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Self-supervised machine learning pushes 
the sensitivity limit in label-free detection of 
single proteins below 10 kDa

Mahyar Dahmardeh    1,2,6, Houman Mirzaalian Dastjerdi    1,2,3,6, 
Hisham Mazal    1,2, Harald Köstler3,4 & Vahid Sandoghdar    1,2,5 

Interferometric scattering (iSCAT) microscopy is a label-free optical  
method capable of detecting single proteins, localizing their binding 
positions with nanometer precision, and measuring their mass. In the ideal 
case, iSCAT is limited by shot noise such that collection of more photons 
should extend its detection sensitivity to biomolecules of arbitrarily 
low mass. However, a number of technical noise sources combined with 
speckle-like background fluctuations have restricted the detection limit in 
iSCAT. Here, we show that an unsupervised machine learning isolation  
forest algorithm for anomaly detection pushes the mass sensitivity limit 
by a factor of 4 to below 10 kDa. We implement this scheme both with a 
user-defined feature matrix and a self-supervised FastDVDNet and validate 
our results with correlative fluorescence images recorded in total internal 
reflection mode. Our work opens the door to optical investigations of 
small traces of biomolecules and disease markers such as α-synuclein, 
chemokines and cytokines.

Analysis of nanometer-scale matter is of the utmost importance for 
a variety of biomedical investigations1–5. During the last 100 years 
many clever techniques have been invented for characterization of 
macromolecules, for example, to resolve structure, map dynamics, 
assess chemical composition, and measure physical quantities such 
as size and weight. Methods based on nuclear magnetic resonance 
spectroscopy, electrophoresis, mass spectrometry, electron micros-
copy, fluorescence imaging and plasmon resonance spectroscopy 
have introduced decisive information, but each approach also has its 
limitations. Thus, new innovations are continuously sought to push 
the measurement boundaries. Optical methods are desirable in this 
quest because they can be non-invasive and compatible with real-time 
studies. Indeed, the optical cross-section of matter is intrinsically large 
enough to enable the detection of single molecules and proteins in 
direct extinction measurements6–8, in which the incident field (or a 

fraction of it) interferes with the tiny amount of light that is coherently 
scattered by the nano-object of interest9–11.

The interferometric signal that is generated by the scattered light 
(iSCAT) not only enables the detection and sensing of sub-wavelength 
nanoparticles such as single proteins, but it also provides information 
on the particle size8. Indeed, iSCAT measurements have recently been 
calibrated to determine protein mass11,12, leading to a technology that 
is now also offered commercially (Refeyn Ltd., Oxford, UK). Given that 
the sensitivity of iSCAT is ultimately limited by shot noise10,13,14, one 
could expect to detect an arbitrarily small amount of matter if only 
one could collect a sufficiently large number of photons. In practice, 
however, the dynamics of residual background fluctuations prevents 
one from reaching this ideal situation14, and hence proteins lighter 
than approximately 40 kDa have not been detected11. In this work, we 
report on a substantial improvement in iSCAT detection sensitivity to 
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intensity of the scattered light (∣Es∣2) becomes negligible compared 
with the other terms in equation (1). Hence, the iSCAT contrast (C) of a 
small particle can be formulated as

C = Pd − Pr
Pr

∼ 2 |Es||Er|
cosϕ = 2 sr cosϕ , (2)

where Pd and Pr refer to the detected and reference powers, respectively. 
Considering that α is proportional to the particle volume and assuming 
a constant density for protein matter, one can conclude that C is linearly 
proportional to the particle mass8. Thus, the iSCAT signal provides a 
measure for mass photometry11,12.

The iSCAT image in Fig. 1b was recorded in one frame in a short 
exposure time of 20 μs. Visualizing single proteins, however, requires 
longer integration times and an elaborate analysis to account for the 
speckle-like background features that are caused by coherent scat-
tering from slight imperfections of the sample surface14. In brief, this 
analysis exploits the temporal change of the signal as a protein lands on 
the sensor substrate to eliminate the static background of the sample 
by comparing each video frame with its neighbors. In practice, a series 
of careful steps establish an algorithm that performs a differential 
rolling average (DRA) of several hundred camera frames, followed by 
the application of various tools to identify the point spread function 
(PSF) of individual proteins and determine their iSCAT contrasts8,12. 
It was found that the integration time for each protein event can-
not be extended beyond a few seconds due to residual background 
dynamics. As a result, the detection sensitivity reaches a plateau at a 
molecular weight of approximately 40–50 kDa. The analysis procedure  
and its limitations are given in a recent publication14 as well as in  
Supplementary Information, Section 3.

Machine learning
Computer vision and machine learning methods have recently been 
used in microscopy applications with an emphasis on correcting the 
background or enhancing the signal. For background correction, con-
ventional computer vision methods have been used, exploiting tem-
poral and spatial information in two independent steps16,17. In addition, 
scientists have applied supervised18 and unsupervised19 deep neural 
networks (DNNs) in machine learning. For example, supervised DNNs 
were used to extract spatiotemporal features in localization microscopy 
and particle tracking20,21. Supervised algorithms are, however, limited 
in scope because they require knowledge of the ground truth, which 
in turn implies full knowledge of the signal and noise properties. An 
example for getting around this restriction has recently been reported, 
in which an unsupervised DNN based on FastDVDnet22 was used to 
denoise an image series23.

In this work, we exploit self-supervised FastDVDnet in a different 
tailor-made scheme whereby we first denoise our images and then sub-
tract the de-noised frame from the frame of interest to identify the PSFs 
of the rare landing proteins. Here, a frame t in the DRA video is analyzed 
by comparing it with its neighboring frames t − k and t + k with suitable 
stride k (Supplementary Table 1). Next, we classify the outcome using 
isolation forest (iForest)24, which is an unsupervised algorithm in anomaly 
detection. Anomaly detection encompasses a general class of algorithms 
in which one first establishes a ‘normal’ signal and then identifies devia-
tions or ‘anomalies’. The normal signal in our experiment is the residual 
background speckle image obtained by averaging over multiple frames 
immediately before and after the frames that contain a protein landing 
event. The output of iForest thus becomes a vector of true (anomalous) 
and false (normal) values for each pixel. iForest has been successfully 
applied to computer vision, signal processing and communication appli-
cations15,25–27. We present a brief overview of various concepts relevant to 
our work in the Supplementary Information.

To gain more direct insight into the underlying physical criteria in 
anomaly detection, we also explore a user-defined approach in which 

the range of 9 kDa using machine learning approaches for anomaly 
detection15. We benchmark and validate our results by performing 
fluorescence detection in total internal reflection (TIRF) mode. More 
sophisticated analysis of the signal and background might enable the 
sensitivity limit to be extended even further in the near future.

The iSCAT signal
Figure 1a shows the iSCAT sensing set-up. A laser beam centered at a 
wavelength of 445 nm illuminates a sample that consists of an aqueous 
buffer on a microscope coverglass. A fraction of the incident light is 
reflected at this interface and is used as the reference in its interfer-
ence with the scattered light from the nano-object under study10,13. 
The detected optical power on the camera is

Pd ∝ |Er|2 + |Es|2 + 2|Er||Es| cosϕ, (1)

where Er = rEi, Es = sEi and Ei denote the electric fields of the reference, 
scattered and incident light fields, respectively, and ϕ signifies the 
phase difference between the latter two quantities. To add fluores-
cence imaging capabilities, a laser beam centered at a wavelength of 
631 nm is used to illuminate the sample in TIRF mode through the same 
microscope objective. The fluorescence signal is filtered through a 
dichroic mirror and is imaged on a second camera. Figure 1b shows an 
example of the iSCAT image for 100 nm polymer beads bound to the 
coverglass. In Fig. 1c we show the TIRF image of the same beads, which 
contained fluorescent dyes.

The scattered field of a nanoparticle is proportional to the incident 
field via its polarizability (α) so that s ∝ α. For small nano-objects, the 
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Fig. 1 | Optical set-up. a, Schematic diagram of the optical set-up. A laser beam 
at 445 nm is focused at the back focal plane of an oil-immersion objective to 
generate a quasi-collimated beam with a diameter of approximately 6 μm at 
the sample surface. The sample chamber consists of a microscope coverglass 
sealed to the bottom of a plexiglass dish containing 2 ml buffer solution. L1, 
L2, L3, L4 and L5 denote the lenses, including the microscope objective. CS, BS 
and M1 signify the coverglass, beam splitter and the objective coupling mirror, 
respectively. D1, D2, S1 and M2 show the dichroic filters and the mirror used for 
guiding the TIRF beam. C1 and C2 represent the iSCAT and TIRF imaging cameras, 
respectively. b, Single-frame, experimental iSCAT image of 100 nm fluorescent 
beads deposited on the coverglass. Color bar shows the camera bit readout.  
c, Single-frame TIRF image of the same beads as in b. Scale bars, 1.5 μm.
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one chooses a set of temporal (mean, standard deviation and so on) and 
spatial features (for example, PSF-like figures) that are evaluated for a 
certain pixel range in each image frame (Supplementary Figs. 3–8). A 
given frame t is then re-shaped for each feature into a one-dimensional 
vector with elements representing the pixel values of that frame. 
Next, a feature matrix is composed of the one-dimensional vectors 
that are produced from the aforementioned frames (Supplementary  
Figs. 8a, and 9a), and the resulting feature matrix is fed to iForest for 
classification. We note that the initial choice of the user-defined fea-
tures is based on physical considerations such as the PSF size, typical 
DRA window and camera frame rate, which mostly depend on the opti-
cal system and not on the protein under study. In other words, the user 
can explore various options, which can be validated on independent 
data, for example, on larger proteins. Furthermore, the usefulness 
of the chosen features can be assessed in simulations of synthetic 
data. Nevertheless, the success and efficiency of the user-defined  
feature matrix depend on the aptitude and judgment of the user. Hence, 
we rely on the DNN for our final conclusions given that it does not 
require critical input from the user.

Results
Before we apply our analysis to the detection of very small proteins, we 
investigate its performance on a bovine serum albumin (BSA) sample, 
which, with a molecular mass of approximately 66 kDa, is one of the 
smallest proteins that can be detected with existing techniques. In 
Fig. 2a we show an example of the raw image recorded on the iSCAT 
camera, and Fig. 2b shows a single protein from that measurement after 
a typical DRA analysis on 1,500 neighboring frames. Although a small 
protein is successfully detected, the image also shows background 
fluctuations that are not fully eliminated by the existing algorithm, 
possibly due to various electronic, mechanical or fluidic sources of 
noise (Supplementary Information, Section 1 and ref. 14).

For our current discussion, it suffices to consider the residual 
signal fluctuations as ‘noise’ in the recognition of the particle contrast, 
which acts as the ‘signal’. Thus, the problem can be reduced to the chal-
lenge of deciphering image attributes at a given signal-to-noise ratio 
(SNR). In our set-up, proteins with a molecular mass of 40 kDa, which is 
the lowest that has been reported in the literature11, have an SNR of ~3, 
whereby the noise level is defined as the root mean square (RMS) of the 
residual background fluctuations. Here, it is important to note that the 
resulting speckle noise is not white because the spatial variations of the 
background are governed by the same instrument response function 
that determines the system PSF. This structured background makes it 
particularly difficult to identify the signal18. In this work, we show that 
the application of machine learning algorithms enables us to detect 
proteins as small as 9 kDa, corresponding to an SNR of ~1.4 in our set-up.

To improve the robustness of the results, we labeled the proteins 
under study with ATTO 647 dye molecules with a negligible molecular 
weight of approximately 0.7 kDa and negligible extinction coefficient 
at the iSCAT illumination wavelength, so that we can monitor them via 
the accompanying TIRF detection (Fig. 2c). To check the purity of the 
protein samples after labeling, we ran a gel electrophoresis (sodium 
dodecylsulfate–polyacrylamide gel electrophoresis) (Supplemen-
tary Information, Section 2). We note that variations in the number 
of fluorophores per protein do not disturb the study because we aim 
to identify only the protein. We found that co-illumination of the red 
and blue laser beams led to fast photobleaching, preventing us from 
performing simultaneous iSCAT and TIRF measurements (Supplemen-
tary Information, Section 10). We, thus, interlaced the two recording 
periods with typical repetition cycles of 30 s.

We now examine the same measurements using anomaly detec-
tion. Figure 2d presents the location of the resulting anomalous pixels 
for all frames that were used to detect the protein under discussion  
by using a user-defined feature matrix (Supplementary Fig. 8).  
To suppress false-positive events, we apply a morphological operation 
to eliminate unconnected anomalous pixels in each frame. In the case of 
the data in Fig. 2d, the morphological operation considered anomalous 
pixels that were accompanied by at least one more neighboring pixel 
(Supplementary Table 1). Next, the image in Fig. 2d is convolved with 
a Gaussian function that fits our experimental PSF, corresponding to 
half-width at half maximum of 2.5 pixels. We then implement a binary 
mask with a radius of 5 pixels about the center of mass of the result-
ing distribution to restrict a detection region for one landing event  
(Fig. 2e). In other words, two detection events are counted as such 
only if their binary masks do not overlap. A comparison with the con-
ventional DRA and TIRF measurements (Fig. 2b,c) shows very good  
agreement with the outcome of anomaly detection based on 
user-defined criteria.

Figure 2f shows the result of anomaly detection based on the DNN 
approach for the protein landing event of Fig. 2b. It can be seen that 
as opposed to the user-defined scenario in Fig. 2d, the DNN approach 
can effectively isolate the entirety of a PSF in each frame, significantly 
increasing the detection yield. We note that to eliminate artifacts near 
the borders and corners of a frame, we considered only the data inside 
a circular mask of radius R = 33 pixels.

Having established the principle of our new methodology, we now 
showcase its performance by measuring proteins not previously detect-
able. Figure 3a–c shows examples of three TIRF images, which confirm 
the presence of proteins with a molecular mass of 21, 18 and 9 kDa, 
respectively. In Fig. 3d–f we present the corresponding DRA-treated 
images. To guide the eye, we placed circles at the locations of protein 
landing events as determined from the centers of the PSFs in their 
corresponding TIRF images. Distinguishing the protein PSF from the 
speckle-like background appears not to be within reach in any of the 
cases. Remarkably, however, the data in Fig. 3g–i show that anomaly 
detection based on user-defined features can identify the protein land-
ing events. The success of this procedure can be traced to the fact that 
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Fig. 2 | Benchmarking methods for BSA (66 kDa). a, An example of a single 
frame of raw iSCAT video for the landing event of a BSA molecule. The color bar 
shows the camera bit readout. b, The outcome of a standard DRA treatment of 
1,500 neighboring frames. The PSF of one BSA protein is evident on a residual 
speckle-like background with the color bar depicting the iSCAT contrast,  
C. c, One frame of the raw TIRF video for the same protein landing event as in  
a and b. d, The corresponding hot pixels result from a user-defined anomaly 
detection analysis of the DRA outcome in b. e, Convolution of the hot pixels in  
d with the experimental PSF. The red circle marks the binary mask applied to 
the center mass of the distribution. f, The probability map of anomaly detection 
based on the DNN approach for the same DRA frame in b. R is the radius of the 
central circular part of the image that was considered in the analysis. The inset 
shows the corresponding binary mask. Scale bars, 1.5 μm.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | March 2023 | 442–447 445

Article https://doi.org/10.1038/s41592-023-01778-2

by combining temporal and spatial features in the feature matrix, the 
algorithm imposes simultaneous temporal and spatial restrictions that 
distinguish true landing events from other uncorrelated temporal and 
spatial fluctuations (Supplementary Information, Section 5). Figure 3j–l 
shows the probability maps of the events obtained from an unsuper-
vised DNN analysis, and Fig. 3m–o plots the corresponding outcome of 
iForest classification. Both the user-defined and the DNN approaches 
succeed in detecting the protein events in the data presented in Fig. 3. 
The advantage of the latter method is, however, that it does not rely on 
optimal choices in the feature matrix. We compare the performances 
of the two methods in more detail in the Supplementary Information.

To elucidate the advantage of the DNN further, we synthetically 
lowered the SNR of the landing event discussed in Fig. 2 by reducing the 
DRA window size. Figure 4a,b shows the outcome of two DRA averaging 
window sizes of 750 and 250 frames, respectively. As shown in Fig. 4d, 

the user-defined approach is not able to detect the protein with the 
same feature matrix criteria as before. Figure 4e,f, however, shows that 
the DNN approach remains successful.

We have presented several cases in which iSCAT detection of pro-
tein landing events was confirmed by TIRF images. The modulation 
of the iSCAT contrast in the speckle-like background, however, may 
cause false-positive events or mask a true event. Similarly, landing 
events might be absent in the TIRF channel, for example, due to pho-
tobleaching or imperfect labeling. Consequently, the yield in obtaining 
a one-to-one correspondence between the TIRF and the iSCAT data is 
low in our interlaced measurements (Supplementary Information, 
Section 10). One such example is shown in Fig. 3g,j,m, in which anomaly 
detection detects two proteins while TIRF finds only one of them. Figure 
5a shows another example of several events captured in the iSCAT and 
TIRF channels recorded within 20 s. In Fig. 5b we show the coincidence 
map of the two signals obtained by constructing the pixel-wise prod-
uct of the localized events. We note, however, that the average rate of 
landing events was comparable in the iSCAT and TIRF channels with 
0.2–2 proteins per second and 1–5 proteins per second, respectively, 
showing that we do not over-count in the iSCAT channel. Furthermore, 
by performing simulations, we estimated the false-positive signals in 
our algorithms to be less than approximately 10% (Supplementary  
Fig. 11). In practice, one can choose to apply more stringent morpho-
logical operations on the DNN output to reduce the false-positive 
events at the cost of the detection yield (Supplementary Table 3). For 
instance, we included only events with at least three connected pixels 
in each frame for the 9 kDa data to minimize the chances of counting 
unwanted events (Supplementary Table 1).

Protein mass photometry
The task of the anomaly detection algorithms (user-defined or DNN) 
discussed above is to identify protein landing events. Once the PSFs of 
individual particles have been localized, their iSCAT contrasts can be 
extracted as in previous reports to arrive at their mass information14 
(Supplementary Fig. 3). In brief, the hot region identified by anomaly 
detection is searched using difference of Gaussian to localize the PSF 
of the protein (Supplementary Fig. 8g). We then extract the temporal 
value of the localized PSF center intensity directly from DRA to form 
a V-shaped landing trajectory (Supplementary Fig. 8c). The sides of 
the V-shaped trace are fitted with two lines and the intersect is used 
to assign the base line, which is then used to determine a contrast14.
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Fig. 3 | Detection of very small proteins with molecular mass of 21 kDa  
(left column), 18 kDa (middle column) and 9 kDa (right column). a–c, Single 
frames of raw TIRF videos associated with the landing of 21 kDa (a), 18 kDa (b) and 
9 kDa (c) proteins. Crosses illustrate the centers of the deduced landing events. 
d–f, Results of a standard DRA analysis on 4,000 (d), 8,000 (e) and 8,000 (f) 
neighboring frames. Yellow circles are placed at the locations of protein landings 
which were localized in the corresponding TIRF channel and the color bar shows 
the iSCAT contrast, C. g–i, The outcome of iForest classification for a user-
defined anomaly detection. j–l, Probability maps obtained from a DNN analysis. 
m–o, Results of iForest classification based on probability maps in j–l.  
Images in g–o are obtained for the same corresponding single DRA frames  
in d–f. Scale bars, 1.5 μm.
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Fig. 4 | User-defined versus DNN performance at different SNR. a,b, Outcome 
of DRA for averaging window sizes of 750 (a) and 250 (b) frames applied to 
the data in Fig. 2. The color bars show the iSCAT contrast, C. c,d, Outcome of 
anomaly detection based on a user-defined feature bank for the DRA window 
sizes of 750 (c) and 250 (d) frames. e,f, Probability maps based on the DNN 
approach for the DRA window sizes of 750 (e) and 250 (f) frames. Insets  
in c,e,f show the corresponding binary masks. Scale bars, 1.5 μm.
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The blue histograms in Fig. 5c–e show the distribution of the iSCAT 
contrasts obtained from 21, 18 and 9 kDa protein samples, respectively, 
following the full DNN-based anomaly detection algorithm. In addition, 
the orange histograms in Fig. 5c–e show the spread of the contrasts 
obtained for the iSCAT events that coincided with an event detected 
in the TIRF channel. We find that although the yield is lower for coin-
cidences, the main modes of the histograms are very well aligned. We 
note that the distribution towards higher contrasts can be attributed 
to small populations of oligomeric states of the protein, protein aggre-
gates, or sample impurities12. The Gaussian mixture model28 was used 
to identify the underlying subpopulations14,29.

The contrast of the main histogram mode was estimated using 
maximum likelihood estimation, analogous to the procedure in locali-
zation microscopy30. We then used bootstrapping to estimate the 
confidence interval in this assignment (sampling cycles >1,000). The 
deduced contrast can be related to mass if one assumes a common 
density and refractive index for proteins8,12,14. Because the parameters 
r and s (Eq. (1)) can vary between individual iSCAT set-ups, one needs 
to establish a calibration ladder, much in the spirit of the read-out pro-
cedure in gel electrophoresis. Figure 6a presents such a library, which 
contains the data from protein samples with nominal molecular mass 
of 220, 66, 21, 18 and 9 kDa. The error bars represent the precision in 
each assignment, and the line shows the result of a linear fit to the data.

In Fig. 6b we plot the accuracy (in units of kDa), determined as 
the difference between the measured mean value and the quantity 
suggested by the fit. Figure 6c presents the percentage precision. It is 
evident that both accuracy and precision become less robust for the 
smallest protein size. We also note a slight offset at the intercept of 
the linear fit on the vertical axis. We attribute this to the fact that the 
background fluctuations cannot be fully eliminated, thus, affecting 
the base line and the contrast value14. Nevertheless, the linear model 
in Fig. 6a has an RMS deviation of 1.0 × 10−5, which is one of the lowest 
values reported for such protein libraries12,29.

Discussion and outlook
In 2014 iSCAT was successful in the label-free detection of single 500 kDa 
(myosin 5a)31 and 66 kDa (BSA)8 proteins. Since then, the sensitivity limit 
has been somewhat improved to 55 kDa12 and approximately 40 kDa11, 
whereby the application of a spatial mask in the Fourier plane was con-
sidered to be instrumental for favoring the scattered signal12,32,33. In our 
current work, we use an anomaly detection machine learning algorithm 

to substantially push the sensitivity limit to proteins as small as 9 kDa. 
Moreover, we achieve this without using a spatial mask.

Label-free and real-time analysis of small proteins is very prom-
ising for ultrasensitive diagnostics of disease markers such as inter-
leukins or other cytokines in bodily fluids34. In addition, a range of 
fundamental studies such as assembly of biological nanostructures35, 
cell secretion36,37 and protein aggregation38 would greatly benefit 
from this methodology. iSCAT detection of biomolecules can be fur-
ther advanced through improvements in physical measurements, for 
example, by using CMOS (complementary metal oxide semiconduc-
tor) cameras with larger well capacity and lower dark noise, or using a 
higher quality substrate surface to lower the iSCAT background. The 
methodology presented in this work also holds promise for efforts 
in cryogenic electron microscopy and fluorescence microscopy with 
low SNR. As machine learning approaches become more established 
in microscopy18–21,23,39, one can expect further advances in the compu-
tational analysis of label-free sensing. A first measure, for example, 
could involve replacing iForest with an end-to-end DNN40.
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produce a measure for accuracy. The horizontal dashed line indicates zero. c, The 
precision in assigning the mean of a histogram associated with each data point in 
a (See Fig. 5c–e).
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Methods
Protein sample preparation and labeling
All proteins used in this study are commercially available in a highly 
pure quality. Human plasma fibronectin (220 kDa) was purchased from 
Sigma Aldrich (cat. no. FC010). UltraPure BSA was purchased from Life 
Technologies (cat. no. AM2616). The structure of BSA corresponds to  
66 kDa. The product used in this study was specified by the manufac-
turer at 67–68 kDa. Recombinant protein G (21 kDa) was purchased 
from Fisher Scientific (cat. no. 21193). Recombinant Escherichia coli 
Skp protein (18 kDa) and recombinant human interleukin (IL)-8 protein 
(9 kDa) were purchased from Abcam (cat. nos. ab97397 and ab9631, 
respectively). Proteins were diluted or buffer exchanged (desalted) 
into labeling buffer containing 50 mM HEPES and 25 mM KCl (pH 7.8), 
prior to the labeling reaction, using a 7K MWCO (molecular weight 
cut-off) Zeba desalting column (ThermoFisher, cat. no. 89882). Pro-
teins were unspecifically labeled via their exposed primary amines 
using the ATTO 647 fluorophore containing the reactive group NHS 
(N-hydroxysuccinimidyl) ester (cat. no. 18373-1MG-F, Sigma Aldrich). 
Proteins were mixed with dyes at a ratio of 1:1 for 2 h at room tempera-
ture, and then desalted from the excess of dye using the same desalting 
columns. Proteins were further filtered using a 100 nm syringe filter 
(Whatmann Anotop 10, cat. no. WHA68091002, Sigma Aldrich). The 
labeling efficiency was then estimated using an absorption spectrom-
eter (Nanodrop 2000, ThermoFisher). The labeling efficiency ranged 
between 40% and 80% for different protein samples. SDS–PAGE was 
used to assess protein purity, labeling and the approximate molecular 
weight (Supplementary Information). Based on the manufacturer 
information, most of these proteins are found in their monomeric 
states. In the case of Skp protein it can form a trimer assembly, how-
ever at the concentration of our measurements (~10 nM) it is mainly 
in the monomeric state41. To establish the protein ladder we read the 
contrast for the main (lowest) mode of the iSCAT histogram. We note 
that if proteins do form large assemblies, their larger iSCAT contrasts 
become noticeable in our experiments.

Coverglass functionalization
To prepare the surface of the coverglass for protein binding, it was 
sonicated in isopropyl alcohol and ethanol for 5 min each, followed 
by 10 min of oxygen plasma. The sample was then mounted and left to 
stabilize for a few hours.

Protein injection and data acquisition
Each labeled protein sample was diluted down to approximately 10 nM 
in concentration, and 10 μl was manually injected by micropipetting 
on top of the iSCAT field of view. This is then immediately followed by 
starting the iSCAT camera data acquisition, which triggers the blue 
iSCAT laser. After approximately 20 s of data acquisition, the blue laser 
is switched off and the red laser (TIRF channel) is switched on for 10 s. 
This is then followed by several cycles of interlaced iSCAT and TIRF 
data acquisition, to reach a satisfactory data volume for meaningful 
statistics. Depending on the protein size, the iSCAT camera was set to 
run at 5–15 kHz at an exposure time of 20 μs.

Optical set-up
A continuous-wave laser centered at 445 nm (iBeam smart, Toptica) is 
collimated and focused onto the back focal plane of an oil-immersion 
microscope objective (α Plan-Apochromat ×100, NA 1.46, Zeiss). A 
coverglass is positioned at the focus of the microscope objective 
using a piezo positioner (Nano-LPQ, Mad City Labs). The iSCAT field 
is imaged using a scientific CMOS camera (MV1-D1024E-160-CL,  
Photonfocus).

TIRF illumination was done with a laser beam at 631 nm, which 
was directed into the iSCAT pathway via a dichroic mirror (D1, Chroma 
ZT647rdc-UF3) mounted on a translation stage and a second dichroic 
mirror (D2, Chroma T480spxxr-UF3). The fluorescence signal was 

collected via the same microscope objective that was used for the 
iSCAT measurements. D2 separated the fluorescence from the iSCAT 
path and transmitted it through D1 onto a CCD (charge-coupled device) 
camera (Hamamatsu Orca Flash). Here, we also used a band pass filter 
(ET700/75) in front of the camera (S1).

Statistics and reproducibility
Single-protein sensitivity is achieved only when thousands of frames 
are averaged in the analysis procedure described here. Each detection 
event in Figs. 2–4 is by definition a single-molecule event and as such 
is not reproducible. However, in a given video containing millions of 
frames, hundreds of single-protein events are registered, which are 
nominally equivalent. The histograms in Fig. 5c–e are formed by con-
sidering all such individual recordings. The data points in Fig. 6a are 
read from such histograms.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data are available upon reasonable request. Source data are pro-
vided with this paper.

Code availability
The scripts reported in this paper have been deposited at PiSCAT42: 
https://github.com/SandoghdarLab.
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