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Error Propagation in NISQ Devices for Solving Classical Optimization Problems
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We propose a random circuit model that attempts to capture the behavior of noisy intermediate-scale
quantum devices when used for variationally solving classical optimization problems. Our model accounts
for the propagation of arbitrary single-qubit errors through the circuit. We find that, even with a small
noise rate, the quality of the obtained optima implies that a single-qubit error rate of 1/(nD) (where n is
the number of qubits and D is the circuit depth) is needed for the possibility of a quantum advantage. We
estimate that this translates to an error rate lower than 10−6 using the quantum approximate optimization
algorithm for classical optimization problems with two-dimensional circuits.
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I. INTRODUCTION

Significant advances in the capabilities of quantum
information processing hardware have recently been made,
with the achievement of an important milestone of hav-
ing reached quantum advantage [1–3]. In addition to
developing technologies towards the final goal of a fault-
tolerant quantum computer, there is widespread interest in
exploring the capabilities of the currently available noisy
intermediate-scale quantum (NISQ) devices [4]. This has
inspired a number of heuristic quantum algorithms for
NISQ devices [5–21], but it remains unclear if they can
provide a quantum advantage for practically interesting
problems.

One of the proposed applications for NISQ devices is
to solve combinatorial optimization problems. Since this
class of problems contains NP-hard instances, it is consid-
ered hard to solve on classical computers [22]. Quantum
circuits can explore larger state spaces (e.g., entangled
states) compared to their classical counterparts and hence
there is a possibility of quantum speedup in some instances
of these problems. Several heuristic variational quantum
algorithms have been proposed for solving optimization
problems [8–15], most notably the quantum approximate
optimization algorithm (QAOA) [23]. While variational

*guillermo.gonzalez@mpq.mpg.de
†rahul.trivedi@mpq.mpg.de
‡Both authors contributed equally.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

algorithms in general lack provable guarantees for quan-
tum speedups, there is a growing body of literature that
suggests their use for practically interesting problems that
remain hard to solve on classical computers [24–26], as
well as provides evidence for their experimental feasibility
[27,28]. However, a number of algorithmic challenges to
these heuristics that stem from the limitations on the acces-
sible circuit architectures, such as barren plateaus [29],
expressibility of the ansatz [30,31], or reachability deficits
[32], have been identified.

The influence of noise in quantum devices on variational
algorithms is an important consideration for assessing their
utility in the near term. Noise-induced barren plateaus in
the optimization landscape of the variational ansatz have
been identified [33]. Numerical modeling of the impact of
noise has also been attempted [34,35], but this analysis is
limited to very small circuit sizes. A set of rigorous results
on the impact of noise in the quality of the optima obtained
have recently been provided using entropic arguments
[36–38]. By simply tracking the von Neumann entropy
of the quantum state, in Refs. [37,38] it was argued
that beyond circuit depths of �[log(n)] with depolarizing
noise, the output state is very close to the maximally mixed
state. Stilck França and Garcia-Patron [36] improved on
this result and showed that, even beyond circuit depths of
�(1), the quality of the solution of a large class of classi-
cal optimization algorithms obtained from this circuit can
be achieved with a classical algorithm.

However, while these analyses already provide provable
limits on the quality of variational quantum algorithms
that can inform current experiments, they likely under-
estimate the impact of noise in variational circuits used
in practice. This underestimation arises from the fact that
these bounds are applicable to any quantum circuit, and,
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consequently, they also bound the performance of circuits
that do not create significant entanglement in the quantum
state. Therefore, these bounds do not capture propagation
of errors through the quantum circuit. Furthermore, these
bounds are also loose for noise models, such as amplitude
damping noise, which can possibly decrease the entropy
in the quantum circuit; however, for a typical quantum cir-
cuit, it is expected that the presence of such noise would
still degrade its performance.

In this paper, we propose a random circuit model that
attempts to analyze the impact of noise in NISQ devices
used to variationally solve classical optimization problems.
Unlike previously proposed random circuit models, our
model captures the fact that these circuits map product
states for product states, i.e., ideally, a typical member of
this circuit family starts with a product state, builds entan-
glement in between the qubits, and then disentangles it to
another (product) state that is the bit string that solves the
classical optimization problem. Our study here is thus dif-
ferent from recent works that have studied the impact of
noise in Haar-random quantum circuits [39–42] with geo-
metric constraints, where a typical member of these circuit
families has an anticoncentrated output state, which is in
stark contrast to what is expected for variational quan-
tum circuits that ideally output a state close to the ground
state.

We perform an average-case analysis on this distri-
bution of circuits, and find that noise propagates very
rapidly through the circuit, severely limiting the perfor-
mance of the circuits. We provide both numerical results
and analytical scalings for three different architectures:
one dimensional (1D), 2D, and nonlocal. Our results indi-
cate that to obtain a solution to a classical optimization
problem within a fixed multiplicative error of its true solu-
tion with a constant rate of noise p , the circuit depth of
a typical member of this distribution has to be smaller
than max(O(p−1/2), O[1/(pn)]) in the 1D architecture and
max(O(p−1/3), O[1/(pn)]) in the 2D architecture. Further-
more, it follows from our analysis that the impact of error
is qualitatively similar for different noise models in con-
trast to Ref. [36], which relies on the noise-channel being
primitive and unital. Moreover, our analysis technique can
be easily extended to understanding the impact of noise
on variational quantum algorithms for solving the quan-
tum optimization problem (i.e., finding the ground state of
a quantum many-body Hamiltonian).

In addition to this average-case analysis, we provide a
concentration result for low-depth local circuits that shows
that this average is representative of a typical circuit.
However, we note that this does leave open the question
of whether a clever method of choosing the parameters
of a variational quantum circuit could be devised (e.g.,
with a closed-loop optimization of the noisy quantum cir-
cuit), such that the resulting circuit avoids the predicted
proliferation of noise.

II. ERROR PROPAGATION MODEL

Consider the problem of solving a classical optimization
problem over {0, 1}n, and suppose that the unitary circuit
that maps an initial product state |0〉⊗n to the solution
x∗ ∈ {0, 1}n is given by Usol. Since we are only interested
in analyzing a lower bound on the impact of errors, we
assume that the optimal circuit is already known and is
noiseless, and do not address the problem of finding it. For
depth D, we now consider a random quantum channel as
� = ©D

t=1Tt, where the Tt are given by

Tt =
{
N ◦ U (t) if t ≤ D/2,
N ◦ [U (D−t)]† if t > D/2,

(1)

where N is a layer of the noise channel and U (t) is a layer
of two-qubit Haar random unitaries. The effective channel
for the circuit under consideration, depicted in Fig. 1(a),
will be constructed via � ◦ Usol.

Each member of the ensemble of circuits defined above
solves the optimization problem in the absence of noise
(i.e., when N = id). Furthermore, in the absence of noise,
the circuit builds entanglement in the input state (which
is a product state) for the first D/2 layers (which we call
the entangling unitary), after which it uncomputes these
unitaries to finally obtain a product state. However, any
error in the unitary circuit propagates and alters the final
result. Since we are interested in the propagation of noise,
we assume that the one-qubit gates are noiseless. We point
out that a similar model can be constructed for quantum
optimization problems, i.e., finding the ground state of
a quantum many-body Hamiltonian, with Usol being the
circuit that maps |0〉⊗n to the ground state. Even while
assuming Usol to be noiseless, the noisy entangling and
unentangling unitaries will still capture propagation of
errors within this model.

We consider three different architectures for generat-
ing U (t) that model different interaction ranges that can be
accessed on physical hardware [Fig. 1(b)].

(a) A 1D local architecture with periodic boundary con-
ditions, where alternating layers of nearest-neighbor
gates are applied.

(b) A 2D local architecture with periodic boundary con-
ditions on a square lattice. Alternating layers of
horizontal and vertical two-qubit gates are applied.

(c) A nonlocal architecture where, for each layer, n/2
pairs are chosen at random, and n/2 two-qubit gates
are applied between the pairs.

Given that, in the absence of noise, all instances of the ran-
dom unitaries produce the same unitary, we consider the
output of the channel averaged over the random unitaries
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FIG. 1. (a) Schematic depiction of the ensemble of unitary circuits considered in this paper. The circuits consist of an entangling and
uncomputing unitary that maps a product state to another product state in the absence of noise. (b) Different circuit architectures (1D,
2D, and nonlocal circuits) studied in this paper. All the circuit architectures are assumed to be translationally invariant—in particular,
for the 1D and 2D architectures we assume periodic boundary conditions).

for each of the architectures,

�A
avg(ρ) =

∫
U

dU�(ρ) with A ∈ {1D, 2D, NL}, (2)

where �1D
avg will represent the averaged channel with the

1D architecture, �2D
avg the 2D architecture, and �NL

avg the
nonlocal architecture [Fig. 1(b)].

An important fact that we use to calculate �A
avg is that

the twirl of a two-qubit quantum channel M over the Haar
measure is a two-qubit depolarizing channel [Fig. 2(a)]
[43], i.e.,

Edep(X ) =
∫
U

dU [U†MU ](X )

= λX + (1 − λ)
I⊗2

4
tr(X ), (3)

where if Ak represents the kth Kraus operator of the
channel M then

λ = 1
15

( ∑
k

|tr(Ak)|2 − 1
)

. (4)

Since this expression applies to arbitrary noise channels,
it follows that the specific choice of noise does not greatly
impact the qualitative behavior of our model, with only the
noise strength λ depending on the specific channel.

In the remainder of this paper, we consider the noise to
be a depolarizing channel of strength p ,

N (ρ) = (1 − p)ρ + p tr(ρ)I/2,

i.e., an error, interpreted as tracing out the qubit and replac-
ing it with I/2, occurring with probability p . When this
noise channel acts on two qubits, there are three distinct
possibilities—no errors occurred (i.e., ρ → ρ), both the
qubits experienced errors (ρ → I⊗2/4), or only one qubit
experienced error (i.e., ρ → I/2 ⊗ tr1(ρ) or tr2(ρ) ⊗ I/2).
Then, by direct application of Eqs. (3) and (4), we can com-
pute the effective two-qubit depolarizing obtained after
averaging over the two-qubit unitaries for these three
cases.

(a) For M(ρ) = ρ, i.e., no errors occur in either qubit
between the application of U and U†,

Edep(ρ) = ρ. (5a)
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FIG. 2. (a) Averaging over Haar-random unitary U yields a
two-qubit depolarizing channel Edep. (b) Schematic depiction of
averaging over the circuit ensemble shown in Fig. 1—we average
from the center of the circuit outwards, and derive an effective
Markov chain that describes the channels obtained.

(b) If M(ρ) = tr(ρ)I⊗2/4, i.e., errors occurred in
both qubits between the application of U and U†,

Edep(ρ) = tr(ρ)
I⊗2

4
. (5b)

(c) If M(ρ) = I/2 ⊗ tr1(ρ) or tr2(ρ) ⊗ I/2, i.e., an
error occurred in only one of the qubits in between
the application of U and U†, then, after averaging
over U in Eq. (3),

Edep(ρ) = 1
5
ρ + 4

5
tr(ρ)

I⊗2

4
. (5c)

Physically, this can be interpreted as the error in
one of the qubits propagating to the other qubit

with probability 4/5 due to the random two-qubit
entangling gates.

Let us now consider the quantum channel �A
avg; the key

idea to computing this average channel, depicted schemat-
ically in Fig. 2(b), is to start analyzing the circuit from
its center (i.e., in between the entangling and uncomput-
ing unitary layers), and iteratively construct the channel
obtained on including additional unitary layers. We denote
by �A

t the channel formed by including and averaging
over t layers of the entangling and uncomputing unitary
from the center of the circuit. For t = 0, we have only a
single layer of depolarizing noise and hence �A

t=0 = N⊗n;
this channel applies the noise independently on each qubit
or leaves their state unchanged. After including unitary
layers and averaging over them, it follows from the analy-
sis of the two-qubit errors shown above that the resulting
channels still either apply noise on each qubit or leave
them unchanged, although the noise is no longer applied
independently on each qubit. Therefore, we assume the
following ansatz for �A

t :

�A
t =

∑

j ∈{0,1}n

pA
t (
j )

[ n⊗
α=1

τjα

]
(6)

with

τ0(·) = id(·) and τ1(·) = tr(·) I
2

.

Here, pA
t (
j ) for a given 
j ∈ {0, 1}n is the probability that

the first qubit experiences noise if j0 = 1 and remains
unchanged otherwise, the second qubit experiences noise
if j1 = 1 and remains unchanged otherwise, and so on. We
note that at t = 0, i.e., when �A

t=0 is a layer of depolarizing
noise,

pA
t=0(


j ) = (1 − p)n−|
j |p |
j |, (7)

where |
j | = ∑n
i=1 ji.

Next, we show that if �A
t is of the form of Eq. (6) then

so is �A
t+1 and we relate probability distribution pA

t+1 to pA
t .

Note that

�A
t+1 = EU(t)[N⊗nU (t)†�A

t U (t)N⊗n], (8)

where U (t) is the unitary applied at the tth layer from
the center. Depending on the circuit architecture, U (t) =⊗

(α,β)∈S(t) U (t)
α,β , where U (t)

α,β is a two-qubit gate acting on
qubits α, β and S(t) contains a list of qubits that inter-
act with each other through the two-qubit unitaries. The
averaging over each two-qubit unitary can now be done
independently using Eq. (5). In particular, consider aver-
aging over one of these unitaries acting on qubits α and β;

040326-4



ERROR PROPAGATION IN NISQ DEVICES. . . PRX QUANTUM 3, 040326 (2022)

from Eq. (6), it follows that

EU(t)
α,β

[U (t)†
α,β �A

t U (t)
α,β]

=
∑


j
pA

t (
j )EU(t)
α,β

[
U (t)†

α,β

( n⊗
γ=1

τjγ

)
U (t)

α,β

]

=
∑


j
pA

t (
j )
( ⊗

γ �=α,β

τjγ

)
⊗ EU(t)

α,β
[U (t)†

α,β τjα ⊗ τjβU (t)
α,β].

where in the last step we have used the fact that channels
U (t)

α,β ,U (t)†
α,β commute with τjγ for γ �= {α, β} since they act

only on qubits α, β. Now, from Eq. (5), it follows that

EU(t)
α,β

[U (t)†
α,β τjα ⊗ τjβU (t)

α,β]

=
{

τjα ⊗ τjα if jα = jβ ,
1
5τ0 ⊗ τ0 + 4

5τ1 ⊗ τ1 if jα �= jβ ,

and, therefore, it follows that

EU(t)
α,β

[U (t)†
α,β �A

t U (t)
α,β] =

∑

j

qα,β;t(
j )
[ ⊗

α∈
j
τα

]
,

where probability distribution qα,β;t(
j ) is related to pA
t (
j )

via a transition matrix that is identity on all but the αth and
βth bits, given by

M U
α,β[(jα , jβ) → (j ′

α , j ′
β)]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (jα , jβ), (j ′
α , j ′

β) = (0, 0),
1/5 if (jα , jβ) = (0, 1) or (1, 0), (j ′

α , j ′
β) = (0, 0),

4/5 if (jα , jβ) = (0, 1) or (1, 0), (j ′
α , j ′

β) = (1, 1),
1 if (jα , jβ), (j ′

α , j ′
β) = (1, 1).

(9)

Repeating this for all the two-qubit gates in unitary U (t),
we obtain

EU(t)
[U (t)†�A

t U (t)] =
∑


j
qA

t (
j )
[⊗

α∈
j
τα

]
,

where qA
t (
j ) is a probability distribution related to pA

t (
j )
via transition matrix M U

t given by

M U
t =

⊗
(α,β)∈S(t)

M U
α,β .

Having averaged over the unitaries, we now consider
applying the layers of depolarizing noise. This can be done

explicitly; from Eq. (8) we obtain

�A
t+1 =

∑

j ∈{0,1}n

qA
t (
j )

[⊗
α∈
j

(N ταN
)]

.

Furthermore, it can be immediately seen from the defini-
tions of the τα that

N ταN =
{

(1 − p)2τ0 + (2p − p2)τ1 if α = 0,
τ1 if α = 1.

Thus, probability distribution pA
t+1(


j ) is obtained from
probability distribution qA

t (
j ) using transition matrix
M noise that, independently for every bit in 
j , has transition
probabilities

M noise(j → j ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − p)2 if j = 0, j ′ = 0,
2p − p2 if j = 0, j ′ = 1,
1 if j = 1, j ′ = 1,
0 otherwise.

(10)

Combining the transition rules for both the unitary layer
and the noise, we then obtain a Markov chain for probabil-
ity distribution pA

t ,

pA
t+1 = (M noiseM U

t )pA
t . (11)

To analyze the state obtained at the output of this circuit,
after averaging over all the unitaries, we thus only need to
compute probabilities pA

t=D/2 starting from initial distribu-
tion pA

t=0 [Eq. (7)], which then gives us access to channel
�A

t=D/2 (note that the effective time for which we need to
evolve the Markov chain is half of the depth of the circuit,
since each layer of the Markov chain accounts for a layer
in the entangling and uncomputing unitaries). This can be
computed by simulating the Markov chain with the tran-
sition matrices described above and allows us to analyze
how many and which qubits in the solution of the optimiza-
tion problem are, on average, correct. In the next section,
we analyze this Markov chain both analytically and numer-
ically to understand the impact of the noise and circuit
depth on the quality of the output.

III. IMPACT OF ERRORS

A. Analysis of error propagation

We first compute the expectation value of the number of
qubits that are depolarized at the end of the computation,
which we denote as 〈q〉. This can be done numerically by
sampling from the Markov chain described in the previous
section using Markov chain Monte Carlo. The results are
shown in Fig. 3—our results show that, as expected, all the
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FIG. 3. We represent the expectation value of the fraction of
depolarized qubits, 〈q〉/n, as a function of the circuit depth for
the different architectures: 1D, 2D, and nonlocal. We use a system
size n = 900 and an error rate p = 10−3. Additionally, we repre-
sent 〈q〉/n = 1 − (1 − p)D, which is the number of depolarized
qubits that one would get when applying only local depolariz-
ing noise to all the qubits, without any unitaries (and therefore
without entanglement). We see that the convergence to uni-
form is very fast with our model. The horizontal lines represent
thresholds for classical superiority for unweighted max-cut prob-
lems on arbitrary bounded degree-3 graphs and bipartite bounded
degree-3 graphs: for values of 〈q〉/n greater than the threshold,
there is a classical efficient algorithm that outputs a better solu-
tion than the averaged quantum channel (see Sec. III B). The
number of samples taken is 2000, which reduces the error in the
estimated mean to 2%.

qubits depolarize exponentially fast with the circuit depths
due to a rapid propagation of errors.

In order to better understand these numerical results,
we would like to analyze theoretically the behavior of the
Markov chain. We first provide heuristic estimates for the
scalings of 〈q〉 with n. Note that every time a qubit is depo-
larized in the effective Markov chain, the neighboring qubit
can be depolarized with a constant [i.e., �(1)] probability.
Take, for instance, the 1D model—at the end of the circuit,
an error in the middle of the circuit will have propagated
to min(O(D), n) qubits. We can now estimate the probabil-
ity that a specific qubit will be depolarized at the end of
the computation—on average, it will be depolarized if at
least one error has occurred in a qubit that is within a dis-
tance of min(O(D), n) of this qubit. Since there are �(D)

steps of the Markov chain, the probability of a certain qubit
not being depolarized is about (1 − p)O(D2) for circuits
that are shallow, and about (1 − p)O(nD) for deep circuits.
Similarly, in two dimensions a single error propagates on
average to min(O(D2), n) qubits, and in the nonlocal case
to min(eO(D), n). These scalings are displayed in Table I.
We note that, if the circuit is sufficiently deep, a single
error can potentially propagate to all the other qubits, thus
resulting in 〈q〉 scaling as 1 − (1 − p)O(nD).

TABLE I. Summary of the scaling of the expectation value of
the fraction of depolarized qubits at the end of the computation,
as a function of the circuit depth and system size. We identify
two different regimes: a shallow-depth regime and a deep regime.
The deep regime represents the cases in which the light cone of a
single error can reach the edges (i.e., a single error can propagate
to all other qubits), while for the shallow regime circuits, this is
not the case.

Architecture Depth 〈q〉/n

Shallow regime 1D O(n) 1 − (1 − p)O(D2)

2D O(
√

n) 1 − (1 − p)O(D3)

NL O(log n) 1 − (1 − p)O[exp(D)]

Deep regime 1D 
(n) 1 − (1 − p)O(nD)

2D 
(
√

n) 1 − (1 − p)O(nD)

NL 
(log n) 1 − (1 − p)O(nD)

In addition to the scalings presented in Table I, we pro-
vide a heuristic formula that works very well in practice
for the 1D case:

〈q〉1D

n
�

{
1 − (1 − 2p)9D2/80 if D ≤ 5

3 n,

1 − (1 − 2p)3nD/8−5n2/16 if D > 5
3 n.

(12)

The derivation of this formula and its numerical verifica-
tion is given in Appendix C. We also provide a semiem-
pirical formula for the 2D case that has been obtained by
fitting the data points to the expression in Table I:

〈q〉2D

n

�
⎧⎨
⎩1 − (

1 − 3
2 p

)0.026D3+0.054D2
if D ≤ 3.226

√
n,

1 − (
1 − 3

2 p
)nD/2−0.74n3/2+0.56n if D > 3.226

√
n.

(13)

Finally, in Appendix D we rigorously prove a lower bound
on 〈q〉 for the 1D model with D < n that has the same
scaling with p , D, and n as Eq. (12).

B. Implications on circuit depths for noisy QAOA

We apply our error model to the specific case of quantum
circuits that try to use QAOA to solve classical optimiza-
tion problems, and analyze how the propagation of errors
could limit the performance of the algorithm. We consider
the max-cut problem since it is practically useful and hard
to solve classically. Given a graph G = (V, E) on n ver-
tices and adjacency matrix aij , finding the max-cut of G
requires dividing the qubits into two groups, V′ and V \ V′,
such that the sum of weights of edges between these two
groups is maximal. It can be equivalently defined as the
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bitstring Z ∈ {−1, 1}n maximizing the cost function

C = 1
2

∑
(i,j )∈E

aij (1 − ZiZj ) (14)

with the vertices corresponding to Z = −1 being in one
group and those corresponding to Z = 1 being in the other.

Let us denote by Cmax the solution of this problem, and
denote the average value of the cost function when random
guessing by Cavg, i.e.,

Cavg = tr
(

C
I
2n

)
= 1

2

∑
(i,j )∈E

aij . (15)

The cost function Cavg is that obtained by a circuit in which
all the qubits are depolarized. Since the output of the error
propagation channel contains some qubits that are depolar-
ized, the cost function obtained from the resulting state will
be between Cavg and Cmax. As shown in Appendix A, under
the assumption that aij > 0, we are able to upper bound the
average energy of the output as a function of the average
number of depolarized qubits 〈q〉 as

tr(C�avg(ρ)) ≤ 1
2

(
1 − 〈q〉

n

)(
2 − 〈q〉

n

)
Cmax

+
(

1 −
(

1 − 〈q〉
n

)2)
Cavg. (16)

This expression readily provides an upper bound on the
quality of the solution that we can compute given an
error rate and a circuit depth. Given a lower bound
on the maximum value Cmax of the cost function, it
also allows us to upper bound the approximation ratio
[α = Tr[C�A

avg(ρ0)]/Cmax]. This approximation ratio can
often inform of the existence of an efficient classical
algorithm that obtains a similar solution—for instance,
the Goemans-Williamson algorithm is a classical approx-
imation algorithm that has a performance guarantee of
α > 0.878 [44]. It is thus reasonable to make the assump-
tion that near-term quantum circuits are only useful if the
approximation ratio, in the presence of noise, is better than
those achievable by classical algorithms.

As a specific example, we briefly study unweighted
(i.e., aij = 1) bounded degree-(� = 3) graphs that cannot
be solved trivially in general. For any bounded degree-
(� = 3) graph, the Edwards-Erdös inequality provides a
lower bound for the max-cut in terms of the number of
edges, Cmax ≥ (2/3)|E| [45]. Combined with Eq. (16), this
provides an upper bound for the approximation ratio,

α ≤ 1 −
( 〈q〉

2n

)2

. (17)

For degree-3 graphs, there is a classical approximation
algorithm that achieves an approximation ratio of 0.9326

[46]. We therefore find that only when 〈q〉/n ≤ 0.52 can
the quantum algorithm possibly output a better average
energy than the classical one. That is, as soon as approx-
imately half of the qubits are depolarized, we can be sure
that the average quality of the solution is worse than the
quality of the solution of classical approximation algo-
rithms in the worst case. We represent an instance of this
in Fig. 4 below. We note that this bound is not tight in
every case, since we are considering all possible bounded
degree-(� = 3) graphs. For example, if we consider only
the bipartite ones, Cmax = |E| and Cavg = |E|/2, which
gives an approximation ratio that is bounded by α ≤ 1 −
〈q〉/(2n), and therefore 〈q〉/n ≤ 0.135. Therefore, in this
case, it is already possible to certify the classical advantage
when only around 15% of the qubits are depolarized.

Using the scalings from Table I, we find that, for shal-
low circuits (as defined in the table), after a depth D =
O(

√
1/p) for the 1D architecture and D = O( 3

√
1/p) for

the 2D architecture we already have a situation where the
quality of the solution is worse than with classical approx-
imation algorithms. This is respectively quadratically and
cubically worse with respect to p than the scaling reported
in Ref. [36]. This is a consequence of the rapid spreading
of errors.

The impact of errors in 2D (and even all-to-all) archi-
tectures is much higher than in 1D architectures due to
a more rapid propagation of errors. However, this does
not necessarily imply that 1D circuits are better for near-
term quantum computation since our analysis thus far does
not account for the increased connectivity of the quantum
circuit. In order to take that into account, in the next sub-
section we consider a specific case, QAOA for solving a
nonlocal problem, i.e., a graph with long-range vertices (a
nonplanar graph). This necessarily places us in the deep
circuit regime (as defined in Table I) in all cases.

We stress that this is an average-case analysis, which
may not apply to particular situations or specific circuits.
However, in Appendix B we derive a concentration bound
for shallow local circuits,

Pr[|C − tr(C�avg(ρ))| ≥ α|E|] ≤ 2e−O(α2|E|/�2D2k), (18)

where � is the degree if the graph and k is the dimension of
the architecture. Thus, for shallow local circuits, the output
of a typical circuit is exponentially close to the average.

1. Required error rate

We also need to analyze the required circuit depth to
run QAOA. Most quantum computing architectures have
a planar design, similar to the 2D architecture that we are
considering. However, the optimization problems that are
useful in practice usually consist of nonplanar graphs. For
example, planar max-cut can always be solved in poly-
nomial time on classical computers [47]. Since nonplanar
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FIG. 4. In (a) we represent the relation between the system size and the error rate when the average number of depolarized qubits at
the end of the computation is fixed to 〈q〉/n = 0.5 for bounded degree-(� = 3) graphs. In the 1D case the depth is D1D = 30n, and in
the 2D case D2D = 10

√
7n. The horizontal dashed line corresponds to system sizes of n = 1000, which is when a potential quantum

advantage could begin to be practically useful [26]. In (b) we represent the upper bound for the approximation ratio of bounded degree-
(� = 3) graphs, given by Eq. (17), as a function of the circuit depth for the different architectures: 1D, 2D, and nonlocal. We use a
system size n = 900 and an error rate p = 10−3. The horizontal line represents the approximation ratio that is reachable by an efficient
classical algorithm. The number of samples taken is 2000, which reduces the error in the estimated mean to 2%.

graphs do not match the connectivity of the hardware, rout-
ing will be required to perform the computation. This can
be done with SWAP gates that permute the different qubits,
but comes at the cost of a growth in the circuit depth.
Embedding a bounded degree graph on a square lattice
results in an overhead of

√
n in the gate count, while the

cost is n for the 1D local architecture [10]. Furthermore, at
least a few QAOA layers are necessary for the algorithm to
reach a satisfactory result. Following the scalings reported
in Refs. [10,36], we assume that ten layers are enough to
reach the solution, and that every QAOA layer, after the
routing, needs on average about

√
7n two-qubit gates in

the 2D architecture and 3n two-qubit gates in the 1D archi-
tecture [48]. In this case, a circuit depth D2D ≥ 10

√
7n for

the 2D case is needed and D1D ≥ 30n for the 1D case. This
places us in the deep circuit regime, as seen in Table I and
Eqs. (12) and (13). In this regime, the interpretation is the
following: an error in any qubit will, with high likelihood,
depolarize all the other qubits. Hence, even if there is just
one error in the computation, the average output solution
will not be much better than random guessing. Therefore,
in order to have a good solution, we need to have a compu-
tation completely free of errors. This can only realistically
happen if the error rate is as low as p ∼ 1/(nD). We per-
form the exact calculation and represent it in Fig. 4. We
see that in this simple example, we would need error rates
orders of magnitude below what is currently achievable.
Namely of the order of 10−7 for the 1D architecture, and
10−6 for the 2D architecture. We remark that these figures
are obtained under arguably conservative assumptions. A
more realistic computation would have to include all the

one-qubit and two-qubit gates, thus restricting the error
rate even more.

IV. CONCLUSION

We have studied a model that captures the propagation
of errors in noisy quantum devices when the final state is
a product state. This is the case, for example, when trying
to find the solution to classical optimization problems. For
this model, we show that a single error in one qubit is prop-
agated rapidly to the rest of the qubits. This would place
stringent restrictions on the error rates that are compati-
ble with a quantum advantage. We estimate the required
error rate to be p ∼ 1/(nD), where n is the system size and
D is the circuit depth. As a consequence, assuming that
our error model is representative of the circuits that solve
the problem on real hardware, one would expect that noisy
devices can only become useful for such problems when
the error rates are extremely low, framing fault tolerance
as the most realistic solution.

We emphasize that results are obtained by averaging
different circuits, and it may be possible that for some par-
ticular instances they do not apply. However, due to the
concentration result provided in Appendix B for low-depth
circuits, we expect the average to be representative of a
typical result.

Our results suggest that there is a trade-off between
error propagation and entanglement spread. If we want
to take advantage of a quantum computer, the quantum
circuit should be able to generate entanglement, but this
will generally be associated with the propagation of errors.
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Equivalently, trying to avoid the propagation of errors
may well result in not fully exploiting the whole quantum
computer. Perhaps, this deserves a more careful analysis.

Finally, we note that there are other situations where
error propagation may not impose the stringent conditions
obtained here. For instance, the adiabatic algorithm [6,7]
(and its variational extension [49]) is a special kind of
circuit where one is always close to the ground state of
a particular Hamiltonian. In fact, in this setup there are
indications [49] that the propagation of errors is relatively
mild. Additionally, in the development of quantum algo-
rithms for quantum problems, like quantum simulation,
conservation laws might also prevent the propagation of
errors and thus circumvent the restrictions found in the
present work. The analysis in this work and these consid-
erations indicate that the propagation of errors should be
taken into account in the design of quantum algorithms for
NISQ devices.
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APPENDIX A: PROOF OF ENERGY BOUND

In this section we outline a proof for the energy bound
given in Eq. (16), stated as the following proposition.

Proposition 1 (Energy bound). Let us consider a
weighted graph G = (V, E) with n vertices and adjacency
matrix aij ≥ 0, and the cost function

C = 1
2

∑
(i,j )∈E

aij (1 − ZiZj ) (A1)

with Z ∈ {−1, 1}n. The max-cut problem on this graph
is defined as finding the maximum cut of the graph,
Cmax = maxZ C. Let us also consider the averaged quan-
tum channel �A

avg defined in the main text. Then, for any
translationally invariant architecture A, it holds that

tr(C�A
avg(ρ)) ≤ 1

2

(
1 − 〈q〉

n

)(
2 − 〈q〉

n

)
Cmax

+
(

1 −
(

1 − 〈q〉
n

)2)
Cavg, (A2)

where 〈q〉 is the expectation value of the number of qubits
that are depolarized after the application of �A

avg, and
Cavg = tr(C/2n).

In order to show Proposition 1, we first provide a tech-
nical lemma that we use for this bound, which provides
an inequality on the joint probability of qubits at the out-
put of the circuit to be unaffected by errors. To state this
lemma, we first introduce some notation—we consider the
Markov chain introduced in Sec. II, but for the purpose of
this section, we refer to one application of the transition
matrix corresponding to either a unitary gate [Eq. (9)] or a
depolarizing channel at a single qubit as a single time step
[Eq. (10)]. We denote by Qt

i ∈ {0, 1} the random variable
that indicates the state of the Markov chain at the ith qubit
at time step t. It is 0 (i.e., the qubit experiences no noise) or
1 (i.e., the qubit experiences noise). Furthermore, for any
subset of qubits S, let Qt

S = 0 be the event Qt
i = 0 for all

i ∈ S,

Lemma 1. Let A, B be two disjoint subsets of qubits; then

Pr(Qt
A∪B = 0) ≥ Pr(Qt

A = 0)Pr(Qt
B = 0).

Proof. For ease of notation, we introduce

Vt
A,B = Pr(Qt

A∪B = 0) − Pr(Qt
A = 0)Pr(Qt

B = 0).

This measures the violation of the inequality that we intend
to show at time step t and in between the qubits in A and B

We note that Vt
A,B ≥ 0 is trivially true at t = 0 since all

the random variables Q0
i are independent of each other.

We now assume that this is true at time step t, and show
that it is also true for t + 1. Suppose first that, from t to
t + 1, we apply the transition matrix corresponding to the
two-qubit unitary on qubits i, j . Then, for any set S such
that i, j /∈ S, we obtain, by an application of the transition
matrix in Eq. (9),

Pr(Qt+1
S∪{i,j } = 0) = Pr(Qt+1

i = 0, Qt+1
j = 0, Qt

S = 0)

= Pr(Qt
S∪{i,j } = 0)

+ 1
5

∑
q∈{0,1}

Pr(Qt
i = q, Qt

j

= 1 − q, Qt
S = 0).

Using the fact that Pr(Qt
i = 0, Qt

j = 1, Qt
S = 0) =

Pr(Qt
S∪{i} = 0) − Pr(Qt

S∪{i,j } = 0), we obtain

Pr(Qt+1
S∪{i,j } = 0) = 3

5
Pr(Qt

S∪{i,j } = 0)

+ 1
5

∑
k∈{i,j }

Pr(Qt
S∪{k} = 0). (A3)
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We repeatedly use this update rule in the following analysis. There are four cases that we consider.
Case 1. The two-qubit unitary is applied between a qubit in A and a qubit in B. Let us denote by a ∈ A and b ∈ B the

two qubits between which the unitary is applied, and by A′ = A \ {a} and B′ = B \ {b}. From Eq. (A3), it then follows that

Pr(Qt+1
A∪B = 0) = 3

5
Pr(Qt

A∪B = 0) + 1
5

∑
k∈{a,b}

Pr(Qt
A′∪B′∪{k} = 0).

Furthermore, observe from the two-qubit unitary transition matrix in Eq. (9) that Qt
a = 0 =⇒ Qt

b = 0 (since both the
qubits either simultaneously experience error or not), and, therefore,

Pr(Qt+1
A = 0) = Pr(Qt+11

A∪{b} = 0) = 3
5

Pr(Qt
A∪{b} = 0) + 1

5

∑
k∈{a,b}

Pr(Qt
A′∪{k} = 0).

Similarly, it holds that

Pr(Qt+1
B = 0) = 3

5
Pr(Qt

B∪{a} = 0) + 1
5

∑
k∈{a,b}

Pr(Qt
B′∪{k} = 0).

Note that, since Pr(Qt
B∪{a} = 0), Pr(Qt

B′∪{a} = 0), Pr(Qt
B′∪{b} = 0) ≤ Pr(Qt

B′ = 0), we obtain Pr(Qt+1
B = 0) ≤ Pr(Qt+1

B′ =
0). Therefore,

Vt+1
A,B ≥ Pr(Qt+1

A = 0, Qt+1
B = 0) − Pr(Qt+1

A = 0)Pr(Qt
B′ = 0)

= 3
5 Vt

A′∪{a,b},B′ + 1
5 (Vt

A′∪{a},B′ + Vt
A′∪{b},B′),

from which it follows that Vt+1
A,B ≥ 0.

Case 2. The two-qubit unitary is applied on two qubits, a1, a2 ∈ A. Denote by A′ = A \ {a1, a2}. Then, it follows from
Eq. (A3) that

Pr(Qt+1
A∪B = 0) = 3

5
Pr(Qt

A∪B = 0) + 1
5

∑
k∈{a1,a2}

Pr(Qt
A′∪B∪{k} = 0).

Furthermore,

Pr(Qt+1
A = 0) = 3

5
Pr(Qt

A = 0) + 1
5

∑
k∈{a1,a2}

Pr(Qt
A′∪{k} = 0),

and Pr(Qt+1
B = 0) = Pr(Qt

B = 0). Therefore,

Vt+1
A,B = 3

5 Vt
A,B + 1

5 (Vt
A′∪{a1},B + Vt

A′∪{a2},B),

from which it again follows that Vt+1
A,B ≥ 0.

Case 3. The two-qubit unitary is applied on a qubit a ∈ A and a qubit c that is neither in A nor in B. In this case, if
C = A ∪ {c}, we simply note that

Pr(Qt+1
A∪B = 0) = Pr(Qt+1

C∪B = 0) and Pr(Qt+1
A = 0) = Pr(Qt+1

C = 0)

since Qt+1
a = 0 =⇒ Qt+1

c = 0. Then Vt+1
A,B ≥ 0 simply follows from the analysis in case 2 with the qubit subsets C and B.

Case 4. The two-qubit unitary is applied on qubits that are neither in A nor in B. In this case, it trivially follows that
Vt+1

A,B = Vt
A,B ≥ 0.

Next, we consider the case when the transition matrix corresponding to the depolarizing channel [Eq. (10)] is applied
to qubit i. Note that if i /∈ A ∪ B then Vt+1

A,B = Vt
A,B ≥ 0 trivially. Consider now the case in which i ∈ A. From Eq. (10), it

then follows that

Pr(Qt+1
A∪B = 0) = (1 − p)2Pr(Qt

A∪B = 0) and Pr(Qt+1
A = 0) = (1 − p)2Pr(Qt

A = 0),

and, therefore, Vt+1
A∪B = (1 − p)2Vt

A∪B ≥ 0. Hence, we have show that if at time step t the lemma statement holds then it
holds for t + 1, completing the proof. �
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We now see how the output energy after applying the averaged quantum channel can be upper bounded as a function
of 〈q〉/n, Cmax and Cavg. Let us denote by M ⊆ E the subset of edges that are cut in the solution. That is, M contains the
edges (i, j ) such that Zi �= Zj in the maximum cut. The maximum cut can trivially be written as

Cmax =
∑

(i,j )∈M

aij , (A4)

while the average value of the cut when random guessing, Cavg, is

Cavg = tr
(

C
I
2n

)
= 1

2

∑
(i,j )∈E

aij . (A5)

While we do not have access to the complete probability distribution, we can upper and lower bound Pr(Qt
i∪j = 0).

Translational invariance implies that Pr(Qt
i = 0) = r is the same for all qubits, and, therefore,

Pr(Qt
i∪j = 0) = Pr(Qt

i = 0 ∩ Qt
j = 0) ≤ Pr(Qt

i = 0) = r. (A6)

Furthermore, from Lemma 1, it follows that

Pr(Qt
i∪j = 0) ≥ Pr(Qt

i = 0)Pr(Qt
j = 0) = r2. (A7)

Proof of Proposition 1. On the graph, we assume that aij ≥ 0 for all (i, j ). This is only for simplicity, but this condition
could be dropped. We note that, for a given edge, the contribution to the maximum cut is aij if (i, j ) ∈ M , while if
(i, j ) ∈ E \ M then it is 0, since it will not be cut. On the other hand, if either i or j is random, after averaging, the
contribution is always aij /2, since it will be cut half of the time. Then, the total cost will be

tr(C�avg(ρ)) =
∑

(i,j )∈M

aij Pr(Qt
i∪j = 0) + 1

2

∑
(i,j )∈E

aij (1 − Pr(Qt
i∪j = 0)). (A8)

Rearranging the terms this yields

tr(C�avg(ρ)) = 1
2

∑
(i,j )∈M

aij (1 + Pr(Qt
i∪j = 0)) + 1

2

∑
(i,j )∈E\M

aij (1 − Pr(Qt
i∪j = 0)). (A9)

We can now use Eq. (A7) to obtain

tr(C�avg(ρ)) ≤ 1
2
(1 + r)

∑
(i,j )∈M

aij + 1
2
(1 − r2)

∑
(i,j )E\M

aij = 1
2
(1 + r)Cmax + (1 − r2)

(
Cavg − Cmax

2

)
. (A10)

Then, setting r = 1 − 〈q〉/n proves Proposition 1. �

APPENDIX B: PROOF OF THE CONCENTRATION BOUND

In addition to studying the average energy of the output, it is also interesting to study the variance. Here we provide a
concentration bound for local architectures and shallow circuits, for unweighted graphs of bounded degree �. We show
that, in this case, the energy of a typical circuit is close to the average energy. This is done using Azuma-Hoeffding’s
inequality [50].

Proposition 2 (Concentration bound). Let us consider an unweighted graph G = (V, E) of degree �. We denote by
C = tr[C�A(ρ)] the value of the cut after applying one instance of the random quantum channel � of depth D, and by
〈C〉 = tr[C�A

avg(ρ)] the value of the cut after applying the averaged quantum channel of depth D. Then, if A is a local
architecture of nearest-neighbor gates in k dimensions,

Pr[|C − 〈C〉| ≥ α|E|] ≤ e−O(α2|E|/�2D2k). (B1)
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Proof. We begin by considering the 1D case, and will then
extend the proof to higher dimensions. We are considering
a cost function that has |E| terms, where |E| is the number
of edges of the graph. We can therefore consider |E| dif-
ferent random variables, Xi = tr(ρCi). Here Xi denotes the
contribution of edge i to the value of the cut. The total cost
energy will then be a random variable given by C = ∑

i Xi.
We can now define Zt = E[

∑
i Xi|X1, . . . , Xt]. That is, Zt

updates the expectation value of the energy after learning
the value of t edges. In order to apply Azuma-Hoeffding’s
bound, we need to bound the quantity |Zi − Zi−1|, which
determines how much the expectation value can change
when we learn the energy of one edge. Since we are work-
ing with the 1D local model, two qubits can only be corre-
lated if they are closer than 2D, where D is the depth. This
holds if D < n. Since the degree is bounded by �, learning
the energy of one edge could at most update the value of
4D qubits, or 2D� edges. We can then bound |Zi − Zi−1| ≤
�D. Applying Azuma-Hoeffding’s inequality yields

Pr[|C − 〈C〉| ≥ λ] ≤ 2e−λ2/2|E|�2D2
. (B2)

If we set λ to be a fraction of the total number of edges,
λ = α|E|, with α ∈ (0, 1), this yields

Pr [|C − 〈C〉| ≥ α|E|] ≤ 2e−α2|E|/2�2D2
. (B3)

The same reasoning can be applied to the 2D case. In two
dimensions, assuming that D < O(

√
n), two qubits can

only be correlated if they are closer than O(D), where D
is the depth. In this case, learning the energy of one edge
could at most update the value of O(D2) qubits, or O(D2�)

edges. We can then bound |Zi − Zi−1| ≤ O(�D2), and we
obtain

Pr[|C − 〈C〉| ≥ α|E|] ≤ 2e−O(α2|E|/�2D4). (B4)

The same argument holds generally for k dimensions,
completing the proof. �

APPENDIX C: HEURISTIC FORMULA

Here we derive the heuristic formula that provides the
average number of depolarized qubits in the 1D case, in
Eq. (12) from the main text.

Conjecture 1 (Heuristic 1D formula). Let us consider
the averaged quantum channel with the 1D architecture as
defined in the main text, �1D

avg. Then, the expected number
of depolarized qubits after applying �1D

avg is approximately
given by

〈q〉1D

n
�

{
1 − (1 − 2p)9D2/80 if D ≤ 5

3 n,

1 − (1 − 2p)3nD/8−5n2/16 if D > 5
3 n.

(C1)

We now outline the derivation of the formula. The goal
is to compute the expected number of depolarized qubits
at the end of the computation, denoted as 〈q〉, using the
Markov chain defined in Sec. II. The transition matrix M
of the Markov chain is given by M = ∏DM

t=1 Mt, where Mt
is defined as the product of two matrices Mt = M noiseM U

t .
In every step there are therefore two matrices: Mnoise,

which applies the noise with probability pM = 2p − p2,
and MU, which propagates it. Since we are in the 1D
case, we apply layers of unitaries to all the even (or odd)
pairs, and MU will just consist in applying the matrix that
propagates the noise [Eq. (9)] to all even (or odd) pairs.

In order to see how this Markov chain behaves, we can
consider the case where only one depolarizing error occurs
in the computation. In this case, a bit will be flipped from
zero to one at a certain time, and we just apply MU from
then on. Since MU can only propagate this error to neigh-
boring bits, in this case we can only have a string of ones
surrounded by zeroes. As a consequence, we can build a
Markov chain that counts the number of ones in the state.
We call this the ones chain. Using the expression for MU,
it is easy to see that it is a one-dimensional lazy random
walk on the line. One can note that this involves applying
the matrix that propagates the noise [Eq. (9)] to both edges
of the string of ones.

Lemma 2. The ones chain has transition matrix P on state
space {0, 1, . . . , n}. Matrix P is given by

P
(
x → x′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 4
5

)2
if x′ = x + 2,( 1

5

)2
if x′ = x − 2,

2
( 4

5

) ( 1
5

)
if x′ = x,

0 otherwise,

(C2)

for x ∈ (2, n − 2) and P(0 → 0) = 1, P(n → n) = 1,
P(1 → 0) = 1/5, P(1 → 2) = 4/5, P(n − 1 → n) = 4/5,
P(n − 1 → n − 2) = 1/5.

We can bound the probability that the walker will be
absorbed by the barrier in 0, which will be useful later.

Lemma 3 (Probability of absorption). The probability
of reaching 0 when starting in 1 in the ones chain is upper
bounded by 1/4. That is, denoting by Xt the state after t
applications of the Markov chain,

Pr(Xt = 0|X0 = 1) ≤ 1
4 for all t. (C3)

Proof. This can be shown using standard techniques for
random walks with absorbing barriers [51]. The random
walk starts in state 1. In the first step it goes to 0 with
probability 1/5, and to 2 with probability 4/5. From that
moment on, it can only reach even numbers, so we can
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discard all the states consisting of odd numbers. We can
also rearrange the absorbing states (0 and n), so that they
are first in the transition matrix. The transition matrix is
then of the form (

I S
0 Q

)
.

After an infinite time, the probability that the walker is in
0 or in n will be given by S(I − Q)−1, where Q is a tridiag-
onal Toeplitz matrix. Using standard techniques, we find
that the probability of reaching 0, starting from 2, with
infinite time, is

lim
t→∞ Pr(Xt = 0|X0 = 2) = (1/5)2

×
[

(16/25)n − (1/25)n

(16/25)n+1 − (1/25)n+1

]
≤ 1

16
. (C4)

Then

lim
t→∞ Pr(Xt = 0|X0 = 1) ≤ 1

5 + 4
5

1
16 = 1

4 . (C5)

This completes the proof. �
We now have the ingredients to build the formula. The

ones chain can be solved analytically using the techniques
above. However, if we ignore the edges, the relation 〈q(t +
1)〉 = 〈q(t)〉 + 6/5 holds. Hence, we can use the very sim-
ple formula 〈q(t)〉 � (3/4) min(6/5t, n) instead. This is not
exact, but it does not deviate much from the exact result.
The 3/4 factor accounts for the fact that, up to a 1/4 of
the time, the walker can be absorbed by the barrier at 0, in
which case it stays there. We are neglecting the interaction
with the absorbing barrier at n. Therefore, we see that an
error propagates, on average, forming a cone. The area of
this cone can be computed as

A =
∫ DM

0

3
4

min(6/5t, n)

= H
(

DM − 5
6

n
)(

3
4

nDM − 5
16

n2
)

+ H
(

−DM + 5
6

n
)(

9
20

D2
M

)
, (C6)

where H(x) is the Heaviside step function.
Knowing this, we can see what happens approximately

when there are possibly many errors during the computa-
tion. We do this by constructing a deterministic model as
follows.

Lemma 4. Let us construct a deterministic model of the
propagation of errors as follows: if an error occurs in bit
j at time t∗, the value of bit xk at time t is given by

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0
Sampling (n = 1000)
Heuristic (n = 1000)
Sampling (n = 100)
Heuristic (n = 100)

FIG. 5. The heuristic formula in Eq. (12) is plotted along with
the results from sampling from the Markov chain for the 1D
architecture. This is done for an error rate p = 10−3 and with
two different system sizes, n = 100 and n = 1000. The heuris-
tic formula shows good agreement with the result from sampling
from the Markov chain. The number of samples taken is 50 000,
and the error is upper bounded by 0.4%.

xk =
{

1 if |j − k| < 3/4 min(6/5(t − t∗), n),
0 if |j − k| > 3/4 min(6/5(t − t∗), n).

(C7)

Then, the average number of ones in this model is given by
〈q (t)〉/n = 1 − (1 − pM )A.

In the model above every time there is an error it will
propagate as a cone, whose area is given by Eq. (C6).
For the cases where there is only one error, this model
yields the same value for the average number of ones as the
Markov chain. This is by definition, since that single error
would propagate as the average cone. If there are many
errors, this is no longer the case, since in the Markov chain
the different cones are not independent, while in the deter-
ministic model they do not interact and are completely
independent. However, this effect is very small. We there-
fore assume that this model provides a good approximation
of the average number of ones in the Markov chain. Set-
ting pM = 2p − p2 � 2p and DM = D/2 gives the final
expression:

〈q〉1D/n �
{

1 − (1 − 2p)9D2/80 if D ≤ 5
3 n,

1 − (1 − 2p)3nD/8−5n2/16 if D > 5
3 n.

(C8)

We represent this formula in Fig. 5, and verify that it shows
very good agreement with the result from sampling directly
from the Markov chain.
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APPENDIX D: RIGOROUS 1D BOUND

In this section we provide a rigorous bound for 〈q〉/n
in the 1D case for circuits with depth D < n. While this
bound is not tight, it shows that the scaling in Table I is the
correct one.

Proposition 3 (Rigorous 1D bound). Let us consider the
averaged quantum channel with the 1D architecture as
defined in the main text, �1D

avg. Then, the expected number
of depolarized qubits after applying �1D

avg is lower bounded
by

〈q〉1D/n ≥ c(1 − (1 − p)O(D2)) (D1)

for some c < 3/4.

To prove this proposition, we first introduce some nota-
tion. We are considering the Markov chain introduced in
Sec. II. In this picture, an error in qubit k corresponds to
flipping bit k from 0 to 1. We define the set of all possible
errors by S = {1, . . . , n} × {1, . . . , DM }. Then, an error is
given by the 2-tuple (a, b) ∈ S . In this notation a specifies
the bit where the error occurred, and b specifies the time
step. We define an instance of errors by a subset s ⊂ S that
contains all the errors that have occurred in a given run of
the Markov chain. We denote by Pr(Qt

j = 1) the probabil-
ity that bit j is in 1 at the end of the computation. This is
given by

Pr(Qt
j = 1) =

∑
s⊂S

Pr(Qt
j = 1|s)Pr(s). (D2)

We note that, with this Markov chain, for every instance
of errors s ⊂ S , it holds that Pr(Qt

j = 1|s) ≥ Pr(Qt
j =

1|(a, b) ∈ s). That is, given an instance of errors s, the
probability of bit j being in 1 can only decrease if we pick
only one of the errors in s.

Let us now assume that there exists a subset of errors
A ⊂ S such that Pr(Qt

j = 1|(a, b) ∈ A) ≥ c, where c is a
constant. That is, A contains errors such that, if one of the
errors in A occurs, it is enough to certify that the probability
of bit j being in 1 is equal or greater than c. Then, we can
compute

∑
s

Pr(Qt
j = 1|s)Pr(s)

≥
∑

s

Pr(Qt
j = 1|(a, b) ∈ s)Pr(s)

≥
∑

s

Pr(s ∩ A �= ∅)c

= c
( ∑

s

1 − Pr(s ∩ A = ∅)

)

= c[1 − (1 − pM )|A|]. (D3)

We would now like to identify a subset of errors A that
fulfills this property. To do this, we analyze the behavior
of the Markov chain. We would like to compute Pr[Qt

j =
1|(k, t∗)]. As explained in Appendix C, if there is only
one error, it will propagate, forming a string of ones. To
compute the probability, we can track the movement of
the endpoints of this string. We define several random
variables for this purpose.
Definition 1 (Random walks): Let us consider the ran-
dom variables

XA(t) = X 0
A +

t∗∑
i=1

X (i)
A , (D4)

XB(t) = X 0
B +

t∗∑
i=1

X (i)
B , (D5)

where X 0
A = k and

X 0
B =

{
k + 1 with probability 4/5,
k − 1 with probability 1/5,

(D6)

X (i)
A =

⎧⎪⎨
⎪⎩

0 if XA(t − 1) > XB(t − 1),
1 with probability 1/5 if XA(t − 1) < XB(t − 1),
−1 with probability 4/5 if XA(t − 1) < XB(t − 1),

(D7)

X (i)
B =

⎧⎪⎨
⎪⎩

0 if XA(t − 1) > XB(t − 1),
−1 with probability 1/5 if XA(t − 1) < XB(t − 1),
1 with probability 4/5 if XA(t − 1) < XB(t − 1).

(D8)
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We also define two independent random walkers as

X ind
A (t) = X 0

A +
t∗∑

i=1

X ind,(i)
A , (D9)

X ind
B (t) = X 0

B +
t∗∑

i=1

X ind,(i)
B , (D10)

where

X ind,(i)
A =

{
1 with probability 1/5,
−1 with probability 4/5,

(D11)

X ind,(i)
B =

{
−1 with probability 1/5,
1 with probability 4/5.

(D12)

With the definitions above, it holds that

Pr[Qt
j = 1|(k, t∗)] = Pr(XB(t) ≥ j ∩ XA(t) ≤ j ). (D13)

The random walks XA and XB defined above track the end
points of the string of ones. The difficulty here is that they
are not independent random walks. They behave indepen-
dently until they cross: in that case they stop. However, we
can bound the probability using X ind

A and X ind
B , which are

just biased random walks in the line, with every step being
independent of the rest.

Lemma 5. Let us consider the random variables XA, X ind
A ,

XB, and X ind
B as defined in Definition 1. Then,

Pr(Qt
j = 1|(k, t∗))

= Pr(XB(t) ≥ j ∩ XA(t) ≤ j )

≥ Pr(XB(t)ind ≥ j )Pr(XA(t)ind ≤ j ) − 1
4 . (D14)

Proof. We want to compute Pr(XB(t) ≥ j ∩ XA(t) ≤ j ).
We note that the two random walks are completely inde-
pendent until the moment they cross: in that case they stop.
We can denote this event as C, and no crossing as NC.
Assuming that t < n/2, from Lemma 3 we know that the
probability that they cross is upper bounded, Pr(C) ≤ 1/4.
Then, we can write:

Pr(XA(t) ≥ j ∩ XB(t) ≤ j ) = Pr(XA(t) ≥ j ∩ XB(t)

≤ j |NC)Pr(NC). (D15)

We can now consider the two random walks X ind
A and X ind

B .
Their behaviors are the same as XA and XB provided there

is no crossing. That is,

Pr(XA(t) ≥ j ∩ XB(t) ≤ j |NC) = Pr(X ind
A (t)

≥ j ∩ X ind
B (t) ≤ j |NC). (D16)

Using now the law of total probability, we get

Pr(X ind
A (t) ≥ j ∩ X ind

B (t) ≤ j |NC)Pr(NC)

= Pr(X ind
A (t) ≥ j )Pr(X ind

B (t) ≤ j )

− Pr(X ind
A (t) ≥ j ∩ X ind

B (t) ≤ j |C)Pr(C)

≥ Pr(X ind
A (t) ≥ j )Pr(X ind

B (t) ≤ j ) − 1
4 . (D17)

The result then follows immediately from Eq. (D13). �
We know now how to bound the probability Pr[Qt

j =
1|(k, t∗)] using two biased random walks on the line. This
allows us to obtain the combinations of (k, t∗) that we are
interested in.

Lemma 6. Let us consider an error (k, t∗) such that

|j − k| ≤ 3
5
(t − t∗) −

√
2(t − t∗) ln

1
1 − √

1/4 + c
.

(D18)

Then, Pr[Qt
j = 1|(k, t∗)] ≥ c.

Proof. Since X ind
A and X ind

B are a sum of independent ran-
dom variables, we can bound the probability that they
deviate from the mean using Hoeffding’s inequality [52]:

Pr(X ind
A (t) − E[X ind

A (t)] ≥ α) ≤ exp
(

− α2

2(t − t∗)

)
.

(D19)

The expectation values can easily be computed as
E[X ind

A (t)] = k − 3/5(t − t∗) and E[X ind
B (t)] = k + 3/5

(1 + t − t∗). Let us denote dA = j − E[X ind
A (t)]. Then,

Pr(X ind
A (t) ≤ j ) = 1 − Pr(X ind

A (t) ≥ j )

= 1 − Pr(X ind
A (t) − E[X ind

A (t)]

≥ j − E[X ind
A (t)])

≥ 1 − exp
(

− d2
A

2(t − t∗)

)
. (D20)

Let us now assume, without loss of generality, that j < k.
Then,

Pr(X ind
B (t) ≥ j ) ≥ Pr(X ind

A (t) ≤ j ). (D21)
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Therefore, we obtain

Pr[Qt
j = 1|(k, t∗)] ≥

(
1 − exp

(
− d2

A

2(t − t∗)

))2

− 1
4

≥ c. (D22)

Solving for dA then yields

dA ≥
√

2(t − t∗) ln
1

1 − √
1/4 + c

, (D23)

and, therefore,

|k − j | ≤ 3
5
(t − t∗) −

√
2(t − t∗) ln

1
1 − √

1/4 + c
.

(D24)

For symmetry reasons, this calculation holds as well when
j > k. �

We have therefore found a region such that Pr[Qt
j =

1|(k, t∗)] ≥ c. Integration over t∗ will yield the area of such
a region:

|A| = 3
5

t2 − 4
3

√
2 ln

1
3/4 − c

t3/2. (D25)

Then, using Eq. (D3), we can bound

〈q〉/n ≥ c(1 − (1 − pM )3t2/5−(4/3)
√

2 ln[1/(1−√
1/4+c)]t3/2

).
(D26)

Then, setting pM = 2p − p2 � 2p and t = D/2 yields the
result in Proposition 3.
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