

## Supplementary Material

## Directed biosynthesis of new to nature alkaloids in a heterologous Nicotiana benthamiana expression host

Marianna Boccia<sup>1</sup>, Dagny Grzech<sup>1</sup>, Adriana Lopes<sup>2</sup>, Sarah E. O'Connor<sup>1\*</sup>, Lorenzo Caputi<sup>1\*</sup>

<sup>1</sup> Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis; Hans-Knoll Strasse 8, 07745, Jena, Germany.

<sup>2</sup>Univ Ribeirao Preto UNAERP, Unidade Biotecnol, Av Costabile Romano 2201, BR-14096900 Ribeirao Preto, SP - Brazil

\* Correspondence: Corresponding Author lcaputi@ice.mpg.de

oconnor@ice.mpg.de

Figure S1. Vinblastine biosynthetic pathway starting from the precursor strictosidine.



**Figure S2.** UHPLC-MS chromatograms in MRM mode of 4-fluoro-alstonine produced in *N*. *benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of alstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 4-fluoro-alstonine produced by co-infiltrating with 4-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 4-fluoro-strictosidine. Panel C: MRM chromatogram of 4-fluoro-alstonine produced by co-infiltrated with 4-fluoro-strictosidine. Panel D: Fragmentation spectrum of 4-fluoro-alstonine product. 4-fluoro-alstonine=C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>N<sub>2</sub>F, Observed *m/z*=367.1444, Theoretical *m/z*=367.1452,  $\Delta$ ppm=-2.17. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S3.** UHPLC-MS chromatograms in MRM mode of 5-fluoro-alstonine produced in *N*. *benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of alstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 5-fluoro-alstonine produced by co-infiltrating with 5-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 5-fluoro-strictosidine. Panel C: Panel D: Fragmentation spectrum of 5-fluoro-alstonine product. 5-fluoro-alstonine=C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>N<sub>2</sub>F, Observed *m/z*=367.1452, Theoretical *m/z*=367.1452,  $\Delta$ ppm=-0.12. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S4.** UHPLC-MS chromatograms in MRM mode of 6-fluoro-alstonine produced in *N*. *benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of alstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 6-fluoro-alstonine produced by co-infiltrating with 6-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 6-fluoro-strictosidine. Panel D: Fragmentation spectrum of 6-fluoro-alstonine product. 6-fluoro-alstonine=C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>N<sub>2</sub>F, Observed *m/z*=367.1449, Theoretical *m/z*=367.1452,  $\Delta$ ppm=-0.87. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S5.** UHPLC-MS chromatograms in MRM mode of 7-fluoro-alstonine produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of alstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 7-fluoro-alstonine produced by co-infiltrating with 7-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 7-fluoro-strictosidine. Panel D: Fragmentation spectrum of 7-fluoro-alstonine product. 7-fluoro-alstonine=C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>N<sub>2</sub>F, Observed *m/z*=367.1451, Theoretical *m/z*=367.1452,  $\Delta$ ppm=0.27. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S6.** UHPLC-MS chromatograms in MRM mode of 7-chloro-alstonine produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of alstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 7-chloro-alstonine produced by co-infiltrating with 7-chloro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 7-chloro-strictosidine. Panel D: Fragmentation spectrum of 7-chloro-alstonine product. 7-chloro-alstonine=C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>N<sub>2</sub>Cl, Observed *m/z*=383.1153, Theoretical *m/z*=383.1157,  $\Delta$ ppm=-1.05. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S7.** Comparison of the fragmentation spectra of serpentine standard (panel A) and alstonine produced in *N. benthamiana* (panel B) by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Serpentine= $C_{21}H_{21}O_3N_2$ , Observed *m/z*=349.1547, Theoretical *m/z*=349.1546,  $\Delta ppm=0.07$ . Alstonine= $C_{21}H_{21}O_3N_2$ , Observed *m/z*=349.1544, Theoretical *m/z*=349.1546,  $\Delta ppm=-0.89$ . The data are in agreement with what reported in the literature (Kumar S., Singh A. Bajpai V., Srivastava M., Singh B.P. and Kumar B., Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass pectrometry, *J. Pharm. Anal.*, 2016, 363-373.)



**Figure S8.** UHPLC-MS chromatograms in MRM mode of methyl and methoxy-tetrahydroalstonine produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrTHAS, CrAS. Panel A: MRM chromatogram of tetrahydroalstonine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 6-methyl-tetrahydroalstonine produced by co-infiltrating with 6-methyl-strictosidine. Panel C: MRM chromatogram of 5-methoxy-tetrahydroalstonine produced by co-infiltrating with 5-methoxy-strictosidine. Panel D: MRM chromatogram of the empty vector negative control co-infiltrated with 5-methoxy- or 6-methyl-strictosidine. \*unknown compound. Horizontal axis represents the retention time in minutes.







**Figure S10.** UHPLC-MS chromatograms in MRM mode of 4-fluoro-stemmadenine acetate produced in *N. benthamiana* leaves by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of stemmadenine acetate, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 4-fluoro-stemmadenine acetate, produced by coinfiltrating with 4-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 4-fluoro-strictosidine. Panel D: Fragmentation spectrum of 4-fluorostemmadenine acetate product. 4-fluoro-stemmadenine acetate=C<sub>23</sub>H<sub>28</sub>O<sub>4</sub>N<sub>2</sub>F, Observed *m/z*=415.2018, Theoretical *m/z*=415.2027,  $\Delta$ ppm=-2.29. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S11.** UHPLC-MS chromatograms in MRM mode of 5-fluoro-stemmadenine acetate produced in *N. benthamiana* leaves by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of stemmadenine acetate, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 5-fluoro-stemmadenine acetate, produced by coinfiltrating with 5-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 5-fluoro-strictosidine. Panel D: Fragmentation spectrum of 5-fluorostemmadenine acetate product. 5-fluoro-stemmadenine acetate= $C_{23}H_{28}O_4N_2F$ , Observed *m/z*=415.2023, Theoretical *m/z*=415.2027,  $\Delta ppm=0.96$ . Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S12.** UHPLC-MS chromatograms in MRM mode of 6-fluoro-stemmadenine acetate produced in *N. benthamiana* leaves by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Top panel: MRM chromatogram of stemmadenine acetate, produced by co-infiltrating with strictosidine. Middle panel: MRM chromatogram of 6-fluoro-stemmadenine acetate, produced by coinfiltrating with 6-fluoro-strictosidine. Bottom panel: MRM chromatogram of the empty vector negative control co-infiltrated with 6-fluoro-strictosidine. Panel D: Fragmentation spectrum of 6fluoro-stemmadenine acetate product. 6-fluoro-stemmadenine acetate= $C_{23}H_{28}O_4N_2F$ , Observed *m/z*=415.2018, Theoretical *m/z*=415.2027,  $\Delta$ ppm=-1.62. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S13.** UHPLC-MS chromatograms in MRM mode of 7-fluoro-stemmadenine acetate produced in *N. benthamiana* leaves by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of stemmadenine acetate, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 7-fluoro-stemmadenine acetate, produced by co-infiltrating with 7-fluoro-strictosidine. Panel C: MRM chromatogram of the empty vector negative control co-infiltrated with 7-fluoro-strictosidine. Horizontal axis for panels A, B and C represents the retention time in minutes.



**Figure S14.** UHPLC-MS chromatograms in MRM mode of the shunt product fluoro-akuammicine produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of akuammicine, produced by co-infiltrating with strictosidine. Panels B and C: MRM chromatogram of 4, 5, 6, and 7-fluoro-akuammicine, produced by co-infiltrating with 4, 5, 6, 7-fluoro-strictosidine, respectively. Panel D: MRM chromatogram of the empty vector negative control co-infiltrated with 5-fluoro-strictosidine. Horizontal axis represents the retention time in minutes.



**Figure S15.** UHPLC-MS chromatograms in MRM mode of fluoro-precondylocarpine acetate produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of precondylocarpine acetate, produced by co-infiltrating with strictosidine. Panels B and C: MRM chromatogram of 4, 5, 6, and 7-fluoro- precondylocarpine acetate, produced by co-infiltrating with 4, 5, 6, 7-fluoro-strictosidine, respectively. Panel D: MRM chromatogram of the empty vector negative control co-infiltrated with 5-fluoro-strictosidine. Horizontal axis represents the retention time in minutes.



**Figure S16.** UHPLC-MS chromatograms in MRM mode of the shunt product 6-methyl-akuammicine produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT. Panel A: MRM chromatogram of akuammicine, produced by co-infiltrating with strictosidine. Panel B: MRM chromatogram of 6-methyl-akuammicine, produced by co-infiltrating with 6-methyl-strictosidine, respectively. Panel 3: MRM chromatogram of 7-methyl-akuammicine, produced by co-infiltrating with 6-methyl-strictosidine, respectively. Panel 3: MRM chromatogram of the empty vector negative control co-infiltrated with 6-methyl-strictosidine. #1; #2; #3 akuammicine isomers. Horizontal axis represents the retention time in minutes.



**Figure S17.** UHPLC-MS chromatograms in MRM mode of alkaloids produced in *N. benthamiana* leaves produced by co-infiltrating the genes CrSGD, CrGS, CrGO, CrRedOx1, CrRedOx2, CrSAT and chloro-strictosidine as substrate. Panel A: MRM chromatogram of stemmadenine acetate (left) and 6-Chloro-stemmadenine acetate (right), produced by co-infiltrating with strictosidine and 6-chloro-strictosidine, respectively. Panel B: MRM chromatogram of akuammicine and 6-chloro-akuammicine, produced by co-infiltrating with strictosidine, respectively. Panel C: MRM chromatogram of MRM trace of precondylocarpine acetate (left) and 6-chloro-precondylocarpine acetate (right), produced by co-infiltrating with strictosidine and 6-chloro-strictosidine, respectively. Panel C: MRM chromatogram of MRM trace of precondylocarpine acetate (left) and 6-chloro-strictosidine, respectively. Horizontal axis represents the retention time in minutes.



## Table S1. Tryptamine analogs

| Compound             | Company         |
|----------------------|-----------------|
| 4-Fluoro tryptamine  | Sigma Aldrich   |
| 5-Fluoro tryptamine  | Sigma Aldrich   |
| 6-Fluoro tryptamine  | Sigma Aldrich   |
| 7-Fluoro tryptamine  | Sigma Aldrich   |
| 4-Methoxy tryptamine | Sigma Aldrich   |
| 5-Methoxy tryptamine | Sigma Aldrich   |
| 6-Methoxy tryptamine | Sigma Aldrich   |
| 7-Methoxy tryptamine | Sigma Aldrich   |
| 5-Chloro tryptamine  | Alfa Aesar      |
| 6-Chloro tryptamine  | Cayman chemical |
| 7-Chloro tryptamine  | Sigma Aldrich   |
| 5-Methyl tryptamine  | Sigma Aldrich   |
| 6-Methyl tryptamine  | BIOSYNTH        |
| 7-Methyl tryptamine  | Sigma Aldrich   |
| 6-Hydroxy tryptamine | Sigma Aldrich   |
| 7-Bromo tryptamine   | Fluorochem      |
| 6-Hydroxy tryptamine | TRC             |

**Table S2.** Sequences of the genes used in this study. Genbank accession numbers: CrSGD (AF112888), CrGS (MF770507), CrGO (MF770508), CrRedox1 (MF770509), CrRedox2 (MF770510), CrSAT (MF770511), CrTHAS (KM524258.1), CrAS (CYP71AY1), SIUbi10p and SIUbi10t (SOLYC01G096290.2).

| CrSGD | AGGTCTCTAATGGGTTCTAAGGATGATCAATCACTTGTCGTGGCTATCAGTCCTGCCG<br>CCGAGCCTAACGGGAACCACTCAGTTCCTATACCGTTTGCATATCCGAGCATACCTAT<br>ACAGCCGCGAAAACATAATAAAACCTATAGTACACAGGCGGGACTTTCCTTCTGACTT<br>TATTCTTGGAGCTGGCGGTTCCGCGTACCAATGCGAAGGCGGCTTACAACGAGGGAAA<br>TAGAGGACCAAGCATTTGGGACACATTTACTAATAGATACCTGCAAAGATTGCAGA<br>CGGCAGTAACGGAAACCAGGGCAATTAACAGCTATAACTTATACAAAGAGGACATAA<br>AGATAATGAAACAGACTGGGCTTGAGAGCTACCGATTCTCTATCTCTTGGTCCCGAGT<br>TCTGCCTGGTGGAAACTTGGGCGGGGGTTAACAAGGACGGAGTGAAATTTTACCA<br>CGATTTCATTGACGAAACTACTGGCAAACGGTATTAACGGCGGGGGTGAAATTTTACCA<br>CGATTTCATTGACGAAACTACTGGCAAACGGTATTAACGGTGGATTTCCGCCACCTTGTTCAT<br>TGGGACCTCCCAGGCGTAGAAGATGAATACGGTGGATTTCCGCCACCTTGTTCAT<br>GGGACCTTCACAGAATACGCTGAAGATGAATACGGTGGATTTCCGCCACCACATAG<br>GTTGAGGACTTCACAGAATACGCTGAAGATGACTACGGCGCTTCAGGGTACGCTACGG<br>GAGAGTTCGCCCCGGCAGGGCCGAGCGGAGCTGACGGAAAAGGTGAGCCAGGAAAGGAT<br>CCTTACATTGCTACCCACAACCTTTTGCTCTCACAAAGGCAGCAGGAGGAGGTTACCA<br>GAAAGAACTTCCAAAAGTGCCAGGGCGGAGCTGACGGAAAAGGTGAGCCAGGAAAGGAG<br>CCTTACATTGCTACCCACAACCTTTTGCTCTCACATAAGGCAGCAGGAGGAGGTTACA<br>GAAGAACTTCCAAAAGTGCCAGGGCGGAGGAGATCGGCATAGTCTTAAACTCTATGT<br>GGATGGAACCCCTTAACGAGACTAAGGAAGATATCGACGCACGC                                                                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CrGS  | ATGGCCGGAGAAACAACCAAACTCGACCTTTCAGTGAAGGCTGTGGGATGGGGTGCT<br>GCAGATGCATCTGGTGTCCTTCAGCCCATCAAGTTCTATAGAAGAGTCCCTGGTGAAC<br>GGGATGTGAAGATTAGAGTTTTGTACTCTGGTGTTTGCAATTTCGATATGGAAATGGT<br>CAGAAACAAGTGGGGTTTCACCAGATATCCTTATGTGTTTGGACATGAAACTGCCGG<br>TGAGGTGGTAGAAGTTGGCAGCAAAGTAGAGAAATTCAAGGTTGGAGACAAGGTAG<br>CTGTGGGATGTATGGTCGGATCTTGTGGTCAATGTTATAATTGTCAAAGTGGAAAGGGA<br>GAATTACTGCCCAGAGCCCAATATGGCTGATGGATCTGTTATAATTGTCAAAGTGGAAAGGGA<br>ACGATCCTATGGGGGTTGTTCAAATGTGATGGATGGTTGTTGATGAAAAGTCGTCCTCCGA<br>TGGCCCGAAAACTTGCCTCAAGATAAAGGGGTTGCTCTCCTTTGTGCTGGGGGTGTGTG<br>TTTATAGCCCAATGAAACATTTGGGACTCGATAAGCCAGGAAAGCATATTGGGGTTT<br>TCGGGCTGGGAGGTCTTGGTTCTGTTGCTGTTAAGGCATTGAGGAAACATGG<br>GGCTACTGTTATTAGTACATCAAGGCGTAAGGAGAAGGAAAGCCATTGAAGAACATGG<br>TGCTGATGCTTTTGTTGTCAACACTGACTCTGAGCAATTGAAGGCCATTGAAGAACATGG<br>TGCTGATGCTTTTGTGGACACCCCCAGGTGGCCGCACTCCTATGTCACGAAGAACATGG<br>TGCTCAAGTTTGGGACACCACCCCCAGGTGGCCGCACTCCTATGCACGAGGTACT<br>ATTGGATGGTGTTGGGACACCACCCCCAGGTGGCCGCACTCCTATGCACGAGGTACT<br>ATTGCTCAAGTTTGACGGCGCGGGTTATGCTCGTAGGGCACCGGAAGTCCCTTTGGCAGGAAGTACT<br>ATTGCTCAAGTTTGACGGCGCGGGTTATGCTCGTAGGGCACCGGAAGTCCCACTGG<br>AGGCCTCAAAGAATACCAAAAAAGAAAGAAAAAGATAATCGGAAGTACCACTGG<br>AGGCCTCAAAGAGTACCAAGAAATGCTTGATTCGCAGCCAACAAAAACATTGAAGAACATGG<br>TGATACTGAAGTTATTGGGATTGACTATCTCAGCACTGCTATGGAACGTATCAAGAAT<br>TTGGATGTCAAGTACCGTTTTGCGATTGACATTGGAAACATTGAAGAACATGAAT<br>AA |

| CrGO     | ATGGAGTTTTCTTTCTCCTCACCAGCTCTCTACATAGTTTATTTCTTGCTTTTCTTGTG<br>GTAAGGCAATTATTGAAACCCAAAAGTAAGAAAGAAAAATTGCCACCAGGTCCAAGAAC<br>ACTACCCTTAATTGGAAACCTTCATCAACTCTCGGGACCTTTACCTCATCGTACCCTA<br>AAAAATTTGTCCGATAAACATGGTCCTTTGATGCACGTGAAAATGGGCGAACGTTCG<br>GCAATTATAGTATCAGATGCAAGAATGGCAAAAATAGTTCTTCATAATAACGGTTTA<br>GCCGTTGCAGATCGGTCAGTAAATACTGTCGCAAGAATAGTTCTTCATAATAAGCGTTTA<br>GCAGTTGCAGATCGGTCAGTAAATACTGTCGCAAGAATTATGGCTAATATAGTGTGG<br>GTGTTACCTTTGCTCAGTATGGAGATTACTTAACAAAATTACGTCAAATCTATACTTT<br>GGAACTTTTAAGTCAGAAAAAAGTTCGATCTTTCTACAGTTGTTTGAAGATGAACTC<br>GATACTTTTGTTAAGTCAATTAAGTCTAACGATGGACAACCTATGGTTTTGAAGAGAAACTC<br>GATACTTTGGTTAGTGAGAAAAAGTTCGATCAACGTTGGACAACCC<br>ACTTAGATTGGAGGAATTAAGATAGTGAAGAAAACGTCGTTACTGTCTGGAACACC<br>ACTTAGATTGGAGGAGTCTTTTCCAAGTGAAGAAAACGTCGTTACTGTCTGGAACACC<br>ACTTAGATTGGAGGACTTTTGCAAGAATAGTGAAGAAAACGTCGTTACTGTCTGGAACACC<br>ACTTAGATTGGAGGACTTTTGCAAGGATGATAGTGAAGATATTTGGAAGAAACTAT<br>GTGAAAGGGAAAAGGCTTCTGAAGTCTCAAAAGAGGCAAAAGGATGAAGAAACAACAA<br>CTAATGCAGACATCAAAGGCCATTATCTTTGAAGATGGATG                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CrRedOx1 | ATGGCTGATCGCGTGAAAACCGTAGGATGGGCAGCTCACGACAGCTCCGGCTTCCTC<br>TCTCCCTTCCAATTCACTCGAAGGGCAACAGGTGAAGAAGATGTGAAGGTGAAGGTG<br>TTGTACTGTGGTGTCTGTCACTCAGACCTTCATAACATCAAGAACGAAATGGGATTCA<br>CCTCCTACCTTGTGTCCCCGGGCATGAGGTTGTGGGGGAAGTGACGAAATGGGGA<br>ACAAAGTAAAGAAATTCATAATTGGTGATAAAAGTTGGGGGTTGGATTATTCGTTGACT<br>CATGTGGCGAATGCGAACAATGTGTGAATGAAGATGTAGAAACCTATTGTCCCAAATTGA<br>AAATGGCTTATTTATCCATTGATGATGATGAAGAACCTATTGTCCCAAATTGA<br>AAATGGCTATCAAAGAACGCTACGTTTTCCGGTGGCCGGAAAATCTTCCTCTAC<br>CCGCCGGTACACCGCTTCTGGGTGCCGGTAGTACAGTTAAGTCCAATGAAATACTA<br>TGGACTTGATAAGTCAGGACAACATCTAGGAGTTGTTGGCCTGGGGACTAGTAAA<br>TGGACTTGATAAGTCAGGACAACATCTAGGAGTTGTTGGCCTGGTGGACTTGGTCAT<br>TTAGCTGTTAAATTTGCAAAGGCATCAATCAACCTTGGTGGTGATGCATTAGTACCTCTC<br>CTAGCAAGAAGGATGAAGCCATCAATCACCTTGGTGGTGATGCATTAGTACCACA<br>GTATCAAGAGCAAACCCAGAAAGCAATGAGCACAATGGAATGGCATAATTGACACA<br>GTATCAAGAGCAAACCCAGAAAGCAATGAGCACTATGGAATTGAAACCAAATGGGAAGC<br>TAATTGTTGGTGGCACCAAATAAACCAGTTGAATTAGATATTCTATTTCTTGTCAT<br>GGGAAGGAAAATGCTCGGAACACTGCTGTTGGGGGGAGTGAAAGGAAGCCAAAGGAA<br>TGATCGATTTTGCAGCAACAATGGTATAGTTGCAGATGAAAGGAAGCAAAGGAA<br>TGATCGATTTTGCAGCAAAACATGGTATAGTTGCAGAGGAGGAAAATGGGAAACACAAAGGAATGGTATAGTTGCAAAGGAAGCAAATGG<br>AGAATGTGAACAATGCAAAGAAACATGGTATAGTTGCAGATGTAGAAGTATGGGAAATGG<br>AGAATGTGAACAATGCAAATGGAACGGCGCTTGCGAAGGGGGATGTTAGATATAGATTTG<br>TTCTTGATATTGGGAATGCAACGAATGAGCGGCTTGCGGAAGGGGGATGTTAGATATAGATTTG<br>TTCTTGATATTGGGAATGCAAACAACATGGAATGGCATTGCGGTTAA |

| CrRedOx2 | ATGGAAAAGCAAGTTGAGATCCCTGAAGTAGAATTGAATTCAGGACATAAAATGCCA<br>ATTGTGGGATACGGAACATGCGTGCCAGAACCCATGCCACCGTTGGAAGAACTAACC<br>GCAATCTTCTTAGATGCAATAAAGGTTGGTTACCGGCACTTCGACACGGCTTCGAGTT<br>ACGGCACAGAGGAGGCACTTGGTAAAAGCCATAGCTGAGGCTATAAACAGCGGTTTG<br>GTTAAAAGTAGGGAGGAATTCTTCATCAGTTGTAAGCTGTGGATTGAAGATGCAGAT<br>CATGACCTTATCTTGCCTGCCCTCAACCAGTCACTTCAGATTCTTGGGGTTGATTATTT<br>GGATCTATATATGATACACATGCCGGTGAGAGTGAGGAAAGGTGCTCCCATGTTCAA<br>TTATTCAAAAGAGGATTTCCTTCCATTTGACATACAAGGTACATGGAAGGCCATGGA<br>AGAGTGCAGCAAACAAGGATTGGCCAAGTCTATTGGTGTCAGCAACTACTCTGTTGA<br>AAAACTCACTAAACTCCTAGAAACCTCCACTATTGCTGCCATTTTGCAAAGGAAAAACATT<br>CATATAACATCATGGGCAACAGAGAAAATTGCTGCCCATTTTGCAAAGGAAAAACATT<br>CATATAACATCATGGTCCCCACTCCTATCTTATGGTGTCGCTTGGGGAAGTAATGCTG<br>TCATGGAAAATCCTGTTCTCCAACAAATTGCGGCTTCCAAAGGCAAAACTGTGGCAC<br>AGGTGGCACTAAGATGGATATACGAGCAAGGAGCAAGTCTCATTACAAGGACAAACATT<br>CATATGAAATCTGTTCTCCAACAAATTGCGGCTTCCAAAGGCAAAACTGTGGCAC<br>AGGTGGCACTAAGATGGATATACGAGCAAAGGAGCAAGTCTCATTACAAGGACACACA<br>ACAAGGACAGAATGTTTGAAAATGTTCAAATTTTTGATTGGGAACTCAGTAAAGAAA<br>AATTGGATCAAATTCATGAAATCCCCACAACGTAGGGGTACTTTAGGTGAAGAATTTA<br>TGCATCCAGAAGGACCGATCAAAATCCCCACAACGTAGGGAACTTTGGGAAGAACTTTTA<br>TGCATCCAGAAGGACCGATCAAAATCCCCAGAGGAGCATTTGGGAAGGAA |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CrSAT    | ATGCACCCCAGATGCAGATATTGTCAGAGGAACTGATTCAACCATCATCTCCGACAC<br>CCCAAACCTTGAAAACCCATAAACTTTCCCATCTTGATCAAGTTTTATTAACATGTCA<br>TATCCCTATTATTCTCTTTTATCCAAATCAATTGGACTCAAATCTCGATCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| CrTHAS | ATGGCAATGGCTTCAAAGTCACCTTCTGAAGAAGTATATCCAGTGAAGGCATTTGGT<br>TTGGCTGCTAAGGATTCTTCTGGGCTTTTCTCTCCATTCAACTTCTCAAGAAGGGCCA<br>CAGGGGAACACGATGTGCAGCTCAAAGTATTATACTGTGGGACTTGCCAATATGACA<br>GGGAAATGAGCAAAAACAAATTTGGATTTACAAGCTATCCTTATGTTTAAGGGCATG<br>AAATTGTGGGTGAGGTAACTGAAGTTGGCAGCAAGGTGCAGAAATTCAAAGTCGGG<br>GACAAAGTGGGCGTAGCAAGCATAATTGAAACTTGTGGCAAAATGTGAAATGTGTACA<br>AATGAAGTTGAAAATTACTGTCCAGAAGCAGGATCAATAGACAGCAATTACGGGGC<br>ATGTTCAAATATAGCAGTGATAAACGAGAAGCAGGATCAATAGACAGCAATTACGGGGC<br>ATGTTCAAATATAGCAGTGATAAACGAGAAATTTGTCATCCGTTGGCCTGAAAATCTT<br>CCTTTGGATTCTGGTGTTCCTCTTCTATGTGCAGGAAATCACGGCTTATAGTCCCATGA<br>AACGTTATGGACTTGATAAACCTGGAAAACGTATCGGCATAGCCGGTCTAGGAGGAC<br>TTGGACATGTAGCTCTTAGATTGCCAAAGCTTTTGGGCATAAGCGGGTCAAGGAGAAC<br>TTGGACATGTAAGCACAAAACGTGAAGCCTTTGAGAAATCGGGACAGTGATTAG<br>TTCTTCACTTAAGAAAAACGTGAAGCCTTTGAGAAATTCGGAGCAGGATCATT<br>AGACACTATACCAGAAGAAATGCAGGGTGCAGCAGGAACATTGGATGGGATCAT<br>AGACACTATACCAGGGAATCACTCTCTTGAGCCACTCCTTGGGAGTATGGAGGAGCTCTT<br>GGGAAGCTTATCATTTAGGTGCACCAGAAATGCCGGAGCAGCATTGGATGGGATCAT<br>AAGACACTATACCAGGGAATCACTCTCTTGAGCACCTCTTGAGGATAGAGGAACATAC<br>AAGAGATGATTGAAATTGCAGCAGAAACGTAATGCCGGAGCAGGATCATTAG<br>AAGAGATGATTGAAATTGCAGCAGAACACAACATAGTAGCAGATGTGGAAGTATCC<br>CTATTGGGTGGAAAAAGTAATGGCTGCCAGTACTGCTGGGAGTATGAAGGAAATAC<br>AAGAGATGATTGAAATTGCAGCAGAACACAACATAGTAGCAGATGTGGAAGGTAATCC<br>TTTTGACTATGTGAACACTGCAATGGAGCGCCTTGATAACTCTGATGTGAGAGATATCG<br>TTTCGTGATTGATATAGGGAACACTCTGAAATCAAATTAA |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CrAS   | ATGGATCAGCTGATGAACTTCTCTCTCTCACCTCTCCCATTTTCCTTCTTCTCTCTCTCT<br>ATTTCTCATCATCTTAACTAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| SlUbi10 Pr | GGAGGTCAACTACCCCAATTTAAATTTTATTTGATTAAGATATTTTTATGGACCTACT   |
|------------|--------------------------------------------------------------|
| _          | TTATAATTAAAAAATATTTTCTATTTGAAAAGGAAGGACAAAAATCATACAATTTTGGT  |
|            | CCAACTACTCCTCTCTTTTTTTTTTTGGCTTTATAAAAAAGGAAAGTGATTAGTAATA   |
|            | AATAATTAAATAATGAAAAAAGGAGGAAATAAAATTTTCGAATTAAAATGTAAAAG     |
|            | AGAAAAAGGAGAGGAGTAATCATTGTTTAACTTTATCTAAAGTACCCCAATTCGAT     |
|            | TTTACATGTATATCAAATTATACAAATATTTTATTAAAAATATAGATATTGAATAATTT  |
|            | TATTATTCTTGAACATGTAAATAAAAATTATCTATTATTTCAATTTTTATATAAACTAT  |
|            | TATTTGAAATCTCAATTATGATTTTTTAATATCACTTTCTATCCATGATAATTTCAGCT  |
|            | TAAAAAGTTTTGTCAATAATTACATTAATTTTGTTGATGAGGATGACAAGATTTCGGT   |
|            | CATCAATTACATATACACAAATTGAAATAGTAAGCAACTTGATTTTTTTT           |
|            | GATAATGACAAAGACACGAAAAGACAATTCAATATTCACATTGATTTATTT          |
|            | ATAATAATTACAATAATAATATTCTTATAAAGAAAGAGATCAATTTTGACTGATCCA    |
|            | AAAATTTATTTATTTTACTATACCAACGTCACTAATTATATCTAATAATGTAAAACA    |
|            | ATTCAATCTTACTTAAATATTAATTTGAAATAAACTATTTTTATAACGAAATTACTAA   |
|            | ATTTATCCAATAACAAAAAGGTCTTAAGAAGACATAAATTCTTTTTTGTAATGCTCA    |
|            | AATAAATTTGAGTAAAAAAGAATGAAATTGAGTGATTTTTT                    |
|            | TAAATAATTAATTTCAATATAATAAAACAGTAATATAATTTCATAAATGGAATTCAAT   |
|            | ACTTACCTCTTAGATATAAAAAAAAAAAAAAAAAAAAAA                      |
|            | CAATTTAAATAAAATATTTAATATTTTCAATCAAATTTAAATAAT                |
|            | CGTAGAAAAAGAGCAATATATAATACAAGAAAGAAGAATTTAAGTACAATTATCAACT   |
|            | ATTATTATACTCTAATTTTGTTATATTTAATTTCTTACGGTTAAGGTCATGTTCACGAT  |
|            | AAACTCAAAATACGCTGTATGAGGACATATTTTAAATTTTAACCAATAATAAAACTA    |
|            | AGTTATTTTAGTATATTTTTTTGTTTAACGTGACTTAATTTTTCTTTC             |
|            | GTGTAAGTGTCAACCTCATTCTCCTAATTTTCCCAACCACATAAAAAAA            |
|            | GTAGCTTTTGCGTGTTGATTTGGTACACTACACGTCATTATTACACGTGTTTTCGTATG  |
|            | ATTGGTTAATCCATGAGGCGGTTTCCTCTAGAGTCGGCCATACCATCTATAAAATAAA   |
|            | GCTTTCTGCAGCTCATTTTTTCATCTTCTATCTGATTTCTATTATAATTTCTCTGAATTG |
|            | CCTTCAAATTTCTCTTTCAAGGTTAGAATTTTTCTCTATTTTTTGGTTTTGTTTG      |
|            | GATTCTGAGTTTAGTTAATCAGGTGCTGTTAAAGCCCTAAATTTTGAGTTTTTTCGGT   |
|            | TGTTTTGATGGAAAATACCTAACAATTGAGTTTTTTCATGTTGTTTTGTCGGAGAATG   |
|            | CCTACAATTGGAGTTCCTTTCGTTGTTTTGATGAGAAAGCCCCTAATTTGAGTGTTTTT  |
|            | CCGTCGATTTGATTTTAAAGGTTTATATTCGAGTTTTTTTCGTCGGTTTAATGAGAAGG  |
|            | CCTAAAATAGGAGITTTTCTGGTTGATTTGACTAAAAAAGCCATGGAATTTTGTGTTT   |
|            | TIGATGICGCITIGGTTCTCAAGGCCTAAGATCTGAGTTTCTCCGGTTGTTTTGATGAA  |
|            | AAAGCCCTAAAATTGGAGTTTTTATCTTGTGTTTTAGGTTGTTTTAATCCTTATAATTT  |
|            | GAGITTTTTCGITGTTCTGATTGTTGTTGTTTTTATGAATTTTGCAG              |
|            |                                                              |

| G17 11 14 0 TT |                                                             |
|----------------|-------------------------------------------------------------|
| SIUb110_Te     | GCTTGFTGTGGTTGTCTGGTTGCGTCTGTTGCCCGTTGTCTGTTGCCCATTGTGGTGGT |
|                | TGTGTTTGTATGATGGTCGTTAAGGATCATCAATGTGTTTTCGCTTTTTGTTCCATTCT |
|                | GTTTCTCATTTGTGAATAATAATGGTATCTTTATGAATATGCAGTTTGTGGTTTCTTTT |
|                | CTGATTGCAGTTCTGAGCATTTTGTTTTTGCTTCCGTTTACTATACCACTTACAGTTTG |
|                | CACTAATTTAGTTGATATGCGAGCCATCTGATGTTTGATGATTCAAATGGCGTTTATG  |
|                | TAACTCGTACCCGAGTGGATGGAGAAGAGCTCCATTGCCGGTTTGTTT            |
|                | CGGAGGGCAACTCCTGGGAAGGAACAAAAGAAAAACCGTGATACGAGTTCATGGGT    |
|                | GAGAGCTCCAGCTTGATCCCTTCTCTGTCGATCAAATTTGAATTTTGGATCACGGCA   |
|                | GGCTCACAAGATAATCCAAAGTAAAACATAATGAATAGTACTTCTCAATGATCACTT   |
|                | ATTTTTAGCAAATCAGCAATTGTGCATGTCAAATGATTTCGGTGTAAGAGAAAGAGT   |
|                | TGATGAATCAAAATATCTGTAGCTGGATCAAGAATCTGAGGCAGTTGTATGTA       |
|                | TGATCTTTCCGCTACAATGATGTTAGCTATCCGAGTCAAATTGTTGTAGAATTGCATA  |
|                | CTTCGGCATCACATTCTGGATGACATAATAAATAGGAAGTCTTCAGATCCCTAAAAA   |
|                | ATTGAGAGCTAATAACATTAGTCCTAGATGTAACTGGGTGACAACCAAGAAAGA      |
|                | ATGCAAATACTACTTTTGTTTGAAGGAGCATCCCTGGTTTGACATATTTTTTCTGAAT  |
|                | ATCAAACTTTGAAACTCTACCTAGTCTAATGTCTAACGACAGATCTTACTGGTTTAAC  |
|                | TGCAGTGATATCTACTATCTTTTGGAATGTTTTCTCCTTCAGTTATACATCAAGTTCCA |
|                | AGATGCAGGTGTGCTTGATTGATGTACATGGCTGTGAGAAGTGCATCCTGATGTTCA   |
|                | GATGATGGTTCATTCTAATGTCTTTTCCTTCAATCAGTTTTCTCAGTCTGACTTAGCTT |
|                | GTTTCATCTGCATGTTTGAATGTTCGTTTACTCATAGTAATTGCATTTTTGTAGCAGAA |
|                | CATATCATTGGTCATGGTTTCAACTGTGCGCGAGTCTTATGCTTATTCAAACTAGGAA  |
|                | AGCCTCCGTCTAGAGGGTACACGAGTTGTTGCTCTGTGTGCGTCAGTCCATAGTATTA  |
|                | ATCTTGCTAGTTGTAGTATATTGTTTATGTGGACTCGGAATTCATCATATGCTCCTTCT |
|                | TTGCATCAAGTAAGGCAAGGTAATGTATAGAAGCTTTTTAACTCTTTCATGGAAGCTG  |
|                | GCCTTTGCCAGCATACCATCCAGAAGATATCAACCCTGCATCTTGGCTGCCG        |
|                |                                                             |

**Table S3.** Sequences of forward and reverse primers used in this investigation. Underlined sequences are the cloning overhangs.

| Gene           | Forward primer                                         | Reverse primer                                     |
|----------------|--------------------------------------------------------|----------------------------------------------------|
| CrSGD          | TTGCGGTCTCTAATG<br>GGTTCT<br>AAGGATGATCAA              | GCAAGGTCTCTAAGC<br>TCTGTTTCTTAA                    |
| CrGS           | TTGCGGTCTCTAATG<br>GAAACAACCAAA                        | GCAAGGTCTCTAAGCTTATTCCT<br>CAAATTTCAATG            |
| CrGO           | TTGCGGTCTCTAATG<br>GAGTTTT<br>CTTTCTCCTCA              | <u>GCAAGGTCTCTAAGC</u> TTAATCGT<br>TAACAAGATGAGGAA |
| CrRedOx1       | <u>TTGCGGTCTCTAATG</u> CTGATC<br>GCGTGAAAACCGT         | <u>GCAAGGTCTCTAAGC</u> TTAACCGA<br>CAGCTACTGTTG    |
| CrRedOx2       | <u>TTGCGGTCTCTAATG</u> GAAAAG<br>CAAGTTGAGATC          | GCAAGGTCTCTAAGCTTACAAGT<br>CTCCATCCCAAA            |
| CrSAT          | TTGCGGTCTCTAATGCGGGTC<br>TCTAATGCACCCCAGATGCAG<br>ATAT | <u>GCAAGGTCTCTAAGC</u> TCAATTGC<br>TAAAATCAGT      |
| CrTHAS         | <u>TTGCGGTCTCTAATG</u> GCAATG<br>GCTTCAAAGTCAC         | <u>GCAAGGTCTCTAAGC</u> TTAATTTG<br>ATTTCAGAGTGTTC  |
| CrAS           | TTGCGGTCTCTAATG<br>GATGAACTTCTCTC                      | GCAAGGTCTCTAAGC<br>TTCAACTACAGTT                   |
| SlUbi10_<br>Pr | TGGTCTCGGGAG<br>CCCAATTTAAAT                           | TGGTCTCGCATTCTGCAAAATTC<br>ATAAAAACAACAA           |
| SlUbi10_<br>Te | <u>GTGGTCTCG</u> GCTTGTTGTGGTT<br>GTCTGGTTGCGTC        | GTGGTCTCGAGCG<br>AGATGCAGGGTTGATAT                 |

| Table S4 | MRM transitions, | collision energy | y and retention | times of the | compounds a | analyzed in th | is |
|----------|------------------|------------------|-----------------|--------------|-------------|----------------|----|
| study.   |                  |                  |                 |              |             |                |    |

|                                    | Quantifier ion |         | Qualifier ion 1 | Qualifier ion 2 |                |
|------------------------------------|----------------|---------|-----------------|-----------------|----------------|
| Compound                           | Q1 m/z         | CE (eV) | Q2 m/z          | Q2 m/z          | Retention time |
| Serpentine                         | 349.18         | 55      | 205.9           | 262.9           | 4.95           |
| 4-Fluoro alstonine                 | 367.18         | 55      | 223.9           | 280.9           | 5.20           |
| 5-Fluoro alstonine                 | 367.18         | 55      | 223.9           | 280.9           | 5.18           |
| 6-Fluoro alstonine                 | 367.18         | 55      | 223.9           | 280.9           | 5.23           |
| 7-Fluoro alstonine                 | 367.18         | 55      | 223.9           | 280.9           | 5.05           |
| 7-Chloro alstonine                 | 383.18         | 55      | 239.9           | 296.9           | 5.68           |
| Stemmadenine acetate               | 397.2          | 41      | 168.2           | 227.9           | 4.16           |
| 4-Fluoro stemmadenine acetate      | 415.20         | 41      | 186.2           | 245.2           | 4.71           |
| 5-Fluoro stemmadenine acetate      | 415.20         | 41      | 186.2           | 245.2           | 4.64           |
| 6-Fluoro stemmadenine acetate      | 415.20         | 41      | 186.2           | 245.2           | 4.47           |
| 7-Fluoro stemmadenine acetate      | 415.20         | 41      | 186.2           | 245.2           | 4.39           |
| Tetrahydroalstonine                | 353.20         | 25      | 144.2           | 122.2           | 4.77           |
| 6-methyl tetrahydroalstonine       | 367.2          | 25      | 158.0           | 235.0           | 5.39           |
| 7-methoxy tetrahydroalstonine      | 383.2          | 25      | 174.0           | 251.0           | 4.84           |
| Precondylocarpine acetate          | 395.2          | 22      | 168.9           | 227.0           | 3.85           |
| 4-fluoro precondylocarpine acetate | 413.2          | 22      | 186.9           | 245.0           | 3.95           |
| 5-fluoro precondylocarpine acetate | 413.2          | 22      | 186.9           | 245.0           | 4.21           |
| 6-fluoro precondylocarpine acetate | 413.2          | 22      | 186.9           | 245.0           | 4.46           |
| 7-fluoro precondylocarpine acetate | 413.2          | 22      | 186.9           | 245.0           | 4.38           |
| Akuammicine                        | 323.2          | 20      | 291.1           | 182.1           | 4.22           |
| 6-Methyl akuammicine               | 337.2          | 20      | 305.1           | 196.1           | 5.20           |
| 7-Methyl akuammicine               | 337.2          | 20      | 305.1           | 196.1           | 5.60           |
| 4-fluoro akuammicine               | 341.2          | 20      | 309.1           | 200.1           | 4.21           |
| 5-fluoro akuammicine               | 341.2          | 20      | 309.1           | 200.1           | 4.49           |
| 6-fluoro akuammicine               | 341.2          | 20      | 309.1           | 200.1           | 4.70           |
| 7-fluoro akuammicine               | 341.2          | 20      | 309.1           | 200.1           | 5.00           |