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We propose a random circuit model to analyze the impact of noise on the performance of varia-
tional quantum circuits for classical optimization problems. Our model accounts for the propagation
of arbitrary single qubit errors through the circuit. We find that even with a small noise rate, the
quality of the obtained classical optima is low on average and a single-qubit error rate of 1/nD,
where n is the number of qubits and D is the circuit depth, is needed for the possibility of a quan-
tum advantage. We estimate that this translates to an error rate lower than 10−6 using QAOA for
classical optimization problems with 2D circuits.

I. INTRODUCTION

Significant advances in the capabilities of quantum in-
formation processing hardware have been made recently,
with the achievement of an important milestone of having
reached quantum advantage [1–3]. In addition to devel-
oping technologies towards the final goal of a fault tol-
erant quantum computer, there is widespread interest in
exploring the capabilities of the currently available noisy
intermediate-scale quantum (NISQ) devices [4]. This has
inspired a number of heuristic quantum algorithms for
NISQ devices [5–20], but it remains unclear if they can
provide a quantum advantage for practically interesting
problems.

One of the proposed applications for NISQ devices is
to solve combinatorial optimization problems. Since this
class of problems contains NP-hard instances, it is con-
sidered hard to solve on classical computers [21]. Quan-
tum circuits can explore larger state spaces (e.g. entan-
gled states) compared to their classical counterparts and
hence there is a possibility of quantum speedup in some
instances of these problems. Several heuristic variational
quantum algorithms have been proposed for solving op-
timization problems [8–14], most notably the quantum
approximate optimization algorithm (QAOA)[22]. While
variational algorithms in general lack provable guaran-
tees for quantum speedups, there is a growing body of
literature that suggests its use for practically interesting
problems that remain hard to solve on classical comput-
ers [23–27]. However, a number of algorithmic challenges
to these heuristics which stem from the limitations on the
accessible circuit architectures, such as barren plateaus
[28], expressibility of the ansatz [29, 30], or reachability
deficits [31] have been identified.

The influence of noise in the quantum devices on vari-
ational algorithms is an important consideration for as-
sessing their utility in the near term and has not received
as much attention. Numerical modelling of the impact of
noise has been attempted [32, 33], but this analysis is lim-
ited to very small circuit sizes. An alternative approach
is to use entropic arguments to rigorously analyze the
impact of noise [34–36]. By simply tracking the von Neu-
mann entropy of the quantum state, in Refs. [35, 36] it

was argued that beyond circuit depths of Θ(log(n)) with
depolarizing noise, the output state is very close to the
maximally mixed state. Ref. [34] improved on this result
and showed that even beyond circuit depths of Θ(1), the
quality of solution of a large class of classical optimiza-
tion algorithm obtained from this circuit can be achieved
with a classical algorithm.

However, while these analyses already provide provable
limits on the quality of variational quantum algorithms
that can inform current experiments, they likely under-
estimate the impact of noise in variational circuits used
in practice. This underestimation arises from the fact
that these bounds are applicable to any quantum cir-
cuit, and consequently they also bound performance of
circuits which do not create significant entanglement in
the quantum state. Therefore, these bounds do not cap-
ture propagation of errors through the quantum circuit.
Furthermore, these bounds are also loose for noise mod-
els, such as amplitude damping noise, which can possibly
decrease the entropy in the quantum circuit — however,
for a typical quantum circuit, it is expected that the pres-
ence of such noise would still degrade its performance.

In this paper, we propose a random circuit model to
analyze the impact of noise on the performance of vari-
atonal quantum circuits for classical optimization prob-
lems. Our random circuit model accounts for the fact
that the circuits map product states for product states.
A typical member of this circuit family starts with a
product state, builds entanglement in between the qubits
and then disentangles it to another (product) state. Our
study here is thus different from recent works that have
studied the impact of noise in Haar-random quantum cir-
cuits [37–40] with geometric constraints, where a typical
member of these circuit families has an anti-concentrated
output state, which is in stark contrast to what is ex-
pected for variational quantum circuits that ideally out-
put a state close to a product state.

We perform an average case analysis on this distri-
bution of circuits, and find that noise propagates very
rapidly through a typical member of this distribution,
severely limiting the performance of the circuits. We
provide both numerical results and analytical scalings
for three different architectures: 1D, 2D, and nonlocal.
Our results indicate that to obtain a solution to a clas-
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sical optimization problem within a fixed multiplicative
error of its true solution with a constant rate of noise p,
the circuit depth of a typical member of this distribution
has to be smaller than max

(
O(p−1/2), O(1/(pn))

)
in 1D

and max
(
O(p−1/3), O(1/(pn))

)
in 2D. Furthermore, it

follows from our analysis that the impact of error is qual-
itatively similar for different noise models in contrast to
what is predicted by a worst case analysis.

II. ERROR PROPAGATION MODEL

Consider the problem of solving a classical optimiza-
tion problem over {0, 1}n, and suppose that the unitary

circuit which maps an initial product state |0〉⊗n to the
solution x∗ ∈ {0, 1}n is given by Usol. Since we are only
interested in analyzing the impact of errors, we assume
that the optimal circuit is already known, and do not
address the problem of finding it. For depth D, we now
consider a random quantum channel as Φ = ©D

t=1Tt,
where the Tt are given by

Tt =

{
N ◦ U (t) if t ≤ D/2,
N ◦

[
U (t−D/2)]† if t > D/2,

(1)

where N is a layer of the noise channel, and U (t) is a layer
of 2-qubit Haar random unitaries. The effective channel
for the circuit under consideration, depicted in Fig. 1a,
will be constructed via Φ ◦ Usol .

Each member of the ensemble of circuits defined above
solves the optimization problem in the absence of noise
(i.e. when N = id). Furthermore, in the absence of noise,
the circuit builds entanglement in the input state (which
is a product state) for the first D/2 layers (which we call
the entangling unitary), after which it uncomputes these
unitaries to finally obtain a product state. However, any
error in the unitary circuit propagates and alters the fi-
nal result. Since we are interested in the propagation of
noise, we assume that the 1-qubit gates are noiseless.

We will consider three different architectures for gener-
ating U (t) which model different interaction ranges that
can be accessed on physical hardware:

• A 1D local architecture with periodic boundary
conditions, where alternating layers of nearest
neighbour gates are applied, which we will call 1D.

• A 2D local architecture with periodic boundary
conditions on a square lattice, which we will call
2D. Alternating layers of horizontal and vertical 2-
qubit gates are applied.

• A nonlocal architecture where, for each layer, n/2
pairs are chosen at random, and n/2 2-qubit gates
are applied between the pairs.

Given that, in the absence of noise, all instances of the
random unitaries produce the same unitary, we will con-

sider the output of the channel averaged over the random
unitaries, for each of the architectures,

ΦAavg (ρ) =

∫
U
dUΦ (ρ) . with A ∈ {1D, 2D,NL}, (2)

where Φ1D
avg will represent the averaged channel with the

1D architecture, Φ2D
avg the 2D architecture, and ΦNL

avg the
nonlocal architecture (Fig. 1b).

We next compute the channel ΦAavg — we will use the
fact that the twirl of a 2-qubit quantum channel over the
Haar measure is a 2-qubit depolarizing channel (Fig. 2a)
[41] i.e.,

Edep(ρ) =

∫
U(4)

µHaar (dU)U†N⊗2
(
UρU†

)
U,

= λρ+ (1− λ)
I

4
, (3)

where if Ak represents the k-th Kraus operator of the
channel N⊗2, then

λ =
1

15

(∑
k

|Tr (Ak)|2 − 1

)
. (4)

When N is depolarizing noise applied with probability
p, N (ρ) = (1− p) ρ + p tr(ρ)/2, the effective depolariz-
ing channel Edep can be constructed by considering three
different cases:

• With probability (1− p)2, no errors occur in either
qubit, consequently Edep(ρ) trivially maps ρ to ρ.

• With probability p2 errors occur in both qubits,
Edep(ρ) trivially maps ρ to I/4.

• With probability 2p(1− p), an error occurs only in
one of the qubits, the channel maps ρ to (1/5)ρ +
(4/5)I/4. This can be interpreted as the error being
propagated to the other qubit with probability 4/5
due to the two-qubit entangling gates.

Let us now consider the quantum channel ΦAavg — the
key idea to computing this average channel, depicted
schematically in Fig. 2b, is to start analyzing the circuit
from its center (i.e. in between the entangling and un-
computing unitary layers), and iteratively construct the
channel obtained on including additional unitary layers.
We denote by ΦAt the channel formed by including and
averaging over t layers of the entangling and uncomput-
ing unitary from the center of the circuit — since from
Eq. (3), averaging over the unitary yields a depolariz-
ing channel, this channel either traces out a qubit and
replaces it with I/2, or leaves it unchanged i.e.

ΦAt =
∑

~j∈{0,1}n
pAt (~j)

[⊗
α∈~j

τα

]
(5)
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Entangling Unitary Uncomputing Unitary

Layer 1 Layer 2

Layer 3 Layer 41D Architecture

Non-local Architecture 2D Architecture

(a)

(b)

FIG. 1. (a) Schematic depiction of the ensemble of unitary circuits considered in this paper. The circuits consist of an entangling
and uncomputing unitary which maps a product state to another product state in the absence of noise. (b) Different circuit
architectures (1D, 2D and non-local circuits) studied in this paper.

for some probability distribution pAt over {0, 1}n and

τα =

{
id(·) if α = 0,

tr(·) I2 if α = 1.
(6)

Now, by explicitly using Eq. (3) and accounting for the
architectures of the unitary layers, the probability distri-
bution describing the channel ΦAt+1, pAt+1, can be related

via a stochastic matrix Mt to pAt . In particular, by not-
ing that the channel ΦAt+1 is obtained by an additional
unitary and an additional depolarizing layer, Mt can be
written as

Mt = Mnoise
t MU

t . (7)

From Eq. (3), it follows that MU
t can be constructed by

applying a 4× 4 stochastic matrix P , given by

P (x→ y) =


1 if (x, y) = (00, 00),

1/5 if (x, y) ∈ {(01, 00), (10, 00)},
4/5 if (x, y) ∈ {(01, 11), (10, 11)},
1 if (x, y) = (11, 11),

to the bits corresponding to qubit pairs which have a two-
qubit gate being applied on them at layer t (away from

the center of the circuit) in the architecture A. Mnoise
t

flips from 0 to 1 with probability pM (t) each bit of the
string independently, where:

pM (t) =

{
p if t ∈ {1, D/2}
2p− p2 if t /∈ {1, D/2}.

(8)

If a bit is already in 1, then it stays in 1 after applying
Mnoise
t . We note that, per the definition above, a quan-

tum channel of depth D and noise strength p is mapped
to a Markov chain with D/2 steps and noise strength pM ,
where pM = p in the first and last steps, and pM = 2p−p2
in the rest. To avoid confusion, we refer to the number
of applications of the Markov chain as DM , and to the
noise strength of the Markov chain as pM . It is also a
good approximation to take pM ' 2p in every step of the
Markov chain.

To analyze the impact of noise on the output of the
quantum circuit, we thus need only to compute the prob-
abilities pADM=D/2 by simulating the Markov chain with

transition matrices described above, which allows us to
analyze how many and which qubits in the solution of
the optimization problem are, on average, correct. In the
next section, we analyze this Markov chain both analyt-
ically and numerically using Markov chain Monte Carlo
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(a)

(b)

FIG. 2. (a) Averaging over Haar-random unitary U yields a
2-qubit depolarizing channel Edep. (b) Schematic depiction
of averaging over the circuit ensemble shown in Fig. 1 — we
average from the center of the circuit to outwards, and derive
an effective Markov chain the describes the channels obtained.

to understand the impact of the noise and circuit depth
on the quality of the output.

III. IMPACT OF ERRORS

A. Analysis of error propagation

We are now ready to analyze the results of the model.
We are interested in computing the expectation value of
the number of qubits that are depolarized at the end
of the computation, which we denote as 〈q〉. This can
be done numerically by sampling from the Markov chain
described in the previous section. The numerical results
after sampling can be seen in Fig. 3. Our results show
that, as expected, the convergence to uniform is very fast
with the propagation model that we are considering.

0 50 100 150
D

0

0.2

0.4

0.6

0.8

1

Bipartite   3 graphs

  3 graphs

1D - Local
2D - Local
Nonlocal
Without entanglement

FIG. 3. We represent the expectation value of the fraction of
depolarized qubits, 〈q〉 /n, as a function of the circuit depth,
for the different architectures: 1D, 2D, and nonlocal. We have
used a system size n = 900 and an error rate p = 10−3. Addi-
tionally, we have represented 〈q〉 /n = 1 − (1− p)D, which is
the number of depolarized qubits that one would get when ap-
plying only local depolarizing noise to all the qubits, without
any unitaries (and therefore without entanglement). We see
that the convergence to uniform is very fast with our model.
The horizontal lines represent thresholds for classical superi-
ority for unweighted Max-Cut problems on arbitrary bounded
degree 3 graphs and bipartite bounded degree 3 graphs: for
values of 〈q〉 /n greater than the threshold, there is a classi-
cal efficient algorithm that outputs a better a better solution
than the averaged quantum channel (see subsection III B).

Architecture Depth 〈q〉 /n
1D O(n) 1− (1− p)O(D2)

2D O(
√
n) 1− (1− p)O(D3)

NL O(logn) 1− (1− p)O(exp(D))

1D Ω(n)
1− (1− p)O(nD)

2D Ω(
√
n)

NL Ω(logn)

TABLE I. Summary of the scaling of the expectation value of
the fraction of depolarized qubits at the end of the computa-
tion, as a function of the circuit depth and system size. We
identify two different regimes, a shallow depth regime and a
deep regime.

In order to better understand these numerical results,
we would like to analyze theoretically the behavior of
the Markov chain. The scalings of 〈q〉 with n can be es-
timated by noting that every time an error occurs, it can
propagate to a neighbouring qubit with a certain proba-
bility that is Θ(1). As a consequence, in the 1D model,
after a circuit depth D, the error will have propagated
to min(O(D), n) qubits. We can consider the probability
that a certain qubit is depolarized at the end of the com-
putation. On average, it will be depolarized if at least
an error has occurred in a qubit that is min(O(D), n)
close. Since there are D/2 steps, this means that the
probability of a certain qubit not being depolarized is
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of order (1 − p)O(D2) for circuits that are shallow, and
(1−p)O(nD) for deep circuits. Hence, the formulas above
are obtained. Analogously, in 2D a single error prop-
agates on average to min(O(D2), n) qubits, and in the
nonlocal case to min(O(eD), n). We note that, if the
circuit is sufficiently deep, a single error can potentially
propagate to all the other qubits, hence the scaling as

1− (1− p)O(nD)
.

In addition to the scalings presented in Table I, we pro-
vide a heuristic formula that works very well in practice
for the 1D case. The derivation of this formula and its
numerical verification in appendix B.

〈q〉1D
n
'

{
1− (1− 2p)

9
80D

2

if D ≤ 5
3n

1− (1− 2p)
3
8nD−

5
16n

2

if D > 5
3n.

(9)

We also provide a semi-empirical formula for the 2D case,
that has been obtained by fitting the data points to the
expression in Table I. It is as follows:

〈q〉2D
n
'1−
(
1− 3

2p
)0.026D3+0.054D2

if D ≤ 3.226
√
n

1−
(
1− 3

2p
) 1

2nD−0.74n
3/2+0.56n

if D > 3.226
√
n.

(10)

Finally, in appendix C we rigorously prove a lower bound

on 〈q〉 for the 1D model with D < n which has the same
scaling with p,D and n as Eq. (9).

B. Implications on circuit depths for noisy QAOA

We apply our error model to the specific case of quan-
tum circuits that try to use QAOA to solve classical opti-
mization problems, and intend to analyze how the prop-
agation of errors could limit the performance of the algo-
rithm. As a hard problem with practical applications, we
will be considering the Max-Cut problem. Given a graph
G = (V,E) on n vertices and and adjacency matrix aij ,
the Max-Cut of G is defined as the maximization of the
cost function

C =
1

2

∑
(i,j)∈E

aij (1− ZiZj) , (11)

with Z ∈ {−1, 1}n. Let us denote by Cmax the solution
of the problem, and denote the average value of the cost
function when random guessing by

Cavg = tr

(
C
I

2n

)
=

1

2

∑
(i,j)∈E

aij . (12)

Since the output of the error propagation channel con-
tains some qubits that are depolarized, on average, it will
not be able to reach Cmax. As shown in appendix A, un-
der the assumption that aij > 0, we are able to upper
bound the average energy of the output as a function of
the average number of depolarized qubits, 〈q〉 as

tr (CΦavg (ρ)) ≤ 1

2

(
1− 〈q〉

n

)(
2− 〈q〉

n

)
Cmax +

(
1−

(
1− 〈q〉

n

)2
)
Cavg. (13)

Furthermore, in appendix D, we show that for low depth
circuits, tr(CΦ(ρ)) for a randomly drawn circuit instance
concentrates around this mean indicating that it is rep-
resentative of a typical circuit instance.

This expression readily provides an upper bound on
the quality of the solution that we can compute given
an error rate and a circuit depth. Given a lower bound
on the maximum value Cmax of the cost function, it
also allows us to upper bound the approximation ratio
(α = Tr[CΦAavg(ρ0)]/Cmax). This approximation ratio
can often inform of the existence of an efficient classi-
cal algorithm which obtains a similar solution — for in-
stance, there is a classical approximation algorithm that
has a performance guarantee of α > 0.878 [42]. Fur-
thermore, most classical methods allow for a very fast

implementation, even for large systems [43]. It is thus
a reasonable assumption to make that near-term quan-
tum circuits are only useful if the approximation ratio,
in the presence of noise, is better than those achievable
by classical algorithms.

For example, we can briefly study unweighted bounded
degree ∆ = 3 graphs, as they closely match problems of
industrial interest, and cannot be solved trivially in gen-
eral. For any bounded degree ∆ = 3 graph the Edwards-
Erdös inequality provides a lower bound for the Max-Cut
in terms of the number of edges, Cmax ≥ 2/3|E| [44].
Combined with Eq. (13), this provides an upper bound
for the approximation ratio,

α ≤ 1− (〈q〉 /n))
2
/4. (14)
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Furthermore, there is a classical approximation algorithm
that achieves an approximation ratio of 0.9326 [45]. We
therefore obtain that only when 〈q〉 /n ≤ 0.52 can the
quantum algorithm output a better average energy than
the classical one. That is, if approximately half of the
qubits are depolarized, we can be sure that the average
quality of the solution is worse than the quality of the so-
lution of classical approximation algorithms in the worst
case. We represent an instance of this in Fig. 4. We
note that this is not tight in every case, since we are
considering all possible bounded degree ∆ = 3 graphs.
For example, if we consider only the bipartite ones, it is
Cmax = |E| and Cavg = |E|/2, which gives an approxi-
mation ratio that is bounded by α ≤ 1 − 〈q〉 / (2n), and
therefore 〈q〉 /n ≤ 0.135. Therefore, in this case, it is
already possible to certify the classical superiority when
only around 15% of the qubits are depolarized.

Using the scalings from Table I, we obtain that for
shallow circuits (as defined in the table), after a depth

D = O
(√

1/p
)

for 1D and D = O
(

3
√

1/p
)

for 2D we al-

ready have a situation where the quality of the solution is
worse than with classical approximation algorithms. This
is respectively quadratically and cubically worse with re-
spect to p than the scaling reported in [34]. This is a
consequence of the rapid spreading of the errors.

The impact of errors in 2D (and even all-to-all) archi-
tectures is much higher than in 1D due to a more rapid
propagation of errors. However, this does not necessarily
imply that 1D circuits are better for near term quantum
computation since our analysis thus far does not account
for increase in the computational power of the quantum
circuit with its connectivity. In order to take that into
account, in the next subsection we consider a specific
case, QAOA for solving a non-local problem, i.e a graph
with long-range vertices (a non-planar graph). This nec-
essarily places us in the deep circuit regime (as defined
in Table I) in all cases.

Required error rate

We also need to analyze the required circuit depth
to run QAOA. Most quantum computing architectures
have a planar design, similar to the 2D architecture that
we are considering. However, the optimization problems
that are useful in practice consist usually of non-planar
graphs. For example, planar Max-Cut can always be
solved in polynomial time on classical computers [46].
Since non-planar graphs do not match the connectivity
of the hardware, routing will be required to perform the
computation. This can be done with SWAP gates that
permute the different qubits, but comes at the cost of a
growth in the circuit depth. Embedding a bounded de-
gree graph on a square lattice results in an overhead of√
n in the gate count, while the cost is n for the 1D local

architecture [10]. Furthermore, at least a few QAOA lay-
ers are necessary for the algorithm to reach a satisfactory

results. Following the scalings reported in [10, 34], we will
assume that 10 layers are enough to reach the solution,
and that every QAOA layer, after the routing, needs on
average ∼

√
7n 2-qubit gates in 2D and 3n 2-qubit gates

in 1D. In this case, a circuit depth D2D ≥ 10
√

7n for the
2D case is needed, and D1D ≥ 30n in 1D. This places us
in the deep circuit regime, as seen in Table I and Eqs.
(9) and (10). In this regime, the interpretation is the fol-
lowing: an error in any qubit will, with high likelihood,
depolarize all the other qubits. Hence, even if there is
just one error in the computation, the average output
solution will not be much better than random guessing.
Therefore, in order to have a good solution, we need to
have a computation completely free of errors. This can
only realistically happen if the error rate is as low as
p ∼ 1/(nD). We perform the exact calculation and rep-
resent it in Fig. 4. We see that in this simple example, we
would need error rates orders of magnitude below what is
currently achievable. Namely of the order of 10−7 for the
1D architecture, and 10−6 for the 2D architecture. We
remark that these figures are obtained under arguably
conservative assumptions. A more realistic computation
would have to include all the 1-qubit and 2-qubit gates,
thus restricting even more the error rate.

IV. CONCLUSION

We have studied a model that captures the propaga-
tion of errors in noisy quantum devices when the final
state is a product state. This is the case, for example,
when trying to find the solution to classical optimization
problems. For this model, we show that a single error in
one qubit is propagated rapidly to the rest of the qubits.
This would place stringent restrictions on the error rates
that are compatible with a quantum advantage. We esti-
mate the required error rate to be p ∼ 1/ (nD), where n
is the system size and D is the circuit depth. As a conse-
quence, assuming that our error model is representative
of the circuits that solve the problem on real hardware,
one would expect that noisy devices can only become use-
ful for such problems when the error rates are extremely
low, framing fault tolerance as the most realistic solution.

We emphasize that results are obtained by averaging
different circuits, and it may be possible that for some
particular instances they do not apply. However, due to
the concentration result provided in appendix D for low
depth circuits, we expect the average to be representative
of a typical result.

Our results suggest that there is a trade-off between
error propagation and entanglement spread. If we want
to take advantage of a quantum computer, the quantum
circuit should be able to generate entanglement, but this
will generally be associated with the propagation of er-
rors. Equivalently, trying to avoid the propagation of
errors may well result on not fully exploiting the whole
quantum computer. Perhaps, this deserves a more care-
ful analysis.
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FIG. 4. In (a) we represent the relation between the system size and the error rate when the average number of depolarized
qubits at the end of the computation is fixed to 〈q〉 /n = 0.5 for bounded degree ∆ = 3 graphs. In the 1D case the depth
is D1D = 30n, and in 2D D2D = 10

√
7n. The horizontal dashed line corresponds to system sizes of n = 1000, which is

when a potential quantum advantage could begin to be practically useful [25]. In (b) we represent the upper bound for the
approximation ratio of bounded degree ∆ = 3 graphs, given by Eq. (14), as a function of the circuit depth, for the different
architectures: 1D, 2D, and nonlocal. We have used a system size n = 900 and an error rate p = 10−3. The horizontal line
represents the approximation ratio that is reachable by an efficient classical algorithm. Additionally, we have represented the
upper bound on the approximation ratio that one would get when applying only local depolarizing noise to all the qubits,
without any unitaries (and therefore without entanglement or propagation of errors).

Finally, we note that there are other situations where
error propagation may not impose the stringent condi-
tions obtained here. For instance, the adiabatic algo-
rithm [6, 7] (and its variational extension [47]) is a special
kind of circuit where one is always close to the ground
state of a particular Hamiltonian. In fact, in this setup
there are indications [47] that the propagation of errors
is relatively mild. Additionally, in the development of
quantum algorithms for quantum problems, like quan-
tum simulation, conservation laws might also prevent the
propagation of errors and thus circumvent the restric-
tions found in the present work. The analysis in this
work and these considerations indicate that the propaga-
tion of errors should be taken into account in the design

of quantum algorithms for NISQ devices.
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McClean, Matthew McEwen, Anthony Megrant, Xiao

Mi, Kristel Michielsen, Masoud Mohseni, Josh Mu-
tus, Ofer Naaman, Matthew Neeley, Charles Neill,
Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov,
John Platt, Chris Quintana, Eleanor G. Rieffel, Pe-
dram Roushan, Nicholas Rubin, Daniel Sank, Kevin J.
Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt
Trevithick, Amit Vainsencher, Benjamin Villalonga, Ted
White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hart-
mut Neven, and John Martinis. Quantum supremacy us-
ing a programmable superconducting processor. Nature,
574:505–510, 2019.

[2] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-
Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng,
Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu
Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-



8

Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei
Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Hao-
ran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun,
Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai
Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan
Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin
Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei
Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-
Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong quan-
tum computational advantage using a superconducting
quantum processor. Phys. Rev. Lett., 127:180501, Oct
2021.

[3] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng
Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu,
Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-
Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan,
Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-
Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quan-
tum computational advantage using photons. Science,
370(6523):1460–1463, 2020.

[4] John Preskill. Quantum Computing in the NISQ era and
beyond. Quantum, 2:79, August 2018.

[5] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw,
Tobias Haug, Sumner Alperin-Lea, Abhinav Anand,
Matthias Degroote, Hermanni Heimonen, Jakob S.
Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim,
Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy
intermediate-scale quantum algorithms. Rev. Mod.
Phys., 94:015004, Feb 2022.

[6] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and
Michael Sipser. Quantum computation by adiabatic evo-
lution. arXiv preprint quant-ph/0001106, 2000.

[7] Tameem Albash and Daniel A. Lidar. Adiabatic quantum
computation. Rev. Mod. Phys., 90:015002, Jan 2018.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Ba-
con, Joseph C. Bardin, Rami Barends, Sergio Boixo,
Michael Broughton, Bob B. Buckley, David A. Buell,
Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen,
Benjamin Chiaro, Roberto Collins, William Courtney,
Sean Demura, Andrew Dunsworth, Edward Farhi, Austin
Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina,
Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan
Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev
Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody
Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly,
Seon Kim, Paul V. Klimov, Alexander Korotkov, Fedor
Kostritsa, David Landhuis, Pavel Laptev, Mike Lind-
mark, Erik Lucero, Orion Martin, John M. Martinis, Jar-
rod R. McClean, Matt McEwen, Anthony Megrant, Xiao
Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mu-
tus, Ofer Naaman, Matthew Neeley, Charles Neill, Hart-
mut Neven, Murphy Yuezhen Niu, Thomas E. O’Brien,
Eric Ostby, Andre Petukhov, Harald Putterman, Chris
Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel
Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Doug
Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita,
Amit Vainsencher, Theodore White, Nathan Wiebe,
Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Hartree-
fock on a superconducting qubit quantum computer. Sci-
ence, 369(6507):1084–1089, 2020.

[9] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio,
et al. Variational quantum algorithms. Nature Reviews

Physics, 3(9):625–644, 2021.
[10] Matthew P Harrigan, Kevin J Sung, Matthew Neeley,

Kevin J Satzinger, Frank Arute, Kunal Arya, Juan Ata-
laya, Joseph C Bardin, Rami Barends, Sergio Boixo, et al.
Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor. Nature
Physics, 17(3):332–336, 2021.

[11] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik. The theory of variational hybrid
quantum-classical algorithms. New Journal of Physics,
18(2):023023, feb 2016.

[12] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan,
and Simon C. Benjamin. Variational quantum algo-
rithms for discovering hamiltonian spectra. Phys. Rev.
A, 99:062304, Jun 2019.

[13] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-
Guzik, and Jeremy L O’brien. A variational eigenvalue
solver on a photonic quantum processor. Nature commu-
nications, 5(1):1–7, 2014.

[14] Dave Wecker, Matthew B. Hastings, and Matthias
Troyer. Progress towards practical quantum variational
algorithms. Phys. Rev. A, 92:042303, Oct 2015.

[15] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum
annealing in the transverse ising model. Phys. Rev. E,
58:5355–5363, Nov 1998.

[16] Suguru Endo, Iori Kurata, and Yuya O. Nakagawa. Cal-
culation of the green’s function on near-term quantum
computers. Phys. Rev. Research, 2:033281, Aug 2020.

[17] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, and
J.D. Doll. Quantum annealing: A new method for min-
imizing multidimensional functions. Chemical Physics
Letters, 219(5):343–348, 1994.

[18] Hongbin Liu, Guang Hao Low, Damian S Steiger,
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Appendix A: Proof of energy bound

Here we derive the energy bound given in Eq. (13). As explained in the main text, we are considering the Max-Cut
problem. Given a graph G = (V,E) on n vertices and and adjacency matrix aij the Max-Cut of G is defined as the
maximization of the cost function.

C =
1

2

∑
(i,j)∈E

aij (1− ZiZj) (A1)

with Z ∈ {−1, 1}n. Let us denote by Cmax the solution of the problem, and denote the average value of the cost
function when random guessing by

Cavg = tr

(
C
I

2n

)
=

1

2

∑
(i,j)∈E

aij (A2)
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Let us denote by M ⊆ E the subset of edges that are cut in the solution. That is, M contains the edges (i, j) such
that Zi 6= Zj in the maximum cut. As discussed in Eq. (5), our model outputs a state where some qubits are in their
correct state and others are depolarized. We denote by P (Qi) the probability that qubit i is in the correct value.
While we do not have access to the complete probability distribution, we know that P (Qi) = r is the same for all
qubits, and that P (Qi ∩Qj) ≥ r2 for all pairs (i, j). On the graph, we assume that aij ≥ 0 ∀(i, j). This is only for
simplicity, but this condition could be dropped.

We note that, for a given edge, the contribution to the maximum cut is aij if (i, j) ∈ M , while if (i, j) ∈ E \M
then it is 0, since it will not be cut. On the other hand, if either i or j are random, after averaging the contribution
is always aij/2, since it will be cut half of the times. Then, the total cost will be:

tr (CΦavg (ρ)) =
∑

(i,j)∈M

aijP (Qi ∩Qj) +
1

2

∑
(i,j)∈E

aij (1− P (Qi ∩Qj)) (A3)

Rearranging the terms this yields:

tr (CΦavg (ρ)) =
1

2

∑
(i,j)∈M

aij (1 + P (Qi ∩Qj)) +
1

2

∑
(i,j)∈E\M

aij (1− P (Qi ∩Qj)) (A4)

We can now use the fact that P (Qi ∩Qj) ≤ P (Qi) = r, and P (Qi ∩Qj) ≥ r2, to obtain:

tr (CΦavg (ρ)) ≤ 1

2
(1 + r)

∑
(i,j)∈M

aij +
1

2

(
1− r2

) ∑
(i,j)E\M

aij =
1

2
(1 + r)Cmax +

(
1− r2

)(
Cavg −

Cmax

2

)
(A5)

Then, since r = 1− 〈q〉 /n, we obtain:

tr (CΦavg (ρ)) ≤ 1

2

(
1− 〈q〉

n

)(
2− 〈q〉

n

)
Cmax +

(
1−

(
1− 〈q〉

n

)2
)
Cavg (A6)

Appendix B: Heuristic formula

We will explain here how we obtained the heuristic formula for the 1D case, in Eq. (9) from the main text. The
goal is to compute the expected number of depolarized qubits at the end of the computation, denoted as 〈q〉, using

the Markov chain defined in the main text. The transition matrix M of the Markov chain is given by M =
∏DM
t=1 Mt,

where Mt is defined as the product of two matrices Mt = Mnoise
t MU

t . As explained in the definition, DM is the
number of times that we apply the Markov chain, and it takes the value DM = D/2, where D is the circuit depth of
the associated quantum channel. The state space of the Markov chain comprises of strings of zeroes and ones, {0, 1}n.
Mapping this to the outcome of the quantum channel Φavg, the zeroes in the string determine which qubits are in the
correct state, while the ones determine which qubits are depolarized. We will denote the average number of ones at
a given time step t as 〈q (t)〉.

In every step there are therefore two matrices: Mnoise, which applies the noise with probability pM , and MU , which
propagates it. As a good approximation, here we will take pM = 2p, where p is the error rate of the quantum channel.
Since we are in 1D, we are applying layers of unitaries to all the even (or odd) pairs, and MU will just consist in
applying the matrix P to all even (or odd) pairs.

In order to see how this Markov chain behaves, we can consider the case where only one depolarizing error occurs
in the computation. In this case, a bit will be flipped from zero to one at a certain time, and we will just apply MU

from then on. Since MU can only propagate this error to neighbouring bits, in this case we can only have a string of
ones surrounded by zeroes. As a consequence, we can build a Markov chain that counts the number of ones in the
state. We call this the ones chain. Since we know the expression of MU , it is easy to see that it is a one-dimensional
lazy random walk on the line.

Lemma 1 The ones chain has transition matrix P on state space {0, 1, ..., n}. P is given by

P (x, y) =


(
4
5

)2
if y = x− 2(

1
5

)2
if y = x+ 2

2
(
4
5

) (
1
5

)
if y = x

0 else,

(B1)
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for x ∈ (2, n− 2). In the edges, P (0, 0) = 1, P (n, n) = 1, P (0, 1) = 1/5, P (2, 1) = 4/5, P (n, n − 1) = 4/5,
P (n− 2, n− 1) = 1/5.

We can bound the probability that the walker will be absorbed by the barrier in 0, which will be useful later:

Lemma 2 (Probability of absorption) The probability of reaching 0 when starting in 1 in the ones chain is upper
bounded by 1/4. That is, denoting Xt the state after t applications of the Markov chain:

P (Xt = 0|X0 = 1) ≤ 1

4
,∀t. (B2)

Proof: This can be shown using the standard techniques for random walks with absorbing barriers [48]. The random
walk starts in the state 1. In the first step it goes to 0 with probability 1/5, and to 2 with probability 4/5. From
that moment on, it can only reach even numbers, so we can discard all the states consisting of odd numbers. We can
also rearrange the absorbing states (0 and n), so that they are first in the transition matrix. The transition matrix is
then of the form (

I S

0 Q

)
.

After infinite time, the probabilities that the walker is in 0 or in n will be given by S (I −Q)
−1

. Q is a tridiagonal
Toeplitz matrix, and using standard techniques yields that the probability of reaching 0, starting from 2, with infinite
time, is

lim
t→∞

P (Xt = 0|X0 = 2) = (1/5)
2

[
(16/25)n − (1/25)n

(16/25)n+1 − (1/25)n+1

]
≤ 1

16
. (B3)

Then:

lim
t→∞

P (Xt = 0|X0 = 1) ≤ 1

5
+

4

5

1

16
=

1

4
. (B4)

�
We now have the ingredients to build the formula. The ones chain can be solved analytically using the techniques

above. However, if we ignore the edges the relation 〈q (t+ 1)〉 = 〈q (t)〉+6/5 holds. Hence, we can use the very simple
formula 〈q (t)〉 ' 3/4 min (6/5t, n) instead. This is not exact, but it does not deviate much from the exact result The
3/4 factor accounts for the fact that, up to 1/4 of the times, the walker can be absorbed by the barrier at 0, in which
case it stays there. We are neglecting the interaction with the absorbing barrier at n. Therefore, we see that an error
propagates, on average, forming a cone. The area of this cone can be computed as

A =

∫ DM

0

3

4
min (6/5t, n) = H

(
DM −

5

6
n

)(
3

4
nDM −

5

16
n2
)

+H

(
−DM +

5

6
n

)(
9

20
D2
M

)
, (B5)

where H(x) is the Heaviside step function.
Knowing this, we can see what happens approximately when there are possibly many errors during the computation.

We do this by constructing a deterministic model as follows:

Lemma 3 Let us construct a deterministic model of the propagation of errors as follows: if an error occurs in bit j
at time t∗, the value of bit xk at time t is given by:

xk =

{
1 if |j − k| < 3/4 min (6/5 (t− t∗) , n)

0 if |j − k| > 3/4 min (6/5 (t− t∗) , n) .
(B6)

Then, the average number of ones in this model is given by 〈q (t)〉 /n = 1− (1− pM )
A

.

In the model above every time there is an error it will propagate as a cone, whose area is given by Eq. (B5). For
the cases where there is only one error, this model yields the same value for the average number of ones as the Markov
chain. This is by definition, since that single error would propagate as the average cone. If there are many errors, this
is no longer the case, since in the Markov chain the different cones are not independent, while in the deterministic
model they do not interact and are completely independent. However, this effect is very small. We therefore assume
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FIG. 5. The heuristic formula in Eq. (9) is plotted along with the results from sampling from the Markov chain for the 1D
architecture. This is done for an error rate p = 10−3 and with two different system sizes, n = 100 and n = 1000. The heuristic
formula shows good agreement with the result from sampling from the Markov chain.

that this model provides a good approximation of the average number of ones in the Markov chain. Setting pM = 2p
and DM = D/2 gives the final expression:

〈q〉1D /n '

{
1− (1− 2p)

9
80D

2

if D ≤ 5
3n

1− (1− 2p)
3
8nD−

5
16n

2

if D > 5
3n

(B7)

We represent this formula in Fig. 5, and verify that it shows very good agreement with the result from sampling
directly from the Markov chain.

Appendix C: Rigorous 1D bound

Here we provide a rigorous bound for 〈q〉 /n in the 1D case for circuits with D < n. While this bound is not tight,
it shows that the scaling in Table I is the correct one.

We are working with the Markov chain as defined in the main text (Eq. (7)). In this picture, an error in qubit k
corresponds to flipping bit k from 0 to 1. We define the set of possible errors by S = {1, .., n} × {1, ..., DM}. Then,
an error is given by the 2-tuple (a, b) ∈ S. In this notation a specifies the bit where the error occurred, and b specifies
the time step. We define an instance of errors by a subset s ⊂ S that contains all the errors that have occurred in a
given run of the Markov chain. We denote by P

(
Qj
)

the probability that bit j is in 1 at the end of the computation.
This is given by

P
(
Qj
)

=
∑
s⊂S

P
(
Qj
∣∣ s)P (s) . (C1)

We note that, with this Markov chain, for every instance of the errors s ∈ S it holds that P
(
Qj
∣∣ s) ≥ P (Qj∣∣ (a, b) ∈

s). That is, given an instance of errors s, the probability of bit j being in 1 can only decrease if we only pick one of
the errors in s.

Let us now assume that there exists a subset of errors A ⊂ S such that, P
(
Qj
∣∣ (a, b) ∈ A) ≥ c, where c is a constant.

That is, A contains errors such that, if one of the errors in A occurs, it is enough to certify that the probability of bit
j being in 1 is equal or greater than c. Then, we can compute
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∑
s

P
(
Qj
∣∣ s)P (s) ≥

∑
s

P
(
Qj
∣∣ (a, b) ∈ s)P (s) ≥

∑
s

P (s ∩A 6= ∅) c =

c

(∑
s

1− P (s ∩A = ∅)

)
= c

[
1− (1− pM )

|A|
]
. (C2)

We would now like to identify a subset of errors A that fulfills this property. To do this, we analyze the behavior
of the Markov chain. We would like to compute P

(
Qj
∣∣ (k, t∗)). As explained in appendix B, if there is only one error

it will propagate forming a string of ones. To compute the probability we can track the movement of the endpoints
of this string. We define several random variables for this purpose:

Definition 1 (Random walks) Let us consider the following random variables

XA(t) = X0
A +

t∗∑
i=1

X
(i)
A , (C3)

XB(t) = X0
B +

t∗∑
i=1

X
(i)
B , (C4)

where X0
A = k, and

X0
B =

{
k + 1 with probability 4/5

k − 1 with probability 1/5,
(C5)

X
(i)
A =


0 if XA(t− 1) > XB(t− 1)

1 with probability 1/5 if XA(t− 1) < XB(t− 1)

−1 with probability 4/5 if XA(t− 1) < XB(t− 1),

(C6)

X
(i)
B =


0 if XA(t− 1) > XB(t− 1)

−1 with probability 1/5 if XA(t− 1) < XB(t− 1)

1 with probability 4/5 if XA(t− 1) < XB(t− 1).

(C7)

We also define two independent random walkers as

X ind
A (t) = X0

A +

t∗∑
i=1

X
ind,(i)
A , (C8)

X ind
B (t) = X0

B +

t∗∑
i=1

X
ind,(i)
B , (C9)

where

X
ind,(i)
A =

{
1 with probability 1/5

−1 with probability 4/5,
(C10)

X
ind,(i)
B =

{
−1 with probability 1/5

1 with probability 4/5.
(C11)
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With the definitions above, it holds that

P
(
Qj
∣∣ (k, t∗)) = P (XB ≥ j ∩XA ≤ j). (C12)

The random walks XA and XB defined above track the end points of the string of ones. The difficulty here is
that they are not independent random walks. They behave independently until they cross: in that case they stop.
However, we can bound the probability using X ind

A and X ind
B , which are just biased random walks in the line, with

every step being independent on the rest.

Lemma 4 Let us consider the random variables XA, X ind
A , XB and X ind

B as defined in definition 1. Then,

P
(
Qj |(k, t∗)

)
= P (XB ≥ j ∩XA ≤ j) ≥ P

(
X ind
B ≥ j

)
P
(
X ind
A ≤ j

)
− 1

4
. (C13)

Proof: We want to compute P (XB ≥ j ∩XA ≤ j). We note that the two random walks are completely independent
until the moment they cross: in that case they stop. We can denote this event as C, and no crossing as NC. Assuming
that DM < n/2, from Lemma 2 we know that the probability that they cross is upper bounded, P (C) ≤ 1/4. Then,
we can write:

P (XA ≥ j ∩XB ≤ j) = P (XA ≥ j ∩XB ≤ j|NC)P (NC) . (C14)

We can now consider the two random walks X ind
A and X ind

B . Their behavior is the same as XA and XB provided there
is no crossing. That is:

P (XA ≥ j ∩XB ≤ j|NC) = P
(
X ind
A ≥ j ∩X ind

B ≤ j|NC
)
. (C15)

Using now the law of total probability we get:

P
(
X ind
A ≥ j ∩X ind

B ≤ j|NC
)
P (NC) =

P
(
X ind
A ≥ j

)
P
(
X ind
B ≤ j

)
− P

(
X ind
A ≥ j ∩X ind

B ≤ j|C
)
P (C) ≥

P
(
X ind
A ≥ j

)
P
(
X ind
B ≤ j

)
− 1

4
. (C16)

The result then follows immediately from Eq. (C12). �
We know now how to bound the probability P

(
Qj
∣∣ (k, t∗)) using two biased random walks on the line. This allows

us to bound the region:

Lemma 5 Let us consider an error (k, t∗) such that

|j − k| ≤ 6

5
(DM − t∗)− 2

√
2 (DM − t∗) ln

1

3/4− c
. (C17)

Then, P
(
Qj
∣∣ (k, t∗)) ≥ c.

Proof: Since X ind
A and X ind

B are a sum of independent random variables, we can bound the probability that they
deviate from the mean using Hoeffding’s inequality [49]:

P
(
X ind
A − E

[
X ind
A

]
≥ α

)
≤ exp

(
− α2

2 (DM − t∗)

)
. (C18)

The expectation values can easily be computed as E
[
X ind
A

]
= k−3/5(DM−t∗) and E

[
X ind
B

]
= k+3/5(1+DM−t∗)

Let us now assume, without loss of generality, that j < k. We want to compute the quantity
P
(
X ind
A ≥ j

)
P
(
X ind
B ≤ j

)
. We have

P
(
X ind
A ≤ j

)
= 1− P

(
X ind
A ≥ j

)
= 1− P

(
X ind
A − E

[
X ind
A

]
≥ j − E

[
X ind
A

])
≥ 1− exp

(
−
(
j − E

[
X ind
A

])2
2 (DM − t∗)

)
,

(C19)
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P
(
X ind
B ≥ j

)
≥ 1− exp

(
−
(
j − E

[
X ind
B

])2
2 (DM − t∗)

)
. (C20)

We note that, since j < k, the dominant term is P
(
X ind
A ≥ j

)
, and therefore we neglect the term with XB , which

is exponentially smaller. Setting P (Qj | (k, t∗)) ≥ P
(
X ind
A ≥ j

)
− 1/4 ≥ c we directly obtain

∣∣∣∣j − k +
3

5
(DM − t∗)

∣∣∣∣ ≤
√

2 (DM − t∗) ln
1

3/4− c
. (C21)

Doing the same for the cases where j < k, which corresponds to the region where the term with XB will dominate,
completes the computation. �

We have therefore found a region such that P
(
Qj
∣∣ (k, t∗)) ≥ c. Integration over t∗ yields:

|A| = 3

5
D2
M −

4

3

√
2 ln

1

3/4− c
D

3/2
M . (C22)

Then, using Eq. (C2) we can bound

〈q〉 /n ≥ c
(

1− (1− pM )
3
5D

2
M− 4

3

√
2 ln 1

3/4−cD
3/2
M

)
. (C23)

As conjectured, the number of depolarized qubits scales exponentially with O(D2).

Appendix D: Proof of concentration bound

In addition to studying the average energy of the output, it is also interesting to study the variance. Here we provide
a concentration bound for the 1D case and shallow circuits, for unweighted graphs of bounded degree ∆. We show
that, in this case, the energy of a typical circuit is close to the average energy. This is done using Azuma-Hoeffding’s
inequality [50].

We are considering a cost function that has |E| terms, where |E| is the number of edges of the graph. We can
therefore consider |E| different random variables, Xi = tr(ρCi), corresponding to each of the edges of the graph. The
total cost energy will then be a random variable given by C =

∑
iXi. We can now define Zt = E[

∑
iXi|X1, ..., Xt].

That is, Zt updates the expectation value of the energy after learning the value of t edges. In order to apply Azuma-
Hoeffding’s bound, we need to bound the quantity |Zi−Zi−1|, which determines how much the expectation value can
change when we learn the energy of one edge. Since we are working with the 1D local model, two qubits can only be
correlated if they are closer than 2D, where D is the depth. This holds if D < n. Since the degree is bounded by
∆, learning the energy of one edge could at most update the value of 4D qubits, or 2D∆ edges. We can then bound
|Zi − Zi−1| ≤ ∆D. Applying Azuma-Hoeffding’s inequality yields:

Pr [|C − 〈C〉| ≥ λ] ≤ 2e
− λ2

2|E|∆2D2 . (D1)

If we set λ to be a fraction of the total number of edges, λ = α|E|, with α ∈ (0, 1), this yields:

Pr [|C − 〈C〉| ≥ α|E|] ≤ 2e−
α2|E|

2∆2D2 . (D2)

As a consequence, for constant depth, the value of C is concentrated around its mean, 〈C〉.
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