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We introduce a Metropolis–Hastings Markov chain for Boltzmann distributions of classical spin
systems. It relies on approximate tensor network contractions to propose correlated collective up-
dates at each step of the evolution. We present benchmark computations for a wide variety of
instances of the two-dimensional Ising model, including ferromagnetic, antiferromagnetic, (fully)
frustrated and Edwards-Anderson spin glass cases, and we show that, with modest computational
effort, our Markov chain achieves sizeable acceptance rates, even in the vicinity of critical points. In
each of the situations we have considered, the Markov chain compares well with other Monte Carlo
schemes such as the Metropolis or Wolff’s algorithm: equilibration times appear to be reduced by
a factor that varies between 40 and 2000, depending on the model and the observable being moni-
tored. We also present an extension to three spatial dimensions, and demonstrate that it exhibits
fast equilibration for finite ferro- and antiferromagnetic instances. Additionally, and although it is
originally designed for a square lattice of finite degrees of freedom with open boundary conditions,
the proposed scheme can be used as such, or with slight modifications, to study triangular lattices,
systems with continuous degrees of freedom, matrix models, a confined gas of hard spheres, or to
deal with arbitrary boundary conditions.

I. INTRODUCTION

Markov Chain Monte Carlo is central to our under-
standing of strongly correlated systems [1]. When the
number of degrees of freedom is too large for exact
computations, and perturbative methods are ineffective,
Monte Carlo sampling often emerges as the method of
choice for numerical investigation. Markov chain Monte
Carlo has contributed significantly to the current state-
of-the-art in fields like e.g. high temperature supercon-
ductivity [2], ab initio quantum chemistry [3], or (lattice)
quantum chromodynamics [4].

In statistical physics, Monte Carlo sampling has made
it possible to chart phase diagrams of several paradig-
matic spin systems [5, 6]. The fundamental problem in
this context is to sample according to the Boltzmann
distribution. To achieve this goal, Markov chain Monte
Carlo methods produce a sample by subjecting an ini-
tial configuration to a carefully designed stochastic evo-
lution in the space of configurations. Well-known exam-
ples are the Metropolis algorithm and heat bath dynam-
ics Markov chains where at most one spin is modified
at each step [6], or the Wolff algorithm, where clusters
of spins are flipped at once [7, 8]. The applications of
these algorithms are countless, but there are important
circumstances, such as geometric frustration or disorder,
where their limitations become apparent [5, 6].

∗ miguel.frias@mpq.mpg.de

Over the last two decades, a second notion has been
gradually recognised as crucial to our understanding of
strongly correlated systems: tensor networks states [9].
In the realm of many-body quantum mechanics, the (sim-
ple) entanglement patterns, present in collections of iden-
tical particles in short range interaction, enables a de-
scription that conceptually transcends mean field approx-
imations, but does not demand the exponential cost of
exact diagonalisation [10, 11]. Tensor networks are also
used in many-body classical physics. The first applica-
tions were proposed by Nishino in [12–14], and significant
developments have been made possible by the advance-
ments in tensor network algorithms. It was shown in
[15] that partition functions of all spin systems in near-
est neighbour interaction, including inhomogeneous and
finite ones, could be represented as a tensor network.
While the exact contraction of the tensor network is in
general computationally intractable [16, 17], this idea has
been used in practice to address many physical problems
via an approximate contraction [12, 18–25]. Tensor net-
work methods have been successfully applied to a variety
of classical and quantum two dimensional problems (e.g
[20, 26–28]) including continuous variables [29–32], and
three dimensional classical models [21, 33, 34].

Besides solving concrete problems to very good preci-
sion, these contributions have been insightful: we have
for example learnt that the notion of bipartition Schmidt
weights, ordinary in quantum information theory, is also
relevant to classical statistical physics. However, unless
an implausible collapse of complexity classes is found, all
these methods are ultimately limited, since there exist
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instances of the Ising model for which the evaluation of
the partition function is #P, even in multiplicative ap-
proximation [35, 36]. The downside of these fundamental
obstructions is that a complete understanding of these
systems will (very) likely always be out of reach. The
upside is a sustained interest in developing new methods
to continually push the boundary of what we can learn
about these systems.

In this paper, we present and explore a new connection
between tensor networks and statistical physics. Instead
of computing a direct estimation of the partition func-
tion, our primary goal here is to sample configurations
representative of the Boltzmann distribution of a con-
crete Hamiltonian at a given temperature. To achieve
this goal, we introduce a Tensor Network Metropolis-
Hastings (TNMH) algorithm [1, 37], where the asym-
metric prior, i.e. the distribution from which the new
candidate configuration is drawn at each step, is an ap-
proximation to the target distribution, obtained via an
inexpensive tensor network renormalisation contraction.

In earlier works [38, 39], Monte Carlo sampling was
used to evaluate tensor network contractions, whereas
in [40, 41], tensor network renormalisation (blocking)
was compared with sampling. Our work is converse to
[38, 39], in the sense that it uses tensor network contrac-
tions for Monte Carlo sampling, and instead of choos-
ing between blocking and sampling, it aims at combining
both ideas. In this way, it features concrete advantages
with respect to each strategy. Some of the most remark-
able ones are the following.

(i) It is universal, in the sense that it is identical for all
instances of a given model. This is in contrast to
other Monte Carlo algorithms that exploit the idea
of an intelligent prior choice, but rely on a deep in-
sight about the target distribution, and thus have
limited applicability beyond the model for which
they are specifically tailored. That is for instance
the case of Wolff’s algorithm, which performs ex-
tremely well for ferromagnetic Ising models, but
rather poorly for antiferromagnets or frustrated in-
stances. In turn, we will show that our method
fares consistently well for a variety of models that
are all very different from one another.

(ii) The scheme produces collective updates. That is,
the state of each of degree freedom of the considered
system is susceptible to change at each Monte Carlo
step. We have found that the computational effort
scales mildly with increasing acceptance rates in a
broad variety of instances. Presumably as a conse-
quence, we have found that the number of Monte
Carlo steps necessary to reach convergence is be-
tween ∼ 101 and ∼ 103 shorter than those of other
well-established Monte Carlo algorithms for several
instances of two and three dimensional models of
the Ising type.

(iii) As compared to algorithms that purely rely on
a tensor network renormalisation of the partition

function, the shift to sampling results in the sub-
stitution of systematic errors with statistical errors,
since our TNMH scheme satisfies the classical suffi-
cient conditions for convergence (see next section).
Thus, modest tensor network contraction schemes,
too inaccurate for a direct evaluation of the energy,
can be successfully used in our method, as they
still enable collective updates with sufficiently high
acceptance rates.

(iv) Another advantage of considering sampling instead
of partition function evaluation is enhanced versa-
tility. As we shall see, a Markov chain designed for
Ising models on a square lattice with open bound-
ary conditions is useful as such to study other
systems, such as the λφ4 model or gases of hard
spheres, other interaction graphs such as triangu-
lar lattices, and arbitrary boundary conditions.

We have tested our Markov chain systematically in a
variety of instances of the Ising model defined on finite
square lattices: ferro- and antiferromagnetic, frustrated,
disordered, in two and three spatial dimensions. One may
anticipate that for systems with large (or even diverg-
ing) correlation length, our scheme will perform increas-
ingly poorly if the bond dimension (parameter that con-
trols the cost and accuracy of the tensor network renor-
malisation) is fixed. Our findings confirm this expec-
tation, with drops in acceptance rates actually signal-
ing phase transitions. But we have also observed that
for ferro- and antiferromagnetic instances, acceptance
rates remain fairly high for systems of considerable size
across a phase transition, even with a bond dimension
as low as D = 2. Equilibration and decorrelation times
in our TNMH scheme have been found to be system-
atically lower than for the Metropolis and Wolff’s algo-
rithms. As expected, frustrated and spin-glass instances
have turned out to be challenging, not only for fundamen-
tal complexity-theoretic reasons, but also because their
study is complicated by ill-conditioning issues [42]. How-
ever, even in such cases, and without any optimization
of our renormalisation procedure, we have observed that
acceptance rates stay high enough to be usable down to
temperatures that can be considered low by nowadays
state-of-the-art standards.

The rest of this paper is organised as follows. The new
algorithm is described in section II in general terms. In
section III we explore its performance for two dimensional
models. In particular, for a broad variety of instances of
Ising models, we explore the role of the bond dimension
in the acceptance rates, also in relation to the presence
of critical temperatures. We further analyze equilibra-
tion and autocorrelation times, and demonstrate how the
method can be used to obtain physical observables and
chart phase diagrams. In section IV, we demonstrate how
the algorithm is also useful for three dimensional systems,
and illustrate it for ferromagnetic and antiferromagnetic
instances of the Ising model in cubic lattices of up to
163 sites. Section V is a discussion of situations where
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our findings could find further applications, and can be
skipped on a first reading; there we discuss triangular
lattices, models with continuous variables and systems
of hard spheres. We provide an outlook in section VI.

II. MARKOV CHAINS AND TENSOR
NETWORK RENORMALISATION

In this section, we present a collective Monte Carlo up-
date where, given a current configuration, tensor network
renormalisation is used to propose a candidate and to de-
cide whether it should be accepted or not. For the sake
of concreteness, and with a view to the example compu-
tations that will be considered in the next two sections,
we will focus on the Ising model on a square lattice. Gen-
eralisation to other nearest neighbour interactions, such
as the Potts model, is immediate. Other setups, such as
the XY model, triangular lattices, or systems of confined
hard spheres will be discussed in Section V.

We start by fixing some notation. A lattice will be
denoted as Λ = (V,E), where V stands for its ver-
tices, and E for its edges. We will focus on systems
made of two-state particles (classical spins) residing on
the vertices. That is, the space of configurations will
be Ω = {−1,+1}|V |. A spin at location j ∈ V will be
denoted by σj .

The Ising Hamiltonian associated with a spin configu-
ration ω is defined as

H(ω) = −
∑
i∈V

hiσi −
∑
〈i,j〉∈E

Ji,jσiσj . (1)

Our aim is to sample according to the Boltzmann distri-
bution

π(β)(ω) = e−βH(ω)/Z(β) ∀ω ∈ Ω, (2)

where β denotes the inverse temperature, and

Z(β) =
∑
φ∈Ω

e−βH(φ) (3)

is the partition function. In a Metropolis-Hastings
Markov chain [37], given a current state ω, a candidate
configuration ω′ is proposed according to some prior dis-
tribution g(β)(ω′|ω), from which we are able to draw.
This candidate is next accepted as the new current state
with probability

Pacc(ω → ω′) = min{1, g
(β)(ω|ω′)
g(β)(ω′|ω)

× π(β)(ω′)

π(β)(ω)
}. (4)

If the prior g(β) is symmetric in its arguments, (4) re-
duces to the celebrated Metropolis algorithm formula.
An ideal prior is one where g(β)(ω|ω′) = π(β)(ω). But of
course, unless the instance of the Ising model under con-
sideration is trivial (e.g. Jij = 0 ∀〈i, j〉), such a prior is

unavailable. Here we are going to construct g(β)(ω|ω′) as

an approximation to π(β)(ω) obtained by tensor network
renormalization.

Let n = |V |, and let σ1, σ2, . . . , σn denote a certain
sequential labelling of the vertices (see e.g. figure 23 in
App. A). Using Bayes formula, the Boltzmann distribu-
tion can be expressed as

π(β)(ω) = π
(β)
1 (σ1)

n∏
k=2

π
(β)
k (σk|σ1 . . . σk−1), (5)

where π
(β)
1 stands for the marginal distribution of the first

spin, and π
(β)
k (·|σ1 . . . σk−1) denotes the conditional dis-

tribution for the kth spin when the spins 1 through k−1
are fixed to values σ1, . . . σk−1. The marginal distribu-

tion for the first spin π
(β)
1 (σ1) can be expressed as the ra-

tio of two partition functions: π
(β)
1 (σ1) = Z(β|σ1)/Z(β),

where Z(β|σ1) is the partition function for a system with
the same nearest neighbour Hamiltonian as in Z(β) but
where the first spin has been fixed to the value σ1. As
mentioned in the introduction, the partition function (3)
of any nearest neighbour Hamiltonian can be expressed
exactly as a tensor network (TN), whose bond dimen-
sion is equal to the number of states accessible by each
local degree of freedom. For the Ising model, this num-
ber is equal to two. In general, neither Z(β|σ1), nor
Z(β) can be evaluated exactly, but a TN renormalisa-
tion scheme (see Appendix A) yields approximations

Z̃(β|σ1), and Z̃(β) for each of these quantities. With

them, one can construct an approximation π̃
(β)
1 (σ1) =

Z̃(β|σ1)/Z̃(β) to the true marginal distribution for the
first spin. Similarly, for all other sites k > 1, the

conditional probability distribution π
(β)
k (σk|σ1 . . . σk−1)

can be expressed as the ratio of two TN contractions
Z(β|σ1 . . . σk)/Z(β|σ1 . . . σk−1), and a TN renormalisa-

tion scheme provide approximations Z̃(β|σ1 . . . σk−1) and

Z̃(β|σ1 . . . σk) to Z(β|σ1 . . . σk−1) and Z(β|σ1 . . . σk−1)
repectively, which can be used to compute an approxima-

tion π̃
(β)
k (σk|σ1 . . . σk−1) to π

(β)
k (σk|σ1 . . . σk−1). Fig. 1

illustrates this sequential sampling [43].
We will be interested in schemes where the Metropolis-

Hastings prior, g(β)(ω|ω′), reads:

π̃(β)(ω) = π̃
(β)
1 (σ1)

n∏
k=2

π̃
(β)
k (σk|σ1 . . . σk−1). (6)

As explained in Appendix A, the approximate proba-
bility π̃(β)(ω) can be evaluated for any configuration ω,
and the update rule (4) can be implemented. Our con-
struction is summarized in Algorithm 1.

Properties of the TNMH Markov chain

(i) The construction is universal in the sense that it is
independent of the magnetic fields and couplings
that define the Ising instance being considered.
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FIG. 1. Pictorial illustration of the first two steps of the
TNMH sequential sampling. With dots refer to sites where
the spin value has been fixed.

Yet, it is adaptive in that the details of the Hamil-
tonian are taken into account when the tensors are
constructed.

(ii) The constitution of the candidate is independent of
the current configuration.

(iii) The update (6) is collective and correlated : in prin-
ciple all spins of the system could be refreshed in
a single Monte Carlo step, and the spin values pro-
posed at different sites are conditioned by the cor-
relations present in the tensor network. We believe
this feature is the principal cause for the high accep-
tance rates and fast equilibration reported in the
next section. Whereas a local update rule could
have a hard time overcoming energy barriers, we
expect our algorithm to be more capable to hop
between distant regions of Ω and escape local min-
ima in a single step.

(iv) The transition matrix, i.e. the set of probabilities
to transition from a configuration ω to a configu-
ration ω′, T (ω → ω′) = π̃(β)(ω′) × Pacc(ω → ω′),
satisfies reversibility. That is,

π(β)(ω) T (ω → ω′) = π(β)(ω′) T (ω′ → ω).

Furthermore, when numerical errors are small
enough that all the conditioned partition functions

Z̃(β|σ1 . . . σk) are strictly positive (see Appendix

A), the Markov chain is also irreducible:

T (ω → ω′) > 0 ∀ω, ω′ ∈ Ω.

Thus, even if the distributions {π(β)
k : k ∈ V } turned

out to be poorly approximated by the TN renormalisa-
tion scheme used, it is still possible to guarantee that
the Markov chain will eventually converge to the target
probability distribution [44]. This last point will be illus-
trated with three-dimensional Ising models.

Algorithm 1 TNMH Markov chain

1: Compute the tensors associated with the distribution (2).
2: Set t = 0, and draw some initial configuration ω(0) ac-

cording to any distribution over Ω.
3: If t > tmax go to 8.
4: Use the tensor network to draw a candidate configuration
ω′ according to Eq.(6).

5: Evaluate the probabilities π̃(β)(ω(t)) and π̃(β)(ω′).
6: Accept the change ω(t) ← ω′ with probability

min{1, π̃(β)(ω|ω′)
π̃(β)(ω′|ω) ×

π(β)(ω′)
π(β)(ω)

}.
7: t← t+ 1. Go to 3.
8: End.

III. TWO-DIMENSIONAL ISING MODELS

In order to assess the potential of the construction pre-
sented in the previous section, we have run tests on in-
stances of the two-dimensional Ising models chosen to
cover a broad range of cases ( L× L square lattice ):

• Ferromagnetic : Jij = 1 ∀ 〈i, j〉, hi = 0 ∀i.

• Antiferromagnetic : Jij = −1 ∀ 〈i, j〉, hi constant
across the whole lattice.

• J ′ − J model : In this model hi = 0 ∀i, and
couplings alternate between even and odd rows or
columns (see Fig.2):

J2j−1,k = J ′, J2j,k = J,

Jk,2j−1 = J ′, Jk,2j = −J, j = 1, . . . , L/2

The point J = J ′, known as the fully frustrated
square lattice Ising model (or Villain’s model), is
characterised by extensive ground state degeneracy
and maximal frustration.

• Edwards-Anderson spin glass: this disordered
model is such that hi = 0 ∀i, and Jij are ran-
dom couplings sampled from a Gaussian distribu-
tion with zero mean and unit variance [45].

We will be interested in the following observables: the
energy per spin,

ε =
1

|V |Z(β)

∑
ω∈Ω

H(ω) e−βH(ω),
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FIG. 2. Distribution of the couplings on the J ′ − J model.
Black lines indicate bonds with a coupling of J ′, while red
and blue bonds have couplings −J and J , respectively.

the magnetisation density,

m =
1

|V |Z(β)

∑
ω∈Ω

∣∣∣∣∣∑
i∈V

σi

∣∣∣∣∣ e−βH(ω),

the staggered magnetisation density [46],

ms =
1

|V |Z(β)

∑
ω∈Ω

∣∣∣∣∣∑
i∈V

sign(i) σi

∣∣∣∣∣ e−βH(ω),

where sign(i) is equal to ±1 in a checkerboard manner.
Finally, we will consider also the magnetic susceptibility,
defined for a system with a uniform magnetic field as

χ = ∂m/∂h.

Role of the bond dimension

The TN contractions appearing in the algorithm can be
approximated in principle using any TN renormalisation
strategy. Among all available methods, we have used
the matrix product state renormalisation described in [15]
(see also Appendix A). It is a choice of simplicity. In this
scheme, both the accuracy and the computational effort
increase with an integer parameter, the bond dimension,
commonly denoted D. We thus expect the total variation
distance between the target and the prior distribution,

‖π(β) − π̃(β)‖TV =
1

2

∑
ω∈Ω

|π(β)(ω)− π̃(β)(ω)|, (7)

to decrease with increasing values of D. As a result,
Monte Carlo rejection rates should decrease as the bond
dimension grows large.

To characterize the behaviour of our method, we have
explored the interplay between the bond dimension, the
temperature and the rejection rate for the four different
models mentioned above (Fig. 3). In all cases, we verify
that the rejection rate decreases with increasing bond di-
mension, and even modest values of the bond dimension
may yield virtually rejection-free updates. At the same
time, for a fixed D, rejection rates increase in the vicin-
ity of critical points. This can be understood considering

that, presumably, the distance ‖π(β) − π̃(β)‖TV for fixed
D will increase with the true correlation length.

Fig. 3a demonstrates these features for the ferro-
magnetic case. This model exhibits, in the limit of
large system sizes, a second-order phase transition at
Tc = 2/ log(1 +

√
2) ≈ 2.269 from a magnetically or-

dered to a paramagnetic phase [48]. Still, for the system
size considered, 32 × 32, rejection rates remain remark-
ably low (below 0.4) across the whole temperature range
that surrounds the critical temperature. Actually, even
a bond dimension as low as D = 2 appears to already
be sufficient to achieve our goal of producing collective
updates frequently. More details regarding the vicinity
of the critical point are provided on Fig. 4, where we
have plotted the rejection rate as a function of the sys-
tem size for different bond dimensions. Even for systems
as large as 256 × 256, acceptance rates of about 0.4 can
be obtained using only a bond dimension D = 4. As
can be appreciated from the inset of this figure, our data
suggest that the bond dimension only needs to grow log-
arithmically with the system size in order to maintain
the acceptance rate above a threshold value. Our ob-
servations for the antiferromagnetic case (Fig. 3b) are
similar.

For the fully frustrated case of the J ′ − J model (Fig.
3c) we obtain lower acceptance rates, as compared to
the two previous cases, but still high enough that the
Markov chain is usable down to T = O(10−1). As ex-
pected, the rejection rate increases when approaching the
T = 0 critical point. Still, the minimal cost curve D = 2
is sufficient to obtain decent acceptance rates down to at
least T = 0.2, and increasing the bond dimension again
suppresses rejection events. At very low temperatures,
acceptance rates drop dramatically and numerical insta-
bilities typical of frustrated systems pointed out in [42]
set in. Some strategies exist to mitigate these effects,
but their discussion is beyond the scope of the present
work, and will be the subject of a separate study [49].
Again, we have looked at the rejection rate as a function
of the system size for different bond dimensions (see Fig.
5). Even though this instance is more challenging, the
example in the figure demonstrates that at T = 0.4 per-
fectly usable acceptance rates of about 0.2 or higher can
be obtained for systems of size up to 128 × 128 using a
bond dimension, D = 6, for which computations are not
too demanding. Fig. 6 provides additional data regard-
ing the J ′ − J model, beyond the fully frustrated point
J = J ′. It is remarkable that the observed maxima of
rejection rates are consistent with the predicted critical
lines of this model.

Our findings for the Edwards-Anderson spin glass, Fig.
3d, are qualitatively similar to those for the fully frus-
trated case, presumably because this spin glass is also
critical at T = 0 [45].

Improved approximations of the contraction will gen-
erally result in a higher acceptance rate. But actually,
as far as this acceptance rate does not vanish and scales
well with the system size, the TNMH scheme should be
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FIG. 2. Rejection rate as a function of the temperature for four di↵erent instances of the Ising model: (a) Ferromagnetic,
(b) Antiferromagnetic with a constant magnetic field, (c) Fully frustrated, (d) Gaussian spin glass. The geometry is that of
a 32 ⇥ 32 square lattice with open boundary conditions in all four cases. For each model, the rejection rate was obtained by
averaging over 40 independent chains, each run for a model-dependent number of steps. For the fully frustrated and spin glass
cases, the points at temperatures where we believe our method starts to su↵er from ill-conditioning issues are indicated without
marker filling. For the ferro- and antiferromagnetic instances, the vertical lines indicate criticality in the thermodynamic limit.
a

a *** We have the . . . random generators for all computations presented in this paper.

value. We have implemented this heuristic test of con-
vergence for the TNMH Markov chain. Our findings are
reported on Fig. 7 and on Table I, where we compare our
times with state-of-the-art methods on this issue: par-
allel tempering (PT) and parallel tempering combined
with isoenergetic cluster moves (PT+ICM) [47, 48]. The
comparison in Table I clearly shows that TNMH outper-
forms these methods by orders of magnitude. To be fair,
our simulation setup only di↵ers a bit from that of these
references: whereas periodic boundary conditions and a
temperature T = 0.212 were considered in these refer-
ences, we have opted for open boundary conditions and
work with a slightly colder system T = 0.2. The number
of Markov chain used for the thermal average was 32 for
the (PT+ICM) computations and 30 in our case, whereas
the number of di↵erent instances used for the disordered
average is 104 in those references, and 103 here. How-
ever, it would be very surprising if our findings were sig-
nificantly altered by by considering conditions identical
to those of [47, 48].

We next move to autocorrelation times, that is, af-

� 0.25 0.15 0.05 0.025

PT 221 222 223 224

PT + ICM - - 213 214

TNMH + Metropolis 4 5 6 8

TABLE I. First row: target value of �, as defined by Eq.(9).
Second and third row: each entry represents a lower bound
on the number of Monte Carlo sweeps necessary to decrease
� below the value indicated in the same column for paral-
lel tempering (PT) and parallel tempering plus isoenergetic
cluster moves (PT+ICM) (data read o↵ Fig. **** of ref
****). Fourth row: Corresponding number of steps needed
by TNMH.

ter equilibration is reached, the time needed between
two sample extractions to guarantee (su�cient) indepen-
dence. Given an observable X, we study the quantity

CX(t) =
hX(t0)X(t0 + t)i � hX(t0)ihX(t0 + t)i

hX2(t0)i � hX(t0)i2
. (10)

FIG. 3. Rejection rate as a function of the temperature for four different instances of the Ising model at a fixed system size:
(a) Ferromagnetic, (b) Antiferromagnetic with a constant magnetic field h = 2, (c) Fully frustrated, (d) Gaussian spin glass.
The geometry is that of a 32× 32 square lattice with open boundary conditions in all four cases. For each model, the rejection
rate was obtained by averaging over 40 independent chains, each run for a model-dependent number of steps. For the fully
frustrated and spin glass cases, the points at temperatures where we believe our method starts to suffer from ill-conditioning
issues are indicated by empty markers. For the ferro- and antiferromagnetic instances, the vertical lines indicate criticality in
the thermodynamic limit. a

a Throughout this article, we have used the PCG64 pseudo-random number generator of the NumPy module (Python) [47].

applicable.

Equilibration and decorrelation

Equilibration and auto-correlation times are two cru-
cial time scales in Monte Carlo simulations. The former
controls the number of steps needed by the Markov chain
to decouple from the initial distribution (that is, the dis-
tribution from which the first configuration on the chain
is sampled) and reach the desired equilibrium distribu-
tion. The latter determines the minimal time between
two consecutive sample extractions in order to guarantee
statistical independence. Since these times are typically
difficult to bound, let alone calculate, rigorously, heuris-
tic diagonostics are commonly used to estimate them. We
have used two such heuristics to provide evidence that
these two time scales are relatively short for the TNMH
scheme of Section II.

A standard technique to decide that equilibration has
occurred is to monitor an observable from its value at
the beginning of the Markov chain until it appears to

plateau at an equilibrium value around which it fluctu-
ates [51]. We have used this technique for the magneti-
sation of a ferromagnet. Fig. 7 illustrates the evolution
of the expectation value for a ferromagnetic case, and in-
dependent Markov chains evolved according to either (6)
(blue), a simple spin flip Metropolis algorithm (green) or
Wolff’s cluster algorithm (orange) – which is known to
perform best for ferromagnetic instances. We see in this
numerical experiment that the number of time steps re-
quired for TNMH to equilibrate is about 1/80 to 1/40 the
number of steps required for Wolff algorithm, and about
1/103 the number of sweeps required by the single spin
flip Metropolis algorithm.

More sophisticated equilibration tests can be devised
for specific problems. In particular, for the Edwards-
Anderson spin glass, we have run the following test, dis-
cussed in [52, 53]. Let 〈X〉 stand for the thermal average
of an observable X, and [x]av denote the disorder average
of a quantity x that might depend on the coupling con-



7

8× 8 16× 16 32× 32 64× 64 128× 128 256× 256
0.0

0.2

0.4

0.6

0.8

1.0

D = 2 D = 4 D = 6 D = 8 D = 10

32×32 64×64 128×128 256×256

3

4

5

6

FIG. 4. Rejection rate near the ferromagnetic Ising phase
transition (T ' 2.27) as a function of the system size. Dashed
lines are simply a guide to the eye. Inset: Bond dimension
needed to maintain a fixed rejection rate (in this case 0.25,
although the behaviour seems to be independent of the value
chosen) as a function of the system size. The fit shows that the
increase in the bond dimension seems to be only logarithmic.
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FIG. 5. Rejection rate for the fully frustrated Ising model at
T = 0.4 as a function of the system size.

stants {Jij}. We consider the disorder averaged energy.

[〈H〉]av = −
∫ ∏
〈ab〉

dJab√
2π
e−J

2
ab/2

∑
〈ij〉

Jij〈σiσj〉. (8)

At equilibrium, integrating by parts allows to prove that

∆ ≡ 1

|V | [〈H〉]av +
1

|V |β
(
|E| −

∑
〈ij〉

[〈σiσj〉2]av

)
= 0, (9)

where
∑
〈ij〉[〈σiσj〉2]av is a quantity known as link over-

lap. Starting configurations of Markov chains, drawn ac-
cording to an easy distribution, typically have high en-
ergy and small link overlap. As a result, ∆ typically has
a non-zero value when the Markov chain is started. As
Monte Carlo steps are taken, this value decreases in mag-
nitude. It is a common heuristic to decide equilibration
has occurred when ∆ is below a given threshold value.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
J ′

0.50
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1.00
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2.00

2.25

2.50

T

1

10−2

10−4

FIG. 6. Rejection rate for the J ′ − J model as a function of
the temperature and the value of one of the couplings (the
other has been set to unity). Computations made with a
bond dimension D = 4. Rejection rates obtained as averages
over 40 independent Markov chains, each run for 200 steps.
Lattice dimensions : 32× 32. The phase separatrix predicted
in [50] is shown in black.
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FIG. 7. Absolute value of the magnetization per site along
different chains at T = 1.5, for three algorithms, D = 4
TNMH (blue), Wolff’s algorithm (orange) and a simple spin
flip (green) for a ferromagnetic 64× 64 lattice. Each line rep-
resents an independent run. Time t is measured in time steps
for TNMH, in sweeps for the simple spin flip Metropolis, and
in cluster updates for the Wolff algorithm.

We have implemented this heuristic test of convergence
for the TNMH Markov chain.

At low temperatures, we have observed the TN con-
traction may suffer from ill-conditionning. As a result,
the approximate probability weights can be off their true
value by orders of magnitude[54]. As can be seen from
Eq.(4), this mismatch affects the acceptance rates. That
is, when the Markov chain hits a configuration ω such
that π̃(β)(ω)/π(β)(ω) � 1, it may remain stuck at it
for a long time. The spectral gap of the transition ma-
trix, {TTNMH(ω1 → ω2)}, which governs convergence
[55], should therefore be small, when compared to ’easy’
models such as the ferromagnetic instance. The spectral



8

gap of the transfer matrix of a local MC algorithm, Tloc,
is also expected to be relatively small for these models.
But, presumably, this smaller gap has a different origin:
the greater difficulty of escaping a local minimum. It
could be however that alternating the two sorts of move
results in a transfer matrix TlocTTNMH with a larger spec-
tral gap than each of them. We have tested this possi-
bility. Our findings are reported on Fig. 8 and on Ta-
ble I, where we compare our times with state-of-the-art
methods on this issue: parallel tempering (PT) and par-
allel tempering combined with isoenergetic cluster moves
(PT+ICM)[52, 53]. The comparison in Table I clearly
shows that the combination of TNMH with single flip MC
sweeps allows us to outperform these methods by orders
of magnitude. To be fair, our simulation setup differs
slightly from that of these references: whereas periodic
boundary conditions were considered in these references,
we have opted for open boundary conditions. The setup
is identical otherwise: the number of Markov chains used
for the thermal average is 30 in both cases, the number
of different instances used for the disordered average is
104 and the temperature is T = 0.212.

So far, we have counted equilibration times in steps of
the Markov chain, which has conceptual relevance. From
a practical point of view though, it would be very inter-
esting to know how the TNMH compares to other meth-
ods when looking at program execution times. To make
such a comparison fairly is a delicate issue because we
have not sought to optimise our code at all: a detailed
comparison with e.g. Metropolis sweeps, which is sim-
pler to optimise is a project in itself. We can however
provide indicative times related to the data presented on
Table I. With our setup, we have estimated the times
to get to ∆ < 0.025 to be 1.51× 108 sec, 1.48× 106 sec,
and 6.75 × 104 sec for the parallel tempering method,
the parallel tempering method supplemented with isoen-
ergetic cluster moves, and TNMH respectively. These
figures have been obtained by multiplying an estimate
for the time necessary to make a single step for each of
these three methods by the number of steps necessary to
reach the target value of ∆. Although these estimates are
rough, we believe that the order of magnitude is correct,
and credibly signals the practical potential of the TNMH
Markov chain introduced here.

We next move to autocorrelation times, that is, af-
ter equilibration is reached, the time needed between
two sample extractions to guarantee (sufficient) indepen-
dence. Given an observable X, we study the correlation
function

CX(t) =
〈X(t0)X(t0 + t)〉 − 〈X(t0)〉〈X(t0 + t)〉

〈X2(t0)〉 − 〈X(t0)〉2 , (10)

where t0 is assumed larger than the equilibration time
[51]. At large t, we expect CX(t) to decay exponentially,
with a time scale set by the decorrelation time. As the
exponential tail has a fixed amount of noise, controlled
by the number of samples, a useful measure to deter-
mine that time scale is the integrated correlation time
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0.6
0.8
1.0

∆

FIG. 8. Difference between the (disordered averaged) energy
per spin computed from the Hamiltonian and computed from
the link overlap, Eq. (9), as a function of the number of iter-
ations. Odd times correspond to TNMH steps (bond dimen-
sion D = 16), even times to single spin flip Metropolis sweeps.
Lattice dimensions: 32 × 32. Inset: Same plot, for a 16 × 16
lattice. The error bars, smaller than the symbols, have been
computed by estimating the variance of the disorder.

∆ 0.25 0.15 0.05 0.025

PT 221 222 223 224

PT + ICM - - 213 214

TNMH + Metropolis 3 3 5 5

TABLE I. First row: target value of ∆, as defined by Eq.(9).
Second and third row: each entry represents a lower bound
on the number of Monte Carlo sweeps necessary to decrease
∆ below the value indicated in the same column for parallel
tempering (PT) and parallel tempering plus isoenergetic clus-
ter moves (PT+ICM) (data read off Fig. 2 of [52]). Fourth
row: Upper bounds on the number of TNMH iterations nec-
essary for the same purpose. The system considered is the
same as in Fig. 8.

τ int
X (t) ≡ 1+2

∑t
t′=1 CX(t′). It can also be shown that it

is approximately the factor that enhances the variance
when averaging over samples that are not sufficiently
decorrelated [51]. The two quantities are plotted on Fig.
9 for the magnetization of a Fully Frustrated Ising model
on a 32 × 32 lattice at T = 1. The observable chosen
has no clear physical meaning, but can differ greatly be-
tween different low energy configurations of this model,
and thus it is a useful measure to check the ergodicity of
any scheme. The data shown in Fig. 9 shows that TNMH
outperforms a local algorithm by almost two orders of
magnitude. Furthermore, we expect that the difference
in performance can only increase as the temperatures are
lowered or the system size is increased.

To further illustrate sample-to-sample decorrelation in
our algorithm, we have considered the fully frustrated
Ising model and represented snapshots at different times
for TNMH and for Metropolis sweeps starting from a
same configuration. The difference between both tech-
niques is striking: while the configurations appearing in
our technique seem to bear no resemblance to one another
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FIG. 9. Integrated correlation time and (inset) decay of the
autocorrelation function of the magnetization as a function
of the step, for a Fully Frustrated Ising model on a 32 × 32
lattice with open boundary conditions at T = 1. The error
bars have been computed by estimating the variance of the
observables using the same samples.

TNMH

Spin
flip

FIG. 10. Snapshots of the evolution of two different Markov
chains starting from the same configuration, for the fully frus-
trated Ising model on a 64 × 64 lattice at T = 0.5. The top
plots display the configuration obtained after three consec-
utive steps of the TNMH method, while those below show
configurations after Metropolis sweeps at times t = 0, 1, 10.

from one acceptance to the next, memory of the initial
configuration can still be appreciated visually after ten
Metropolis sweeps.

Observables

We now turn to the estimation of observables from the
samples output by the TNMH Markov chain. We have
focused on the ferromagnetic case and the antiferromag-
netic one with an external field. The absolute value of
the magnetisation for the ferromagnetic case is plotted on
Fig. 11 (inset) and is in good agreement with the theory
[48]. Fig. 11 shows estimates for the fourth order Binder
cumulant [6], g = (3− 〈m4〉/〈m2〉2)/2. One can appreci-
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FIG. 11. Binder ratio as a function of temperature for the
two dimensional ferromagnetic Ising model. The data ap-
proximately cross at one point, signalling a phase transition,
in great concordance with the theoretical result T ≈ 2.269.
Inset: Magnetisation of the ferromagnetic Ising model on a
square 64 × 64 lattice with open boundary conditions. The
error bars, computed via a jackknife analysis for the Binder
cumulant and by estimating the variance for the magnetiza-
tion, are smaller than the symbols. D = 6 was used in our
algorithm.

ate that the phase transition point is correctly signalled
by the locus where all data sets meet, as expected. On
Fig. 12, we have represented the staggered susceptibility
as a function of the temperature and the external mag-
netic field for an antiferromagnet. Our findings seem to
be in good agreement with previous studies of this model
[56, 57]. When the external field is naught, the ferro-

magnetic phase transition around Tc = 2/ ln(1 +
√

2) is
recovered, as expected, since for a square lattice, a local
change of variables allows a mapping between antiferro
and ferromagnetic instances of the Ising model. As the
field increases, the temperature at which the phase tran-
sition takes place decreases. The intuition for this fact
is as follows: at h = 0 and below the critical tempera-
ture one has antiferromagnetic order. In the large h limit
at the same temperature all spins would align with the
external field and one would have ferromagnetic order.
Thus, some phase boundary must be encountered when
going from one to the other.

IV. THREE-DIMENSIONAL ISING MODELS

Just as for planar systems, the partition function of
a three-dimensional Ising model can be expressed as a
tensor network. As a consequence, our TNMH construc-
tion immediately extends to three dimensions. The con-
traction of a three-dimensional TN is a more demanding
problem than its two-dimensional analogue. Still, TN
renormalisation schemes can be applied to find an ap-
proximation to the contraction [21, 33, 34]. We have cho-
sen an unsophisticated renormalisation scheme involving
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FIG. 12. Susceptibility χ for an antiferromagnetic Ising model
with an external field, on a 64× 64 square lattice. D = 6 was
used. Black: theoretical prediction of the critical line in the
thermodynamical limit.

projected entangled pair states (PEPS). Two cutoff pa-
rameters now govern the effort put in the TNMH for this
implementation: a boundary PEPS bond dimension D,
and a boundary MPS bond dimension χ (see Appendix
A for details). We have considered two instances of the
Ising model: ferromagnetic, and antiferromagnetic with
an external magnetic field. The upshot is that our TNMH
performs very well, even with rather low values for D and
χ.

Fig. 13 shows the interplay between the two param-
eters D and χ, the temperature, and the rejection rate.
Again, the peak in the rejection rate signals the presence
of a critical point (displaced due to finite size). As this
critical point is approached, rejection rates increase much
faster than in two dimensions, and putting in more com-
putational effort by increasing D and χ now produces
milder drops in rejection rates. We attribute this situa-
tion to an increase of correlations in the system due to
a higher coordination number for each spin. Still, these
preliminary results are very encouraging, since using a
non-optimized contraction scheme, and modest values for
the parameters D and χ, usable acceptance rates (> 0.12
and > 0.05 for the ferro- and antiferromagnetic case re-
spectively) have been found across the whole tempera-
ture range considered, for systems as large as 163 = 4096
spins.

Analogous to Fig. 7, which explored equilibration in
the two dimensional case, we show the energy of a 163 fer-
romagnetic Ising model as a function of time on Fig. 14,
both for the TNMH Markov chain and for the three-
dimensional Wolff algorithm. As in two dimensions, the
former appears to necessitate a lower number of steps
than the latter. The magnetisation of the ferromagnetic
Ising model has also been plotted in Fig. 15 and shows
good agreement with previous studies [58–60].

Since observables can also be expressed as a TN, it
is possible to estimate them using a direct contraction
[15], and one might then wonder if the sampling proce-
dure, which in itself requires a TN contraction, provides
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FIG. 13. Rejection rates for the three-dimensional Ising
model as a function of the temperature. The top plot corre-
sponds to a uniform ferromagnet, the bottom plot to a uni-
form antiferromagnet in a field h = 3 (bottom). D denotes
the PEPS bond dimension, while χ stands for the boundary
bond dimension used when compressing the PEPS associated
to a plane of the lattice. A lattice of size 16×16×16 was used,
with open boundary conditions, and for each bond dimension
and temperature, 50 chains were run for 150 steps each. The
critical temperature is Tc ≈ 4.512 [58] for the ferromagnetic
Ising model, and Tc ≈ 4 [60] for the antiferromagnetic with
this field (We attribute the offset with respect to this value
to finite size effects.).

an advantage with respect to such a direct calculation.
But, while the TNMH algorithm can succeed with a very
undemanding approximate TN contraction (i.e. using
very low bond dimensions), achieving a result of com-
parable quality by direct contraction generally requires
more computational effort. To make this point more con-
crete, we have compared the value of the average energy
in the three-dimensional ferromagnetic case, as obtained
with the TNMH scheme and with direct TN contractions
with different values of the bond dimensions (Fig. 16).
We observe that, at temperatures where the direct con-
traction with up to (D,χ) = (8, 16) was not sufficient
to obtain an accurate estimate of the energy, the TNMH
with (D,χ) = (2, 2) was successful, since it produced
decent acceptance rates, and eventually provided good
samples thanks to irreducibility and reversibility.
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FIG. 14. Single site magnetization along different Markov
chains at T = 3 for two algorithms, Wolff’s (orange) and
TNMH (blue) (D = 2, χ = 2) for a ferromagnetic 16×16×16
lattice. t represents the number of cluster moves in the former
case and the number of TNMH iterations in the latter.
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FIG. 15. Magnetisation (blue) and energy (orange) per spin
of the ferromagnetic Ising model (top) and staggered mag-
netisation and energy per spin of the antiferromagnetic Ising
model in an external field (bottom) on a cubic 16 × 16 × 16
lattice with open boundary conditions. The error bars are
smaller than the symbols. The largest bond dimensions used
to obtain the curves were D = 4, χ = 8.

V. OTHER MODELS

This section is a summary of ideas that will be explored
elsewhere. So far, we have focused on instances of the
Ising model in two and three dimensional square lattices.
We here sketch variations and applications of these cases.
We show how to deal with arbitrary boundary conditions
in Appendix B.
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TNMH

FIG. 16. Relative error ε in the average energy per spin com-
puted via different techniques for different temperatures (near
the phase transition) for the three-dimensional ferromagnetic
Ising model. The reference values are obtained using Wolff’s
algorithm, purple rhombi are obtained using samples from our
algorithm with (D,χ) = (2, 2), and the other results are ob-
tained taking derivatives of the logarithm of the approximate
contraction of the TN representing the partition function.

The XY model

In absence of a vector potential, the XY model de-
scribes a lattice of planar spins, interacting through the
Hamiltonian

HXY = −
∑
〈i,j〉

cos(θi − θj), (11)

where the local variables are the angles {0 ≤ θi < 2π : i ∈
V }. Although these variables are continuous, this model
can be mapped into a system that allows to use a vari-
ation of the sampling method used for the Ising model.
First, a duality transformation establishes an equivalence
between (11) and a system of integer variables residing
on the (oriented) links of the lattice involved in four-body
interactions [61–64]. That is, the partition function takes
the form

Z(β) = lim
N→∞

∏
l∈E

(
N∑

nl=−N
Inl(β)

)∏
i∈V

F
n
(i)
3 ,n

(i)
4

n
(i)
1 ,n

(i)
2

, (12)

where n
(i)
1 , n

(i)
2 , n

(i)
3 , n

(i)
4 are the values for the links meet-

ing at site i. Inl(β) are the modified Bessel functions of
the first kind, and

Fn3,n4
n1,n2

=

∫ 2π

0

dθ

2π
eiθ(n1+n2−n3−n4) = δK(n1+n2−n3−n4).

At fixed β, Inl(β) decays fast and, and truncating the
sum in Eq. (12) is a sensible approximation. The parti-
tion function of the XY model can thus be approximated
by a tensor network where the degree of freedom at each
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bond takes value in a finite set. In the language of Ap-
pendix A, the tensor at each site i would now be

A(i)
n2n4n1n3

=

(
4∏
k=1

Ink(β)

)1/2

Fn3,n4
n1,n2

,

and the contraction of the TN made up of these tensors
would give an approximation to the partition function

Z̃(β). Similarly, the marginal probability density of the
spin at a site i, π̃(β)(θi), can be approximated by replac-
ing the tensor at site i with

A(i)
n2n4n1n3

(θi) =

(
4∏
k=1

Ink(β)

)1/2

eiθ(n1+n2−n3−n4)

2π
,

and normalizing the contraction to the approximate par-
tition function previously obtained. Using renormali-
sation to approximately contract tensor networks, and
the inverse sampling method, a candidate configuration
ω′ = {θ′i : i ∈ V } can be drawn and accepted or rejected,
as we did for Ising models with Algorithm 1. A vector
potential could be included [62, 63], and other continuous
variable systems admit a similar construction [65].

On top of the bond dimension used for the renormali-
sation, the number of terms kept in the series expansion
of the transfer matrix in Eq. (12) is another parameter
that governs the accuracy of the contraction. As for the
3D Ising model discussed above, a tensor network with
a low value for this parameter may be accurate enough
to sample from and propose moves for a Markov chain,
but not precise enough to compute the observables with
a single contraction.

A detailed study of the XY model is beyond the scope
of this paper. But we hade made preliminary computa-
tions that show acceptance rates comparable to those of
the ferromagnetic Ising model. In order to see how cor-
related the proposed collective moves are, we have com-
puted the mutual information between the updates at
different sites of the TNMH algorithm and compared it
to that obtained from a local algorithm (left), Figure 17.
The instance chosen for the comparison is the zero-field
uniform XY model on a 16 × 16 lattice at a tempera-
ture T = 0.5. The difference in the results is noteworthy,
and demonstrates that the TNMH algorithm is indeed
capable of producing global correlated updates.

Drawing configuration differences

We now show that a TNMH scheme for the Ising model
can be extended to deal with other nearest neighbour
hamiltonians. For the sake of concreteness, we will focus
on the λφ4 model, defined on a two-dimensional square
lattice Λ = (V,E) by the energy function

H({φi}) =
∑
〈i,j〉∈E

(φi − φj)2 +
∑
i∈V

(
1

2
m2φ2

i +
λ

4!
φ4
i ).
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FIG. 17. Mutual information in bits between the updates at
different sites, that is, in the changes of the angles after a
sweep of the Markov chain, I(θi(t + 1) − θi(t) : θj(t + 1) −
θj(t)) for two schemes. Left: a local algorithm (a Metropolis
single spin flip where the proposed local updates were chosen
from U(0, 2π)). Right: TNMH. The numerical experiment
was conducted on a homogeneous XY model with no external
field on a 16 × 16 lattice at a temperature of T = 0.5. The
bond dimension used in TNMH was 20, and the number of
terms kept in the series of Eq. (12) was N = 4, which gave a
TN with a local dimension of 9.

where each local variable φi takes value in R. (See also
Refs. [32, 66] for the use of tensor networks in lattice
field theories.) As usual, we are interested in sampling
according to the Boltzmann distribution for some fixed
value β. We will use the following simple lemma.

Lemma 1 Any real function of two binary variables, B,
can be expressed as an Ising model energy plus some con-
stant:

B(σ, σ′) = Jσσ′ + hσ + h′σ′ +K. (13)

Proof : (13) defines a system of four linear equations for
the four unknowns J, h, h′,K, one for each assignment
(σ, σ′). The determinant of the matrix of this system of
equations does not vanish but is equal to 16; a solution
to (13) therefore exists and is unique.

Let ω = {φi : i ∈ Ω} denote the current configura-
tion. A Markov chain with collective updates can be con-
structed using the TNMH presented for the Ising model
in Section II if we draw configuration changes. We pro-
ceed as follows. An integer m is drawn uniformly and
randomly in {0, 1, . . . ,mmax}, where mmax is equal to 9,
say. ∀i ∈ V , we draw γi according to a Gaussian dis-
tribution with zero mean and variance equal to 10−m.
With Γ = {γi : i ∈ V }, we construct the function:

HI({σi}|ω,Γ) =
∑
〈i,j〉∈E

(ψi(σi|φi, γi)− ψj(σj |φj , γj))2

+
1

2

∑
i∈V

m2ψi(σi|φ, γi)2 +
λ

4!

∑
i∈V

ψi(σi|φi, γi)4.

where

ψi(σi|φi, γi) =
1− σi

2
φi +

1 + σi
2

(φi + γi),
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with σi ∈ {−1,+1} ∀i ∈ V . By lemma 1, HI({σi}|ω,Γ)
can be expressed as an Ising Hamiltonian for the variables
{σi} (plus some irrelevant global constant):

HI({σi}|ω,Γ) = −
∑
i∈V

hi(ω,Γ) σi−
∑
〈i,j〉∈Γ

Ji,j(ω,Γ) σiσj .

The Boltzmann distribution of the Ising model HI ,

π
(β)
I ({σi}|{θi},Γ) =

e−βHI({σi}|{θi},Γ)∑
{σj}

e−βHI({σj}|{θi},Γ)

can generically not be sampled directly. But we can con-
struct a tensor network approximation π̃(β)(·|ω,Γ) for it,
as described in Section II. Given Γ as defined above, let
us define τ(Γ) = {−γi : i ∈ V }. The sequence of instruc-
tions listed in Algorithm 2 defines an irreducible and re-
versible Metropolis-Hastings Markov chain that achieves
collective updates for the λφ4 model.

Algorithm 2 Configuration difference collective update

1: Draw an integer m u.a.r. in {0, . . .mmax}.
2: Draw |V | i.i.d. Gaussians with zero mean and variance

equal to 10−m: Γ = {γi : i ∈ V }.
3: Draw {σi : i ∈ V } according to π̃(β)(·|ω,Γ).
4: Accept the move {φi : i ∈ V } → {φi + 1+σi

2
γi} with

probability

min{1, π̃
(β)
I ({σi}|ω,Γ)

π̃
(β)
I ({σi}|ω′, τ(Γ))

× π(β)(ω′)

π(β)(ω)
}.

The idea of drawing configuration updates has ap-
peared in the study of the ferromagnetic XY model, for
which the Wolff algorithm for the ferromagnetic Ising
model can be recycled [6]. In principle, Algorithm 2 could
be applied to frustrated systems.

A class of systems for which we believe it could be use-
ful to draw differences of configurations as described here
are matrix models, such as SU(d) lattice gauge theories
[67]. The auxiliary Hamiltonian representing the possi-
ble choices for a move would no longer be two-body Ising.
Still, it is not difficult to construct a tensor network rep-
resentation for its Boltzmann distribution.

Triangular lattices

We now show how the construction presented in Sec-
tion II, specific to square lattices, can be used as such to
deal with a triangular lattice. Let us assume that we are
interested in some particular observable X. That is, we
wish to estimate

〈X〉 =
1

Z(β)

∑
ω∈Ω

X(ω) e−βH(ω).

To this end, we construct an extended model, obtained
by decorating the original lattice with extra spins living

on each diagonal link as shown on Fig.18 (a) and (b).
With each particle of the original model, we will asso-
ciate the new extra spin located south east to it. Let
p : V → Vnew denote the function that realises this asso-
ciation, where Vnew denotes the set of new vertices. The
Hamiltonian of the extended model reads

Hext(ωext|γ) = H(ω)− γ
∑
j∈V

σjσp(j), (14)

for γ > 0. Zext(β|γ) will denote its partition function.

Proposition 1

〈X〉 = lim
γ→∞

1

Zext(β|γ)

∑
ωext

X(ω) e−βHext(ωext|γ) (15)

whenever β and |V | are both finite.

Proof: The extended configuration space Ωext can be

decomposed as Ωext = Ω
(0)
ext ∪ Ω

(1)
ext ∪ . . . ∪ Ω

(|V |)
ext , where

Ω
(m)
ext denotes the subset of all configurations such that

there are exactly m sites j ∈ Λ where σj 6= σp(j). This
decomposition induces another for the partition function
of the extended model as

Zext(β|γ) =
∑
ω∈Ω

e−βH(ω)+βγ|V | +

|V |∑
m=1

ζm eβγ(|V |−2m),

where the coefficients ζm are all finite and independent
of γ. Similarly, the sum appearing in the r.h.s. of (15)
can be expressed as

∑
ω∈Ω

X(ω)e−βH(ω)+βγ|V | +

|V |∑
m=1

ξm eβγ(|V |−2m),

where the coefficients ξm are also finite and independent
of γ. Finally, it is obvious that the ratio∑

ω∈Ω

X(ω)e−βH(ω)+βγ|V | +
∑|V |
m=1 ξm eβγ(|V |−2m)

∑
ω∈Ω

e−βH(ω)+βγ|V | +
∑|V |
m=1 ζm eβγ(|V |−2m)

tends to 〈X〉 in the limit where γ tends to infinity.
A similar argument provides the following identity be-

tween the Boltzmann weight for a configuration of the
extended space ωext and the Boltzmann weight of its re-
striction to Ω, ω:

lim
γ→∞

e−βHext(ωext|γ)

Z ext (β|γ)
=
∏
j∈V

δK(σj , σp(j))
e−βH(ω)

Z(β)
, (16)

where δK denote the Kronecker delta function. The con-
tribution of any site j of the original lattice Λ to the
numerator of the r.h.s. of (16) reads

δK(σj , σp(j)) exp
(
β
(
hjσj +

∑
k∈N(j)

Jjkσjσk
))
. (17)
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Figure 1: Solid lines : interaction graph of a triangular lattice (periodic bound-
ary conditions assumed for simplicity). Grey dots : extra degrees of freedom of
the extended model.

1

FIG. 18. Left: Interaction graph of a triangular lattice system. Centre: Same interaction graph decorated with extra degrees
of freedom located on the diagonals (grey dots). Right: Square lattice on which a Hamiltonian H� associated with the original
system is defined.

where N(j) denotes the neighbourhood of j. Because
of the Kronecker delta, for any bipartition of this neigh-
bourhood N(j) = N ′(j) ∪N ′′(j), (17) remains invariant
if the sum in the exponential is substituted with∑

k∈N ′(j)

Jjkσp(j)σk +
∑

k∈N ′′(j)

Jjkσjσk. (18)

Assuming w.l.o.g. the boundary conditions represented
on Fig. 18-left, we choose, for every site j, N ′(j) to con-
sist in the sites located east, south, and south east of
j, ∀j ∈ Λ. (Edge and corner sites might require differ-
ent choices of subsets N ′(j), depending on the boundary
conditions.) This choice results in a square lattice hamil-
tonian H� whose couplings are shown on Fig. 19, and
results in the interaction graph displayed on Fig. 18(c).

Let π̃� denote a probability distribution approxi-
mating the Boltzmann distribution associated with H�
through tensor network renormalisation. To deal with a
triangular lattice using a TNMH code for a square lat-
tice, a possibility is a Markov chain where, at each step,
a candidate configuration ω′ext is drawn according to π̃�,
and the move from the current configuration ωext to this
candidate is accepted with Metropolis-Hastings probabil-
ity:

min{1, e
−βH(ω′)

e−βH(ω)
× π̃�(ωext)

π̃�(ω′ext)
},

where ω (resp. ω′) denotes the restriction of ωext (resp.
ω′ext) to Ω.

This mapping from a triangular lattice to a square lat-
tice doubles the number of sites but we stress that the
bond dimension of the (square) tensor network associ-
ated is unchanged and equal to that of the local degrees
of freedom (d = 2 for the Ising model). It would be very
interesting to see whether the argument can be extended
to three dimensions, and for example map a body centred
cubic lattice model to a simple cubic lattice model.

A quantum analogue of the mapping exists: square
PEPS can be used for a triangular quantum spin Hamil-
tonian. The extended Hamiltonian (operator) now reads
Hext = H − γ

∑
j∈V σ

z
jσ

z
p(j). Proposition 1 still holds

true if
∑
ω ext

X(ω) e−βHext(ωext|γ) is substituted with

Tr Xe−βHext . Expressing the trace in the basis of eigen-
states of {σzj } operators, an analogue of the substitu-
tions (17,18) holds true too. If for example, one wants
a TNS approximation of the ground state, one could al-
ternate Trotter steps with applications of the projector
|00〉〈00|z + |11〉〈11|z on each particle of the original lat-
tice and its partner. Actually, a further reduction can
be made: one readily checks that the interaction graph
transformation shown on Fig. 18 produces a hexagonal
lattice when applied to a square lattice. Therefore, in
principle, it should even be possible to study triangular
lattices with hexagonal PEPS.

Jh

Jv Jd ∞ Jh

Jv Jd

FIG. 19. Couplings in and around a plaquette in the original
and extended models (left and right respectively). The new
couplings produce a square lattice rotated by a π/4 angle with
respect to the original lattice.

Hard spheres

To close this section, we show how tensor network con-
tractions can also be used to implement collective Monte
Carlo updates for systems of hard spheres (or disks in
two dimensions) [5]. We will combine three ideas for that
purpose. The first is a discretisation of the domain that
contains the spheres. The second is a shift of perspective
where a configuration will not so much be regarded as a
collection of locations for the spheres, but rather as the
specification for the state of each cell of the volume that
contains them (occupied or empty). The third is to use
a tensor network to encode possible moves for each cell.
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We consider a system of N hard disks in two dimen-
sions confined in a square area discretised with a square
lattice (M cells). Although this is not essential, we will
assume periodic boundary conditions in order to keep
the presentation simple. N is fixed, as well as the lattice
spacing ε. All disks have identical radius. A configura-
tion is said to be valid if (i) the centre of each disk is
pinned on the intersection of a vertical and a horizon-
tal line of the lattice, (ii) no cell contains bits of matter
belonging to different disks. Fig. 20 is an example of a
valid configuration.

FIG. 20. Example of a configuration of hard disks in a dis-
cretised volume. (Periodic boundary conditions assumed.)

Our goal is to sample uniformly amongst all valid con-
figurations. For that, we will design a Markov chain of
collective updates where each disk either stands still or
is moved vertically or horizontally by one lattice spacing.
A configuration change must comply with the following
rules:

1. A disk cannot be split.

2. A disk cannot be compressed.

3. Disks cannot overlap, not even completely (conser-
vation of particle number).

We will assume the disks are distinguishable and we
will associate a label {1, 2, . . . , N} to each of them, which
is why each disk appears with a different colour in the
illustration of Fig. 20. We will denote S0 the set of
empty cells, and Sα the set of cells occupied by disk α,
1 ≤ α ≤ N .

Given a valid configuration ω, we associate a tensor Pj
with each cell j of the lattice, see Fig. 21. The index σ of
this tensor encodes the move that a bit of matter located
at cell j would undergo: M ≡ {0,−1,+1,−2,+2} for
{stillness, displacement to the left, displacement to the
right, downwards displacement, upwards displacement}

respectively. The role of the w, e, n, s degrees of free-
dom of Pj is to communicate the chosen move at j to its
neighbour cells; the indices w′, e′, n′, s′ provide the infor-
mation about the moves made in neighbouring cells to
cell j. We want to assign values to these tensors {Pj}
that guarantee moves can only occur between valid con-
figurations.

Pj

σ
n s′

n′ s

w′
e

w
e′

FIG. 21. Diagrammatic representation of the PEPS tensor
associated with each cell j of the lattice.

A. Initialisation. For each cell j, Pj(σ)w
′,e′,n′,s′

w,e,n,s =
1 ∀σ,w′, e′, n′, s′, w, e, n, s ∈M.

B. Empty cells. ∀j ∈ S0, since there is no mat-
ter to be moved, we decree that Pj(σ)w

′,e′,n′,s′

w,e,n,s =
0 ∀w′, e′, n′, s′, w, e, n, s if σ 6= 0 (holes do not move).

C. Faithful move communication. ∀j,
Pj(σ)w

′,e′,n′,s′

w,e,n,s = 0 unless w = e = n = s = σ.
D. Rigidity. Let j, k denote two neighbouring cells

covered by a same disk Sα, α 6= 0. Let us assume,
say, that j is located left to k. We impose that
Pj(σ)w

′,e′,n′,s′

w,e,n,s = 0 if e 6= w′. Similar constraints are
imposed on all other pairs of cells j, k covered by a same
disk and such that |j − k| = 1.

E. Prevention of collisions. By definition, a col-
lision has occurred between two disks α and α′ if and
only if two bits of matter belonging to α and α′ respec-
tively are found a same cell. Therefore, it is necessary
and sufficient to forbid all such events in order to pre-
vent a collision. If there is a collision, either one disk is
immobile, say α, and α′ moves by one cell to overlap with
α (case A), or both α and α′ move to cause the overlap
(case B).

Case A occurs if and only if there are pairs of adjacent
cells c and c′ in Sα and Sα′ respectively which content
will occupy a same cell. To prevent the collision, it is
sufficient to impose that for each such pair (c, c′), the bit
of matter contained in c′ cannot hop in c. There are four
such moves to prohibit; they are represented by the four
leftmost drawings of Fig.22.

In case B, α and α′ either move along a same direction
(case BI) or along perpendicular directions (case BII).
Case BI occurs if and only if there are pairs of cells c
and c′, separated by one cell, in Sα and Sα′ respectively,
which contents are moved closer to each other along a
common line. It is thus enough to prevent the events
represented by the rightmost drawings of Fig.22. Case
BII is dealt with similarly, and results in the prohibition
of the events represented by the four remaining diagrams
of Fig.22.
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Collisions where a bit of matter contained in a cell
k ∈ Sα′ moves to its left, and lands in a cell j ∈ Sα al-
ready occupied by a bit of matter that does not change its

position, can be prevented by imposing Pj(0)−1,e′,n′,s′

0000 =
0 ∀e′, n′, s′. The other A prohibitions admit similar
translations into constraints on the tensors, and the
six B prohibitions can be enforced likewise. For ex-
ample the prohibition of the move depicted on the di-
agram located rightmost top of Fig.22 translates into
Pj(σ)+1,−1,n′,s′

w,e,n,s = 0 ∀w, e, n, s, n′, s′ whenever the left
and right neighbours of cell j are occupied by different
disks.

The exact contraction of all tensors yields a func-
tion Q(σ1, . . . , σM |ω), which value is equal to 0 if the
move {σ1, . . . , σM} is forbidden from configuration ω,
and 1 otherwise. We note that for a fixed assignment
{σ1, . . . , σM}, Q(σ1, . . . , σM |ω) can be evaluated ex-
actly. Ideally, we would construct a Metropolis-Hastings
Markov chain where the moves are sampled according to
the prior

πid(σ1, . . . , σM |ω) =
Q(σ1, . . . , σM |ω)∑
{τ}Q(τ1, . . . , τM |ω)

.

As we don’t expect this to be possible, we propose to ap-
proximate πid through tensor network renormalisation,
as we did for Ising models. At fixed volume M , the
computational cost for constructing the tensors scales
as 1/ε2. The bond dimension of the tensor network is
independent of ε. As for Ising models, acceptance rates
should increase with the bond dimension used in the ten-
sor network renormalisation. If necessary, a complemen-
tary strategy to increase acceptance rates is to select a
region at each Markov step, and impose that all disks
outside of it or touching its boundary remain fixed; such
a region would vary from one time step to the next and
may even be disconnected.

In two dimensions, the hard sphere model is known to
exhibit a fluid-solid phase transition for a filling fraction
η = πa2N/A ' 0.7, where a is the radius of the disks,
and A denotes the area of the domain that contains them
[5] (A = Mε2 here). It would be very interesting to see
how a finite value of ε affects this phase transition. Actu-
ally, because of the discretisation, the model considered
here is, strictly speaking, not the hard sphere model dis-
cussed in [5], for which the disks could in principle occupy
any position in Euclidean space. It might be that the
phase transition in the limit ε → 0 does not correspond
to the transition point of the hard sphere model defined
in Euclidean space. But it just might if a different lat-
tice geometry is used. A similar phenomenon occurs in
the study of fluids with cellular automata: square lat-
tices do not relate to the Navier-Stokes equation whereas
triangular lattices do [68].

A construction similar to Fig. 21 should hold for hard
spheres in three dimensions, and we believe that an ana-
logue also exists for dimer (and dimer-monomer) mod-
els. In this latter case, the possibility to rotate dimers

by a π/2 angle produces additional constraints on the
tensors.

VI. DISCUSSION

The interplay between Monte Carlo and tensor net-
work methods is a rich and vastly unexplored subject.
While various previous works have reported on using
Monte Carlo sampling for tensor network contractions,
we have here presented an analysis of the converse: ten-
sor network contractions for Monte Carlo sampling. We
have introduced a new class of Markov chain Monte Carlo
algorithms for many-body classical systems based on ten-
sor network renormalisation. This class belongs in the
family of Metropolis-Hastings schemes. Our construc-
tion produces collective updates. It is also irreducible
and reversible; as such, asymptotic convergence towards
the target probability distribution is guaranteed. We em-
phasize its universal nature: it works the same for any
nearest neighbour Hamiltonian with finite local degrees
of freedom.

We have benchmarked our scheme for a variety of in-
stances of the two-dimensional Ising model defined on a
square lattice. For ferromagnets and antiferromagnets,
very high acceptance rates have been observed for larger
systems, even with modest values of the bond dimension.
Besides, drops in acceptance rates have been shown to
signal criticality. Looking at equilibration and decorrela-
tion times, the scheme compares extremely well with sin-
gle spin flip updates and Wolff algorithm. As expected,
the scheme’s performance is lower for frustrated and dis-
ordered instances than for the ferro- and antiferromag-
nets. Still, our results are very encouraging. In partic-
ular, for disordered instances, equilibration appears to
be occurring orders of magnitude faster than for state-
of-the-art techniques such as parallel tempering supple-
mented with isoenergetic cluster moves, both when time
is counted in Monte Carlo steps and in seconds.

We have also demonstrated the potential of the method
for three dimensional systems, by testing it on ferromag-
netic and an antiferromagnetic instances. Also in this
case, we observe faster equilibration as compared to Wolff
algorithm and, remarkably, even with a simple contrac-
tion strategy and small bond dimension, the scheme can
be shown to remain usable at near critical temperatures,
whereas a much more costly direct TN contraction results
in considerable errors.

We have used simple procedures to implement tensor
network renormalisation, and we have made no particu-
lar effort to write an efficient code. For these reasons, we
believe the results presented here could be substantially
improved. It would also be very interesting to study what
can be gained by using other renormalisation schemes for
approximate contractions of tensor networks [19]. For ex-
ample, schemes involving disentanglers would be a nat-
ural option in this regard [22]. Also for future work is
the study of how TNMH Markov chains combine with
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FIG. 22. Forbidden moves in the discretised hard disks model. An asterisk in a cell indicate presence of matter, the rhombus
symbol stands for a cell that can either be empty or filled. A dot on the side of a cell indicates no move, whereas an arrow
indicates a move by one lattice spacing and its direction.

parallel tempering [69].

A major advantage of our construction is its versatil-
ity. We have seen that with little extra effort, a code
valid for the Ising model on a square lattice can be used
as such to construct a collective update Markov chain in
other settings such as the XY model, or a triangular lat-
tice, and that TNMH could also be used to study gases
of hard spheres. In principle lattice systems with long
range interactions could also be considered. For instance,
given an Ising Hamiltonian H where the interactions de-
cay with the distance as a power law, one can associate an
auxiliary Hamiltonian H% where all interactions within
some range % are identical to H, and all interactions be-
yond % have been truncated. One can next construct a
tensor network prior from this Hamiltonian H%. Two pa-
rameters would now govern the Markov chain: the bond
dimension and the range %. We have also restricted our-
selves to scalar degrees of freedom in this work. But the
discussion held in Section V shows that TNMH sampling
should also apply to matrix models, in particular lattice
gauge theories.

A natural variation of our work would be to depart
from tensor network representations and use a quantum
device to prepare Gibbs states and estimate the probabil-
ity to draw a given configuration [70, 71]. Such a device
would be called as an external subroutine in (classical)
Metropolis-Hastings iterations. Just as our 3D computa-
tions have revealed that inaccurate contraction schemes
could still be useful for sampling, it would be very inter-
esting to investigate how much computational power such
quantum devices retain when imperfect. These ideas will
be studied elsewhere.

Finally, it would be instructive to develop a mathe-
matical perspective on the schemes presented here. In
particular, we believe it would be meaningful to identify
a non-trivial model for which the mixing time associated
with our TNMH scheme could be upper bounded, e.g. us-
ing a log-Sobolev inequality [55]. It would be insightful
to establish the dependence of the log Sobolev constant
with the bond dimension.
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CEX2019-000918-M, ’Maŕıa de Maeztu’), by Generalitat
de Catalunya (Spain), SGR 1761, and from the European
Union Regional Development Fund within the ERDF Op-
erational Program of Catalunya (Spain) (project QUASI-
CAT/QuantumCat, ref. 001- P-001644) and by Comu-
nidad de Madrid (Spain) (grant QUITEMAD-CM, ref.
S2018/TCS-4342).

Appendix A: Tensor network renormalisation

We review the relation between tensor networks and
partition function [13–15, 19, 21]. The setup is a slight
generalization of that of Section II. That is, we consider
a nearest neighbour classical Hamiltonian

H(ω) =
∑
〈i,j〉

ϕij(σi, σj),

on a lattice Λ = (V,E), where the local variables σi now
take value in any finite set, which size we are going to
denote d. For the sake of simplicity, and without loss of
generality, we will again only consider squares lattices,
and first limit ourselves to two-dimensional systems for
now. At fixed inverse temperature β, the partition func-
tion can be expressed as

Z(β) =
∑
ω∈Ω

∏
〈i,j〉∈E

Wij(σi, σj), (A1)
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where Wij is a d × d matrix, whose entries represent all
possible contributions of the bond 〈i, j〉 to the Boltzmann

weight of the model, i.e. Wij(σ, σ
′) = e−βϕij(σ,σ

′). As an
example, for the Ising model without external magnetic
field, the energy associated with a given bond 〈i, j〉 reads
ϕij(σ, σ

′) = −Jijσσ′, and the 2× 2 matrix Wij is

Wij =

(
eβJij e−βJij

e−βJij eβJij

)
. (A2)

We will use the diagrammatical notation in which a ten-
sor is represented by a vertex or a small geometric fig-
ure, with as many legs sticking out as there are indices;
and where joining two lines represent a contraction of
the corresponding indices. For example, a matrix Wij is
represented as follows.

.

Z(β) can be expressed as a tensor network if we shift
from a description in terms of matrices associated with
the bonds of the lattice (A1) to a description in terms
of tensors associated with its vertices. Let us consider
some vertex i with four neighbours and let e(i) denote
the vertex to its right. We decompose Wi,e(i) as:

Wi,e(i)(σ, σ
′) =

d∑
µ=1

Li(σ, µ)Re(i)(µ, σ
′).

Graphically,

= .

This can be achieved e.g. through a singular value de-

composition (SVD) Wi,e(i) = Ui,e(i)Σi,e(i)V
†
i,e(i), and by

setting Li = Ui,e(i)
√

Σi,e(i), Re(i) =
√

Σi,e(i)V
†
i,e(i). Sim-

ilarly, if n(i), w(i), s(i) denote vertices located above, to
the left, and below i respectively, three additional SVD
provide the decompositions

Ww(i),i(σ, σ
′) =

d∑
ν=1

Lw(i)(σ, ν)Ri(ν, σ
′),

Wi,n(i)(σ, σ
′) =

d∑
ρ=1

Bi(σ, ρ)Tn(i)(ρ, σ
′),

Ws(i),i(σ, σ
′) =

d∑
τ=1

Bs(i)(σ, τ)Ti(τ, σ
′).

We associate a a 4-leg tensor A(i)(σ) with each site i and
each spin value σ, whose components are

A(i)
µνρτ =

∑
σ

Li(σ, µ)Ri(ν, σ)Bi(σ, ρ)Ti(τ, σ), (A3)

(a) (b)

(c) (d)

FIG. 23. Graphical depiction of the construction of the TN
associated with the partition function of a classical Hamilto-
nian. (a) We start with a labelling of the vertices of the lattice
in consideration. (b) Representation of the W matrices(red
circles) associated with each edge; their contraction yields the
partition function. (c) and (d) Singular value decomposition
of each W matrix, and regrouping into tensors associated with
each vertex of the lattice.

or, in diagrammatic notation:

= .

For a system with open boundary conditions, vertices
with only three or two neighbours are dealt with like-
wise. With these tensors, the partition function can be
expressed as

Z(β) = C({A(i)}), (A4)

where C({A(i)}) denotes the contraction of all the tensors
associated with all sites. The entire process from (A1) to
(A4) is illustrated on Figure 23 for a 4× 4 lattice.

Similarly, one can construct a TN representation of
the partition function with some fixed value x for the
degree of freedom at site i, Z(β|σi = x). It is for in-
stance sufficient that for each neighbour of i, j, we re-

place Wi,j(σ, σ
′) with W

(x)
ij (σ, σ′) = δx,σWi,j(σ, σ

′). The

ratio of the two quantities, Z(β|σi = x)/Z(β), would ex-

actly be the marginal probability π
(β)
1 (x) of that spin be-

ing in state x, that is, a ratio of two TN contractions.
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FIG. 24. Renormalisation of a PEPS used to apply the TNMH algorithm to three-dimensional systems. The bond dimension is
first reduced along horizontal bonds (an index reshuffling allows to regard each row of a PEPS as an MPS), next along vertical
bonds.

Similarly, one can express any conditional probability

π
(β)
k (σk|σ1 . . . σk−1) as a ratio of two TN contractions.
If one were able to compute the TN contractions ex-

actly, one would have a means to sample according to
the Boltzmann distribution exactly. First, the marginal
probability of the first spin would be computed, and a
spin value σ1 would be sampled according to the result-
ing distribution. Then one would move on to the sec-
ond spin, and express its probability distribution condi-
tioned on σ1 as the ratio of two TN contractions. A spin
value σ2 would then be sampled. And so on. Iterating
across the entire system, one would obtain a sample of
the underlying Boltzmann distribution. It is however well
known that generically, one can only hope to approximate
the TN contraction. Thus, working with the previous
scheme, only an approximation to the Boltzmann distri-
bution can be obtained. A possibility to correct the bias
of the approximate probability distribution and eliminate
systematic errors is to use those approximations to pro-
pose moves for a reversible Metropolis-Hastings Markov
chain, as we do here.

For the approximate contraction, we have used one of
the simplest schemes available [10, 15]. We define |top〉
to be the tensor resulting from contracting all the top
row tensors along horizontal edges; the remaining free
indices after this contraction are legs pointing downward.
Similarly, we will call transfer matrix the tensor resulting
from a contraction of the tensors along a horizontal bulk
row; the transfer matrix resulting from contracting the
tensors of row k will be denoted TMk, 2 < k < n. Finally,
in analogy to |top〉, we will denote |bot〉 the contraction of
bottommost tensors. With these notations, the partition
function can be expressed as

Z(β) = 〈bot|TML−1 . . .TM2|top〉. (A5)

Both |top〉 and 〈bot| are matrix product states (MPS),
whereas the transfer matrices TMk are matrix product
operators (MPO), all with a bond dimension and a ’phys-
ical’ dimension equal to d; their length is equal to L. Our
approximation of Z(β) is obtained by estimating the rhs
of (A5) sequentially. We initialise |partial1〉 ≡ |top〉, and
for k ∈ {2 . . . L−1}, we define |partialk〉 to be an MPS ap-

proximation to TMk|partialk−1〉 obtained by tensor net-
work renormalisation. Z(β) is finally approximated with
〈bot|partialL−1〉. The cutoff parameter D sets the ac-
curacy of the approximation. There are many methods
available for the renormalisation. Throughout this work,
we have mostly used the scheme based on successive SVD
[11]. Two-site variational compression has been used to
explore equilibration of the two dimensional Ising model
with Gaussian disorder [11].

The same method allows to approximate the partition
function of a system where some spins have been set to

definite values, Z̃(β|σ1 . . . σk). The only difference is that
for such a site i with spin value σi, the tensor (A3) is
replaced with

Li(σi, µ)Ri(ν, σi)Bi(σi, ρ)Ti(τ, σi). (A6)

As claimed in section II, an approximate Boltzmann
weight π̃(ω) can be evaluated since, using Bayes theo-
rem, this probability can be expressed as

Z̃(β|σ1)

Z̃(β)
× . . .× Z̃(β|σ1 . . . σn)

Z̃(β|σ1 . . . σn−1)
.

Two remarks are in order. First, if the tensors A(i)

are well conditioned and if D is high enough, the ap-
proximations to partition functions we construct will be
strictly positive. So will then be the approximated prob-
abilities (6), and the TNMH is irreducible. Second, if
the tensors {A(i)}, the MPS |top〉, |bot〉 and the transfer
matrices TMk are stored, a TNMH update of the whole
lattice can be performed at a computational cost that
scales linearly with the lattice size.

Plaquette interactions can be dealt with similarly. Us-
ing singular value decomposition for the Boltzmann and
regrouping all the matrices relating a given site, one ob-
tains a (π/4 rotated) square lattice for the partition func-
tion. Bayes formula can thus again be used for sampling.

We have dealt with three-dimensional models in a
similar fashion. Assuming an L × L × L lattice, the
identity (A4) can again be obtained after sequence of
SVD; A(i) is now a six-leg tensor. (A5) is also still
valid, but |top〉, |bot〉 are now projected entangled pair
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states (PEPS), and the transfer matrices TMk pro-
jected entangled pair operators (PEPO). As in two di-
mensions, without any cutoff, the bond dimension of
TML−1 . . .TM2|top〉 would grow exponentially with L,
and renormalisation is in order. There exists a plethora
of methods to contract three dimensional tensor networks
[21, 72]. We have not aimed at optimality and have opted
for simplicity. Again, denoting |partialk〉 the approximate
contraction of the first k layers of the TN, the core of the
renormalisation consists in constructing a PEPS approx-
imation |partialk+1〉 for the contraction TMk+1|partialk〉.
When a PEPO is superimposed on a PEPS, the result-
ing state is a PEPS with a larger bond dimension. The
bond dimension of TMk+1|partialk〉 has been reduced by
first cutting off along horizontal rows, then along vertical
rows, see Fig. 24. Two parameters now govern the ac-
curacy of the approximation: the bond dimension of the
PEPS |partialk〉, D, and the cutoff for the approximate
contraction of two rows of a PEPS, χ [72].

Appendix B: Arbitrary boundary conditions

Although we have focused on systems with open
boundary conditions, the Markov chain (4) allows us to
deal with any topology that can be obtained from a rect-
angle by appropriate identifications. Let us show how
with the simple example of a cylinder. If we make an

update where we decide to leave a column of spins un-
changed, e.g. the dashed column ’L’ of Fig.25, we will
effectively be considering a model with open boundary
conditions, where the spins in the neighbourhood of the
frozen line are subjected to a local extra magnetic field.
Such a model can be sampled as before. In order to make
sure all spins are refreshed, the cut of frozen spins alter-
nates between the opposite lines depicted as ’L’ and ’R’
respectively.

RL

FIG. 25. Cylindrical boundary conditions obtained by iden-
tification from a rectangle. L and R denote lines of spins al-
ternating frozen in order to be able to use a sampling scheme
designed for open boundary conditions.

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, The Journal of Chemical
Physics 21, 1087 (1953).

[2] B. Edegger, V. N. Muthukumar, and C. Gros, Advances
in Physics 56, 927 (2007).

[3] B. L. Hammond, Monte Carlo methods in ab initio quan-
tum chemistry (World Scientific, Singapore River Edge,
NJ, 1994).

[4] I. Montvay and M. Gernot, Quantum fields on a lattice
(Cambridge University Press, Cambridge England New
York, 1994).

[5] W. Krauth, Statistical mechanics : algorithms and com-
putations (Oxford University Press, Oxford, 2006).

[6] D. Landau and B. Kurt, A guide to Monte Carlo simula-
tions in statistical physics (Cambridge University Press,
Cambridge, UK New York, 2005).

[7] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86
(1987).

[8] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
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