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Abstract

We introduce a Metropolis–Hastings Markov chain for Boltzmann distributions of clas-
sical spin systems. It relies on approximate tensor network contractions to propose
correlated collective updates at each step of the evolution. We present benchmark com-
putations for a wide variety of instances of the two-dimensional Ising model, including
ferromagnetic, antiferromagnetic, (fully) frustrated and Edwards-Anderson spin glass in-
stances, and we show that, with modest computational effort, our Markov chain achieves
sizeable acceptance rates, even in the vicinity of critical points. In each of the situations
we have considered, the Markov chain compares well with other Monte Carlo schemes
such as the Metropolis or Wolff’s algorithm: equilibration times appear to be reduced by
a factor that varies between 40 and 2000, depending on the model and the observable
being monitored. We also present an extension to three spatial dimensions, and demon-
strate that it exhibits fast equilibration for finite ferro- and antiferromagnetic instances.
Additionally, and although it is originally designed for a square lattice of finite degrees
of freedom with open boundary conditions, the proposed scheme can be used as such, or
with slight modifications, to study triangular lattices, systems with continuous degrees
of freedom, matrix models, a confined gas of hard spheres, or to deal with arbitrary
boundary conditions.
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1 Introduction

Markov Chain Monte Carlo is central to our understanding of strongly correlated systems [1].
When the number of degrees of freedom is too large for exact computations, and perturbative
methods are ineffective, Monte Carlo sampling often emerges as the method of choice for
numerical investigation. Markov chain Monte Carlo has contributed significantly to the current
state-of-the-art in fields like e.g. high temperature superconductivity [2], ab initio quantum
chemistry [3], or (lattice) quantum chromodynamics [4].

In statistical physics, Monte Carlo sampling has made it possible to chart phase diagrams
of several paradigmatic spin systems [5, 6]. The fundamental problem in this context is to
sample according to the Boltzmann distribution. To achieve this goal, Markov chain Monte
Carlo methods produce a sample by subjecting an initial configuration to a carefully designed
stochastic evolution in the space of configurations. Well-known examples are the Metropolis
algorithm and heat bath dynamics Markov chains where at most one spin is modified at each
step [6], or the Wolff algorithm, where clusters of spins are flipped at once [7, 8]. The ap-
plications of these algorithms are countless, but there are important circumstances, such as
geometric frustration or disorder, where their limitations become apparent [6, 5].

Over the last two decades, a second notion has been gradually recognised as crucial to
our understanding of strongly correlated systems: tensor networks states [9]. In the realm
of many-body quantum mechanics, the (simple) entanglement patterns, present in collections
of identical particles in short range interaction, enables a description that conceptually tran-
scends mean field approximations, but does not demand the exponential cost of exact diago-
nalisation [10, 11]. Tensor networks are also used in many-body classical physics. The first
applications were proposed by Nishino in [12, 13, 14], and significant developments have
been made possible by the advancements in tensor network algorithms. It was shown in [15]
that partition functions of all spin systems in nearest neighbour interaction, including inho-
mogeneous and finite ones, could be represented as a tensor network. While the exact con-
traction of the tensor network is in general computationally intractable [16, 17], this idea
has been used in practice to address many physical problems via an approximate contraction
[12, 18, 19, 20, 21, 22, 23, 24, 25]. Tensor network methods have been successfully applied to
a variety of classical and quantum two dimensional problems (e.g [20, 26, 27, 28]) including
continuous variables [29, 30, 31, 32], and three dimensional classical models [21, 33, 34].
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Besides solving concrete problems to very good precision, these contributions have been
insightful: we have for example learnt that the notion of bipartition Schmidt weights, ordinary
in quantum information theory, is also relevant to classical statistical physics. However, unless
an implausible collapse of complexity classes is found, both tensor network and Monte Carlo
methods are bound to be ultimately limited, since there exist instances of the Ising model for
which the evaluation of the partition function is #P, even in multiplicative approximation
[35, 36]. The downside of these fundamental obstructions is that a complete understanding
of these systems will (very) likely always be out of reach. The upside is a sustained interest in
developing new methods to continually push the boundary of what we can learn about these
systems.

Earlier works have looked into particular connections between Monte Carlo and tensor
network methods. One perspective has been using Monte Carlo sampling to approximate
tensor network contractions, either to contract or optimize a quantum state [37, 38, 39], or
to approximate classical partition functions represented by a TN [24]. For the latter task,
focusing on the square lattice O(2) model, a thorough comparison between TN-based and
Markov Chin Monte Carlo techniques was presented in [40, 41]. A different angle has been
the construction of statistical mixtures of pure tensor network states to represent the thermal
ensemble of a quantum system [42, 43, 44]. In the context of classical systems, yet another
possibility has been proposed in [45, 46], namely the static sampling from a tensor network
as a way to obtain relevant spin configurations of a given Hamiltonian at some temperature.

In this work, we present and explore a novel connection between tensor networks and
Monte Carlo methods that goes beyond previous studies. Our primary concern here will be
sampling configurations representative of the Boltzmann distribution of classical nearest neigh-
bour Hamiltonians at finite temperature. To achieve this goal, we introduce a Tensor Network
Metropolis-Hastings (TNMH) Markov chain [1, 47], where the asymmetric prior, i.e. the dis-
tribution from which the new candidate configuration is drawn at each step, is an approxi-
mation to the target distribution, obtained via an inexpensive tensor network renormalisation
contraction. Our approach does not oppose but genuinely combines TN and Markov Chain
Monte Carlo ideas. In this way, it features concrete advantages with respect to each strategy.
The salient properties of the scheme introduced here are the following.

(i) It is universal. That is, it works identically for all instances of a given model. This is
in contrast to other Monte Carlo algorithms where a powerful prior choice can only be
built by relying on a deep insight about the target distribution, and thus has limited
applicability beyond the model for which it has specifically been tailored. That is for
instance the case of Wolff’s algorithm, which performs extremely well for ferromagnetic
Ising models, but rather poorly for antiferromagnets or frustrated instances. In turn, we
will show that our method fares consistently well for a variety of models that are all very
different from one another.

(ii) The scheme produces collective updates. That is, the state of each degree freedom of
the considered system is susceptible to change at each Monte Carlo step. We have found
that the computational effort scales mildly with increasing acceptance rates in a broad
variety of instances. Presumably as a consequence, we have found that the number of
Monte Carlo steps necessary to reach convergence is between ∼ 101 and ∼ 103 shorter
than those of other well-established Monte Carlo algorithms for several instances of two
and three dimensional models of the Ising type.

(iii) As compared to algorithms that purely rely on a tensor network renormalisation of the
partition function, the shift to sampling results in the substitution of systematic errors
with statistical errors, since our TNMH scheme satisfies the classical sufficient conditions
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for convergence (see next section). Thus, modest tensor network contraction schemes,
too inaccurate for a direct evaluation of a chosen observable, can be successfully used
in our method, as they still enable collective updates with sufficiently high acceptance
rates.

(iv) The scheme is versatile. As we shall see, a Markov chain designed for Ising models on
a square lattice with open boundary conditions is useful as such to study other systems,
such as the λφ4 model or gases of hard spheres, other interaction graphs such as trian-
gular lattices, and arbitrary boundary conditions.

We have tested our Markov chain systematically in a variety of instances of the Ising model
defined on finite square lattices: ferro- and antiferromagnetic, frustrated, disordered, in two
and three spatial dimensions. One may anticipate that for systems with large (or even di-
verging) correlation length, our scheme will perform increasingly poorly if the bond dimen-
sion (parameter that controls the cost and accuracy of the tensor network renormalisation) is
fixed. Our findings are consistent with this expectation, with drops in acceptance rates actually
signaling phase transitions. But we have also observed that for ferro- and antiferromagnetic
instances, acceptance rates remain fairly high for systems of considerable size across a phase
transition, even with a bond dimension as low as D = 2. Equilibration and decorrelation
times in our TNMH scheme have been found to be systematically lower than for the Metropo-
lis and Wolff’s algorithms. As expected, frustrated and spin-glass instances have turned out to
be challenging, not only for fundamental complexity-theoretic reasons, but also because their
study is complicated by ill-conditioning issues [48]. However, even in such cases, and without
any optimization of our renormalisation procedure, we have observed that acceptance rates
stay high enough to be usable down to temperatures that can be considered low by nowadays
state-of-the-art standards.

The rest of this paper is organised as follows. The new algorithm is described in section 2
in general terms. In section 3 we explore its performance for two dimensional models. In
particular, for a broad variety of instances of Ising models, we explore the role of the bond
dimension in the acceptance rates, also in relation to the presence of critical temperatures. We
further analyze equilibration and autocorrelation times, and demonstrate how the method can
be used to obtain physical observables and chart phase diagrams. In section 4, we demonstrate
how the algorithm is also useful for three dimensional systems, and illustrate it for ferromag-
netic and antiferromagnetic instances of the Ising model in cubic lattices of up to 163 sites.
Section 5 is a discussion of situations where our findings could find further applications, and
can be skipped on a first reading; there we discuss triangular lattices, models with continuous
variables and systems of hard spheres. An outlook is provided in section 6.

2 Markov chains and tensor network renormalisation

In this section, we present a collective Monte Carlo update where, given a current configu-
ration, tensor network renormalisation is used to propose a candidate and to decide whether
it should be accepted or not. For the sake of concreteness, and with a view to the example
computations that will be considered in the next two sections, we will focus on the Ising model
on a square lattice. Generalisation to other nearest neighbour interactions, such as the Potts
model, is immediate.

We start by fixing some notation. A lattice will be denoted asΛ= (V, E), where V stands for
its vertices, and E for its edges. We will focus on systems made of two-state particles (classical
spins) residing on the vertices. That is, the sample space will be Ω = {−1,+1}|V |. A spin at
location j ∈ V will be denoted by σ j .
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The Ising Hamiltonian associated with a spin configuration ω is defined as

H(ω) = −
∑

i∈V

hiσi −
∑

〈i, j〉∈E

Ji jσiσ j . (1)

Our aim is to sample according to the Boltzmann distribution

π(β)(ω) = e−βH(ω)/Z(β) , ∀ω ∈ Ω , (2)

where β denotes the inverse temperature, and

Z(β) =
∑

φ∈Ω

e−βH(φ) , (3)

is the partition function.
A Markov chain is a sequence of configurations ω(0),ω(1), . . . where the probability that

the t-th element of this sequence is in some state ω only depends on the state of the previous
element ω(t − 1), and on some random numbers. That is, a Markov chain is an evolution
with short memory. If the process used to determine the state at each time step satisfies some
general requirements reminded below, limt→∞ω(t) is a state drawn according to the target
probability distribution (2). A very simple Markov chain is the celebrated Metropolis algo-
rithm, where at most one spin is flipped at each time step.

A powerful class of Markov chain is that introduced by Hastings in [47]. In the context of
Statistical Physics, this class can be described as follows. Given a current spin configuration
ω, a candidate configuration ω′ is proposed according to some prior distribution g(β)(ω′|ω),
from which we are able to draw. This candidate is next accepted as the new current state with
probability

Pacc(ω→ω′) =min

�

1,
g(β)(ω|ω′)
g(β)(ω′|ω)

×
π(β)(ω′)
π(β)(ω)

�

. (4)

As will be shown shortly, this acceptance rule allows to satisfy reversibility (a.k.a. detailed
balance), Eq.(8), one of the conditions which when met guarantees convergence to the target
probability distribution. If the prior g(β) is symmetric in its arguments, the acceptance proba-
bility (4) reduces to the celebrated Metropolis algorithm formula. But in some situations, the
generalisation proposed by Hastings allows encoding some information about the target dis-
tribution in the possibly asymmetric prior g(β)(ω′|ω), in a beneficial way. It can for example
result in a boosted exploration of the sample space along the iterations of the Markov chain.
The Swendsen-Wang and the Wolff cluster algorithms are examples of Metropolis-Hastings
construction [7, 8]. Actually, an ideal prior is one where g(β)(ω′|ω) = π(β)(ω′), that is, the
prior that consists in direct sampling according to the target probability distribution π(β). Of
course, for generic instances of the Ising model, such an ideal prior is unavailable. But an
approximation eπ(β) to this ideal prior might be good enough for Monte Carlo. We will be
concerned with such approximations that can be constructed through tensor network renor-
malization.

Let n = |V | represent the system size, and let {1,2, . . . , n} denote a certain sequential
labelling of the vertices (see e.g. figure 19 in App. A). Using Bayes formula, the Boltzmann
distribution can be expressed as

π(β)(ω) = π(β)1 (σ1)
n
∏

k=2

π
(β)
k (σk|σ1 . . .σk−1) , (5)

whereπ(β)1 stands for the marginal distribution of the first spin, andπ(β)k (·|σ1 . . .σk−1) denotes
the conditional distribution for the kth spin when the spins 1 through k−1 are fixed to values
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σ1, . . .σk−1. The marginal distribution for the first spin π(β)1 (σ1) can be expressed as the ratio

of two partition functions: π(β)1 (σ1) = Z(β |σ1)/Z(β), where Z(β |σ1) represents the partition
function for a system with the same nearest neighbour Hamiltonian as in Z(β) but where the
first spin has been fixed to the value σ1. As mentioned in the introduction, the partition func-
tion (3) of any nearest neighbour Hamiltonian can be expressed exactly as a tensor network
(TN), whose bond dimension is equal to the number of states accessible by each local degree
of freedom. For the Ising model, this number is equal to two. In general, neither Z(β |σ1)
nor Z(β) can be evaluated exactly. But a TN renormalisation scheme yields approximations
eZ(β |σ1), and eZ(β) for each of these quantities (see Appendix A). With them, one can construct
an approximation eπ(β)1 (σ1) = eZ(β |σ1)/eZ(β) to the true marginal distribution for the first spin.
This Bernoulli distribution is next sampled. Let s1 the outcome obtained. With this fixed value
for the first spin, one can compute an approximation eZ(β |s1,σ2) of the partition function for
each valueσ2 for the second spin. These approximations are then used to construct an approx-
imation eπ(β)2 (σ2|s1) = eZ(β |s1,σ2)/eZ(β |s1) to the distribution for the second spin, conditioned
on the value s1 for the first spin. This second Bernoulli distribution is then sampled. And
so on. For all other sites k > 2, the conditional probability distribution π(β)k (σk|s1 . . . sk−1)
can be expressed as the ratio of two TN contractions Z(β |s1 . . . sk−1σk)/Z(β |s1 . . . sk−1), and
a TN renormalisation scheme provides approximations eZ(β |s1 . . . sk−1) and eZ(β |s1 . . . sk−1σk)
to Z(β |s1 . . . sk−1) and Z(β |s1 . . . sk−1σk) respectively. These approximations are in turn used
to compute an approximation eπ(β)k (σk|s1 . . . sk−1) to π(β)k (σk|s1 . . . sk−1), which is sampled and
yields an outcome sk. Fig. 1 illustrates the first two steps of this sequential sampling. The
configuration (s1, . . . , sn) obtained after the whole lattice is swept will have been drawn with
probability

eπ(β)(s1, . . . , sn)≡ eπ
(β)
1 (s1)

n
∏

k=2

eπ
(β)
k (sk|s1 . . . sk−1) , (6)

which the identity (5) shows to be an approximation to π(β)(s1, . . . , sn). We will be interested
in schemes where the Metropolis-Hastings probability to select a candidate ω′ reads:

g(β)(ω′|ω)≡ eπ(β)(ω′) . (7)

As explained in Appendix A, the approximate probability eπ(β)(ω) can be evaluated for any
configurationω, and the update rule (4) can be implemented. Our construction is summarized
in Algorithm 1.1

Properties of the TNMH Markov chain

(i) The construction is universal in the sense that it is independent of the magnetic fields
and couplings that define the Ising instance being considered. Yet, it is adaptive in that
the details of the Hamiltonian are taken into account when the tensors are constructed.

(ii) The constitution of the candidate is independent of the current configuration.

(iii) The update (7) is collective and correlated: in principle all spins of the system could be
refreshed in a single Monte Carlo step, and the spin values proposed at different sites are
conditioned by the correlations present in the tensor network. We believe this feature is
the principal cause for the high acceptance rates and fast equilibration reported in the
next section. Whereas a local update rule could have a hard time overcoming energy

1After completion of our work, we were made aware that a similar sampling scheme, based on Bayes’ chain
rule, has been proposed to directly sample an approximation to the Gibbs distribution [45]. But no study on how
to use it in a Metropolis-Hastings Markov chain was made in that work.
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Figure 1: Pictorial illustration of the first two steps of the TNMH sequential sampling.
White dots refer to sites where the spin value has been fixed.

barriers, we expect our algorithm to be more capable of hopping between distant regions
of the configuration space and escape local minima in a single iteration of the Markov
chain.

(iv) The transition matrix, i.e. the set of probabilities to transition from a configurationω to
a configuration ω′, T (ω→ω′) = eπ(β)(ω′)× Pacc(ω→ω′), is reversible (i.e. it satisfies
detailed balanced):

π(β)(ω) T (ω→ω′) = π(β)(ω′) T (ω′→ω) . (8)

That is, the expression

π(β)(ω)eπ(β)(ω′)min

�

1,
eπ(β)(ω)
eπ(β)(ω′)

×
π(β)(ω′)
π(β)(ω)

�

,

is manifestly symmetric in ω and ω′.

Furthermore, when numerical errors are small enough that all the conditioned partition
functions eZ(β |σ1 . . .σk) are strictly positive (see Appendix A), the Markov chain is also
irreducible:

T (ω→ω′)> 0 , ∀ω,ω′ ∈ Ω .

Thus, even if the distributions {π(β)k : k ∈ V} turned out to be poorly approximated by
the TN renormalisation scheme used, it is still possible to guarantee that the Markov chain
will eventually converge to the target probability distribution [49]. This last point will be
illustrated with three-dimensional Ising models.

Algorithm 1 TNMH Markov chain
1: Compute the tensors associated with the distribution (2).
2: Set t = 0, and draw some initial configuration ω(0) according to any distribution over Ω.
3: If t > tmax go to 8.
4: Use the tensor network to draw a candidate configuration ω′ according to Eq.(7).
5: Evaluate the probabilities eπ(β)(ω(t)) and eπ(β)(ω′).
6: Accept the change ω(t)←ω′ with probability min

¦

1, eπ
(β)(ω|ω′)
eπ(β)(ω′|ω) ×

π(β)(ω′)
π(β)(ω)

©

.
7: t ← t + 1. Go to 3.
8: End.
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Figure 2: Distribution of the couplings on the J ′−J model. Black lines indicate bonds
with a coupling of J ′, while red and blue bonds have couplings−J and J , respectively.

Before turning to applications of Algorithm 1, there are two points we would like to stress.
(i) Although the construction of a candidate at each iteration of the Markov chain is actually
independent from its current configuration, the decision to accept this candidate does depend
on the current state. That is, the transition probability T (ω→ ω′) is not independent of ω.
This can be seen explicitly:

T (ω→ω′) = eπ(β)(ω′)min{1,
eπ(β)(ω)
eπ(β)(ω′)

×
π(β)(ω′)
π(β)(ω)

}.

Notice that a similar sampling scheme, based on Bayes’ chain rule, has been proposed to di-
rectly sample an approximation to the Gibbs distribution [45]. In constrast, TNMH is not an
approximate Gibbs sampler: the decision to accept or reject the candidate, depending on the
Metropolis-Hastings ratio, marks an essential difference. (ii) Even though the tensor network
contractions used in TNMH are (inevitably) approximate, the reversibility condition is exactly
satisfied. This ensures the asymptotic convergence to the Gibbs distribution.2

3 Two-dimensional Ising models

In order to assess the potential of the construction presented in the previous section, we have
run tests on instances of the two-dimensional Ising models chosen to cover a broad range of
cases (L × L square lattice):

• Ferromagnetic: Ji j = 1 ∀ 〈i, j〉, hi = 0 ∀i.

• Antiferromagnetic: Ji j = −1 ∀ 〈i, j〉, hi constant across the whole lattice.

• J ′ − J model: In this model hi = 0 ∀i, and couplings alternate between even and odd
rows or columns (see Fig.2):

J2 j−1,k = J ′ , J2 j,k = J ,

Jk,2 j−1 = J ′ , Jk,2 j = −J , j = 1, . . . , L/2 .

The point J = J ′, known as the fully frustrated square lattice Ising model (or Villain
model), is characterised by extensive ground state degeneracy and maximal frustration.

• Edwards-Anderson spin glass: this disordered model is such that hi = 0 ∀i, and Ji j
are random couplings sampled from a Gaussian distribution with zero mean and unit
variance [50].

2We are grateful to our anonymous referees for discussions that convinced us these two points should be em-
phasised.
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We will be interested in the following observables: the energy per spin,

ϵ =
1

|V |Z(β)

∑

ω∈Ω
H(ω) e−βH(ω) ,

the magnetisation density,

m=
1

|V |Z(β)

∑

ω∈Ω

�

�

�

�

�

∑

i∈V

σi

�

�

�

�

�

e−βH(ω) ,

the staggered magnetisation density,3

ms =
1

|V |Z(β)

∑

ω∈Ω

�

�

�

�

�

∑

i∈V

sign(i) σi

�

�

�

�

�

e−βH(ω) ,

where sign(i) is equal to ±1 in a checkerboard manner. Finally, we will consider also the
magnetic susceptibility, defined for a system with a uniform magnetic field as

χ = ∂m/∂ h .

Unless stated otherwise, we will be considering open boundary conditions.

Role of the bond dimension

A crucial ingredient of the algorithm described in the previous section is the substitution of
exact partition functions Z(β |σ1 . . .σk−1) with approximations eZ(β |σ1 . . .σk−1) obtained by
tensor network renormalisation. Amongst all availables methods for this renormalisation, we
have used the matrix product state (MPS) renormalisation scheme described in [15] (see also
Appendix A). It is a choice of simplicity, which turned out to be sufficient for our purposes.
We however would like to stress that the analogous TNMH Markov chain can be defined using
any other contraction scheme, and some might yield better results than those presented here.
In MPS renormalisation, both the accuracy of the approximation and the computational effort
increase with an integer parameter, the bond dimension, commonly denoted D. We thus expect
the total variation distance between the target and the prior distribution,



π(β) − eπ(β)




TV =
1
2

∑

ω∈Ω

�

�π(β)(ω)− eπ(β)(ω)
�

� , (9)

to decrease with increasing values of D. As a result, Monte Carlo rejection rates should de-
crease as the bond dimension grows large.

To characterize the behaviour of our method, we have explored the interplay between the
bond dimension, the temperature and the rejection rate for the four different models men-
tioned above (Fig. 3). In all cases, we have verified that the rejection rate decreases with
increasing bond dimension, and even modest values of the bond dimension may yield virtu-
ally rejection-free updates. At the same time, for a fixed D, rejection rates increase in the
vicinity of critical points. This can be understood considering that, presumably, the distance
∥π(β) − eπ(β)∥TV for fixed D will increase with the true correlation length.

Fig. 3a demonstrates these features for the ferromagnetic case. This model exhibits, in the
limit of large system sizes, a second-order phase transition at Tc = 2/ log(1+

p
2)≈ 2.269 from

3When the external magnetic field is uniformly naught, averaging over Monte Carlo samples would result in
zero (staggered) magnetisation even at temperatures where the system is known to exhibit a finite spontaneous
magnetization. The absolute values appearing in our definition of the (staggered) magnetisation are meant to
counter this artefact.
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FIG. 2. Rejection rate as a function of the temperature for four di↵erent instances of the Ising model: (a) Ferromagnetic,
(b) Antiferromagnetic with a constant magnetic field, (c) Fully frustrated, (d) Gaussian spin glass. The geometry is that of
a 32 ⇥ 32 square lattice with open boundary conditions in all four cases. For each model, the rejection rate was obtained by
averaging over 40 independent chains, each run for a model-dependent number of steps. For the fully frustrated and spin glass
cases, the points at temperatures where we believe our method starts to su↵er from ill-conditioning issues are indicated without
marker filling. For the ferro- and antiferromagnetic instances, the vertical lines indicate criticality in the thermodynamic limit.
a

a *** We have the . . . random generators for all computations presented in this paper.

value. We have implemented this heuristic test of con-
vergence for the TNMH Markov chain. Our findings are
reported on Fig. 7 and on Table I, where we compare our
times with state-of-the-art methods on this issue: par-
allel tempering (PT) and parallel tempering combined
with isoenergetic cluster moves (PT+ICM) [47, 48]. The
comparison in Table I clearly shows that TNMH outper-
forms these methods by orders of magnitude. To be fair,
our simulation setup only di↵ers a bit from that of these
references: whereas periodic boundary conditions and a
temperature T = 0.212 were considered in these refer-
ences, we have opted for open boundary conditions and
work with a slightly colder system T = 0.2. The number
of Markov chain used for the thermal average was 32 for
the (PT+ICM) computations and 30 in our case, whereas
the number of di↵erent instances used for the disordered
average is 104 in those references, and 103 here. How-
ever, it would be very surprising if our findings were sig-
nificantly altered by by considering conditions identical
to those of [47, 48].

We next move to autocorrelation times, that is, af-

� 0.25 0.15 0.05 0.025

PT 221 222 223 224

PT + ICM - - 213 214

TNMH + Metropolis 4 5 6 8

TABLE I. First row: target value of �, as defined by Eq.(9).
Second and third row: each entry represents a lower bound
on the number of Monte Carlo sweeps necessary to decrease
� below the value indicated in the same column for paral-
lel tempering (PT) and parallel tempering plus isoenergetic
cluster moves (PT+ICM) (data read o↵ Fig. **** of ref
****). Fourth row: Corresponding number of steps needed
by TNMH.

ter equilibration is reached, the time needed between
two sample extractions to guarantee (su�cient) indepen-
dence. Given an observable X, we study the quantity

CX(t) =
hX(t0)X(t0 + t)i � hX(t0)ihX(t0 + t)i

hX2(t0)i � hX(t0)i2
. (10)

Figure 3: TNMH rejection rates as a function of the temperature for four different
instances of the Ising model at a fixed system size: (a) Ferromagnetic, (b) Antiferro-
magnetic with a constant magnetic field h= 2, (c) Fully frustrated, (d) Gaussian spin
glass. The geometry is that of a 32×32 square lattice with open boundary conditions
in all four cases. For each model, the rejection rate was obtained by averaging over
40 independent chains, each run for a model-dependent number of steps. For the
fully frustrated and spin glass cases, the points at temperatures where we believe our
method starts to suffer from ill-conditioning issues are indicated by empty markers.
For the ferro- and antiferromagnetic instances, the vertical lines indicate criticality in
the thermodynamic limit.

a magnetically ordered to a paramagnetic phase [52]. Still, for the system size considered,
32 × 32, rejection rates remain remarkably low (below 0.4) across the whole temperature
range that surrounds the critical temperature. Actually, even a bond dimension as low as
D = 2 appears to already be sufficient to achieve our goal of producing collective updates
frequently. More details regarding the vicinity of the critical point are provided on Fig. 4a,
where we have plotted the rejection rate as a function of the system size for different bond
dimensions. Even for systems as large as 256 × 256, acceptance rates of about 0.4 can be
obtained using only a bond dimension D = 4. As can be appreciated from the inset of this
figure, our data suggest that the bond dimension only needs to grow logarithmically with the
system size in order to maintain the acceptance rate above a threshold value. Our observations
for the antiferromagnetic case (Fig. 3b) are similar.

For the fully frustrated case of the J ′ − J model (Fig. 3c) we obtain lower acceptance
rates, as compared to the two previous cases, but still high enough that the Markov chain is
usable down to T = O(10−1). As expected, the rejection rate increases when approaching
the T = 0 critical point. Still, the minimal cost curve D = 2 is sufficient to obtain decent
acceptance rates down to at least T = 0.2, and increasing the bond dimension again suppresses
rejection events. At very low temperatures, acceptance rates drop dramatically and numerical
instabilities typical of frustrated systems pointed out in [48] set in. Some strategies exist to
mitigate these effects, but their discussion is beyond the scope of the present work, and will be
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Figure 4: (a) TNMH rejection rates near the ferromagnetic Ising phase transition
(T ≃ 2.27) as a function of the system size for different bond dimensions. Dashed
lines are simply a guide to the eye. Inset: Bond dimension needed to maintain a fixed
rejection rate (in this case 0.25, although the behaviour seems to be independent of
the value chosen) as a function of the system size. The fit shows that the increase in
the bond dimension seems to be only logarithmic. (b) TNMH rejection rates for the
fully frustrated Ising model at T = 0.4 as a function of the system size for different
bond dimensions.

the subject of a separate study [53]. Again, we have looked at the rejection rate as a function of
the system size for different bond dimensions (see Fig. 4b). Even though this instance is more
challenging, the example in the figure demonstrates that at T = 0.4 perfectly usable acceptance
rates of about 0.2 or higher can be obtained for systems of size up to 128× 128 using a bond
dimension, D = 6, for which computations are not too demanding. Fig. 5 provides additional
data regarding the J ′− J model, beyond the fully frustrated point J = J ′. It is remarkable that
the observed maxima of rejection rates are consistent with the predicted critical lines of this
model.

Our findings for the Edwards-Anderson spin glass, Fig. 3d, are qualitatively similar to those
for the fully frustrated case, presumably because this spin glass is also critical at T = 0 [50].

Improved approximations of the contraction will generally result in a higher acceptance
rate. But actually, as far as this acceptance rate does not vanish and scales well with the system
size, the TNMH scheme should be applicable.

Equilibration and decorrelation

Equilibration and auto-correlation times are the two crucial time scales in Monte Carlo sim-
ulations. The former controls the number of steps needed by the Markov chain to decouple
from the initial distribution (that is, the distribution from which the first configuration of the
chain is sampled) and reach the desired equilibrium distribution. The latter determines the
minimal time between two consecutive sample extractions in order to guarantee statistical in-
dependence. Since these times are typically difficult to bound, let alone calculate, rigorously,
heuristic diagonostics are commonly used to estimate them. We have used two such heuristics
to provide evidence that these two time scales are relatively short for the TNMH scheme of
Section 2.

A standard technique to decide that equilibration has occurred is to monitor an observable
from its value at the beginning of the Markov chain until it appears to plateau at an equilibrium
value around which it fluctuates [55]. Fig. 6a illustrates the evolution of the expectation value
for the magnetisation of a ferromagnet, and independent Markov chains evolved according to
either the TNMH algorithm 1 (blue), a simple spin flip Metropolis algorithm (green) or Wolff’s
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Figure 5: TNMH rejection rate for the J ′ − J model as a function of the temperature
and the value of one of the couplings (the other has been set to unity). Computations
made with a bond dimension D = 4. Rejection rates obtained as averages over 40
independent Markov chains, each run for 200 steps. Lattice dimensions: 32 × 32.
The phase separatrix predicted in [54] is shown in black.

cluster algorithm (orange) – which is known to perform best for ferromagnetic instances. We
see in this numerical experiment that the number of time steps required for TNMH to equili-
brate is about 1/80 to 1/40 the number of steps required for Wolff algorithm, and about 1/103

the number of sweeps required by the single spin flip Metropolis algorithm.
More sophisticated equilibration diagnostics can be devised for specific problems. In par-

ticular, for the Edwards-Anderson spin glass, we have run the following test, discussed in
[56, 57]. Let 〈X 〉 stand for the thermal average of an observable X , and [x]av denote the
disorder average of a quantity x that might depend on the coupling constants {Ji j}. We have
considered the disorder averaged energy.

[〈H〉]av = −
∫

∏

〈ab〉

dJabp
2π

e−J2
ab/2

∑

〈i j〉

Ji j〈σiσ j〉 . (10)

At equilibrium, integrating by parts allows to prove that

∆≡
1
|V |
[〈H〉]av +

1
|V |
β

 

|E| −
∑

〈i j〉

[〈σiσ j〉2]av

!

= 0 , (11)

where
∑

〈i j〉[〈σiσ j〉2]av is a quantity known as the link overlap. Starting configurations of
Markov chains, drawn according to an easy distribution, typically have high energy and small
link overlap. As a result, ∆ typically has a non-zero value when the Markov chain is started.
As Monte Carlo steps are taken, this value decreases in magnitude. It is a common heuristic
to decide equilibration has occurred when ∆ is below a given threshold value.

We have implemented this heuristic test of convergence with 104 disorder realisations,
using the TNMH Markov chain. We have observed that after a few time steps, ∆ drops drasti-
cally from its initial value before stagnating at a small but finite value. For the vast majority
of disorder realisations, the Markov chain behaved well. That is, it shows frequent jumps be-
tween different configurations from one time step to the next. However, for some disorder
realizations, a few Markov chains (typically less than a sixth of the chains we simulate for
a given disorder realization) remained stuck in their original configurations. This inertia is
what causes ∆ to stagnate. Increasing the bond dimension did not help. Actually, we believe
the issue is rather related to an ill-conditioning of the tensor network contraction, induced by
frustration, an effect previously reported in Ref. [48]. As a result, the approximate probability
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Table 1: First row: target value of ∆, as defined by Eq.(11). Next rows: each entry
represents the number of lattice sweeps necessary to decrease ∆ below the value
indicated in the same column for the given algorithm. An entry of the form ’> a’
indicates that more than a iterations are needed to reach the desired value of∆. The
system considered is the same as in Fig. 6.

∆ 0.25 0.15 0.05 0.025

Metropolis > 105 > 105 > 105 > 105

PT > 105 > 105 > 105 > 105

PT + ICM 1.1 · 103 1.6 · 103 3.2 · 103 4.3 · 103

TNMH > 102 > 102 > 102 > 102

TNMH + Metropolis 3 3 5 5

weights can be off their true value by orders of magnitude.4 As can be seen from Eq.(4), this
mismatch affects the acceptance rates. That is, when the Markov chain hits a configuration ω
such that eπ(β)(ω)/π(β)(ω)≪ 1, it may remain stuck for a long time, as we have observed.

Various strategies are possible to mitigate the effect of ill-conditioning. One is to work with
greater machine precision, using for example the techniques described in Ref. [58]. Another is
to consider a variation of the TNMH Algorithm 1. A very simple such variation consists in inter-
spersing spin flip Metropolis sweeps in between TNMH moves. We have tested this possibility.
Our findings are reported on Fig. 6b and on Table 1, where we compare our times with state-of-
the-art methods: parallel tempering (PT) and parallel tempering combined with isoenergetic
cluster moves (PT + ICM) [56, 57]. This comparison clearly shows that the combination of
TNMH with single flip MC sweeps allows us to outperform these methods by orders of magni-
tude. This result is interesting: whereas both TNMH and the Metropolis algorithm show poor
performance individually (for different reasons; ill-conditioning in the case of TNMH, locality
in the case of single flip updates), their alternating use is drastically more efficient than either
of them.

So far, we have counted equilibration times in steps of the Markov chain, which has con-
ceptual relevance. From a practical point of view though, it is also interesting to know how the
TNMH compares to other methods when looking at program execution times. To make such a
comparison fairly is a delicate issue because we have not sought to optimise our code at all: a
detailed comparison with e.g. Metropolis sweeps, which is simpler to optimise is a project in
itself. We can however provide indicative times related to the data presented on Table 1. With
our setup, the times to get to∆< 0.025 are> 3.93×107 sec, 1.76×106 sec, and 6.75×104 sec
for the parallel tempering method, the parallel tempering method supplemented with isoen-
ergetic cluster moves, and TNMH respectively. We believe that these estimates credibly signal
the practical potential of the TNMH Markov chain introduced here.

We next move to autocorrelation times, that is, after equilibration is reached, the time
needed between two sample extractions to guarantee (sufficient) independence. Given an
observable X , we study the time correlation function

CX (t) =
〈X (t0)X (t0 + t)〉 − 〈X (t0)〉〈X (t0 + t)〉

〈X 2(t0)〉 − 〈X (t0)〉2
, (12)

where t0 is assumed larger than the equilibration time. As discussed in [55], at large t, we
expect CX (t) to decay exponentially, with a time scale set by the decorrelation time. As the

4Interestingly, it is not clear that such configurations actually correspond to local minima or maxima of the
energy.
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Figure 6: (a) Absolute value of the magnetization per site along different chains at
T = 1.5, for three algorithms, D = 4 TNMH (blue), Wolff’s algorithm (orange) and
a simple spin flip (green) for a ferromagnetic 64 × 64 lattice. Each line represents
an independent run. Time t is measured in Markov chain iterations for TNMH, in
sweeps for the simple spin flip Metropolis, and in cluster updates for the Wolff algo-
rithm. (b) Difference between the (disordered averaged) energy per spin computed
from the Hamiltonian and computed from the link overlap, Eq. (11), as a function
of the number of iterations for three algorithms: TNMH + Metropolis (blue), (PT
+ ICM) (orange) and PT (green). Bond dimension for the TNMH moves: D = 16.
Lattice dimensions: 32 × 32 (open boundary conditions). The symbol t represents
the number of iterations for TNMH, and the number of lattice sweeps for PT and
PT+ICM. The error bars, smaller than the symbols, have been computed by estimat-
ing the variance of the disorder. The number of Markov chains used for the thermal
average is 30 in all cases, the number of different instances used for the disordered
average is 104 and the temperature has been set to T = 0.212. (b)

exponential tail has a fixed amount of noise, controlled by the number of samples, a useful
measure to determine that time scale is the integrated correlation time

τint
X (t)≡ 1+ 2

t
∑

t ′=1

CX (t
′) . (13)

It can also be shown that it is approximately the factor that enhances the variance when aver-
aging over samples that are not sufficiently decorrelated [55]. The two quantities are plotted
on Fig. 7a for the magnetization of a Fully Frustrated Ising model on a 32×32 lattice at T = 1.
The motivation for choosing this observable is that often the energy is a poor choice to mea-
sure the decorrelation of samples in a Markov chain. At low temperatures, it is impossible
to distinguish global changes in a configuration of a Markov chain from local motion around
a local minima just by tracking the energy. In this particular case, choosing an observable
that breaks the global spin flip symmetry of the model in consideration allows to assess the
ergodicity of the scheme, since for any configuration with energy E and magnetization m there
exists another with magnetization −m and same energy. The data shown in Fig. 7a shows that
TNMH outperforms a local algorithm by almost two orders of magnitude. Furthermore, we
expect that the difference in performance can only increase as the temperatures are lowered
or the system size is increased.

To further illustrate sample-to-sample decorrelation in our algorithm, we have considered
the fully frustrated Ising model and represented in Fig. 7b snapshots at different times for
TNMH and for Metropolis sweeps starting from a same configuration. The difference between
both techniques is striking: while the configurations appearing in our technique seem to bear
no resemblance to one another from one acceptance to the next, memory of the initial config-
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Figure 7: (a) Integrated correlation time (13) and (inset) decay of the autocorre-
lation function (12) of the magnetization as a function of time, for different bond
dimensions on a Fully Frustrated Ising model on a 32× 32 lattice with open bound-
ary conditions at T = 1. The error bars have been computed by estimating the
variance of the observables using the same samples. (b) Snapshots of the evolution
of two different Markov chains starting from the same configuration, for the fully
frustrated Ising model on a 64×64 lattice at T = 0.5. The top plots display the con-
figuration obtained after three consecutive steps of the TNMH method (with bond
dimension D = 8), while those below show configurations after Metropolis sweeps
at times t = 0, 1,10.

uration can still be appreciated visually after ten Metropolis sweeps.

Observables

We now turn to the estimation of observables from the samples output by the TNMH Markov
chain. We have focused on the ferromagnetic case and the antiferromagnetic one with an ex-
ternal field. The absolute value of the magnetisation for the ferromagnetic case is plotted on
Fig. 8a (inset) and is in good agreement with the theory [52]. Fig. 8a also shows estimates for
the fourth order Binder cumulant [6], g = (3− 〈m4〉/〈m2〉2)/2. One can appreciate that the
phase transition point is correctly signalled by the locus where all data sets meet, as expected.
On Fig. 8b, we have represented the staggered susceptibility as a function of the tempera-
ture and the external magnetic field for an antiferromagnet. Our findings seem to be in good
agreement with previous studies of this model [59, 60]. When the external field is naught,
the ferromagnetic phase transition around Tc = 2/ ln(1+

p
2) is recovered, as expected, since

for a square lattice, a local change of variables allows a mapping between antiferro and fer-
romagnetic instances of the Ising model. As the field increases, the temperature at which the
phase transition takes place decreases. The intuition for this fact is as follows: at h = 0 and
below the critical temperature one has antiferromagnetic order. In the large h limit at the same
temperature all spins would align with the external field and one would have ferromagnetic
order. Thus, some phase boundary must be encountered when going from one to the other.

4 Three-dimensional Ising models

Just as for planar systems, the partition function of a three-dimensional Ising model can be
expressed as a tensor network. As a consequence, our TNMH algorithm immediately extends to
three dimensions. The approximate contraction of a three-dimensional TN is however a more
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Figure 8: (a) Binder ratio as a function of temperature for the two dimensional fer-
romagnetic Ising model obtained through TNMH with a bond dimension D = 6. The
data approximately cross at one point, signalling a phase transition, in great concor-
dance with the theoretical result T ≈ 2.269. Inset: Magnetisation of the ferromag-
netic Ising model on a square 64 × 64 lattice with open boundary conditions. The
error bars have been computed via a jackknife analysis for the Binder cumulant and
by estimating the variance for the magnetization, and are smaller than the symbols.
(b) Susceptibility χ for an antiferromagnetic Ising model with an external field, on a
64×64 square lattice obtained through TNMH with a bond dimension D = 6. Black:
theoretical prediction of the critical line in the thermodynamical limit.

demanding problem than its two-dimensional analogue. Still, TN renormalisation schemes
can be applied to find an approximation to the contraction [21, 33, 34]. We have chosen an
unsophisticated renormalisation scheme involving projected entangled pair states (PEPS). Two
cutoff parameters now govern the effort put in the TNMH for this implementation: a boundary
PEPS bond dimension D, and a boundary MPS bond dimension χ (see Appendix A for details).
We have considered two instances of the Ising model: ferromagnetic, and antiferromagnetic
with an external magnetic field. The upshot is that our TNMH performs very well, even with
rather low values for D and χ.

Fig. 9 shows the interplay between the two parameters D and χ, the temperature, and
the rejection rate. Again, the peak in the rejection rate signals the presence of a critical point
(displaced due to finite size effects). As this critical point is approached, rejection rates increase
much faster than in two dimensions, and putting in more computational effort by increasing D
and χ now produces milder drops in rejection rates. We attribute this situation to an increase
of correlations in the system due to a higher coordination number for each spin. Still, these
preliminary results are very encouraging, since using a non-optimized contraction scheme, and
modest values for the parameters D and χ, usable acceptance rates (> 0.12 and> 0.05 for the
ferro- and antiferromagnetic case respectively) have been found across the whole temperature
range considered, for systems as large as 163 = 4096 spins.

Analogous to Fig. 6a, which explored equilibration in the two dimensional case, we show
the energy of a 163 ferromagnetic Ising model as a function of time on Fig. 10, both for the
TNMH Markov chain and for the three-dimensional Wolff algorithm. As in two dimensions,
the former appears to necessitate a lower number of steps than the latter. The magnetisation
of the ferromagnetic Ising model has also been plotted in Fig. 11 and shows good agreement
with previous studies [61, 62, 63].

Since observables can also be expressed as a TN, it is possible to estimate them using a
direct contraction [15], and one might then wonder if the sampling procedure, which in itself
requires a TN contraction, provides an advantage with respect to such a direct calculation. But,
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Figure 9: TNMH rejection rates for the three-dimensional Ising model as a function of
the temperature. Plot (a) corresponds to a uniform ferromagnet and (b) to a uniform
antiferromagnet in a field h= 3. D denotes the PEPS bond dimension, while χ stands
for the boundary bond dimension used when compressing the PEPS associated to a
plane of the lattice. A lattice of size 16 × 16 × 16 was used, with open boundary
conditions, and for each bond dimension and temperature, 50 chains were run for
150 steps each. The critical temperature is Tc ≈ 4.512 [61] for the ferromagnetic
Ising model, and Tc ≈ 4 [63] for the antiferromagnetic with this field (We attribute
the offset with respect to this value to finite size effects.).
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Figure 10: Single site magnetization along different Markov chains at T = 3 for two
algorithms, Wolff’s (orange) and TNMH (blue) (D = 2,χ = 2) for a ferromagnetic
16×16×16 lattice. t represents the number of cluster moves in the former case and
the number of TNMH iterations in the latter.

while the TNMH algorithm can succeed with a very undemanding approximate TN contraction
(i.e. using very low bond dimensions), achieving a result of comparable quality by direct con-
traction generally requires more computational effort. To make this point more concrete, we
have compared the value of the average energy in the three-dimensional ferromagnetic case,
as obtained with the TNMH scheme and with direct TN contractions with different values of
the bond dimensions (Fig. 12). We observe that, at temperatures where the direct contraction
with up to (D,χ) = (8, 16) was not sufficient to obtain an accurate estimate of the energy,
the TNMH with (D,χ) = (2, 2) was successful, since it produced decent acceptance rates, and
eventually provided good samples thanks to irreducibility and reversibility.
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Figure 11: Magnetisation (blue) and energy (orange) per spin of the ferromagnetic
Ising model (a) and staggered magnetisation and energy per spin of the antiferro-
magnetic Ising model in an external field (b) on a cubic 16×16×16 lattice with open
boundary conditions. The error bars are smaller than the symbols. The largest bond
dimensions used to obtain the curves were D = 4,χ = 8.

5 Other models

In the previous sections we have presented the TNMH algorithm in detail and benchmarked it
for the Ising model on two- and three-dimensional square lattices. However, the scheme offers
great versatility. In this section, we summarize a number of possibilities to apply and extend
the algorithm for more general problems, which will be explored in further detail elsewhere.
We show how to deal with arbitrary boundary conditions in Appendix B. The reader interested
only in the basic algorithm can safely jump to section 6.
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Figure 12: Relative error ε in the average energy per spin computed via differ-
ent techniques for different temperatures (near the phase transition) for the three-
dimensional ferromagnetic Ising model. The reference values are obtained using
Wolff’s algorithm, purple rhombi are obtained using samples from our algorithm
with (D,χ) = (2, 2), and the other results are obtained taking derivatives of the log-
arithm of the approximate contraction of the TN representing the partition function.
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The XY model

In absence of a vector potential, the XY model describes a lattice of planar spins, interacting
through the Hamiltonian

HX Y = −
∑

〈i, j〉

cos(θi − θ j)v , (14)

where the local variables are the angles {0 ≤ θi < 2π : i ∈ V}. Although these variables
are continuous, this model can be mapped into a system that allows to use a variation of
the sampling method used for the Ising model. First, a duality transformation establishes an
equivalence between (14) and a system of integer variables residing on the (oriented) links of
the lattice involved in four-body interactions [64, 65, 66, 67]. That is, the partition function
takes the form

Z(β) = lim
N→∞

∏

l∈E

 

N
∑

nl=−N

Inl
(β)

!

∏

i∈V

F
n(i)3 ,n(i)4

n(i)1 ,n(i)2

, (15)

where n(i)1 , n(i)2 , n(i)3 , n(i)4 are the values for the links meeting at site i. Inl
(β) are the modified

Bessel functions of the first kind, and

F n3,n4
n1,n2

=

∫ 2π

0

dθ
2π

eiθ (n1+n2−n3−n4) = δK(n1 + n2 − n3 − n4) ,

where δK denotes the Kronecker delta function.
At fixed β , Inl

(β) decays fast and truncating the sum in Eq. (15) is a sensible approxima-
tion. The partition function of the XY model can thus be approximated by a tensor network
where the degree of freedom at each bond takes value in a finite set. In the language of
Appendix A, the tensor at each site i would now be

A(i)n2n4n1n3
=

� 4
∏

k=1

Ink
(β)

�1/2

F n3,n4
n1,n2

,

and the contraction of the TN made up of these tensors would give an approximation eZ(β) to
the partition function Z(β). Similarly, the marginal probability density of the spin at a site i,
eπ(β)(θi), can be approximated by replacing the tensor at site i with

A(i)n2n4n1n3
(θi) =

� 4
∏

k=1

Ink
(β)

�1/2
eiθ (n1+n2−n3−n4)

2π
,

and normalizing the contraction to the approximate partition function previously obtained.
Using renormalisation to approximately contract tensor networks, and the inverse sampling
method, a candidate configuration ω′ = {θ ′i : i ∈ V} can be drawn and accepted or rejected,
as we did for Ising models with Algorithm 1. A vector potential could be included [65, 66],
and other continuous variable systems admit a similar construction [68].

On top of the bond dimension used for the renormalisation, the number of terms kept in
the series expansion of the transfer matrix in Eq. (15) is another parameter that governs the
accuracy of the contraction. As for the 3D Ising model discussed above, a tensor network with
a low value for this parameter may be accurate enough to sample from and propose moves for
a Markov chain, but not precise enough to compute the observables with a single contraction.

A detailed study of the XY model is beyond the scope of this paper. But we have made
preliminary computations that show acceptance rates comparable to those of the ferromag-
netic Ising model. In order to see how correlated the proposed collective moves are, we have
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Figure 13: Mutual information in bits between the updates at different sites,
that is, in the changes of the angles after a sweep of the Markov chain,
I(θi(t + 1) − θi(t) : θ j(t + 1) − θ j(t)) for two schemes. Left: a local algorithm
(a Metropolis single spin flip where the proposed local updates were chosen from
U(0,2π)). Right: TNMH. The numerical experiment was conducted on a homoge-
neous XY model with no external field on a 16×16 lattice at a temperature of T = 0.5.
The bond dimension used in TNMH was D = 20, and the number of terms kept in
the series of Eq. (15) was N = 4, which gave a TN with a local dimension d = 9.

computed the mutual information between the updates at different sites of the TNMH algo-
rithm and compared it to that obtained from a local algorithm, Figure 13. The instance chosen
for the comparison is the zero-field uniform XY model on a 16× 16 lattice at a temperature
T = 0.5. The difference in the results is noteworthy, and demonstrates that the TNMH algo-
rithm is indeed capable of producing global correlated updates.

Drawing configuration differences

We now show that a TNMH scheme for the Ising model can be extended to deal with other
nearest neighbour hamiltonians. For the sake of concreteness, we will focus on the λφ4 model,
defined on a two-dimensional square lattice Λ= (V, E) by the energy function

H({φi}) =
∑

〈i, j〉∈E

(φi −φ j)
2 +

∑

i∈V

(
1
2

m2φ2
i +

λ

4!
φ4

i ) ,

where each local variable φi takes value in R. (See also Refs. [32, 69] for the use of tensor
networks in lattice field theories.) As usual, we are interested in sampling according to the
Boltzmann distribution for some fixed value β . We will use the following simple lemma.

Lemma 1 Any real function of two binary variables, B, can be expressed as an Ising model energy
plus some constant:

B(σ,σ′) = Jσσ′ + hσ+ h′σ′ + K . (16)

Proof : (16) defines a system of four linear equations for the four unknowns J , h, h′, K , one for
each assignment (σ,σ′). The determinant of the matrix of this system of equations does not
vanish but is equal to 16; a solution to (16) therefore exists for any 4-uple {B(σ,σ′)} and is
unique.

Let ω = {φi : i ∈ Ω} denote the current configuration. A Markov chain with collective
updates can be constructed using the TNMH presented for the Ising model in Section 2 if we
draw configuration changes. We proceed as follows. An integer m is drawn uniformly and
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randomly in {0, 1, . . . , mmax}, where mmax is equal to 9, say. ∀i ∈ V , we draw γi according to
a Gaussian distribution with zero mean and variance equal to 10−m. With Γ = {γi : i ∈ V}, we
construct the function:

HI({σi}|ω, Γ ) =
∑

〈i, j〉∈E

(ψi(σi|φi ,γi)−ψ j(σ j|φ j ,γ j))
2

+
1
2

∑

i∈V

m2ψi(σi|φ,γi)
2 +

λ

4!

∑

i∈V

ψi(σi|φi ,γi)
4 ,

where

ψi(σi|φi ,γi) =
1−σi

2
φi +

1+σi

2
(φi + γi) ,

with σi ∈ {−1,+1} ∀i ∈ V . By lemma 1, HI({σi}|ω, Γ ) can be expressed as an Ising Hamilto-
nian for the variables {σi} (plus some irrelevant global constant):

HI({σi}|ω, Γ ) = −
∑

i∈V

hi(ω, Γ ) σi −
∑

〈i, j〉∈Γ

Ji, j(ω, Γ ) σiσ j .

The Boltzmann distribution of the Ising model HI ,

π
(β)
I ({σi}|{θi}, Γ ) =

e−βHI ({σi}|{θi},Γ )
∑

{σ j}
e−βHI ({σ j}|{θi},Γ )

,

can generically not be sampled directly. But we can construct a tensor network approxima-
tion eπ(β)(·|ω, Γ ) for it, as described in Section 2. Given Γ as defined above, let us define
τ(Γ ) = {−γi : i ∈ V}. The sequence of instructions listed in Algorithm 2 defines an irreducible
and reversible Metropolis-Hastings Markov chain that achieves collective updates for the λφ4

model.

Algorithm 2 Configuration difference collective update
1: Draw an integer m u.a.r. in {0, . . . mmax}.
2: Draw |V | i.i.d. Gaussians with zero mean and variance equal to 10−m: Γ = {γi : i ∈ V}.
3: Draw {σi : i ∈ V} according to eπ(β)(·|ω, Γ ).
4: Accept the move {φi : i ∈ V} → {φi +

1+σi
2 γi} with probability

min

¨

1,
eπ
(β)
I ({σi}|ω, Γ )

eπ
(β)
I ({σi}|ω′,τ(Γ ))

×
π(β)(ω′)
π(β)(ω)

«

.

The idea of making configuration difference updates appeared in the study of the ferro-
magnetic XY model, for which the Wolff algorithm for the ferromagnetic Ising model can be
recycled [6]. In principle, Algorithm 2 could be applied to frustrated systems.

A class of systems for which we believe it could be useful to draw differences of configura-
tions as described here are matrix models, such as SU(d) lattice gauge theories [70]. The aux-
iliary Hamiltonian representing the possible choices for a move would no longer be two-body
Ising. Still, it is not difficult to construct a tensor network representation for its Boltzmann
distribution, as we have done when studying the XY model.

Triangular lattices

We now show how the construction presented in Section 2, specific to square lattices, can be
used as such to deal with a triangular lattice. Let us assume that we are interested in some
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Universidad Complutense de Madrid, 28040 Madrid, Spain
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Figure 1: Solid lines : interaction graph of a triangular lattice (periodic bound-
ary conditions assumed for simplicity). Grey dots : extra degrees of freedom of
the extended model.

1

Figure 14: Left: Interaction graph of a triangular lattice system. Centre: Same inter-
action graph decorated with extra degrees of freedom located on the diagonals (grey
dots). Right: Square lattice on which a Hamiltonian H□ associated with the original
system is defined.

particular observable X . That is, we wish to estimate

〈X 〉=
1

Z(β)

∑

ω∈Ω
X (ω) e−βH(ω) .

To this end, we construct an extended model, obtained by decorating the original lattice
with extra spins living on each diagonal link as shown on Fig. 14 (a) and (b). With each
particle of the original model, we will associate the new extra spin located south east to it. Let
p : V → Vnew denote the function that realises this association, where Vnew denotes the set of
new vertices. The Hamiltonian of the extended model reads

Hext(ωext|γ) = H(ω)− γ
∑

j∈V

σ jσp( j) , (17)

for γ > 0, where ωext ∈ Ωext = {−1,+1}|V∪Vnew|. Zext(β |γ) will denote its partition function.

Proposition 1

〈X 〉= lim
γ→∞

1
Zext(β |γ)

∑

ωext

X (ω) e−βHext(ωext|γ) , (18)

whenever β and |V | are both finite.

Proof: The extended configuration space Ωext can be decomposed as Ωext = Ω
(0)
ext ∪ Ω

(1)
ext ∪ . . .

∪Ω(|V |)ext , where Ω(m)ext denotes the subset of all configurations such that there are exactly m sites
j ∈ V where σ j ̸= σp( j). This decomposition induces another for the partition function of the
extended model as

Zext(β |γ) =
∑

ω∈Ω
e−βH(ω)+βγ|V | +

|V |
∑

m=1

ζm eβγ(|V |−2m) ,

where the coefficients ζm are all finite and independent of γ. Similarly, the sum appearing in
the r.h.s. of (18) can be expressed as

∑

ω∈Ω
X (ω)e−βH(ω)+βγ|V | +

|V |
∑

m=1

ξm eβγ(|V |−2m) ,

where the coefficients ξm are also finite and independent of γ. Finally, it is obvious that the
ratio

∑

ω∈Ω
X (ω)e−βH(ω)+βγ|V | +

∑|V |
m=1 ξm eβγ(|V |−2m)

∑

ω∈Ω
e−βH(ω)+βγ|V | +

∑|V |
m=1 ζm eβγ(|V |−2m)

,
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tends to 〈X 〉 in the limit where γ tends to infinity.
A similar argument provides the following identity between the Boltzmann weight for a

configuration of the extended space ωext and the Boltzmann weight of its restriction to Ω, ω:

lim
γ→∞

e−βHext(ωext|γ)

Z ext (β |γ)
=
∏

j∈V

δK(σ j ,σp( j))
e−βH(ω)

Z(β)
. (19)

The contribution of any site j of the original lattice Λ to the numerator of the r.h.s. of (19)
reads

δK(σ j ,σp( j)) exp
�

β
�

h jσ j +
∑

k∈N( j)

J jkσ jσk

��

, (20)

where N( j) denotes the neighbourhood of j. Because of the Kronecker delta, for any bipar-
tition of this neighbourhood N( j) = N ′( j) ∪ N ′′( j), (20) remains invariant if the sum in the
exponential is substituted with

∑

k∈N ′( j)

J jkσp( j)σk +
∑

k∈N ′′( j)

J jkσ jσk . (21)

Assuming w.l.o.g. the boundary conditions represented on Fig. 14-left, we choose, for every
site j, N ′( j) to consist in the sites located east, south, and south east of j, ∀ j ∈ Λ. (Edge
and corner sites might require different choices of subsets N ′( j), depending on the boundary
conditions.) This choice results in a square lattice hamiltonian H□ whose couplings are shown
on Fig. 15, and whose interaction graph is displayed on Fig. 14(c).

Let eπ□ denote a probability distribution approximating the Boltzmann distribution associ-
ated with H□ through tensor network renormalisation. To deal with a triangular lattice using
a TNMH code for a square lattice, a possibility is a Markov chain where, at each step, a candi-
date configurationω′ext is drawn according to eπ□, and the move from the current configuration
ωext to this candidate is accepted with Metropolis-Hastings probability:

min

�

1,
e−βH(ω′)

e−βH(ω)
×
eπ□(ωext)
eπ□(ω′ext)

�

,

where ω (resp. ω′) denotes the restriction of ωext (resp. ω′ext) to Ω.
This mapping from a triangular lattice to a square lattice doubles the number of sites but

we stress that the bond dimension of the (square) tensor network associated is unchanged
and equal to that of the local degrees of freedom (d = 2 for the Ising model). It would be
very interesting to see whether the argument can be extended to three dimensions, and for
example map a body centred cubic lattice model to a simple cubic lattice model.

A quantum analogue of the mapping exists: square PEPS can be used for a tri-
angular quantum spin Hamiltonian. The extended Hamiltonian (operator) now reads
Hext = H − γ

∑

j∈V σ
z
jσ

z
p( j). Proposition 1 still holds true if

∑

ω ext
X (ω) e−βHext(ωext|γ) is sub-

stituted with Tr X e−βHext . Expressing the trace in the basis of eigenstates of {σz
j} operators,

an analogue of the substitutions (20,21) holds true too. If for example, one wants a TNS
approximation of the ground state, one could alternate Trotter steps with applications of the
projector |00〉〈00|z + |11〉〈11|z on each particle of the original lattice and its partner. Actually,
a further reduction can be made: one readily checks that the interaction graph transformation
shown on Fig. 14 produces a hexagonal lattice when applied to a square lattice. Therefore, in
principle, it should even be possible to study triangular lattices with hexagonal PEPS.
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Jh

Jv
Jd ∞

Jh

Jv Jd

Figure 15: Couplings in and around a plaquette in the original and extended models
(left and right respectively). The new couplings produce a square lattice rotated by
a π/4 angle with respect to the original lattice.

Figure 16: Example of a configuration of hard disks in a discretised volume. (Periodic
boundary conditions assumed.)

Hard spheres

To close this section, we show how tensor network contractions can also be used to implement
collective Monte Carlo updates for systems of hard spheres (or disks in two dimensions) [5].
We will combine three ideas for that purpose. The first is a discretisation of the domain that
contains the spheres. The second is a shift of perspective where a configuration will not so
much be regarded as a collection of locations for the spheres, but rather as the specification
for the state of each cell of the volume that contains them (occupied or empty). The third is
to use a tensor network to encode possible changes for each cell.

We consider a system of N hard disks in two dimensions confined in a square area discre-
tised with a square lattice (M cells). Although this is not essential, we will assume periodic
boundary conditions in order to keep the presentation simple. N is fixed, as well as the lattice
spacing ε. All disks have identical radius. A configuration is said to be valid if (i) the centre
of each disk is pinned on the intersection of a vertical and a horizontal line of the lattice, (ii)
no cell contains bits of matter belonging to different disks. Fig. 16 is an example of a valid
configuration.

Our goal is to sample uniformly amongst all valid configurations. For that, we will design
a Markov chain of collective updates where each disk either stands still or is moved vertically
or horizontally by one lattice spacing. A configuration change must comply with the following
rules:

1. A disk cannot be split.

2. A disk cannot be compressed.

3. Disks cannot overlap, not even completely (conservation of particle number).

We will assume the disks are distinguishable and we will associate a label {1,2, . . . , N} to
each of them, which is why each disk appears with a different colour in the illustration of
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n s′

n′ s

w′
e

w
e′

Figure 17: Diagrammatic representation of the PEPS tensor associated with each cell
j of the lattice.

Fig. 16. We will denote S0 the set of empty cells, and Sα the set of cells occupied by disk α,
1≤ α≤ N .

Given a valid configuration ω, we associate a tensor Pj with each cell j of the lattice, see
Fig. 17. The index σ of this tensor encodes the move that a bit of matter located at cell j
would undergo: M≡ {0,−1,+1,−2,+2} for {stillness, displacement to the left, displacement
to the right, downwards displacement, upwards displacement} respectively. The role of the
w, e, n, s degrees of freedom of Pj is to communicate the chosen move at j to its neighbour
cells; the indices w′, e′, n′, s′ provide the information about the moves made in neighbouring
cells to cell j. We want to assign values to these tensors {Pj} that guarantee moves can only
occur between valid configurations.

A. Initialisation. For each cell j, Pj(σ)w
′,e′,n′,s′

w,e,n,s = 1 ∀σ, w′, e′, n′, s′, w, e, n, s ∈M.
B. Empty cells. ∀ j ∈ S0, since there is no matter to be moved, we decree that

Pj(σ)w
′,e′,n′,s′

w,e,n,s = 0, ∀w′, e′, n′, s′, w, e, n, s if σ ̸= 0 (holes do not move).

C. Faithful move communication. ∀ j, Pj(σ)w
′,e′,n′,s′

w,e,n,s = 0 unless w= e = n= s = σ.
D. Rigidity. Let j, k denote two neighbouring cells covered by a same disk Sα,α ̸= 0. Let

us assume, say, that j is located left to k. We impose that Pj(σ)w
′,e′,n′,s′

w,e,n,s = 0 if e ̸= w′. Similar
constraints are imposed on all other pairs of cells j, k covered by a same disk and such that
| j − k|= 1.

E. Prevention of collisions. By definition, a collision has occurred between two disks α
and α′ if and only if two bits of matter belonging to α and α′ respectively are found in a same
cell. Therefore, it is necessary and sufficient to forbid all such events in order to prevent a
collision. If there is a collision, either one disk is immobile, say α, and α′ moves by one cell to
overlap with α (case A), or both α and α′ move to cause the overlap (case B).

Case A occurs if and only if there are pairs of adjacent cells c and c′ in Sα and Sα′ respectively
which content will occupy a same cell. To prevent the collision, it is sufficient to impose that
for each such pair (c, c′), the bit of matter contained in c′ cannot hop in c. There are four such
moves to prohibit; they are represented by the four leftmost drawings of Fig. 18.

In case B, α and α′ either move along a same direction (case BI) or along perpendicular
directions (case BII). Case BI occurs if and only if there are pairs of cells c and c′, separated
by one cell, in Sα and Sα′ respectively, which contents are moved closer to each other along a
common line. It is thus enough to prevent the events represented by the rightmost drawings of
Fig. 18. Case BII is dealt with similarly, and results in the prohibition of the events represented
by the four remaining diagrams of Fig. 18.

Collisions where a bit of matter contained in a cell k ∈ Sα′ moves to its left, and lands
in a cell j ∈ Sα already occupied by a bit of matter that does not change its position, can be
prevented by imposing Pj(0)

−1,e′,n′,s′

0000 = 0 ∀e′, n′, s′. The other A prohibitions admit similar
translations into constraints on the tensors, and the six B prohibitions can be enforced like-
wise. For example the prohibition of the move depicted on the diagram located rightmost
top of Fig. 18 translates into Pj(σ)+1,−1,n′,s′

w,e,n,s = 0 ∀w, e, n, s, n′, s′ whenever the left and right
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Figure 18: Forbidden moves in the discretised hard disks model. An asterisk in a
cell indicate presence of matter, the rhombus symbol stands for a cell that can either
be empty or filled. A dot on the side of a cell indicates no move, whereas an arrow
indicates a move by one lattice spacing and its direction.

neighbours of cell j are occupied by different disks.
The exact contraction of all tensors yields a function Q(σ1, . . . ,σM |ω), which value is equal

to 0 if the move {σ1, . . . ,σM} is forbidden from configurationω, and 1 otherwise. We note that
for a fixed assignment {σ1, . . . ,σM}, Q(σ1, . . . ,σM |ω) can be evaluated exactly. Ideally, we
would construct a Metropolis-Hastings Markov chain where the moves are sampled according
to the prior

πid(σ1, . . . ,σM |ω) =
Q(σ1, . . . ,σM |ω)

∑

{τ}Q(τ1, . . . ,τM |ω)
.

As we don’t expect this to be possible, we propose to approximate πid through tensor network
renormalisation, as we did for Ising models. At fixed volume M , the computational cost for
constructing the tensors scales as 1/ε2. The bond dimension of the tensor network is indepen-
dent of ε. As for Ising models, acceptance rates should increase with the bond dimension used
in the tensor network renormalisation. If necessary, a complementary strategy to increase ac-
ceptance rates is to select a region at each Markov step, and impose that all disks outside of
it or touching its boundary remain fixed; such a region would vary from one time step to the
next and may even be disconnected.

In two dimensions, the hard sphere model is known to exhibit a fluid-solid phase transition
for a filling fraction η = πa2N/A≃ 0.7, where a is the radius of the disks, and A denotes the
area of the domain that contains them [5] (A = Mε2 here). It would be very interesting to
see how a finite value of ε affects this phase transition. Actually, because of the discretisation,
the model considered here is, strictly speaking, not the hard sphere model discussed in [5],
for which the disks could in principle occupy any position in Euclidean space. It might be
that the phase transition in the limit ε→ 0 does not correspond to the transition point of the
hard sphere model defined in Euclidean space. But it just might if a different lattice geometry
is used. A similar phenomenon occurs in the study of fluids with cellular automata: square
lattices do not relate to the Navier-Stokes equation whereas triangular lattices do [71].

A construction similar to Fig. 17 should hold for hard spheres in three dimensions, and
we believe that an analogue also exists for dimer (and dimer-monomer) models. In this latter
case, the possibility to rotate dimers by a π/2 angle produces additional constraints on the
tensors.
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6 Discussion

The interplay between Monte Carlo and tensor network methods is a rich and vastly unex-
plored subject. While various previous works have reported on using Monte Carlo sampling
for tensor network contractions, we have here presented an analysis of the converse: a new
class of Markov chain Monte Carlo algorithms for many-body classical systems based on ten-
sor network renormalisation. This class belongs in the family of Metropolis-Hastings schemes.
Our construction produces collective updates. It is also irreducible and reversible; as such,
asymptotic convergence towards the target probability distribution is guaranteed. We empha-
size its universal nature: it works the same for any nearest neighbour Hamiltonian with finite
local degrees of freedom.

We have benchmarked our scheme for a variety of instances of the two-dimensional Ising
model defined on a square lattice. For ferromagnets and antiferromagnets, very high accep-
tance rates have been observed for larger systems, even with modest values of the bond di-
mension. Besides, drops in acceptance rates have been shown to signal criticality. Looking at
equilibration and decorrelation times, the scheme compares extremely well with single spin
flip updates and Wolff algorithm. As expected, the scheme’s performance is lower for frus-
trated and disordered instances than for the ferro- and antiferromagnets. Still, our results are
very encouraging. In particular, for disordered instances, equilibration appears to be occurring
orders of magnitude faster than for state-of-the-art techniques such as parallel tempering sup-
plemented with isoenergetic cluster moves, both when time is counted in Monte Carlo steps
and in seconds.

We have also demonstrated the potential of the method for three dimensional systems,
by testing it on ferromagnetic and antiferromagnetic instances. Also in this case, we have
observed faster equilibration as compared to Wolff algorithm and, remarkably, even with a
simple contraction strategy and small bond dimension, the scheme can be shown to remain
usable at near critical temperatures, whereas a much more costly direct TN contraction results
in considerable errors.

We have used simple procedures to implement tensor network renormalisation, and we
have made no particular effort to write an efficient code. For these reasons, we believe the
results presented here could be substantially improved. It would also be very interesting to
study what can be gained by using other renormalisation schemes for approximate contractions
of tensor networks [19]. For example, schemes involving disentanglers would be a natural
option in this regard [22]. Also for future work is the study of how TNMH Markov chains
combine with parallel tempering [72].

A major advantage of our construction is its versatility. We have seen that with little extra
effort, a code valid for the Ising model on a square lattice can be used as such to construct a
collective update Markov chain in other settings such as the XY model, or a triangular lattice,
and that TNMH could also be used to study gases of hard spheres. In principle lattice systems
with long range interactions could also be considered. For instance, given an Ising Hamilto-
nian H where the interactions decay with the distance as a power law, one can associate an
auxiliary Hamiltonian Hϱ where all interactions within some range ϱ are identical to H, and
all interactions beyond ϱ have been truncated. One can next construct a tensor network prior
from this Hamiltonian Hϱ. Two parameters would now govern the Markov chain: the bond
dimension and the range ϱ. We have also restricted ourselves to scalar degrees of freedom in
this work. But the discussion held in Section 5 shows that TNMH sampling should also apply
to matrix models, in particular lattice gauge theories.

A natural variation of our work would be to depart from tensor network representations
and use a quantum device to prepare Gibbs states and estimate the probability to draw a
given configuration [73, 74]. Such a device would be called as an external subroutine in
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(classical) Metropolis-Hastings iterations. Just as our 3D computations have revealed that
inaccurate contraction schemes could still be useful for sampling, it would be very interesting
to investigate how much computational power such quantum devices retain when imperfect.
These ideas will be studied elsewhere.

Finally, it would be instructive to develop a mathematical perspective on the schemes pre-
sented here. In particular, we believe it would be meaningful to identify a non-trivial model
for which the mixing time associated with our TNMH scheme could be upper bounded, e.g.
using a log-Sobolev inequality [75]. It would be insightful to establish the dependence of the
log Sobolev constant with the bond dimension.
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A MPS renormalisation

We here review the relation between tensor networks and partition function [13, 14, 15, 19,
21]. The setup is a slight generalization of that of Section 2. That is, we consider a nearest
neighbour classical Hamiltonian

H(ω) =
∑

〈i, j〉

ϕi j(σi ,σ j) ,

on a lattice Λ = (V, E), where the local variables σi now take value in any finite set, which
size we are going to denote d. For the sake of simplicity, and without loss of generality, we
will again only consider squares lattices, and first limit ourselves to two-dimensional systems
for now. At fixed inverse temperature β , the partition function can be expressed as

Z(β) =
∑

ω∈Ω

∏

〈i, j〉∈E

Wi j(σi ,σ j) , (A.1)

where Wi j is a d × d matrix, whose entries represent all possible contributions of the bond

〈i, j〉 to the Boltzmann weight of the model, i.e. Wi j(σ,σ′) = e−βϕi j(σ,σ′). As an example, for
the Ising model without external magnetic field, the energy associated with a given bond 〈i, j〉
reads ϕi j(σ,σ′) = −Ji jσσ

′, and the 2× 2 matrix Wi j is

Wi j =

�

eβJi j e−βJi j

e−βJi j eβJi j

�

. (A.2)

We will use the diagrammatical notation in which a tensor is represented by a vertex or a
small shape, with as many legs sticking out as there are indices; and where joining two lines
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represents a contraction of the corresponding indices. For example, a matrix Wi j is represented
as follows,

,

Z(β) can be expressed as a tensor network if we shift from a description in terms of matrices
associated with the bonds of the lattice (A.1) to a description in terms of tensors associated
with its vertices. Let us consider some vertex i with four neighbours and let e(i) denote the
vertex to its right. We decompose Wi,e(i) as:

Wi,e(i)(σ,σ′) =
d
∑

µ=1

Li(σ,µ)Re(i)(µ,σ′) .

Graphically,

= .

This can be achieved e.g. through a singular value decomposition
(SVD) Wi,e(i) = Ui,e(i)Σi,e(i) × V †

i,e(i), and by setting Li = Ui,e(i)
p
Σi,e(i), Re(i) =

p
Σi,e(i)V

†
i,e(i).

Similarly, if n(i), w(i), s(i) denote vertices located above, to the left, and below i respectively,
three additional SVD provide the decompositions

Ww(i),i(σ,σ′) =
d
∑

ν=1

Lw(i)(σ,ν)Ri(ν,σ′) ,

Wi,n(i)(σ,σ′) =
d
∑

ρ=1

Bi(σ,ρ)Tn(i)(ρ,σ′) ,

Ws(i),i(σ,σ′) =
d
∑

τ=1

Bs(i)(σ,τ)Ti(τ,σ′) .

We associate a 4-index tensor A(i)(σ) with each site i having four neighbours and each spin
value σ, whose components are

A(i)µνρτ =
d
∑

σ=1

Li(σ,µ)Ri(ν,σ)Bi(σ,ρ)Ti(τ,σ) . (A.3)

In diagrammatic notation, Eq. A.3 reads

= .

For a system with open boundary conditions, vertices with only three or two neighbours are
dealt with likewise. With these tensors, the partition function can be expressed as

Z(β) = C({A(i)}) , (A.4)

where C({A(i)}) denotes the contraction of all the tensors associated with all sites. The entire
process from (A.1) to (A.4) is illustrated on Figure 19 for a 4× 4 lattice.
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(a) (b)

(c) (d)

Figure 19: Graphical depiction of the construction of the TN associated with the par-
tition function of a nearest neighbour classical Hamiltonian (4×4 lattice in this illus-
tration). (a) We start with a labelling of the vertices of the lattice in consideration.
(b) Diagrammatic representation of the Boltzmann weights (red circles) associated
with each edge; their contraction yields the partition function. (c) and (d) Singular
value decomposition of each W matrix, and regrouping into tensors associated with
each vertex of the lattice.

Similarly, one can construct a TN representation of the partition function with some fixed
value s for the degree of freedom at site i, Z(β |σi = s). It is for instance sufficient that for each
neighbour of i, j, we replace Wi, j(σ,σ′) with W (s)

i j (σ,σ′) = δs,σWi, j(σ,σ′). The ratio of the

two quantities, Z(β |σi = s)/Z(β), would exactly be the marginal probability π(β)i (s) of that
spin being in state black s, that is, a ratio of two TN contractions. Similarly, one can express
any conditional probability π(β)k (σk|s1 . . . sk−1) as a ratio of two TN contractions:

π
(β)
k (σk|s1 . . . sk−1) =

Z(β |s1 . . . sk−1σk)
Z(β |s1 . . . sk−1)

. (A.5)

As explained in Section 2, if one were able to evaluate TN contractions exactly, one would
have a means to sample according to the Boltzmann distribution exactly. In general, it is
only possible to compute approximations to the contractions appearing in the ratio (A.5) and
as a result, get an approximation eπ

(β)
k to π(β)k . Instead of using these approximations for

direct sampling with systematic errors, one can use them as a prior for a reversible Metropolis-
Hastings Markov chain. The impossiblity to carry out exact TN contraction then translates into
more controllable statistical errors.

For the approximate contraction of an L × L lattice, we have used one of the simplest
schemes available [15, 10]. We define |top〉 to be the tensor resulting from contracting all
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Figure 20: Graphical depiction of the process of contracting a two-dimensional lat-
tice. (a) Approximation to the contraction of the k− 1 top most rows, |partial(k−1)〉.
(b) The approximation to |partial(k)〉 is constructed by applying the MPO associated
with row k, TMk, on the MPS obtained by approximate contraction of the k−1 first
rows, |partial(k−1)〉. The result of that MPO-MPS multiplication is a MPS with a larger
bond dimension. (c) Using standard MPS techniques, the product can be approxi-
mated by a MPS with lower bond dimension.

the top row tensors along horizontal edges; the remaining free indices after this contraction
are legs pointing downward. Similarly, we will call transfer matrix the tensor resulting from
a contraction of the tensors along a horizontal bulk row; the transfer matrix resulting from
contracting the tensors of row k will be denoted TMk, 2< k < L. Finally, in analogy to |top〉,
we will denote |bot〉 the contraction of bottommost tensors. With these notations, the partition
function can be expressed as

Z(β) = 〈bot|TML−1 . . .TM2|top〉 . (A.6)

Both |top〉 and 〈bot| are matrix product states (MPS), whereas the transfer matrices TMk are
matrix product operators (MPO), all with a bond dimension and a ‘physical’ dimension equal
to d; their length is equal to L. Our approximation of Z(β) is obtained by estimating the rhs
of (A.6) sequentially. We initialise |partial(1)〉 ≡ |top〉, and for k ∈ {2 . . . L − 1}, we define
|partial(k)〉 to be an MPS approximation to TMk|partial

(k−1)〉 obtained by matrix product state
renormalisation, see Fig. 20. Z(β) is finally approximated with 〈bot|partial(L−1)〉. The cutoff
parameter D sets the accuracy of the approximation. There are many methods available for the
renormalisation. Throughout this work, we have mostly used the scheme based on successive
SVD [11]. Two-site variational compression has been used to explore equilibration of the two
dimensional Ising model with Gaussian disorder [11].

The same method allows to approximate the partition function of a system where some
spins have been set to definite values, eZ(β |σ1 . . .σk). The only difference is that for such a
site i with spin value σi , the tensor (A.3) is replaced with

Li(σi ,µ)Ri(ν,σi)Bi(σi ,ρ)Ti(τ,σi) . (A.7)

As claimed in section 2, an approximate Boltzmann weight eπ(ω) can be evaluated since, using
Bayes theorem, this probability can be expressed as

eZ(β |σ1)
eZ(β)

× . . .×
eZ(β |σ1 . . .σn)
eZ(β |σ1 . . .σn−1)

.
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Figure 21: Renormalisation of a black column of a PEPS. For the truncation of the
bond dimension of a given a column, its tensors are singled out. The physical bond
dimension and the bond dimension that connects these tensors to other columns,
drawn in red in this diagram, are treated as the physical dimension of an auxiliary
MPS. The bond dimension of that MPS is reduced using a standard truncation algo-
rithm. The resulting tensors of the obtained MPS with lower bond dimension are
inserted back in the PEPS. While this procedure has no guarantee of optimality, it is
computationally cheap and works well in practice.

      

Figure 22: Renormalisation of a PEPS used to apply the TNMH algorithm to three-
dimensional systems. The bond dimension is first reduced along horizontal bonds,
next along vertical bonds.

Two remarks are in order. First, if the tensors A(i) are well conditioned and if D is high
enough, the approximations to partition functions we construct will be strictly positive. So
will then be the approximated probabilities (7), and the TNMH is irreducible. Second, if the
tensors {A(i)}, the MPS |top〉, |bot〉 and the transfer matrices TMk are stored, a TNMH update
of the whole lattice can be performed at a computational cost that scales linearly with the
lattice size.

Plaquette interactions can be dealt with similarly. Using singular value decomposition for
the Boltzmann weights and regrouping all the matrices relating to a given site, one obtains a
(π/4 rotated) square lattice for the partition function. Bayes formula can thus again be used
for sampling.

We have dealt with three-dimensional models in a similar fashion. Assuming an L × L × L
lattice, the identity (A.4) can again be obtained after sequence of SVD; A(i) is now a six-leg
tensor (for a bulk spin). (A.6) is also still valid, but |top〉, |bot〉 are now projected entangled
pair states (PEPS) instead of MPS, and the transfer matrices TMk projected entangled pair
operators (PEPOs) instead of MPOs. Just as in two dimensions, without any cutoff, the bond
dimension of TML−1 . . .TM2|top〉 would generically grow exponentially with L, and renor-
malisation is in order. There exists a plethora of methods to contract three dimensional tensor
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RL

Figure 23: Cylindrical boundary conditions obtained by identification from a rect-
angle. L and R denote lines of spins alternating frozen in order to be able to use a
sampling scheme designed for open boundary conditions.

networks [76, 21]. We have not aimed at optimality and have opted for simplicity. Again,
denoting |partialk〉 the approximate contraction of the first k layers of the TN, the core of the
renormalisation consists in constructing a PEPS approximation |partialk+1〉 for the contraction
TMk+1|partialk〉. When a PEPO is superimposed on a PEPS, the resulting state is a PEPS with
a larger bond dimension.

The bond dimension of TMk+1|partialk〉 has been reduced by recycling the technique used
to compress the bond dimension of MPS. First, an index reshuffling allows us to regard each
column of the PEPS TMk+1|partialk〉 as an MPS, with an effective physical index at each site
given by lumping the original physical index of the PEPS with the horizontal virtual indices
at that site. The virtual bonds of that MPS are the vertical virtual bonds of the corresponding
column of the PEPO. These ‘thick’ bonds are compressed (or renormalised) as before. This
compression along columns is illustrated on Fig. 21. The resulting tensors from the compres-
sion are then inserted back into the PEPS, and the same compression is next performed on the
horizontal bonds of the PEPS. See Fig. 22 for a depiction of this PEPS renormalisation.Two
parameters now govern the accuracy of the approximation: the bond dimension of the PEPS
|partialk〉, D, and the cutoff for the approximate contraction of two rows of a PEPS, χ [76].

B Arbitrary boundary conditions

Although we have focused on systems with open boundary conditions, the Markov chain (4)
allows us to deal with any topology that can be obtained from a rectangle by appropriate
identifications. Let us show how with the simple example of a cylinder. If we make an update
where we decide to leave a column of spins unchanged, e.g. the dashed column ’L’ of Fig. 23,
we will effectively be considering a model with open boundary conditions, where the spins
in the neighbourhood of the frozen line are subjected to a local extra magnetic field. Such a
model can be sampled as before. In order to make sure all spins are refreshed, the cut of frozen
spins alternates between the opposite lines depicted as ’L’ and ’R’ respectively. Alternatively,
the lines of spins where we choose to cut our system can be chosen randomly.

We have implemented this adaptation of an OBC TNMH code in order to study the equi-
libration of the two dimensional gaussian spin glass studied in the case of periodic boundary
conditions. This has allowed us to compare directly our results with the state-of-the-art results
of [56]. Our findings are summarized in Table 2.

As can be appreciated, this adaptation of Algorithm 1 yields equilibration in a number of
steps significantly lower than for PT or PT + ICM, as for the case of open boundary conditions
discussed in the main text. Notice that auxiliary Metropolis spin flips are now no longer needed
to help in the equilibration of some of the configurations of some of the disorder realizations.
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Table 2: First row: target value of ∆. Second and third row: each entry represents a
lower bound on the number of Monte Carlo sweeps necessary to decrease ∆ below
the value indicated in the same column for parallel tempering (PT) and parallel tem-
pering plus isoenergetic cluster moves (PT + ICM) (data read off Fig. 2 of Ref. [56]).
Fourth row: Upper bounds on the number of TNMH iterations necessary for the same
purpose. The setting considered is identical to Ref. [56] (periodic boundary condi-
tions).

∆ 0.25 0.15 0.05 0.025

PT 221 222 223 224

PT + ICM - - 213 214

TNMH 14 21 40 56

The reason for this is that by freezing a different portion of the spins at each TNMH iteration,
one is now dealing with a different effective current configuration for a different effective
OBC hamiltonian, at each TNMH iteration. Even though an effective current configuration
may occasionally suffer from the ill-conditioning issue described in Section 3, it will not as
easily stall our Markov chain thanks to the selection of a different cut at each iteration.
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