim as strong as Theorem 1, it is necessary to work on the level of phases rather than the
states (equivalently, systems) that compose them. A phase protected by a symmetry G consists of systems
together with the data of embeddings of G into the systems’ full groups of symmetries. For example, the
AKLT system may be regarded as lying in a G = Z2×Z2 SPT phase if one specifies this group’s embedding
into the system’s larger SO(3) intrinsic symmetry group. Also, there is no restriction on the physical degrees
of freedom, or the symmetry action on these degrees of freedom, that a system in a phase may have. For
example, the Z2×Z2 SPT phase to which the AKLT system belongs also contains systems that are not built
of spin-1 degrees of freedom. Whether two systems lie in the same phase has not to do with their intrinsic
symmetry groups or degrees of freedom but on the values taken by their order parameters. This means
that MPS representations of states within the phase will have tensors of various physical dimensions and
symmetries. The theorem concerns which symmetry condition channels must satisfy so that they preserve
the string order of every system in the SPT phase. To do this, we consider generic states, whose MPS
tensors have exactly the symmetry G, are injective, and have physical Hilbert space no larger than the
tensor’s image. We emphasize that this result does not preclude the possibility of nongeneric systems within
the phase for which a condition weaker than strong symmetry is sufficient.

With these remarks behind us, we are ready to prove the theorem, starting with the ‘if’ direction. If the
semigroup is generated by a strongly symmetric Lindbladian, each channel Et is itself strongly symmetric.
Then by Lemma 1, Et preserves the type of string operators. Moreover, finite time Lindbladian evolution
defines channels that are invertible as linear maps6 since det

(
etL
)

= eTr(tL) 6= 0 for finite t, so these channels
do not annihilate any string operators. Thus the pattern of zeros of the expectation values of string operators
is preserved, as long as one uses end operators that are generic in the sense of §2.2 – namely, that Ol,rα is

orthogonal neither to Ng†
l,r nor to E(Ng†

l,r). The assumption that the end operators are generic can be dropped
if one is interested in generic evolution times. This is because the expectation value of a string operator is
analytic as a function of time, and so it either vanishes at all times – as occurs where the initial pattern of
zeros has a zero – or is zero only at isolated points in time. The assumption of finite time cannot be dropped,
as an infinite time evolution may annihilate some string operators and therefore alter the pattern of zeros.
An evolution for which this phenomenon occurs is the fully dephasing channel introduced below.

Next we turn to the ‘only if’ direction. We show it for initial states that are translation-invariant pure
SPT states. Then it also holds for their mixtures. If a channel E preserves the string order of an SPT state,
there is, for every symmetry g, a string operator with g in the bulk whose expectation value is nonvanishing.
This expectation value may be written as 〈L|T j

E†s (Ug)
|R〉, where TE†s (Ug) is the transfer matrix

. (4.4)

5We expect that strongly symmetric Lindbladian evolution takes every coherent SPT mixture to a coherent SPT mixture
in the same phase; however, we restrict ourselves to initial states that are mixtures of translation-invariant pure SPT states in
order to make use of tensor network methods in the proof of the theorem.

6Note that invertibility of the channel as a linear map is a weaker condition than reversibility of the channel, as the inverse
linear map is not required to be a channel.
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This operator must have λ = 1 as its maximum eigenvalue in order for the expectation value to be nonvanish-
ing in the thermodynamic limit.7 By Lemma 2 of Ref. [34], for injective MPS, in order for TX to have λ = 1,
X must be a symmetry of the MPS, which by assumption is some element hg ∈ G. Thus E†s (Ug) = eiθ(g)Uhg .

Taking X = Ug and Y = eiθ(g)Uhg in the argument at the end of §3.2, we see that UgKi = eiθ(g)KiUhg for
all i. The map σ : g 7→ hg is an endomorphism8 of G since U is faithful and, up to phases θ,

Uσ(g)Uσ(h) =
∑
i

K†iKiUσ(g)Uσ(h) ∼
∑
i

K†i UgUhKi =
∑
i

K†i UghKi ∼
∑
i

K†iKiUσ(gh) = Uσ(gh) . (4.5)

If E is connected to the trivial channel by a semigroup of channels Et satisfying the above at all times, the
endomorphism σ must be connected to the identity endomorphism σ = 1 by a continuous path σt. Since
we have assumed G is abelian, the only identity-connected endormophism is σ = 1 itself. Thus, we have
E†s (Ug) = Ug, which is the strong symmetry condition (3.9) on the site s. This holds for all s, so the full
channel E is strongly symmetric. It holds at all finite times, so by the discussion in §3.4, the Lindbladian
that generates it is strongly symmetric. This completes the proof of Theorem 1.

It is interesting to note that, by Theorem 1 and Lemma 1, any semigroup that preserves an SPT phase,
even the trivial SPT phase, also preserves the type of all string operators. This reflects how special SPT
states, even trivial SPT states, are among mixed states, most of which lack valid patterns of zeros.

The proof of Theorem 1 involved only the identity-connected endomorphisms of the symmetry group. In
§6 we lift the restriction that the channel belongs to a semigroup of SPT-preserving channels; in this broader
setting, more general group endomorphisms play an important role.

Let us comment on the generalization to a nonabelian symmetry group G. Recall that in this case, string
order is not guaranteed to capture the full SPT invariant ω; nevertheless, we can ask about which channels
preserve string order. If G is a finite group, the only identity-connected endomorphism is again σ = 1 itself.
On the other hand, if G is a semisimple Lie group, the only identity-connected endomorphisms are inner
automorphisms [39]. An automorphism σ is said to be inner if there exists an element h ∈ G such that

σ(g) = conjh(g) := h−1gh , ∀g ∈ G . (4.6)

The element h is defined up to elements of the center. An example of a channel with automorphism σ = conjh
is the symmetry-implementing channel Uh (3.1), which has a single Kraus operator K = Uh satisfying

Uσ(g) := K†UgK = U−1h UgUh = Uh−1gh . (4.7)

Any channel E with inner automorphism σ = conjh may be expressed as the composition of the symmetry-
implementing channel Uh and a strongly symmetric channel ESS :

E = ESS ◦ Uh . (4.8)

To see this, let Ki denote the Kraus operators for E and define Kraus operators for ESS as

K ′i = U−1h Ki . (4.9)

One can easily verify that the latter define a strongly symmetric channel ESS . The semigroup of channels
of the form (4.8) is generated by the sum of of a strongly symmetric Lindbladian LSS and a generator Q of
the continuous symmetry Uh = eQ. We obtained this condition by asking that a string operator expectation
value not vanish, which is weaker than asking that string order is preserved; in fact, string order may be
modified by such channels. The Uh factor changes the bulks of string operators from Ug to U†h(Ug) = Uh−1gh

and the ends from Oα to U†h(Oα), which transform as (σ−1)∗α. It may happen, however, that string order
is preserved despite the permutation of string operators; this phenomenon is discussed in §6.

7At finite string lengths, the difference between strongly symmetric and non-strongly symmetric Lindbladians is reflected in
the length-dependence of the order parameters: only for the latter is there decay as a function of length.

8An endomorphism is a map from the group to itself that is compatible with the group structure.
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4.2 Numerical study of string order under channels

In this subsection, we simulate the behavior of string order under the action of two example channels – the
depolarizing channel and the dephasing channel. We find, in agreement with the analytical results, that
evolutions with strong symmetry preserve string order, while weakly symmetric channels do not. We also
use the example of the fully dephasing channel, which destroys SPTO despite being strongly symmetric, to
demonstrate the importance of the finite time assumption in the theorem.

The depolarising channel is a severely noisy channel, as it contracts the Bloch sphere to the origin, driving
states towards the maximally mixed state. This channel is written as

E(ρ) = (1− λ) ρ+ λ (Tr ρ) 1
d1 , (4.10)

with the decay rate parametrized by λ ∈ [0, 1] [40]. The value λ = 1 gives the fully depolarising channel.
The channel satisfies the weak symmetry condition (3.2) for any symmetry.

The Kraus decomposition for this channel can be written as a twirling operation since the normalised
d-identity can be decomposed as an average over the generators of the Lie algebra of SO(d) [36]. In d = 2,
these operators are Paulis, while in higher d they are the Heisenberg-Weyl matrices: the shift operator
X |j〉 = |j + 1 mod d〉 and the phase operator Z |j〉 = ei2πj/d |j〉, which have commutation relation ZmXn =
ei2πnm/dXnZm. The Kraus decomposition for spin-1 (d = 3) systems such as the AKLT state is given by

E(ρ) = (1− λ) ρ+
λ

9

∑
i

NiρN
†
i , Ni = {1, Z, Z2, X, ZX,Z2X,X2, ZX2, Z2X2} . (4.11)

A G = Z2 ×Z2 symmetry acts on the spin-1 system as Ug = eiπSj , where Sj are the spin-1 operators. Since
the Kraus operators Ki ∼ Ni only commute with the symmetry action up to different phases, the channel
does not satisfy the strong symmetry condition (3.8); it is only weakly symmetric.

The second channel we discuss is given by

E(ρ) = (1− λ)ρ+
λ

4

∑
j

NjρN
†
j , Nj = {1, eiπSx , eiπSy , eiπSz} , (4.12)

where Sj are the spin-1 operators. Since the Kraus operators Kj ∼ Nj commute with the symmetry action,
the channel is strongly symmetric (3.8). The channel is the fully dephasing channel when λ = 1.

4.2.1 String order after a single time-step

Let us consider the AKLT state, which belongs to the Haldane SPT phase. This state has nontrivial SO(3)
SPT order, but can be protected by just the subgroup Z2 × Z2 [6,41]. The AKLT state has an exact tensor
network representation given by the Pauli operators in the basis {|+〉 , |0〉 , |−〉}.

The |G|2 = 16 string operators sij for the symmetry G = Z2×Z2 are built out of end operators Ol,rα = Si
and bulk operators Ug = eiπSj , where Si are the spin-1 matrices with j = {e, x, y, z}. On the AKLT state,
the diagonal string operators take nonzero values szz, sxx, syy = −4/9 and s1,1 = 1 independent of string
length in the limit of infinite system size, while the off-diagonal string operators elements sij , i 6= j have
vanishing expectation values in the limit of long string length.

Recall that the string order parameter may be manipulated into the form (2.13)

〈s(g,Ol,rα )〉 = Tr
(
ρlTOlα(TUg )N−2TOrαρr

)
, (4.13)

where T is the transfer matrix T =
∑
iA

i
⊗
A
i

for the MPS tensor A, and ρl,r are its fixed points. Now
consider evolving the string operator under a channel. The operator becomes

〈E†(s(g,Olα, Orα))〉 = Tr
(
ρlTE†(Olα)T

N−2
E†(Ug)TE†(Orα)ρr

)
. (4.14)
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Figure 1: Evolution of the szz component of the Z2 × Z2 string order parameter for the AKLT state.

For the SS channel (4.12), the evolved string order pattern for the AKLT state as a function of the decay
rate λ is
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 . (4.15)

In the limit of large string length N →∞, the diagonal entries are nonzero while the off-diagonal entries are
zero, which indicates that the string order of the ALKT state was preserved, as is expected for SS channels.
Note that if we were to repeatedly evolve the state by E a large number of times, the entire string order set
would be sent to zero, so the preservation of the pattern is only visible at finite times. The finite-time decay
is minimal (outside of the nongeneric cases discussed in the next section) since it occurs locally at the ends
of the string and receives no contribution from the bulk.

In contrast, consider the WS depolarising channel (4.11). The string order for the evolved state is

〈E†(s(eiπSj , Si))〉 =


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 . (4.16)

For any λ > 0, the string order goes to zero instantaneously (with a single time-step, application of E) in
the limit N → ∞. This is because, in contrast to the SS channel, this WS channel receives an exponential
contribution to its decay from the bulk of the string.

4.2.2 Master equation simulation of string order

We simulate the time-evolved master equation on pure SPT states by acting with the channel at each
time-step

Et = ET ◦ · · · ◦ Et1 ◦ Et0 . (4.17)

Figure 1 depicts the results of simulating the evolution of the szz component of the string order parameter
under the following channels: the dephasing channel (4.12) with λ = 0.5, the dephasing channel with λ = 1
(fully dephasing), and the depolarising channel (4.11). The first two of these channels are SS, while the third
is only WS. The first exhibits slow decay, while the others exhibit instantaneous decay.

The reason that the fully dephasing channel fails to preserve SPT order despite being SS can be traced
to how it annihilates the end operators Si with nontrivial labels and thus sets the corresponding rows of
the pattern of zeros to zero. This phenomenon cannot occur for finite time evolutions, as these channels are
invertible as linear maps, so Theorem 1 is safe. The fully dephasing channel, however, is only realized as an
infinite time evolution, so SS is insufficient to protect SPTO. In §6.4, we discuss a genericness condition on
SS channels, failed by the fully dephasing channel, that says whether or not they preserve SPTO.
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4.3 Twisted sector charges

The SPTO of a state may alternatively be detected in the charges of its twisted sector states [42,43]. Consider
a state on a closed chain, represented as an MPS

〈i1 · · · iL|ψ〉 = Tr
[
Ai1 · · ·AiL

]
, (4.18)

with the symmetry represented projectively on the virtual space by operators Vg. The states

〈i1 · · · iL|ψh〉 = Tr
[
VhA

i1 · · ·AiL
]

(4.19)

are the twisted sector states. In closed systems, they appear as ground states of the Hamiltonians obtained
by twisting the original Hamiltonian by the insertion of a symmetry flux through the closed chain.

The charge of a twisted sector state is obtained by acting on the state with the charge operator U⊗Lg :

.
(4.20)

For simplicity, assume G is abelian. The charges of the twisted sector states are given by

〈i1 · · · iL|U⊗Lg |ψh〉 = Tr
[
V −1g VhVg A

i1 · · ·AiL
]

=
ω(h, g)

ω(g, h)
Tr
[
VhA

i1 · · ·AiL
]
. (4.21)

As we saw in the previous subsection, this ratio ω/ω determines the cohomology class [ω]. This means that
the collection of twisted sector charges completely characterizes the SPTO.

The twisted sector charges of an initial state and the state reached by evolving by a channel are the
expectation values of U⊗Lg and E†(U⊗Lg ), respectively, on the initial twisted sector states |φh〉. Since for a
strongly symmetry channel (3.9) these are equal, such a channel preserves the SPTO.

4.4 Protected edge modes

SPT phases are also characterized by their topologically protected edge modes. Consider a pure state |ψω〉
in an SPT phase characterized by a cocycle ω. The SPT invariant is encoded in the projective action of the
symmetry on the edge introduced by cutting the system:

(1l ⊗ Urg )|ψω〉 =
∑
a

|ψωl,a〉 ⊗ Urg |ψωr,a〉 =
∑
a,b

(Vg)ab|ψωl,a〉 ⊗ |ψωr,b〉 , VgVh = ω(g, h)Vgh . (4.22)

After evolving through a channel, |ψω〉 becomes a mixture of the (unnormalized) states Ki|ψω〉. We claim
that, if the channel is strongly symmetric and onsite, each of these states has SPT invariant ω. To see this,
write the Kraus operators as Kl

i ⊗Kr
i , so that Ki|ψωi 〉 =

∑
aK

l
i |ψωl,a〉⊗Kr

i |ψωr,a〉. Then, since Kr
i commutes

with Urg , the projective representation Vg on this cut is the same as for |ψω〉; in particular, ω is the same.

4.5 Irrep probabilities and SPT complexity

In this section, we investigate the behavior of irrep probabilities – another probe of SPTO – under channels,
strongly symmetric and not. Irrep probabilities measure the weight of the state in each symmetry sector.
They are given by Fourier transforms of the string operators with identity end operators

pα =
1

|G|
∑
g

χα(g)〈s(Ug,1,1)〉 , (4.23)
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Using orthogonality of characters, one can confirm that the irrep probabilities sum to 1:∑
α

pα =
1

|G|
∑
g

〈s(Ug,1,1)〉
∑
α

χα(g) =
1

|G|
∑
g

〈s(Ug,1,1)〉 |G| δg,1 = 〈s(1,1,1)〉 = 1 , (4.24)

Irrep probabilities partially distinguish SPT phases by capturing their complexities

Dω =
√
|G|/|Kω| , (4.25)

where
Kω = { g : ω(g, h) = ω(h, g) ∀h } (4.26)

is subgroup of G called the projective center. A phase with Kω = {1} has maximum complexity and is
said to be maximally noncommutative (MNC) [44]. On the other end of the spectrum is the trivial phase
ω = 1, with complexity D1 = 1. The complexity of a generic MPS was shown numerically to appear in the
degeneracy D2

ω of the irrep probabilities [45]. In an MNC phase, the probabilities are all pα = 1/|G| with
degeneracy |G|; in the trivial phase, they are generically distinct. The value Dω also appears as the degree of
the projective representation Vg (c.f. [46], theorem VI.6.39), which means D2

ω is the number of topologically
protected edge modes. For a given symmetry G, there may be multiple phases with the same complexity
and these cannot be distinguished from each other by their irrep probabilities; nevertheless, because they
can distinguish phases with different complexities, irrep probabilities are a useful tool.

The values of the irrep probabilities are preserved by strongly symmetric channels. To see this, observe
that such channels preserve that the string operators s(Ug,1,1), and therefore their Fourier transforms,
exactly. The exact preservation of irrep probabilities stands in contrast with general string order parameters,
whose end operators Oα 6= 1 may cause decay toward zero in infinite time.

In contrast with strongly symmetric channels, non-SS Lindbladian channels map all irrep probabilities
to the maximally degenerate values pα = 1/|G|, for any phase. This is because, as was established in §4.1.1,
such channels annihilate all of the string order parameters accept for those with g = 1. The result is

pα =
1

|G|
∑
g

χα(g) δg,1 =
1

|G|
. (4.27)

This means that, outside of states which already have maximally degenerate irrep probabilities (for example,
states in MNC phases), the effect of a Lindbladian channel on irrep probabilities is a diagnostic for whether
or not a channel is strongly symmetric. In §6.4.2, we discuss non-Lindbladian channels, some of which
preserve irrep probabilities and complexity despite not being SS.

5 Causal channels

Let us extend our analysis from uncorrelated noise to causal channels. A channel is said to be causal if there
is a range r such that it maps operators supported on a compact region A to operators supported on the
region of sites within distance r of A [47].9 Channels that are not causal can create long-range correlations,
and so are expected to destroy topological order and SPTO, no matter the symmetry condition imposed on
them. For this reason, we will not consider non-causal channels here.

A subset of causal channels, labeled “dQC” in Ref. [47], have purifications that are causal. In addition,
one can consider their convex combinations, which are also causal. It has been suggested that these convex
combinations might constitute all causal channels, but this remains an open question [47]. Another open
question is whether every channel in dQC that has a symmetric purification (and so by Claim (3.13) is
weakly symmetric) has a purification that is both causal and symmetric with respect to an on-site symmetry.
Rather than attempting to answer this question, we let “sdQC” denote the channels with such a purification.
We restrict our focus to channels in dQC (in §5.1) and sdQC (in §5.2 and §5.3) and leave open the possibility

9The terms “causal” and “locality-preserving” have different meanings in Ref. [47], and we are interested in the former.
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that channels outside of these classes exhibit different behaviors. As we remark in §5.4, our expectation is
that only channels in these classes are relevant to local Lindbladian evolution.

Low depth circuits of local unitary gates are a special class of unitary causal channels. Causal unitaries
have a topological index10 that takes values log(p/q) for natural numbers p, q, capturing the flow of infor-
mation to the left and to the right [50], and low depth circuits of local unitary gates are precisely the causal
unitaries for which this topological index vanishes. From the perspective of phase classification, circuits are
the only causal unitaries one should care about, as they approximate fast local unitary evolution. Neverthe-
less, it is most convenient for us to work with causal unitaries in general – forgetting whether or not they are
circuits – because causal unitaries have convenient tensor network representations (which we will describe
shortly). Similarly, a special class of causal channels is given by low depth circuits of local channels.11 It
may be the case that these are the causal channels which approximate fast local Lindbladian evolution, just
as unitary circuits do for unitary evolution, and that they are in dQC and are characterized by a vanishing
topological index of their purification. We do not attempt to prove this conjecture. Regardless, our analysis
considers causal channels in general, even if most of them are unrelated to Lindbladian evolution.

5.1 Tensor network representations of causal channels

Causal unitary operators, which in this context are the purifications of channels in dQC, have finite bond
dimension tensor network representations called matrix product unitaries (MPUs) [48,49]:

. (5.1)

Here, unlike in the previous section, we simplify the analysis by restricting to channels that are translation
invariant, which means that the tensor network representations of their purifications consist of the same
tensor at every site. We expect, however, that our results hold without this assumption.

The theory of MPUs says that there exists a length r ≤ δ4 (where δ is the bond dimension of W ) such
that on blocks of r sites, the tensor satisfies the following “simpleness relations” [48]:

, (5.2)

where Λ denotes the right fixed point of the MPU transfer matrix.

The fact that the causal unitaries have tensor network representations means that channels in dQC do as
well. The Kraus operator Ki is realized as the matrix product operator obtained by plugging in the ancilla
state |a〉 = ⊗s|as〉 (take all as to be the same) and the ancillary space basis vector |ei〉 = ⊗s|eis〉:

. (5.3)

10This index may be computed locally from the tensor of the MPU discussed below [48,49].
11By this, we mean that the channel consists of a small number of layers of disjoint channels supported on small intervals.
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Then, in terms of the tensors for the Kraus operators, the simpleness relations become

.

(5.4)

The uncorrelated noise considered in §4 appears here as the channels whose MPUs have δ = 1:

. (5.5)

5.2 Local realization of the symmetry conditions

It will be demonstrated in the following subsections that a causal channel preserves SPTO if it satisfies not
just the strong symmetry condition, but the strong symmetry condition realized locally (5.9). The present
subsection is dedicated to describing what is meant by local realization of the symmetry conditions and to
motivating it. We consider channels in the class sdQC we defined earlier, meaning that the causal purification
is symmetric under acting with the symmetry operator Ug ⊗ UAg on every site.

As always, the symmetry conditions refer to how the Kraus operators transform under conjugation by a
symmetry. If the Kraus operators do not decompose as products of uncorrelated terms, we must work out
what these global conditions mean locally, in terms of their tensor network representation. Local properties
of a symmetry action may be studied by cutting the spin chain into two halves, so that the purified channel
decomposes as W =

∑
µW

µ
l ⊗Wµ

r , and acting with the symmetry on the right half:

(1l ⊗ (Ug ⊗ UAg )r)W (1l ⊗ (Ug ⊗ UAg )r)† =
∑
µ,ν

(Qg)µνW
µ
l ⊗W

ν
r . (5.6)

The operators Qg are defined up to redefinition by phases and form a projective representation: QgQh =
ν(g, h)Qgh. By folding the MPU representing the purification W into a normal MPS [48] and applying the
usual arguments [9, 34], it can be shown that the Qg satisfy12

. (5.7)

In particular, when the channel is SS, we have UAg = 1, so the Kraus operators satisfy

. (5.8)

12The version of the Fundamental Theorem of MPS in Theorem IV.4 of Ref. [9] can be used to show that this condition holds
not just on blocks of size r but on individual sites; however, we will not require this stronger condition in our arguments.
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We note that symmetric MPUs have been studied previously [51].

Now we can state the condition of local realization of the symmetry:

QgQh = Qgh , ∀ g, h , up to redefinition by phases. (locally realized symmetry) (5.9)

Under redefinition of Q by phases, the cocycle ν that captures the projectivity of Q shifts by a coboundary,
so local realization is the condition that [ν] is trivial in cohomology. In the case of uncorrelated noise, the
symmetry conditions are automatically realized locally because Q acts on a one-dimensional space. When a
channel is WS or SS and its symmetry is realized locally, we say it is “locally-WS” or “locally-SS”.

To build intuition for local realization, let us see that it is satisfied by the circuits of symmetric gates
that define phase equivalence for states of closed systems. For a circuit, symmetry of the gates means that
Q can be extracted from a single gate by acting on half of its legs with the symmetry g:

. (5.10)

Since the adjoint action of Ug on half of the gate is a linear (non-projective) representation, Q is linear as
well. More generally, consider the circuits of local channels that were mentioned briefly above. In analogy to
the condition that the unitary gates are symmetric, these local channels can be made to satisfy the weak or
strong symmetry condition. If they satisfy the WS or SS condition, the argument we just used for unitary
circuits demonstrates that the causal channel as a whole is locally-WS or locally-SS, respectively.

5.3 String operators

Let us generalize Lemma 1 of §4.1 to causal channels by showing the following lemma.

Lemma 2: A channel in sdQC maps string operators to
sums of string operators of the same type (g, α) if and only
if the channel satisfies the local strong symmetry condition.

Doing so requires working with a slight generalization of string operators where the end operators are
supported intervals, rather than sites. It is assumed that the system size and the length of the string are
large compared to the length of these intervals and the range r of the channel.

After evolution by the channel, the string operator (2.6) becomes

.
(5.11)

If the SS condition is satisfied, the symmetry pulls through at the cost of operators Qg:

,
(5.12)
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which cancel except near the ends of the string. Then the simpleness relations (5.4) can be applied to obtain

.

(5.13)

This is a string operator with the symmetry g in the bulk. The new end operators are the result of acting
on the original end operators by the superoperators (generalizing the E†l,r of uncorrelated noise)

.
(5.14)

and are supported on 2r more sites than the original end operators. The superoperators Sgl and Sgr transform
in the representations h 7→ ν(g, h)/ν(h, g) and h 7→ (ν(g, h)/ν(h, g))

∗
, respectively:

.

(5.15)

This means that, if and only if ν is trivial, as is the case when the symmetry condition is locally realized, the
new end operators Sgl,r(Ol,rα ) transform in the same representations as the original ones Ol,rα . We conclude
that the evolved string operator is of type (g, α) if the channel satisfies the locally realized SS condition. Note
that, in contrast with the case of uncorrelated noise, WS is not enough to ensure the correct transformation
of the end operators. This is because the WS condition states only that the charge of operators is conserved
globally. When correlations between sites are present, charge can flow between regions of the system, such
as between the two end operators, changing their individual charges.

It remains to show the converse: that, assuming the evolved string operator (5.11) is a string operator
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of type (g, α), the channel must have been locally SS. The string operator with bulk U⊗j
′

g evolves into

.

(5.16)

Compose it with (U†g )⊗j
′

on the string bulk and take the trace to obtain

,

(5.17)

neglecting the part of the tensor network outside the support of the evolved string. Meanwhile, doing the
same to some string operator results in

,

(5.18)

where j = j′ − 2r′ for r′ the spread of the end operators under the channel (which turns out to be r′ = r
due to SS). Setting (5.17) and (5.18) equal (by our assumption), and defining

. (5.19)

we find that 〈ρ`|Ej |ρr〉 = vdj for some relative normalization v 6= 0, where 〈ρ`| and |ρr〉 are the boundary
conditions imposed by the end operators in Eq. (5.17). Expressing E in terms of its distinct nonzero eigen-
values λk, this amounts to the condition

∑
wkλ

j
k = vdj for all j ≥ 1, which implies that there must be an

eigenvalue λ1 = d.13 On the other hand, considering the MPU W on a periodic ring of length N , we have –

13First, note that by moving the vdj to the other side of the equation, one obtains
∑
wkλ

j
k − vd

j = 0 for all j ≥ 1, and thus,
one is left with showing the following
Lemma. Given K distinct µk 6= 0, then

K∑
k=1

ckµ
j
k = 0 ∀ j = J0, . . . ,K + J0 − 1 ⇒ ck = 0 ∀ k = 1, . . . ,K . (?)

Proof. The matrix with entries Mjk ≡
(
µjk
)
jk

is the product of the diagonal matrix diag(µJ01 , . . . , µJ0K ) with the Vandermonde

matrix
(
µj−J0k

)
jk

, both of which are invertible. Thus, the linear system (?), M~c = ~0, has the unique solution ck ≡ 0. �

Note that this also provides a concise proof of the often-used Lemma in the MPS literature that
∑
ajk =

∑
bjk implies that the

ak and bk must be pairwise equal.
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using Cauchy-Schwarz – that∣∣∑
k

λNk
∣∣ =

∣∣trEN ∣∣ =
∣∣Tr
[
U⊗Ng W (U⊗Ng )†W

]∣∣ ≤√∣∣Tr
[
(U⊗Ng W (U⊗Ng )†)(· · · )†

]∣∣ ∣∣tr[WW †]
∣∣ = dN . (5.20)

Thus,
∣∣m1d

N +
∑
k>1 λ

N
k

∣∣ ≤ dN for all N , where m1 ≥ 1 is the multiplicity of λ1 = d and the λk>1 6= d are
the other eigenvalues. This implies that E has one nondegenerate eigenvalue λ1 = d, and all other eigenvalues
are 0.14 Thus, the Cauchy-Schwarz inequality (5.20) is saturated, which implies that U⊗Ng W (U⊗Ng )† = eiφW ,
which is to say that the channel with purification W is strongly symmetric. To see that the SS condition is
realized locally, apply the ‘if’ direction to obtain the evolved end operators. By assumption, they transform
in the same irrep α as the inital end operators; therefore, the local-SS condition [ν] = 0 must hold.

5.4 Preservation of string order by strongly symmetric Lindbladians

The preservation of string operators by locally-SS channels in sdQC (Lemma 2) means that we can state the
following analog to Theorem 1, where short times are times that are small compared to the system size.

Conjecture: Evolution generated by a local Lindbladian preserves SPTO at
short times if and only if the Lindbladian is strongly symmetric.

The conjecture is inspired by a plausible connection between local Lindbladians and causal channels.
Just as local unitary evolution is approximated by locally-symmetric causal unitaries (in particular, circuits
of symmetric local unitary gates) precisely when the generating Hamiltonian is symmetric, we expect that

Evolution by a local Lindbladian is approximated by locally-WS/SS
channels in sdQC precisely when the Lindbladian is WS/SS.

(5.21)

Let us motivate this statement nonrigorously. Local Lindbladian evolution is subject to Lieb-Robinson
bounds [30], so we expect it to be described by causal channels (with range r linear in time), up to expo-
nentially small errors outside of the lightcone. Moreover, we expect such causal channels to live in dQC
since nontrivial convex combinations of channels in dQC (which plausibly are arbitrary causal channels [47])
seem to introduce unphysically long-range correlations. We established in §3.4 that WS/SS of a Lindbladian
implies WS/SS of the channels it generates, but the question remains whether locality of the symmetric
Lindbladian implies that the channel is in sdQC and that the symmetry of the channel is locally realized.
As mentioned previously, it may be the case that causal channels approximating local Lindbladian evolution
are circuits of local channels, just as causal unitaries approximating local unitary evolution are circuits of
local unitaries, and that these local ‘gates’ are WS/SS precisely when the generating Lindbladian is WS/SS.
Then an argument like Eq. (5.10) would translate the symmetry of the gates into locally realized symmetry
of the channel.

Taking the statement (5.21) for granted and neglecting the issue of approximation, the ‘if’ direction of the
conjecture follows from Lemma 2. The strongly symmetric local Lindbladian generates locally-SS channels
in sdQC, which by Lemma 2 preserve the types of string operators and therefore their patterns of zeros with
generic end operators. The short time of the evolution is a crucial assumption, as it was necessary in Lemma
2 that the ranges of the causal channels were small compared to the string length; otherwise, the bulks of
the strings were swallowed up by the end operators. The ‘only if’ direction of the conjecture might require
analyzing the transfer matrix of the expectation value of the evolved string operator, as in §4.1.1.

5.5 Protected edge modes

As in §4.4, consider a pure state |ψω〉 in an SPT phase characterized by the invariant ω. Under the channel,
it evolves into a mixture of states Ki|ψω〉. The SPT invariant will be obtained by cutting the system into

14To see this, write λk = e2πiξk |λk|, and fix M = 8K . Dirichlet’s approximation theorem states that there are integers pk
and 1 ≤ q ≤ M such that |ξk − pk/q| ≤ 1/(qM1/K). Then, |2π(qξk − pk)| ≤ π/4, and thus Re

[
(e2πiξk )q

]
> 0. It follows that

Re
[∑

k>1 λ
q
k

]
> 0 and thus

∣∣m1dq +
∑
k>1 λ

q
k

∣∣ > dq , unless m1 = 1 and there are no other nonzero eigenvalues λk 6= 0.
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left and right halves and acting on the right half by the symmetry. Across the cut, the state and Kraus
operators decompose as |ψω〉 =

∑
a |ψωl,a〉 ⊗ |ψωr,a〉 and Ki =

∑
µK

µ
i,l ⊗K

µ
i,r. The SS condition means that

Eq. (5.6) holds. Therefore, the states in the mixture transform as

(1l ⊗ Urg )Ki|ψω〉 =
∑
a,b,µ,ν

(Vg)ab(Qg)µνK
µ
i,l|ψ

ω
l,a〉 ⊗Kν

i,r|ψωl,b〉 , (5.22)

so their SPT invariants are captured by the projectivity class [ων] of V ⊗Q. If the SS condition is realized
locally, [ν] is trivial, so the SPT invariant [ων] = [ω] is unchanged.

This argument has a simple diagrammatic representation when the state |ψω〉 is an MPS. In this case,
the MPO tensor for Ki is contracted with the MPS tensor for |ψω〉 to obtain an MPS tensor for Ki|ψω〉.
The virtual space of the new MPS tensor has symmetry action V ⊗Q on blocks of size r.

. (5.23)

Crucial to the preservation of protected edge modes is the fastness assumption, which means that the range
r of the MPO is small compared to the system size; without it, there is no invariant to be extracted locally.

6 Transmutation of SPT phases by twisted symmetric channels

This section discusses versions of the symmetry conditions that are twisted by an endomorphism σ : G→ G
of the symmetry group. The twisted conditions are stated in Eqs. (6.16), (6.17), and (6.18). For σ that are
not identity-connected (every nontrivial σ when G is finite and all but those of the form (4.6) otherwise [39]),
channels twisted by σ are not generated by continuous symmetric Lindbladian evolution in finite time. These
channels therefore describe infinite time evolution (for example in §6.4.3) and discrete noise.

First we discuss an action of group endomorphisms σ on the SPT invariant [ω]. We then argue in Theorem
2 that σ-twisted SS channels have the effect of changing the SPTO according to this action. In particular,
when an endomorphism σ does not change [ω], channels satisfying the σ-twisted SS condition preserve the
phase with invariant [ω]. This allows us to answer a question we had previously deferred – of the necessary
condition for a channel to preserve a given SPTO. The answer is that the channel must be a mixture of
σ-twisted SS channels for σ that fix the SPTO. We also discuss the general situation where a channel does
not preserve the phase but rather transmutes it into one of equal or lesser complexity.

6.1 The action of endomorphisms on SPT phases

An endomorphism σ : G→ G acts on the cocycle ω as a pullback. Concretely,

σ : ω 7→ σ∗ω , (σ∗ω)(g, h) = ω(σ(g), σ(h)) . (6.1)

The action of endomorphisms has the following property:

An automorphism preserves the complexity of phases. (6.2)

This is because, if σ is an automorphism, the transformed projective center

Kσ∗ω = { g : ω(σ(g), σ(h)) = ω(σ(h), σ(g)) ∀h } . (6.3)

equals σ∗Kω, since σ(h) runs over the whole G, and this in turn is isomorphic to Kω by σ∗. The converse to
Claim (6.2) is false because noninvertible endomorphisms may also preserve complexity. As a counterexample,
take any G, σ with ω = 1. Less trivially, take G = H1×H2 and ω = P ∗ω1, where P projects onto H1 and ω1
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Figure 2: Phases ω appear as nodes and the action of endomorphisms σ as arrows between nodes. From left to right,
the columns depict the identity endormorphism, automorphisms, noninvertible endomorphisms, and the constant
endomorphism. In anticipation of the implementation of these endomorphism actions by twisted symmetric channels
(c.f. §6.4), the columns are labeled by the corresponding symmetry conditions.

is any cocycle on H1. The endomorphism σ = P is not an automorphism, yet it fixes ω and its complexity.
Despite the lack of a full converse, one can make the following weaker claim:

An endomorphism maps MNC phases, and only MNC phases,
to MNC phases if and only if it is an automorphism.

(6.4)

In other words, an endomorphism preserves the distinction between MNC and non-MNC phases precisely
when it is an automorphism. The ‘if’ direction follows from Claim (6.2). To see the ‘only if’ direction, note
that the kernel of σ is contained in Kσ∗ω, so the MNC condition Kσ∗ω = {1} implies that kerσ = {1}. The
properties (6.2) and (6.4) appear in Figure 2 as constraints on the arrows between nodes. The special case
of G = Z12 × Z12 is explored in complete detail in Figure 3.

Let us examine in detail one of the most studied settings for investigations of one-dimensional SPT phases
– that of symmetry group G = Zn × Zn, where phases are classified by H2(G;U(1)) = Zn.

Elements of Zn × Zn are “vectors” (w, x) with w, x ∈ Zn. Endomorphisms of Zn × Zn are matrices with
entries in Zn that act on these vectors by matrix multiplication:

End(Zn × Zn) = M2(Zn) =

{(
a b
c d

)
: a, b, c, d ∈ Zn

}
,

g =

(
w
x

)
, σ(g) =

(
a b
c d

)(
w
x

)
=

(
aw + bx
cw + dx

)
.

(6.5)

Automorphisms are those with invertible matrix, i.e. where the determinant ad− bc is relatively prime to n.

Now let’s discuss cocycles. The n classes of H2(Zn × Zn;U(1)) = Zn are represented by cocycles

ωk[(w, x), (y, z)] = exp
(
2πi
n k xy

)
. (6.6)

Note that exp
(
2πi
n (−k)wz

)
is cohomologous to ωk by the coboundary of φ[w, x] = exp

(
2πi
n wx

)
and that

exp
(
2πi
n wy

)
and exp

(
2πi
n xz

)
are trivialized by φ[w, x] = exp

(
2πi
n w

)
and φ[w, x] = exp

(
2πi
n x

)
, respectively.

An endomorphism σ on Zn × Zn induces an endomorphism σ∗ on H2 = Zn as follows:

(σ∗ωk)[(w, x), (y, z)] = ωk[σ(w, x), σ(y, z)]

= ωk[(aw + bx, cw + dx), (ay + bz, cy + dz)]

= exp
(
2πi
n k (cw + dx)(ay + bz)

)
= exp

(
2πi
n k (acwy + bcwz + ad xy + bd xz)

)
∼ exp

(
2πi
n k (ad− bc)xy

)
= ωk(ad−bc)[(w, x), (y, z)] .

(6.7)
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Figure 3: The 12 phases of the group G = Z12 × Z12 are depicted as nodes. Arrows represent the actions of two
endomorphisms: on the left, an automorphism with detσ = 5; on the right, a noninvertible endomorphism with
detσ = 3. Observe that the automorphism preserves complexity, as required by Claim (6.2), by preserving phases
3, 6, 9, 0 and exchanging the remaining phases with others of equal complexity. On the other hand, the noninvertible
endomorphism reduces the complexity of all MNC phases (1, 5, 7, 11), as required by Claim (6.4) but nevertheless
preserves the complexity of phases 3, 6, 9, even fixing phase 6.

The penultimate line holds up to coboundaries. We conclude that the action of σ∗ on the group of SPT
phases is multiplication of the SPT index k by the determinant (ad− bc) of σ.

Endomorphisms of Zn are given by multiplication by an element of Zn, while automorphisms are those
where the multiplication is by a generator of Zn, i.e. by a number relatively prime to n. This means that
σ∗ is an automorphism of the group of SPT phases precisely when σ is an automorphism of G.

For example, the automorphism σ(w, x) = (x,w) that exchanges the two factors has the effect of inverting
SPT phases since it has determinant −1. (For n = 2, inversion is the identity, so the two phases – trivial and
Haldane – are fixed by the exchange automorphism.) On the other hand, the endomorphism σ(w, x) = (w, e)
that collapses the second factor to the identity has determinant 0, so it destroys all SPT phases.

Let us compute the projective center Kωk , the set of elements (w, x) such that

exp
(
2πi
n k xy

)
= ωk[(w, x), (y, z)] = ωk[(y, z), (w, x)] = exp

(
2πi
n k wz

)
, ∀ (y, z) , (6.8)

i.e. such that k xy ≡ k wz mod n , ∀ y, z. Taking z = 0 while varying y and vice versa, we find

Kωk = { (w, x) ∈ Zn × Zn : k · (w, x) ≡ 0} . (6.9)

In particular, when k is coprime to n, the projective center is trivial, so the cocycle ωk is MNC. The invariant
(detσ) k of the transformed phase is coprime to n precisely when k and (detσ) and both coprime to n; that
is, when the original phase is MNC and σ is an automorphism, in agreement with Claim 6.4.

6.2 Patterns of zeros under endomorphisms

Let G be abelian. The cocycle ω defines a “pattern of zeros” ζω : G→ G∗ given by

ζω : g 7→ χωg (·) =
ω(·, g)

ω(g, ·)
. (6.10)

The image is indeed linear characters (one-dimensional representations) since

χωg (h)χωg (k) =
ω(h, g)

ω(g, h)

ω(k, g)

ω(g, k)
=
ω(k, g)ω(h, gk)

ω(g, h)ω(hg, k)

abelian
=

ω(k, g)ω(h, kg)

ω(g, h)ω(gh, k)
=
ω(hk, g)

ω(g, hk)
= χωg (hk) . (6.11)

The kernel of ζω is the projective center Kω (4.26).
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The pattern of zeros ζω determines the cohomology class [ω] of the cocycle ω. To see this, note that the
map ω 7→ ζω is a group homomorphism: ζω1ζω2 = ζω1ω2 ; therefore, is suffices to check that its kernel consists
of coboundaries. Suppose ω 7→ 1, i.e. ω(g, h) = ω(h, g) for all g, h. Then any projective representation with
class ω satisfies VgVh = VhVg. By Schur’s lemma, Vg must be proportional to the identity by a scalar λ(g).
Then ω is the coboundary of λ since

λ(g)λ(h)1 = VgVh = ω(g, h)Vgh = λ(gh)ω(g, h)1 . (6.12)

It is convenient to represent a pattern of zeros ζω as a two-dimensional array with columns indexed by
group elements g and rows indexed by linear characters α. The entry (g, α) in this array is ? if ζω(g) = χα
and zero otherwise. Since ζω(g) is a particular linear character, there is exactly one ? per column. The row
indexed by α has either |Kω| or zero ?’s depending on whether χα is in the image of ζω. The rank of the
array is |G|/|Kω|. For example, the two phases of symmetry G = Z2 × Z2 have patterns of zeros

ζtrivial =


? ? ? ?
0 0 0 0
0 0 0 0
0 0 0 0

 , ζHaldane =


? 0 0 0
0 ? 0 0
0 0 ? 0
0 0 0 ?

 , (6.13)

with columns indexed by g = (0, 0), (0, 1), (1, 0), (1, 1) and rows by α with 1
πi logχα(w, x) = 0, w, x, w + x.

Now consider the action of an endomorphism σ. It acts on ω as Eq. (6.1) and on ζω as

σ · ζω = ζσ∗ω : g 7→ χσ
∗ω
g = σ∗χωσ(g) . (6.14)

This rule tells us how the array for ω transforms into the array for σ∗ω:

For each group element g, look up the unique row β of the old pattern ζω
such that the entry (σ(g), β) is ?. Then compose β with σ to obtain the

row α of the new pattern σ · ζω such that the entry (g, α) is ?.
(6.15)

Using this rule for transforming patterns of zeros, one can check the examples of endomorphisms intro-
duced above. The exchange automorphism swaps the middle two rows and swaps the middle two columns,
fixing both the trivial and Haldane patterns. On the other hand, the endomorphism that collapses the
second factor copies the first the third columns, which have g in the image of σ, and moves their ? entries
up according to σ; the result is that both patterns are mapped to the trivial one.

The MNC property has a meaning in terms of patterns of zeros: the only column with a ? in the α = 1
row is the g = 1 column. Claim 6.4 can be shown in this language. Consider the ‘if’ direction. We wish to
find the entries (g, 1) of the new pattern that are ?. If σ is an automorphism, these entries are the entries
(σ(g), (σ−1)∗1) = (σ(g), 1) of the old pattern. Precisely when the old pattern is MNC, the only of these
entries with ? is the one with σ(g) = 1 and so, since σ is an automorphism, g = 1 is the only solution and
the new pattern is MNC. Consider the ‘only if’ direction. The entry (σ(g), 1) of the old pattern is the entry
(g, σ∗1) = (g, 1) of the new pattern. When the new pattern is MNC, it has a ? in this row only for h = 1.
Precisely when the old pattern is MNC, it does only for σ(g) = 1, which means the new pattern does for all
h ∈ kerσ; therefore, precisely in this case do we have kerσ = {1}, which is to say that σ is an automorphism.

6.3 Twisted symmetric channels

Having understood the action of group endomorphsisms on phases, we turn to studying the channels that
implement it. Here, we introduce twisted symmetry conditions and discuss the structure of Kraus operators
of twisted symmetric channels. Later we will argue that the σ-SS condition implements the action of σ.

The σ-twisted weak symmetry (σ-WS) condition is

Ug ◦ E ◦ U†σ(g) = E , ∀ g . (σ-twisted weak symmetry condition) (6.16)
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By setting the phases θi equal as before, we obtain the σ-twisted strong symmetry (σ-SS) condition:

UgKiU
†
σ(g) = eiθ(g)Ki , ∀ i, g . (σ-twisted strong symmetry condition) (6.17)

Using the argument from before but with X = Ug, Y = eiθ(g)Uσ(g), we obtain the alternative statement

E†(Ug) = eiθ(g)Uσ(g) , ∀ g . (σ-twisted strong symmetry condition) (6.18)

The untwisted SS condition means that the channel decomposes as a sum of channels on irrep blocks,
acting only within multiplicity spaces. A similar statement holds for σ-SS channels: each Kraus operator has
a block decomposition Ki = ⊕αβKαβ

i such that the component Kαβ
i , which is a map from the multiplicity

space of β to that of α, vanishes unless α = σ∗β. This is because the σ-SS condition says that Ki maps to
a space where g acts as σ(g) did before mapping. This means the completeness condition on E implies∑

i

(Kσ∗α,α
i )†Kσ∗α,β

i =
∑
i

(K†iKi)
αβ = 1δαβ , (6.19)

which in particular enforces a completeness condition on the channels

Eα(ρ) =
∑
i

(Kσ∗α,α
i )†ρKσ∗α,α

i . (6.20)

When σ is not an automorphism, each term K†iKi may have off-diagonal components: Ki maps α to σ∗α,

which K†i maps back to any β in the preimage. Eq. (6.19) implies these must cancel in the sum.

Extending the untwisted class sdQC of causal channels, one can define σ-sdQC as the set of channels
with a purification that is both causal and σ-twisted symmetric under an on-site symmetry. The folded
MPS of the MPU representing the purification has a symmetry Ug ⊗U†σ(g) ⊗U

A
g ⊗ (UAσ(g))

†, which defines a

projective representation Q. Local realization of the symmetry is again the condition that Q is linear.

While strong symmetry twisted by an automorphism is possible in reversible channels, strong symmetry
twisted by a noninvertible endomorphism is not.15 To see this, suppose g belongs to the kernel of σ. Then
the single Kraus operator K of the reversible channel satisfies K†UgK = 1, but this implies Ug = 1, so
g = 1 by faithfulness. In light of Theorem 2 (below), this means that reduction of complexity – as opposed
to change of phase at a fixed complexity level – is a phenomenon unique to irreversible channels. On the
other hand, any automorphism can be realized by a reversible channel: let Ug contain one copy of each irrep
and let K be the permutation matrix that implements the induced action σ∗ on irreps.

The impossibility of noninvertible twists for reversible channels is reflected in purifications. If σ is an
automorphism, the construction in §3.3 yields purifications W of σ-SS channels that satisfy

(Ug ⊗ 1A)W = W (Uσ(g) ⊗ 1A) . (6.21)

However, if σ is not invertible, the irrep block structure of the Kraus operators means that some rows of W
constructed this way must be zero, meaning it is not unitary and so not a valid purification.

Endomorphisms compose contravariantly under the composition of channels. If E is a σ-WS channel and
E ′ a σ′-WS channel, their composition E ◦ E ′ has WS twisted by σ′ ◦ σ, as can be seen by

Ug ◦ E ◦ E ′ ◦ U†(σ′◦σ)(g) = Ug ◦ E ◦ U†σ(g) ◦ E
′ = E ◦ E ′ . (6.22)

If both E and E ′ have σ- and σ′- twisted-SS, respectively, the composition E ◦ E ′ has (σ′ ◦ σ)-SS since

(E ◦ E ′)†(Ug) = (E ′† ◦ E†)(Ug) = E ′†(Uσ(g)) = U(σ′◦σ)(g) . (6.23)

We also note that convex combinations and tensor products of σ-WS/SS channels are σ-WS/SS.

15A stronger statement also holds: noninvertible twists are impossible not just in reversible channels but in all channels that
are invertible as linear maps. To see this, note that E† annihilates Ug − 1 for g ∈ kerσ and that E is invertible iff E† is.
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6.4 Transmutation of SPT phases

This section is dedicated to showing that certain σ-twisted strongly symmetric channels have the effect of
transmuting one coherent SPT phase into another, according to the action of σ on the SPT invariants.

It is not the case that all σ-SS channels perform transmutation of SPT phases, but most of them do. We
state our result for σ-SS channels satisfying a genericness condition

Φα 6= 0 , ∀α ∈ imσ , (6.24)

where Φα is the α-labeled component of E in the irrep block decomposition of E discussed in §3.1. This
condition excludes, for example, the fully dephasing channel of §4.2, which destroys SPT order despite
having strong symmetry. It includes all channels generated by Lindbladians in finite time. In the following
theorem, “coherent SPT phase” means a class of coherent SPT states with a given pattern of zeros (which,
by Theorem 1 and the conjecture of §5.4, is a phase defined by strongly symmetric Lindbladians). Mapping
an SPT phase to another refers to mapping every state in one phase to a state in the other.

Theorem 2: Generic locally σ-twisted strongly symmetric
channels map the coherent SPT phase with invariant ω to

the phase with invariant ω′ = σ∗ω.

For uncorrelated noise, the converse holds:
if a channel maps the coherent SPT phase with invariant ω

to the phase with invariant ω′, it is σ-twisted strongly
symmetric for some σ with σ∗ω = ω′.

As we will discuss later, the converse statement is false for causal channels.16

A consequence of Theorem 2 is that, among channels of uncorrelated noise, twisted strongly symmetric
channels are precisely those that map within the space of SPT states. Focusing on the MNC phases discussed
in §6.2, we can also conclude that, among channels of uncorrelated noise, automorphism-twisted strongly
symmetric channels are precisely those that map within the space of MNC SPT states.

Theorem 2 tells us when a channel preserves a given SPTO:

Corollary: The SPTO with invariant ω is preserved by
generic locally σ-twisted strongly symmetric channels with

σ that fix ω. Among channels of uncorrelated noise,
σ-twisted strongly symmetric channels with such σ are the

only channels that preserve this SPTO.

To prove the theorem, we need the following lemma, which generalizes Lemma 1 (for uncorrelated noise,
not necessarily symmetric) and Lemma 2 (for channels in σ-sdQC, which in particular are σ-WS) by adding a
twist σ. Let s(g, αl, αr) denote a string operator with end operators transforming in αl and α∗r , respectively.17

Lemma 3: Consider either a channel of uncorrelated
noise or a causal channel in σ-sdQC.

The channel satisfies the σ-twisted (local) strong symmetry
condition if and only if it maps each string operator

s(g, α, α) to a sum of string operators s(σ(g), βl, βr), where
σ∗βl,r = α (if no βl,r exists, the sum is empty).

16We also remark about the converse statement that the genericness condition (6.24) is sufficient but not necessary: a weaker
ω′-dependent genericness condition on only the subset of the α that appear in the pattern of ω′ is enough.

17We previously considered only string operators with αl = αr since these are the ones with nonvanishing patterns of zeros.
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Let us now prove the lemma. The label on the string bulk is changed from g to σ(g) if and only if E is
σ-SS. In the case of uncorrelated noise, this is because each Es is σ-SS and so E†s (Ug) = eiθ(g)Uσ(g). For a
channel in σ-sdQC, the argument is essentially that of §5.3. The label on the ends of the string are changed
from α to a sum of irreps βl,r satisfying σ∗βl,r = α. This is because the superoperators Sgl,r (5.14) (which

are simply E†l,r for uncorrelated noise) are invariant under acting on the inner legs with Uh and on the outer
legs with Uk for σ(k) = h, as can be seen by an argument like Eq. (5.15). This means that they map the
representation space α on the inner legs to its preimage under σ∗ on the outer legs. We have shown that
the string operator evolves into an operator s(σ(g),Sgl (Olα),Sgr (Orα)) and that Sgl,r(Ol,rα ) is a sum of end
operators that transform with βl,r such that σ∗βl,r = α, proving the lemma. For uncorrelated noise, an
alternative way of understanding the change in representation labeling the end operators is with the block
decomposition of the Kraus operators. Since El,r are σ-SS, their Kraus operators vanish outside of the irrep
blocks Kλτ

i with τ in the preimage of λ under σ∗. Meanwhile Ol,rα have nonvanishing blocks for irreps λ′, λ

such that λ′⊗λ∗ = α. Putting these together, the nonvanishing blocks of each term K†iOl,rα Ki in the evolved
end operator occur at irreps τ ′, τ in the preimage of λ′, λ with λ′⊗ λ∗ = α. Each of these blocks has τ ′⊗ τ∗
in the preimage of α, so we conclude that E†l,r(Ol,rα ) lives in the sum of irreps β with σ∗β = α.

With Lemma 3 in hand, let us turn toward proving Theorem 2 by first reformulating it in terms of patterns
of zeros. The pattern ζω of a state is understood as the collection of pairs (g, α) such that 〈s(g, α, α)〉 is
generically nonvanishing on the state. By the rule (6.15), the pattern of zeros σ·ζω consists of pairs (g, α) such
that α = σ∗β for the (unique) β for which (σ(g), β) appears in the pattern ζω. The theorem demonstrates
how this new pattern can be understood as expectation values of evolved operators E†(s(g, α, α)) evaluated
on the original state. To be precise, the first half of the theorem states that, on an SPT state,

If E is a generic locally σ-SS channel, then generically 〈E†(s(g, α, α))〉 6= 0 precisely
for the pairs (g, α) such that α = σ∗β for the (unique) β with 〈s(σ(g), β, β)〉 6= 0.

(6.25)

To see why this is true, apply Lemma 3 to write E†(s(g, α, α)) as a sum of terms s(σ(g), βl, βr) with σ∗βl,r = α.
Due to the condition (6.24), these terms do not vanish (though the sum may be empty if no βl,r exist). A
pattern of zeros of an SPT state has a unique entry β per column, so the expectation values of the terms
in the sum vanish unless βl = βr = β; either zero or one terms do not vanish. We have 〈E†(s(g, α, α))〉 6= 0
when the nonvanishing term 〈s(σ(g), β, β)〉 appears in the sum. This can only happen when α = σ∗β, and
in this case it generically happens, since generically the β-components of the end operators are nonzero.

It remains to prove the second half of Theorem 2. The argument follows that of §4.1.1, except that σ is
no longer constrained to be connected to the identity endomorphism. Now the condition that the transfer
matrix (4.4) has λmax = 1 implies that E†s (Ug) = Uh, which is to say that Es is σ-SS for some σ with σ(g) = h.
Then apply the first half of Theorem 2 to see that the channel maps the phase ω to the phase σ∗ω, which
by assumption is ω′; therefore, σ satisfies σ∗ω = ω′, as claimed.

As we mentioned earlier, the second half of Theorem 2 does not generalize from uncorrelated noise to
all causal channels. This is because there are causal channels that are not locally σ-SS yet nevertheless
transmute SPT phases. For example, the phase ω is mapped to ω′ by convex combinations of locally σi-SS
channels where each σ∗i ω equals ω′. Additionally, one can add to the convex combination a channel that is
not σ-SS for any σ. This extra factor annihilates string operator expectation values and so does not alter
the effect of the channel on string order. Finally, there are channels that are σ-SS but not locally σ-SS.
These change the bulk labels of strings from g to σ(g) and the end labels from χα to χνgχα, where ν is the
projectivity cocycle of Q. In doing so, they transform the pattern of zeros in a way that endomorphism
actions cannot; for example, if σ = 1, the cohomology invariant of the channel is simply added to that of the
state: ω 7→ ω + ν [51].18

18This is not surprising. In closed systems, 1D SPT phases can be prepared by symmetric causal unitaries with index ν = ω.
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6.4.1 Edge modes perspective

The transformation of the SPT invariant ω under a σ-SS channel can also be seen in terms of edge modes:

(6.26)

The σ-SS condition means that Ug is hit by σ upon pulling through Ki, and local realization means that Q
is linear. Then the edge modes of the evolved MPS state transforms like σ∗V ⊗Q, which has cocycle σ∗ω.

6.4.2 Irrep probabilities perspective

Irrep probabilities were introduced in §4.5, where it was shown that SS Lindbladian evolution preserves
them while non-SS Lindbladian evolution maps them to the fully degenerate value 1/|G|. In this section, we
consider the effects of (not necessarily Lindbladian) causal channels on irrep probabilities.

We find that strongly symmetric channels twisted by automorphisms preserve the degeneracies of irrep
probabilities (though permute the irrep probabilities themselves) for all SPT phases, while those twisted by
noninvertible endomorphisms reduce the degeneracy if the initial state is in an MNC phase and either reduce
or preserve it (depending on the phase) for non-MNC phases. In light of the claim of Ref. [45] that the
degeneracy of irrep probabilities measures SPT complexity, this result reflects the behaviour of complexity
we observed in §6.1; in particular, in Figure 2. Meanwhile, channels that are not σ-SS for any endormorphism
σ send the degeneracy to to the maximal value |G|, regardless of the initial state. This result means that
irrep probabilities and their degeneracy detect whether a channel is twisted strongly symmetric.

To see that automorphism-twisted SS channels permute irrep probabilities, use what we learned in §6.4
about the transformation of the string operators 〈s(Ug,1,1)〉 to compute

pα 7−→
1

|G|
∑
g

χα(g)〈s(Uσ(g),1,1)〉 =
1

|G|
∑
g

χα(σ−1(g))〈s(Ug,1,1)〉 = p(σ−1)∗α . (6.27)

A similar computation can be performed for endomorphisms. Fix a set of elements h ∈ G that represent the
cosets of the quotient G/ kerσ. Then

pα 7−→
1

|G|
∑
g

χα(g)〈s(Uσ(g),1,1)〉

=

(
| kerσ|
|G|

∑
h

χα(h)〈s(Uσ(h),1,1)〉

)(
1

| kerσ|
∑

k∈kerσ

χα(k)

)
.

(6.28)

Orthogonality of characters means that the sum over k ∈ kerσ enforces the constraint that α restricted to
kerσ is trivial. For the characters α without this property (of which there is at least one if σ is noninvertible),
the corresponding irrep probability pα must vanish. When at least one of the pα’s vanishes, they cannot be
fully degenerate, so there is less degeneracy than for a MNC state. We conclude that SS channels twisted
by noninvertible endomorphisms reduce the degeneracy of MNC phases. Finally, channels that are not σ-SS
for any σ annihilate the string order parameters without g = 1, so we get again the result (4.27) that the
irrep probabilities become maximally degenerate, regardless of the initial state.

To illustrate these results, we perform numerical checks on example SPT states with symmetry G =
Z4 × Z4. We generate random, injective, symmetric MPS of bond dimension D = 16 in a particular SPT
phase, with support in all irrep sectors. Then we act on them with channels satisfying various symmetry
conditions. The resulting irrep probabilities are depicted in Figures 4, 5 (trivial phase) and Figures 6, 7
(nontrivial phases). For Z4 × Z4, the automorphisms are those σ with detσ = 1, 3, while the noninvertible
endomorphisms are those with detσ = 0, 2. Each Kraus operator of our example channels is a 16×16 matrix.
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Figure 4: A random state in trivial phase of Z4 ×
Z4. Under non-σ-SS channels the irrep probabilities
become exactly fully degenerate. For σ-SS channels,
the nondegeneracy of the trivial phase is preserved.

Figure 5: A close-up of the irrep probabilities of a
random state in the trivial phase evolved by a σ-SS
channel shows that they have no enforced degeneracy.

The WS but non-SS channel we consider is the depolarizing channel (4.11), and the SS channel we consider
is the dephasing channel (4.12). The SS channel twisted by the constant endormorphism (in particular,
detσ = 0) is given by Kraus operators (Ki)ab = δaiδb1. The channel with SS twisted by an automorphism
with detσ = 3 is given by two Kraus operators, each expressed in terms of 4 × 4 blocks as Ki = (K̃i)

⊕4,
where

K̃0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , K̃1 =


0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0

 , (6.29)

The channel that enacts a det(σ) = 2 endomorphism twist is given by four Kraus operators with blocks

K̃i =

{ 
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


}
. (6.30)

Irrep probabilities let one compute the entanglement of a state that is not accessible to local operations
and classical communication (LOCC) that respect the symmetry G [45]. The inaccessible entanglement is
given by the entropy of the irrep probabilities

Einacc = −
∑
α

pα log2 pα. (6.31)

The lower bound on this quantity over pure states in an SPT phase is determined by the complexity of the
phase and is log2(D2

ω) = log2(|G|/|Kω|), while the upper bound is given by log2(|G|).
While the upper bound on Einacc is unchanged by evolution under any (weakly symmetric) channel, the

lower bound may decrease or remain the same according to the symmetry condition satisfied by the channel.
If the channel is σ-SS, it changes the SPTO from [ω] to [σ∗ω] and the lower bound to log2(D2

σ∗ω). Then,
since the lower bound decreases as complexity decreases, SS and automorphism-twisted SS channels leave
the lower bound unchanged, while the lower bound is decreased under SS channels twisted by noninvertible
endomorphisms. In particular, channels twisted by the constant endomorphism σ : g 7→ e send the lower
bound to zero (since Dσ∗ω = 1). In fact, by Eq. (6.28), states evolved by e-SS channels saturate the lower
bound by concentrating their support in the trivial irrep.
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Figure 6: Irrep probabilities for a random state in a
Z4×Z4 MNC SPT phase after evolution by channels
satisfying various symmetry conditions.

Figure 7: Irrep probabilities for a random state in
a Z4 × Z4 non-MNC SPT phase after evolution by
channels satisfying various symmetry conditions.

6.4.3 Revisiting the example of the SPTO-destroying Lindbladian

Our investigation into the strong symmetry condition was motivated in §3.4.1 by Coser and Pérez-Garćıa’s
example [30] of a weakly symmetric Lindbladian that destroys SPTO. Let us now revisit this example and
discuss how it fits into the theory of twisted symmetric channels that we have developed in this section.

Recall that this Lindbladian (3.40) is not strongly symmetric, which means by Theorem 1 that it does
not preserve SPTO. Moreover, by Theorem 2, the only channels that map within the space of SPT states
are σ-SS channels, so the channels this Lindbladian generates at finite times must destroy SPTO altogether.
To see how this assertion is consistent with the claim of Ref. [30] that their Lindbladian maps one SPT
phase to another in finite time, notice that they are interested in matching states only approximately (albeit
exponentially well), whereas we require exact matching in order to preserve string order.

At infinite time, however, the channel generated by this Lindbladian maps arbitrary states exactly to a
product state, which has a well-defined SPTO – the trivial order. This means that the infinite time evolution
satisfies the strong symmetry condition twisted by the constant endomorphism σ : g 7→ e. This can be seen
explicitly by writing out the channel on each site s:

Es,t = etLs = et(Ts−1) = Ts − e−tLs
t→∞−−−→ Ts , for Ts(ρ) = Tr[ρ]|φ〉〈φ| , (6.32)

where we used T 2
s = Ts. This channel has dual T †s (X) = 〈φ|X|φ〉1, which, since the state |φ〉 is chosen to

be symmetric, satisfies T †s (Ug) = 1, the twisted strong symmetry condition for σ : g 7→ e. We remark that
the channel Ts is generic, in the sense of Eq. (6.24), despite arising as an infinite time evolution.

The transformation of one SPT phase into another by this Lindbladian is considered in Ref. [30]. Let |ω〉
denote a state in the phase labeled by ω. Any state |ω1〉 may be transformed into any |ω2〉 by appending a
|ω−12 〉 ⊗ |ω2〉, then acting with E∞ ⊗ 1, and finally discarding the product state that is reached after infinite
time:

|ω1〉 ∼ |ω1〉 ⊗ |ω−12 〉 ⊗ |ω2〉
E∞7−→ |φ〉⊗L ⊗ |ω2〉 ∼ |ω2〉 . (6.33)

At first glance, this procedure may seem to suggest that the channel is capable of transforming between
arbitrary G-SPTOs ω1 and ω2, in violation of Theorem 2 and the rule that SPT complexity cannot be
increased. This apparent paradox is dissolved by realizing that the full symmetry group of these states is
G×G×G, rather than just the diagonal subgroup G. The fact that E∞ ⊗ 1 changes the G×G×G-SPTO
according to the action of the endomorphism σ : (g1, g2, g3) 7→ (e, e, g3) is consistent with it being strongly
symmetric with this twist. It is not possible to reduce the symmetry group to the diagonal factor: either |φ〉
is taken to be symmetric (resulting in a copy of G on each factor) or it is taken to be nonsymmetric, in which
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case the full symmetry group is a copy of G on the third factor. If the states are chosen so that only the
third factor of G remains a symmetry, the channel (which acts trivially on the third factor) may be regarded
as having untwisted strong symmetry; indeed, the G3-SPTO is ω2 on either side of the transformation.

7 Conclusion and outlook

Our main result is to show that SPTO is preserved by fast evolution of a local Lindbladian precisely if
the Lindbladian satisfies a strong symmetry condition; in other words, SPTO is robust to coupling to an
environment if and only if the coupling is strongly symmetric. There are at least two ways to interpret this
finding. First, it may be taken simply as a rule for determining how order parameters such as string order
will transform under a coupling of interest: rather than calculate the full dynamics of a system, one need only
look at the symmetry of its generator. Second, the result may be taken as motivation for strong symmetry
as the appropriate symmetry condition for classifying symmetry protected phases of open systems. Just as
the Lindbladian phase equivalence of Ref. [30] was designed so that local observables are analytic within
phases, the strong symmetry condition is chosen so that SPT order parameters are constant within phases.

We have focused on a special class of mixed states: coherent SPT mixtures. These are mixed states that,
according to the phase diagram defined by strongly symmetric evolution, lie in the same phase as some pure
SPT state and share its SPT invariant [ω] ∈ H2(G,U(1)). A question left for the future is what the rest
of the phase diagram looks like in one dimension. It would also be interesting to study strong symmetry in
higher dimensions, where symmetry-enriched topological orders are present alongside SPT phases.

As a separate result, we determined how causal channels, including those not generated by Lindbladians,
interact with SPTO. We found that those satisfying twisted symmetry conditions map between coherent SPT
phases, sometimes decreasing but never increasing their complexity. Since the complexity of an SPT phase
determines its computational power in measurement-based quantum computing [52], it would be interesting
to study twisted strongly symmetric channels as equivalence relations for a resource theory.

This research raises several other questions for future investigation. Firstly, since string orders are
experimentally tractable [53,54], one can ask how to detect mixed state SPTO in experiment. Secondly, our
work considers SPTO at finite time, as at infinite times fingerprints of SPTO such as string order get washed
out. This raises the question of whether coherent SPT mixtures arise as steady states of Lindbladians. Also,
what are the implications of our findings for SPTO at finite temperature? This would clarify further the
nature of SPT mixed states. And finally, it would be interesting to explore further how our findings relate
to other properties of SPT phases, their boundaries and transitions, as studied in previous work [22,25,30].
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[8] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals
of Physics 326, 96 (2011).

[9] I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, Matrix Product States and Projected En-
tangled Pair States: Concepts, Symmetries, and Theorems, Rev. Mod. Phys. 93, 045003 (2021),
arXiv:2011.12127.

[10] M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics:
Theory and Experiment 2007, P08024–P08024 (2007).

[11] F. Verstraete and J. I. Cirac, Matrix product states represent ground states faithfully, Phys. Rev. B 73,
094423 (2006), cond-mat/0505140.

[12] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Entropy scaling and simulability by Matrix
Product States, Phys. Rev. Lett. 100, 30504 (2008), arXiv:0705.0292.
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