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Abstract

Quantum many-body systems display exotic emergent behaviour due to the pres-
ence of quantum entanglement. Two fields where entanglement plays an essential
role are quantum phases of matter and quantum computation. This thesis sits at
the intersection of these two fields, and studies topological phases of matter with
subsystem symmetries and their application to quantum computation. Subsystem
symmetries are a type of symmetry that act on rigid lower-dimensional subsystems
of the entire system, including lines, planes, or fractals. These symmetries have
recently found importance in the context of condensed matter physics, thanks to
their relation to fracton topological order, and in quantum information, thanks
to their relation to measurement-based quantum computation (MBQC). This
thesis starts in the latter context, where we give a systematic method to construct
symmetry-protected topological phases of matter protected by subsystem sym-
metries (SSPT phases). Our construction uses the language of quantum cellular
automata, which also naturally describes the use of the constructed phases as
resources for universal MBQC, thereby providing a unified understanding of the
relation between SSPT phases and MBQC. Having understood the computational
properties of SSPT phases, we move on to studying their physical properties. We
examine corrections to the entanglement area law in SSPT phases of matter and
show that, contrary to prior belief, these corrections are uniform throughout an
SSPT phase and can therefore be used to characterize them in manner similar to
the topological entanglement entropy for topological phases. We use this result as
the basis of a numerical algorithm for detecting SSPT order in ground states, which
we use to discover an extended phase of matter surrounding the 2D cluster state.
In the final chapter, we study how subsystem symmetries can enrich topological
phases of matter. We construct a 3D model in which planar subsystem symme-
tries fractionalize on loop-like topological excitations, resulting in an extensive
symmetry-protected degeneracy of the excitations and an increased value of the
topological entanglement entropy. We then gauge the subsystem symmetries to
obtain a number of related models, including models of fracton topological order,
which showcase more of the possible types of subsystem symmetry enrichment that
can occur in 3D. Overall, the results of this thesis give a first step towards our
understanding of novel topological phases of matter with subsystem symmetries,
and exemplify the symbiotic relationship between the fields of quantum phases of
matter and quantum computation.
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Zusammenfassung

Quanten-Vielteilchensysteme zeigen aufgrund von Quantenverschränkung exotis-
ches emergentes Verhalten. Zwei Bereiche, in denen Verschränkung eine wesentliche
Rolle spielt, sind Quantenphasen der Materie und Quanteninformatik. Diese Dis-
sertation befasst sich mit dem Schnittpunkt dieser beiden Felder und untersucht
topologische Phasen der Materie mit Subsystemsymmetrien und deren Anwendung
zur Quanteninformationsverarbeitung. Subsystemsymmetrien sind eine Art von
Symmetrie, die auf rigide, niederdimensionale Subsysteme des Gesamtsystems
wirken, einschließlich Linien, Ebenen oder Fraktale. Diese Symmetrien haben in
letzter Zeit Bedeutung im Kontext der Physik der kondensierten Materie gefunden,
dank ihrer Beziehung zur fraktalen topologischen Ordnung, und in der Quan-
teninformatik, dank ihrer Beziehung zur messungsbasierten Quantenberechnung
(MBQC). Diese Arbeit setzt im letzteren Kontext an, wo wir eine systematische
Methode zur Konstruktion von symmetriegeschützten topologischen Phasen der
Materie angeben, die durch Subsystemsymmetrien geschützt sind (SSPT-Phasen).
Unsere Konstruktion verwendet die Sprache der zellulären Quantenautomaten, die
auch auf natürliche Weise die Verwendung der konstruierten Phasen als Ressourcen
für universelle MBQC beschreibt und so ein einheitliches Verständnis der Beziehung
zwischen SSPT-Phasen und MBQC ermöglicht. Nachdem wir die rechnerischen
Eigenschaften von SSPT-Phasen verstanden haben, gehen wir dazu über, ihre
physikalischen Eigenschaften zu untersuchen. Wir untersuchen Korrekturen des
Verschränkungsflächengesetzes in SSPT-Phasen der Materie und zeigen, dass diese
Korrekturen, entgegen der bisherigen Annahme, in einer SSPT-Phase einheitlich
sind und daher zu ihrer Charakterisierung in ähnlicher Weise wie die topologische
Verschränkungsentropie für topologische Phasen benutzt werden können. Wir
verwenden dieses Ergebnis als Grundlage eines numerischen Algorithmus zum
Aufspüren von SSPT-Ordnung in Grundzuständen, mit dem wir eine ausgedehnte
Phase der Materie entdecken, die den 2D-Clusterzustand umgibt. Im letzten Kapi-
tel untersuchen wir, wie Subsystemsymmetrien topologische Phasen der Materie
bereichern können. Wir konstruieren ein 3D-Modell, in dem planare Subsystem-
symmetrien zu schleifenartige topologische Anregungen fraktionieren, was zu einer
ausgedehnten symmetriebeschützten Entartung der Anregungen und einem er-
höhten Wert der topologischen Verschränkungsentropie führt. Wir eichen dann
die Subsystem-Symmetrien, um eine Reihe verwandter Modelle zu erhalten, ein-
schließlich Modelle mit fraktonaler topologischer Ordnung, die weitere Arten von
Subsystemsymmetrieanreicherung zeigen, welche in 3D auftreten können. Insge-
samt stellen die Ergebnisse dieser Dissertation einen ersten Schritt zum Verständnis
neuartiger topologischer Phasen der Materie mit Subsystemsymmetrien dar und
veranschaulichen die symbiotische Beziehung zwischen Quantenphasen der Materie
und Quanteninformatik.
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Chapter 1

Introduction

The complexity that arises from the interactions of many quantum particles, the
“quantum many-body problem”, represents the frontier of modern physics. Various
systems coming from nearly every field of physics, including black holes, complex
molecules, and solid-state materials, are made up of a large number of particles that
interact according to the laws of quantum mechanics to generate exotic emergent
phenomena. The root cause of complexity in quantum mechanical systems is
entanglement, which describes the fundamental inability to understand the state
of a many-particle system in terms of states of the individual particles. In fact,
sometimes a single particle contains no information at all about the state of the
system. Instead, information is distributed non-locally between all particles, and
this is reflected by the fact that the number of possible states that a system can
take grows exponentially quickly with the number of particles. This fact makes
it impossible to write down a generic state of even a modest (∼50) number of
particles, and trying to tame the quantum many-body problem in light of this can
seem like a fruitless endeavour.

Luckily, it turns out that entanglement in realistic systems comes in small doses,
and it has a particular structure that allows it to be described in an efficient way
when viewed from the right perspective. This perspective comes from the field of
quantum information, whose underlying goal is to describe, quantify, and utilize
entanglement [1]. Tools coming from quantum information such as quantum circuits
and tensor networks allow us to form representations of quantum systems that
distribute entanglement between particles in an incremental manner, providing a
natural extension of traditional mean-field approaches which try to solve a problem
as best as possible without introducing entanglement [2, 3]. Such representations
allow us to not only express many-body quantum states in a compact form, but
also to directly analyze their entanglement structure which, as we will see, is key
to understanding emergent many-body phenomena. The recent prominence of
techniques inspired by quantum information across all disciplines of physics speaks
to the essential role that is played by entanglement.

Two areas of research that are deeply rooted in the physics of entangled many-
body systems are quantum computation and quantum phases of matter [1, 2]. In
quantum computation, entanglement is viewed as a resource, and the ability to
prepare and measure entangled many-body states allows the design of computa-
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Chapter 1. Introduction

tional algorithms that solve important problems like factoring exponentially faster
than the best known classical algorithms. Entanglement is a key ingredient in such
algorithms, as non-entangled or even weakly-entangled systems can be efficiently
simulated by a classical computer, precluding any potential computational advan-
tage given by the quantum resources [4]. Entanglement also plays an essential role
in the classification of quantum phases of matter [5]. As opposed to conventional
phases of matter that are characterized by symmetry and local order parameters,
quantum phases of matter exhibiting topological order are characterized by ground
states that have complex patterns of long-range entanglement. The classification of
the different possible phases of matter then becomes the classification of patterns
of entanglement. Emergent quasi-particles called anyons that arise from this entan-
glement have properties that can be strikingly different from the basic constituents
of the system, such as an electric charge that is a fraction of the elementary charge,
or exchange statistics that are neither fermionic nor bosonic.

The fields of quantum computation and quantum phases of matter both began
to mature at the start of the century and have been evolving alongside each
other since then, such that they are now deeply intertwined. This is due in large
part to the fact that quantum phases of matter find practical application in the
storage and processing of quantum information [6–9]. Perhaps the most familiar
example is the idea of topological quantum computation, which leverages the anyons
of two-dimensional (2D) topologically ordered systems to perform error-resilient
quantum computation. A complementing approach uses Majorana fermions located
at the edges of topologically ordered one-dimensional (1D) chains [10]. In the
paradigm of measurement-based quantum computation (MBQC) [11], which is
driven solely by single-body measurements of an entangled many-body state, the
type of entanglement suitable for computation turns out to be the same type that
is found in states exhibiting symmetry-protected topological (SPT) order [12–27]
– an insight that is particularly relevant to this thesis. Indeed, every time a new
type of quantum order is discovered, it is not long before its uses for quantum
computation are being investigated.

Intriguingly, the intertwinement of the two fields also goes in the opposite
direction, where new models of topological order are designed from scratch to have
specific computational properties [6, 18, 23, 28–31]. This leads to a very interesting
relationship between theory and experiment: Rather than designing a toy model
to capture the essential physics of a real-life material, the toy model is the starting
point, and the task then is to find or engineer a physical system which can realize
its computational properties in the laboratory. This pattern began early on with
Kitaev’s toric code model [6], which is one of the simplest and most important
models of topological order. This model was designed for the robust storage of
quantum information, and it has since been realized on small scales in quantum
simulators based on nuclear magnetic resonance [32, 33], photons [34, 35], and
superconducting arrays [36, 37]. Many other in-depth characterizations of quantum
phases of matter have been spurred by the desire to understand their computational
properties [7, 9, 15, 38–49] and, as we will discuss shortly, extreme cases of this
synergy have even led to the definition of new quantum phases of matter that are
tailor-made for specific computational tasks [12, 23, 26, 30]. Without the continual
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(a) (b) (c)

Figure 1.1: Examples of (a) line, (b) fractal, and (c) plane subsystem symmetries.
The symmetry operators act non-trivially only on the shaded parts of the system.

motivation and inspiration coming from quantum computation, the landscape of
quantum phases of matter would undoubtedly look very different today.

The central theme of this thesis is the notion of subsystem symmetries. These are
symmetries which act non-trivially only on rigid lower-dimensional subsystems of
the entire system, such as lines, planes, or even fractals, as pictured in Fig. 1.1. As
such, they lie in between the more conventional global symmetries, which act on
the entire system, and gauge symmetries, which act only in a small region around
one particle. These symmetries may seem somewhat arbitrary and unphysical, but
they have recently arisen in two separate contexts, both of which were born out of
considerations for quantum computation.

The first context in which subsystem symmetries arose was that of fracton
topological order (or simply “fracton order”) [50]. This is a new notion of topological
order that came out of the search for a robust quantum memory. The first1 example
of fracton order was Haah’s cubic code model [30]. In this model, anyons appear
at the corner of extended operators with fractal geometry, such that a single anyon
cannot move without incurring an energy penalty. These mobility constraints,
which are the defining property of fracton order, can be viewed as conservation
laws, i.e. symmetries, along rigid subsystems, which establishes the connection to
subsystem symmetries. The energy landscape created by the mobility constraints
makes the cubic code an attractive candidate for a quantum memory, since there is
a macroscopic energy barrier between different ground states [44], so information
can be robustly stored in the ground state subspace even at finite temperature [45].
Since the discovery of the cubic code, many more examples of fracton order have
been discovered [52–58], attracting a significant amount of attention both for their
potential uses in quantum computation and for their novel physical properties that
challenge existing beliefs about what kinds of topological order are possible.

The second context in which subsystem symmetries arose, and the context
which is most relevant to this thesis, is subsystem symmetry protected topological

1Technically, Chamon’s model [51] was the first model of fracton order, but it wasn’t until
Haah’s code that that the importance and novelty of these models was appreciated and the field
of research truly began.
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Chapter 1. Introduction

(SSPT) order [26, 59]. This is a type of topological order that exists only in the
presence of subsystem symmetries, generalizing the usual SPT order which is
protected by global symmetries [60]. The prototypical example of a state with
SSPT order is the 2D cluster state [11], which was originally introduced as a
resource state for universal MBQC. The notion of SSPT order came from the
desire to extend the computational power of the 2D cluster state to an entire
phase of matter. While conventional SPT order was sufficient to achieve this in 1D
systems [19], moving to 2D systems required the identification of line-like subsystem
symmetries of the 2D cluster state [12, 16] and the subsequent definition of SSPT
order [26]. Interest in SSPT order also arose simultaneously and independently in
the condensed matter physics community, thanks to its unique properties beyond
that of conventional SPT order [59], and research since then has been equally
driven by both communities.

These two examples show that topological phases of matter with subsystem symme-
tries exemplify the idea that quantum computation and quantum phases of matter
are two fields that cannot, and should not, be disentangled. The aim of this thesis
is to follow this tenet by launching an in-depth exploration of the relationship
between subsystem symmetries, topological order, and quantum computation.

The rest of this thesis is organized as follows. In Chapter 2, we will review
the relevant background material about phases of matter, tensor networks, and
quantum computation that is needed for the subsequent chapters. The chapter
ends by describing the 2D cluster state, which is the main character of this thesis,
and showcasing its relation to SSPT order and MBQC. This discussion forms the
starting point for the main results of this thesis. In Chapter 3, we will present a
unified formalism for understanding SSPT phases and their relation to MBQC via
the language of quantum cellular automata. In Chapter 4, we will turn towards
the physical properties of SSPT phases, and show how they can be characterized
and also detected numerically by entanglement entropy. In Chapter 5, we will
discuss how subsystem symmetries can also be used to enrich topological order in
3D using a concrete model that exhibits fractionalization of subsystem symmetries.
Finally, in Chapter 6 we will give conclusions and discuss open questions raised by
this thesis.

Publications

A number of manuscripts were published during this PhD, some of which are
contained in a modified form in this thesis with permission from the American
Physical Society ©2019. The included passages from these publications were written
entirely by myself. What follows is a summary of the publications, their role in
this thesis, and a brief description of my contributions to those which are included
in this thesis:
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Publications included in this thesis

• Computationally Universal Phase of Quantum Matter. Robert Raussendorf,
Cihan Okay, Dong-Sheng Wang, David T. Stephen*, and Hendrik Poulsen
Nautrup*. Phys. Rev. Lett. 122, 090501 (2019). [26]

*These authors contributed equally to this manuscript.

This publication was initiated before the beginning of the PhD work and
finished over the course of the first year. While the key results of this work
were proven by R. Raussendorf, I played an important role in the early
development of the project as well as the refinement, interpretation, and
presentation of the results. Aspects of this publication appear in Section 2.7
of Chapter 2 as background material.

• Subsystem symmetries, quantum cellular automata, and computational
phases of quantum matter. David T. Stephen, Hendrik Poulsen Nautrup,
Juani Bermejo-Vega, Jens Eisert, and Robert Raussendorf. Quantum 3, 142
(2019). [61]

This project was led by myself, and I am responsible for the key constructions
and proofs. The other authors played various roles, with the initial idea
being conceived with the help of H. Poulsen Nautrup and R. Raussendorf.
H. Poulsen Nautrup also made significant contributions to the stabilizer
construction, the proof of Theorem 2, and the discussion of periodic QCA.
This publication appears in Chapter 3 with some modifications.

• Detecting subsystem symmetry protected topological order via entanglement
entropy. David T. Stephen, Henrik Dreyer, Mohsin Iqbal, and Norbert
Schuch. Phys. Rev. B 100, 115112 (2019). [62]

This project was initiated and led by myself, and I am responsible for
providing the direction for the project. All other authors contributed to all
aspects of the paper. In particular, N. Schuch contributed particularly to
the analytical proof of uniformity of the SPEE, H. Dreyer performed the
numerical calculations behind Fig. 4.2 and developed the argument based
on perturbation theory, and M. Iqbal performed the numerical simulations
behind Figs. 4.5, 4.6. This publication appears in Chapter 4 with some
modifications.

• Subsystem symmetry enriched topological order in three dimensions. David
T. Stephen, José Garre-Rubio, Arpit Dua, and Dominic J. Williamson.
Phys. Rev. Research 2, 033331 (2020). [63]

This project was initiated and led by myself, and I am responsible for most of
the constructions and calculations. All other authors contributed to various
aspects, and D. J. Williamson in particular had a significant contribution to
the discussion on gauging subsystem symmetries. This publication appears
in Chapter 5 with some modifications.
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Publications not included in this thesis

• Inaccessible entanglement in symmetry protected topological phases. Caroline
de Groot, David T. Stephen, Andras Molnar, and Norbert Schuch. Journal
of Physics A: Mathematical and Theoretical 53, 335302 (2020). [64]

• String order parameters for symmetry fractionalization in an enriched toric
code. José Garre-Rubio, Mohsin Iqbal, and David T. Stephen. Phys. Rev.
B 103, 125104 (2021). [65]
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Chapter 2

Background to quantum phases of
matter, tensor networks, and
quantum computation

This chapter contains an introduction to the core concepts that will be used
throughout the remainder of the thesis. Starting with the definition of gapped
systems and gapped phases of matter (Section 2.1), we will introduce and give ex-
amples of symmetry-protected topological order (Section 2.2), intrinsic topological
order (Section 2.3), and symmetry-enriched topological order (Section 2.4). Then,
in Section 2.5, we will introduce the notation of tensor networks, which is used
extensively in Chapters 3 and 4, and discuss some basic concepts surrounding them
as well as their application to phases of matter. Section 2.6 will then introduce
measurement-based quantum computation and its relation to symmetry-protected
topological order. Finally, we will introduce the notion of subsystem symmetries
and the cluster phase in Section 2.7, which will directly lead into Chapter 3.

2.1 Gapped quantum systems
The physical systems studied in this thesis are gapped quantum spin lattices. Here,
by spin lattice, we refer to a Hilbert space H composed of a tensor product of
N smaller d-dimensional Hilbert spaces Cd which represent “spins”1, such that
H = ⊗N

i=1 Cd. We consider local Hamiltonians acting on these lattices, which are
Hamiltonians of the form H = ∑N

i=1 hi where each term hi acts only on a small
number r of spins around site i, where r is independent of N . When we say that
a system is gapped, we imagine a sequence of local Hamiltonians on increasing
system sizes, such that there is a gap between the ground state manifold and
the first excited state which remains finite in the thermodynamic limit [66]. The
dimension of H grows exponentially with the number N of spins. This is the basic
cause for the complexity of describing such systems, as the amount of space needed
to even write down a state quickly becomes practically infeasible.

1Since we are often inspired by quantum information, we may also call these systems qubits
(for d = 2) or qudits (for general d).
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Chapter 2. Background

Figure 2.1: The physical corner of the many-body Hilbert space. The left and right
images are representative states of the quantum spin lattices where entanglement
between particles is represented schematically by a wavy bond. Each lattice is
divided into subsystems A and B by the dashed line. The number of entangled
bonds that cross this line roughly determines the entanglement SA between A and
B.

Gapped spin lattices are unique among quantum many-body systems in that
they live only in a tiny fraction of the exponentially large Hilbert space, the
“physical corner”. This is to be naturally expected, given that a local Hamiltonian
has only Nd2r parameters compared to the d2N of a generic Hamiltonian. The
physical corner can be characterized in terms of entanglement, which is quantified
by the entanglement entropy. Suppose we divide our lattice into two subregions A
and B. We can define the entanglement entropy associated to this bipartition as,

SA = −Tr ρA ln ρA, (2.1)

where ρA = TrB|ψ〉〈ψ| is the reduced density matrix corresponding to subsystem
A. For a generic state in the Hilbert space, SA will grow as the size of A, SA ∼ |A|,
since every spin in A will have some entanglement with the subsystem B [67]. For
ground states of gapped local Hamiltonians, on the other hand, the entropy will
typically follow an area law, S(ρA) ∼ |∂A|, where |∂A| is the size of the boundary
between A and B [68]. The area law reflects the fact that gapped local Hamiltonians
have exponentially decaying correlations [69], so entanglement between A and B
is mostly concentrated near the boundary between them. The physical corner of
Hilbert space is occupied by those states states which obey entanglement area laws,
which in turn correspond to the ground states of local gapped Hamiltonians. The
above discussion is summarized in Fig. 2.1.

The studies in this thesis are facilitated by the use of exactly solvable Hamiltoni-
ans. These are Hamiltonians whose local terms all commute with each other, such
that all eigenvectors and eigenvalues can be obtained exactly. For such models, one
can talk rather interchangeably about a Hamiltonian and its ground states. In fact,
many important properties of a model such as the braiding statistics and fusion
rules of topological excitations [70–72] as well as the existence of gapless edge
modes [73, 74] can be determined by ground state entanglement alone. Exactly
solvable Hamiltonians are usually very far from what one would find in a physically
realistic system, even after several layers of simplifying approximations. Despite
this, these models are still capable of capturing the essential features of more
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2.1. Gapped quantum systems

realistic models. This is because these models can be seen as the output of certain
renormalization-group (RG) transformations which wash out microscopic details
of the system, leaving behind only the essential long-wavelength physics [75, 76].
This perspective is particularly useful in the context of phases of matter, where
different points in a phase of matter are expected to flow towards exactly solvable
RG fixed-points that represent each phase [77]. We will see in this chapter and the
next that generic points in certain phases of matter can be viewed as “expansions”
about the fixed-points in a manner that can be made very precise [15, 26].

2.1.1 Definition of gapped phases of quantum matter
We now move on to a formal definition of gapped phases of quantum matter. As
opposed to the more familiar phases of matter whose transitions are driven by
changes in temperature, quantum phases of matter are defined for systems at
zero temperature, and phase transitions are driven by the change of some system
parameter such as the strength of a magnetic field. For gapped systems, the
low-temperature physics is dominated by the ground states and low-energy excited
states, such that these states are sufficient to understand the nature of the quantum
order in a state. For gapless systems this is not possible, so the story is much more
complicated, although some interesting progress has been made recently [78–81].

We define phases of matter in terms of phase transitions, such that two systems
are said to be in the same phase if they can be adiabatically connected without
encountering a phase transition. A phase transition in a gapped system is accompa-
nied by the divergence of some physical quantity such as correlation length, which
occurs when the Hamiltonian gap is closed [82]. Therefore, we can define gapped
phases of matter in the following way:

Definition 1 (Gapped phases of matter). Two gapped, local Hamiltonians H, H ′
are in the same gapped phase of matter if there exists a continuous path of gapped,
local Hamiltonians Hγ with γ ∈ [0, 1] such that H0 = H and H1 = H ′.

That is, we say that two gapped systems are in the same phase if they can be
continuously connected without closing the gap. The trivial phase is defined to
be the phase that contains product states. This definition is useful and intuitive,
but it doesn’t tell us much about the structure that is shared between systems
belonging to the same phase. To remedy this, we can formulate an equivalent
definition in terms of the entanglement of ground state wave functions.

The central concept that connects the two definitions is quasi-adiabatic con-
tinuation [83]. Given a gapped path H(γ) connecting two Hamiltonians, one can
consider the unitary time evolution U = T [e−i

∫ 1
0 dγH̃(γ)], where T is the time-

ordering operator and H̃(γ) is a slightly modified path of quasi-local Hamiltonians
that can be obtained from H(γ) [82]. If the path is uniformly gapped, one can be
sure that the ground states will not be mapped to exited states via this evolution,
such that this gives a unitary mapping between the ground state subspaces at
γ = 0 and γ = 1. The use of the modified path H̃(γ) ensures that the evolution
can be done in a time that is independent of system size. This guarantees that U
preserves locality, in that it maps local operators to local operators, and therefore

9



Chapter 2. Background

Figure 2.2: A finite depth quantum circuit of depth 3 and range 4.

cannot modify any global properties of the state. Finally, one can Trotterize the
time evolution operator to express it as a sequence of unitary gates, such that it
has the appearance of a finite depth quantum circuit, defined as follows:

Definition 2 (Finite depth quantum circuit). A finite depth quantum circuit
(FDQC) of depth d and range r is a unitary of the form

U =
d∏

k=1

(∏
i

uk,i

)
(2.2)

where, for each k, uk,i are local operators with range r and non-overlapping support,
see Fig. 2.2.

From the above, we see that any path of gapped Hamiltonians can be translated
into a FDQC connecting them. Conversely, any FDQC can be translated into
a path of gapped Hamiltonians by simply “inverting” the Trotter expansion to
extract the local Hamiltonian terms that generate each gate in the FDQC [82].
Therefore, the following definition is equivalent to Definition 1:

Definition 3 (Gapped phases of matter via FDQCs). Two gapped ground states
|ψ〉 and |ψ′〉 are in the same gapped phase if they are related by a FDQC Uc, i.e.,
|ψ′〉 = Uc|ψ〉.

This definition shows that gapped phases of matter are distinguished by differing
patterns of long-range entanglement, defined as entanglement that cannot be
generated by a FDQC. Throughout this thesis, we will adopt the definition in
terms of FDQC, since it gives better insight into the entanglement structure of
phases, and it better suited to our techniques, which are often inspired by quantum
information and computation.

We can refine the classification of phases by introducing symmetry. We consider
on-site symmetries, which are symmetries that act as a tensor product over the
degrees of freedom,

U(g) =
N⊗
i=1

ui(g), (2.3)

where each ui(g) is a unitary linear representation of a symmetry group G. Here, a
linear representation is one that respects the group multiplication, i.e. ui(g)ui(h) =
ui(gh). One often considers global on-site symmetries, where the symmetry acts
in the same way on every site, i.e. ui(g) = u(g) for all i. In this thesis, we will
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2.1. Gapped quantum systems

also consider cases beyond this, such as subsystem symmetries, where U(g) has
non-trivial support only on lower-dimensional subsystems of the whole system, and
the related L-cycle symmetries, where U(g) is translationally invariant only up to
an enlarged unit cell.

For systems equipped with such a symmetry, we can define phases of matter in
the following way:

Definition 4 (Gapped phases of matter via FDQCs with symmetry). Two gapped
ground states |ψ〉 and |ψ′〉 with a global, on-site symmetry U(g) for g ∈ G are
in the same gapped phase with symmetry if they are related by a FDQC Uc, i.e.,
|ψ′〉 = Uc|ψ〉, and additionally each gate uk,i in Uc satisfies [uk,i, U(g)] = 0.

Note that it is important to enforce that each gate in the FDQC commutes with the
symmetry, and it is not enough to only require the whole circuit to be symmetric.
In the Hamiltonian language, adding symmetry amounts to enforcing that the
interpolating Hamiltonian respects the symmetry along the entire path.

In the absence of symmetry breaking, we can broadly split the gapped phases
into three classes: symmetry-protected topological order, intrinsic topological order,
and symmetry-enriched topological order. We now will give a brief introduction to
each of the three classes in turn.
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Chapter 2. Background

2.2 Symmetry-protected topological order
The simplest of the three classes is symmetry-protected topological order. States
with SPT order are defined as states which are in the trivial phase without
symmetries, but a non-trivial phase with symmetries [60]. That is, they can be
prepared from a product state with a FDQC, but not by one with symmetric gates.
For this reason, they can be loosely thought of as the most trivial of all non-trivial
orders. In fact, the ‘T’ in SPT is sometime taken to stand for ‘trivial’.

SPT phases are said to be trivial in the bulk since, in the absence of a boundary,
there is a unique gapped ground state and no bulk topological excitations. This
follows straightforwardly from the fact that they can be prepared by acting with a
FDQC on an initial product state. The non-trivial properties of SPT order manifest
most evidently on the boundary. In general, when a boundary is introduced into a
system with an on-site symmetry, it becomes necessary to decorate that symmetry
with some additional action localised near the boundary in order to leave the state
invariant. The essence of SPT order comes from the fact that, while the bulk
symmetry action can be written as a tensor product on-site linear representations,
the boundary action cannot be [84]. As a consequence of this “boundary anomaly”,
one finds that an SPT ordered Hamiltonian with boundary cannot have a unique
gapped ground state, and must instead either spontaneously break the symmetry,
become gapless, or possess boundary topological order. The differences between
eigenstates lying within the bulk energy gap are exponentially localised near the
boundary, so an SPT ordered system is said to carry non-trivial edge modes.

In the next sections, we will show how to precisely characterize and classify
the boundary anomalies of SPT phases in terms of group cohomology, and then
provide simple examples in 1D and 2D.

2.2.1 Group cohomology and the Else-Nayak procedure
Symmetry-protected topological phases can be partially classified using the language
of group cohomology [60]. In this language, one deals with cohomology classes [ω]
which are elements of the k-th cohomology groups Hk(G,U(1)). Given a symmetry
group G, bosonic SPT phases in d dimensions can be labelled by the elements of
Hd+1(G,U(1)). In 4D and higher (or 3D if anti-unitary symmetries are considered
[85]), there are also SPT phases that are beyond the cohomology classification [86],
and we will discuss the physical reason later.

In Ref. [84], the authors showed how to understand the cohomology class
associated to a ground state in terms of the anomalous boundary symmetry, and
they described an explicit procedure that can be used to extract it. This procedure,
which we call the Else-Nayak procedure, gives important physical intuition about
SPT phases, and is a practical tool that we will use throughout the thesis.

To begin, we introduce a boundary to our system. This can be done by choosing
some subregion M of the system and removing all Hamiltonian terms that are not
completely contained in M , resulting in a truncated system with boundary ∂M . In
general, this will result in new eigenstates appearing below the bulk gap which are
the edge excitations. The bulk symmetry representation UM(g) = ⊗

i∈M ui(g) can

12
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(a)

(b)

Figure 2.3: (a) The Else-Nayak procedure in a 1D system. (b) The Else-Nayak
procedure in a 2D system.

be projected onto the low energy subspace to obtain an effective edge representation
of the symmetry V∂M(g) which acts only along the boundary. While UM(g) is
a product of single-site linear representations, V∂M(g) is not in general. We call
V∂M(g) a domain wall operator. To continue, we will explain the procedure in 1D
and 2D, and the extension to higher dimensions will become evident.

For a 1D system,M corresponds to a line segment, and ∂M is the two endpoints
of this segment, which we label as a and b. Then, assuming thatM is large compared
to the correlation length of the system, we can write V∂M (g) = Va(g)⊗Vb(g) where
Va(g) (Vb(g)) acts only in a region near a (b), see Fig. 2.3(a). Since V∂M(g) acts
the same as UM (g), it must be a linear representation. But Va(g) only needs to be
a representation up to a phase, i.e. a projective representation. Indeed, if we have
Va(g)Va(h) = ω(g, h)Va(gh) for some phase factors ω(g, h), then V∂M(g) is still a
representation as long as Vb(g) carries the opposite phase factors.

From the associativity of Va(g), it is straightforward to show that ω(g, h)
satisfies the following cocycle condition,

ω(g, h)ω(gh, k) = ω(h, k)ω(g, hk). (2.4)

Functions that take two elements of a group and return a phase factor satisfying
this equation are called 2-cocycles. We are free to re-phase Va(g) 7→ β(g)Va(g) (as
long as Vb(g) is given the opposite phase), which means our cocycle is only defined
up to the relation,

ω(g, h) ∼ β(g)β(h)β−1(gh)ω(g, h). (2.5)

The equivalence classes of 2-cocycles modulo the coboundary transformation of
Eq. 2.5 are called 2-cohomology classes and, under point-wise multiplication,
they form a finite abelian group called the second cohomology group, denoted
H2(G,U(1)). Given a cocycle ω, we denote the cohomology class it belongs to by
[ω] ∈ H2(G,U(1)).

In this case, we see that the cohomology group classifies inequivalent projective
representations, corresponding to the different ways the symmetry can act on the
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boundary of the region M . Since the different classes form a discrete group, one
can imagine that it is impossible to smoothly interpolate between two classes,
meaning that two systems with different cohomology classes must be in different
SPT phases. This argument can be formalized by proving that a smooth change in
a state can only result in modifying the cocycle by a coboundary transformation,
and therefore cannot change the cohomology class [87].

The key physical property of 1D SPT phases, the existence of robust zero-
energy edge states, can be understood from these results. Namely, if the low-energy
subspace corresponding to boundary excitations has to transform as a non-trivial
projective representation, it must have a degeneracy greater that one, since a 1D
system cannot transform projectively. In general, we can say that the size of the
edge mode in an SPT phase labelled by a group G and cohomology class [ω] is
equal to the minimum dimension of an irreducible representation of G belonging to
the class [ω]. In Section 2.5.2, we will define a certain class of SPT phases where
this dimension can be easily calculated.

Having understood that the second cohomology group classifies 1D SPT phases,
let’s see how the third cohomology group can classify 2D SPT phases. In this case,
M is a finite patch of the 2D system, so ∂M is a 1D line and V∂M (g) acts as some
1D operator, see Fig. 2.3(b). In general, the domain wall operator V∂M (g) is not a
tensor product of local operators. Now, we restrict this operator to a line segment
C corresponding to half of ∂M , which is the step analogous to restricting to Va(g)
in 1D. We define VC(g) to be the truncation of V∂M(g) to C. This truncation can
easily be done if, e.g. VM(g) has a representation as a quantum circuit, in which
case we simply remove all gates not completely contained in C. The truncation is
in general only defined up to some unitary operators acting on the endpoints of C.
Thus, VC(g) only needs to form a representation up to such operators, i.e.,

VC(g)VC(h) = Ω(g, h)VC(gh), (2.6)

where Ω(g, h) = Ωa(g, h)⊗ Ωb(g, h), and Ωa/b are operators localised near the two
endpoints of C, see Fig. 2.3(b).

Now, using the associativity of VC(g), we can derive the following constraint
on Ω.

Ω(g, h)Ω(gh, k) = VC(g)Ω(h, k)V −1
C (g)Ω(g, hk), (2.7)

which is the non-abelian equivalent of Eq. 2.4. As in the 1D case, Ωa(g) only needs
to satisfy Eq. 2.7 up to a phase factor ω,

Ωa(g, h)Ωa(gh, k) = ω(g, h, k)VC(g)Ωa(h, k)V −1
C (g)Ωa(g, hk). (2.8)

By reducing various products of Ωa(g, h) in different ways, one can again derive a
cocycle constraint for ω (see Ref. [84] for details),

ω(gh, k, l)ω(g, h, kl) = ω(g, h, k)ω(g, hk, l)ω(h, k, l). (2.9)

Functions satisfying this equation are called 3-cocycles. Finally, since Ωa is only
defined up to phase factors, we again find that the 3-cocycles are defined only up
to the following relation,

ω(g, h, k) ∼ β(g, h)β(gh, k)β−1(h, k)β−1(g, hk)ω(g, h, k). (2.10)
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As before, the 3-cocycles modulo this relation are called 3-cohomology classes, and
belong to the third cohomology group H3(G,U(1)). In Ref. [84], the authors give an
argument that the 3-cohomology class cannot change under smooth deformations
of a state, so that the different classes again index the different SPT phases in 2D.
In this case, the non-trivial 3-cocycle captures the fact that V∂M (g) is not a product
of on-site operators. The physical manifestation of such a non-local boundary
symmetry is that the boundary cannot have a uniquely gapped ground state, and
must instead be gapless or spontaneously break the symmetry and therefore be
degenerate [74].

We can now imagine how to proceed to higher dimensions. Starting with
the on-site symmetry, one restricts to a finite region to extract the equivalent
symmetry action on the boundary. One then further restricts that equivalent
action to a region with boundary, and so on, until the boundaries become points,
at which point the accumulated phase factor can be extracted. In d dimensions,
this phase factor will be a d + 1-cocycle, belonging to some equivalence class in
the cohomology group Hd+1(G,U(1)). An essential part of this procedure is that
one needs a way to truncate the boundary symmetry actions. This is easy if, for
example, the boundary symmetry can be represented by a quantum circuit. If this
is not possible, one cannot finish the procedure to extract a cocycle, and this gives a
possible physical intuition for the SPT phases which are beyond the cohomological
classification. Indeed, in Ref. [86], the authors constructed a beyond-cohomology
SPT model in 4D, and they showed that the boundary symmetry action cannot be
represented as a quantum circuit.

2.2.2 Example of SPT order in 1D
Having understood the cohomological classification of SPT order, let us consider
some explicit examples. To start, we will look at the simplest example of SPT
order, the 1D cluster state [88]. To emphasize the SPT nature of the state, we
define it on a periodic chain of N qubits via a FDQC as follows:

|C〉 =
(
N∏
i=1

CZi,i+1

)
|+ + · · ·+〉, (2.11)

where the qubits are all initialized in the state |+〉 = 1√
2(|0〉+ |1〉), and CZ is a two-

body unitary gate defined by CZij = |0〉〈0|i ⊗ 1j + |1〉〈1|i ⊗ Zj = diag(1, 1, 1,−1),
and Z is the Pauli-Z operator (similarly, X and Y will represent the other Pauli
operators throughout this thesis). To obtain a Hamiltonian for which the cluster
state is the unique ground state, we can start with the paramagnetic Hamiltonian
H = −∑N

i=1Xi, for which |+ · · ·+〉 is the unique ground state, and then conjugate
this Hamiltonian by the circuit ∏N

i=1 CZi,i+1 to obtain,

HC = −
N∑
i=1

Zi−1XiZi+1, (2.12)

where we used the relation CZijXiCZij = XiZj. We see that the cluster state
satisfies the relations Zi−1XiZi+1|C〉 = |C〉 for all i. Furthermore, the cluster state
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is the unique state that satisfies these relations, so it is a stabilizer state, which is a
state that can be uniquely specified as the +1 eigenstate of a set of Pauli operators
[89]. In this language, the operators Si := Zi−1XiZi+1 are called stabilizers.

When N is even, it is easy to see that this Hamiltonian commutes with a
Z2 × Z2 symmetry group generated by Xodd = ∏N/2

i=1 X2i−1 and Xeven = ∏N/2
i=1 X2i.

Since |C〉 is the unique ground state, it must also be symmetric, which can be
confirmed directly using the circuit representation. If we label elements of Z2 × Z2
by bit pairs (g1, g2) for gi = 0, 1, we can write the symmetry representation
as U(g1, g2) = Xg1

evenX
g2
odd. While the FDQC as a whole commutes with these

symmetries, the individual CZ gates do not, which is a consequence of the non-
trivial SPT order that we now demonstrate by using the Else-Nayak procedure to
extract the 2-cocycle.

Let M be a finite section of the 1D chain, corresponding to sites 1, . . . , L for
an even number L < N . The truncated Hamiltonian acting on the system with
boundary is then,

HC,M = −
L−1∑
i=2

Zi−1XiZi+1. (2.13)

Because we have removed the stabilizers associated to the sites i = 1 and i = L,
the ground space of HC,M is four-fold degenerate. To determine the action of the
symmetry in this degenerate ground state subspace, we use the method described
in Refs. [90, 91]. We first characterize this ground space by an effective algebra
of Pauli operators X1, Z1 , XL, ZL which commute with the bulk Hamiltonian
terms and therefore preserve the ground space. If we define the truncated circuit
UCZ,M = ∏L−1

i=1 CZi,i+1, we can observe that the bulk Hamiltonian terms can
be written as Zi−1XiZi+1 = UCZ,MXiU

†
CZ,M for i = 2, . . . , L − 1, such that the

following are suitable choices of boundary Pauli operators,

X1 = UCZ,MX1U
†
CZ,M = X1Z2, Z1 = UCZ,MZ1U

†
CZ,M = Z1,

XL = UCZ,MXLU
†
CZ,M = ZL−1XL, ZL = UCZ,MZLU

†
CZ,M = ZL.

(2.14)

Using these, we can determine how the symmetry acts on this degenerate
boundary space. Defining UM (g1, g2) = ∏L/2

i=1 X
g1
2iX

g2
2i−1, we find that the left (i = 1)

edge transforms as,

UM(g1, g2)X1UM(g1, g2) = (−1)g1X1, UM(g1, g2)Z1UM(g1, g2) = (−1)g2Z1.
(2.15)

This shows that UM(g1, g2) ∼ Zg1Xg2 when acting on the left edge, so we write
Va(g1, g2) = Zg1Xg2 . Similarly, for the right edge, we can find Vb(g1, g2) = Xg1Zg2 .
Then, we can focus on the left edge to obtain the 2-cocycle characterizing the
projective representation,

ω(g1, g2;h1, h2) = Va(g1, g2)Va(h1, h2)V −1
a (g1 ⊕ h1, g2 ⊕ h2)

= (−1)g2h1 ,
(2.16)

where ⊕ denotes mod-2 addition. This cocycle belongs to a non-trivial cohomol-
ogy class, meaning that it cannot be expressed in the form ω(g1, g2;h1, h2) =
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(a) (b) (c)

Figure 2.4: (a) The Union-Jack lattice. Red qubits live on the faces of the square
lattice, while blue and yellow qubits alternate on the vertices. (b) The decorated
domain wall structure of |UJ〉. Displayed is one element of the superposition
over the states of the face qubits, with CZ unitaries applied on the domain walls,
marked in red. (c) A cylinder with a g-flux inserted. Treated as a quasi-1D system
in the vertical direction, this system carries a 1D SPT order characterized by the
slant product χg(h, k).

β(g1, g2)β(h1, h2)β(g1 ⊕ h1, g2 ⊕ h2). One can check this by calculating the com-
mutation relations,

ω(g1, g2;h1, h2)
ω(h1, h2; g1, g2) = Va(g1, g2)Va(h1, h2)V −1

a (g1, g2)V −1
a (h1, h2)

= (−1)g2h1⊕g1h2 .

(2.17)

which would be trivial if ω belonged to the trivial class. Therefore, we see that the
1D cluster state has non-trivial SPT order, as evidence by the anti-commutation of
the boundary symmetry generators. Moreover, we see that there is no symmetric
boundary Hamiltonian term we could add in terms of the operators X1, Z1 (since
such a term must commute with both X and Z, and must therefore be proportional
to the identity matrix). Therefore, the boundary degeneracy cannot be lifted
without breaking the bulk symmetry.

2.2.3 Example of SPT order in 2D
We move on to an example of SPT order in 2D, which will be characterized by a
non-trivial 3-cocycle. The state can be defined on any triangulation of 2D space,
but we choose the Union-Jack lattice [22], which can be viewed as a square lattice
with one qubit on each vertex and one on each face, as pictured in Fig. 2.4(a).
This lattice contains a number of triangles 〈ijk〉 consisting of one face qubit and
a neighbouring pair of vertices. The Union-Jack state can then be defined in a
similar manner as the cluster state [22], namely,

|UJ〉 =
∏
〈ijk〉

CCZijk

 |+ + · · ·+〉, (2.18)
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where CCZijk = |0〉〈0|i ⊗ 1jk + |1〉〈1|i ⊗ CZjk = diag(1, 1, 1, 1, 1, 1, 1,−1). The
same model was defined on the triangular lattice in Ref. [91], and it is closely related
to an earlier model proposed in Ref. [90]. We can again obtain a Hamiltonian for
this model by conjugating the paramagnetic Hamiltonian H = −∑iXi by the
circuit of CCZ gates to obtain,

HUJ = −
∑
i

Xi

∏
〈ijk〉

CZjk, (2.19)

where the product is over all triangles containing qubit i, and we used the relation
CCZijkXiCCZ

†
ijk = XiCZjk.

The Union-Jack lattice is three colourable, meaning we can assign one of three
colours to each qubit such that no neighbouring qubits share a colour, as depicted
in Fig. 2.4(a). We can then define the global symmetry operators XR, XB, XY

which apply to X to all red, blue, and yellow vertices, respectively. One can readily
verify that these commute with HUJ and form a G = Z2 × Z2 × Z2 symmetry
group, so we use the notation U(g1, g2, g3) = Xg1

R X
g2
B X

g3
Y for (g1, g2, g3) ∈ G.

To diagnose the SPT order of this model, we consider truncating to a lattice M
whose boundary consists of alternating blue and yellow vertices, as in Fig. 2.4(a).
By removing all Hamiltonian terms not completely contained in M , we obtain a
truncated Hamiltonian with degeneracy 2L where L is the length of the boundary.
We can define the truncated circuit UCCZ,M that consists of CCZ gates applied to
all triangles in M . Then, we again characterize this degenerate space in terms of
effective Pauli operators X i, Zi for i = 1, . . . , L defined as follows,

X i = UCCZ,MXiU
†
CCZ,M = Xi

∏
〈ijk〉

CZjk,

Zi = UCCZ,MZiU
†
CCZ,M = Zi,

(2.20)

where the product over 〈ijk〉 in the definition of X i now runs over the triangles
of the truncated lattice. Now we can calculate the effect of the bulk symmetry
UM(g, h, k) on these boundary operators as follows,

UM(g1, g2, g3)X iUM(g1, g2, g3)† = Zg1
i−1X iZ

g1
i+1,

UM(g1, g2, g3)Z2iUM(g1, g2, g3)† = (−1)g2Z2i,

UM(g1, g2, g3)Z2i−1UM(g1, g2, g3)† = (−1)g3Z2i−1,

(2.21)

where we taken even (odd) i to correspond to blue (yellow) boundary qubits. From
these relations, we can conclude that UM(g1, g2, g3) acts on the boundary as,

V∂M(g1, g2, g3) =
(

L∏
i=1

CZi,i+1

)g1 ( L∏
i=1

X2i

)g2 ( L∏
i=1

X2i−1

)g3

. (2.22)

This boundary action is not a product of single-site operators, but rather it
has the form of a quantum circuit due to the CZ gates, indicating the non-trivial
SPT order of the model. We can now calculate the 3-cocycle which characterizes
this non-local action. Let us introduce the condensed notation ~g = (g1, g2, g3),
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2.2. Symmetry-protected topological order

and consider a finite segment C = [a, b] of ∂M where we take a and b to both
be odd (i.e. yellow qubits) without loss of generality. Then, letting VC(~g) be the
truncation of V∂M(~g), where we remove all operators not completely contained in
C, we can calculate Eq. 2.6,

VC(~g)VC(~h) = Ω(~g,~h)VC(~g)VC(~h),
where Ω(~g,~h) = (ZaZb)g2h1 .

(2.23)

Writing Ωa(~g,~h) = (Za)g2h1 , Eq. 2.8 becomes,

Ωa(~g,~h)Ωa(~g ⊕ ~h,~k) = ω(~g,~h,~k)VC(~g)Ωa(~h,~k)V −1
C (~g)Ωa(~g,~h⊕ ~k),

where ω(~g,~h,~k) = (−1)g3h2k1 .
(2.24)

To confirm that this 3-cocycle corresponds to a non-trivial cohomology class, we
use the slant product [92, 93], which can be defined for any group element g as,

χg(h, k) := ω(g, h, k)ω(h, k, g)
ω(h, g, k) . (2.25)

When ω is a 3-cocycle, χg will be a 2-cocycle, belonging to some cohomology class
in H2(G,U(1)). The physical meaning of the slant product is the following. If we
put our 2D system on a cylinder, we can thread a symmetry flux corresponding to
a group element g through the cylinder. In practice, this can be done by inserting
the truncated domain-wall operator VC(g) along the length of the cylinder, as
shown in Fig. 2.4(c). The resulting system can carry a fractional symmetry charge
on the boundaries. That is, if we consider our system to be a quasi-1D system
along the length of the cylinder, it can belong to a non-trivial 1D SPT phase. The
2-cocycle which describes this 1D SPT phase is precisely the slant product χg.

If a 3-cocycle ω has a slant product χg that belongs to a non-trivial class in
H2(G,U(1)), then ω itself must belong to a non-trivial class in H3(G,U(1)). In
the present example, we can compute,

χ(1,0,0)(~h,~k) = (−1)h3k2 (2.26)

Since χ(1,0,0)(~h,~k) 6= χ(1,0,0)(~k,~h), it must belong to a non-trivial class inH2(G,U(1)),
so ω is also in a non-trivial class and therefore |UJ〉 has non-trivial SPT order.

As another diagnosis of the non-trivial SPT order of |UJ〉, let us consider what
possible boundary Hamiltonian terms we could add in terms of the boundary
operators X i, Zi. If we ask that the boundary Hamiltonian H∂M respects the bulk
symmetry, we need it to commute with V∂M(~g) for all ~g. The simplest family of
Hamiltonians we can write down which respects the symmetries is,

H∂M = −h
∑
i

(
X i + Zi−1X iZi+1

)
− J

∑
i

(
Z2iZ2i+2 + Z2i−1Z2i+1

)
. (2.27)

When h = 0, this Hamiltonian corresponds to two copies of the Ising model,
which spontaneously break the symmetry and have degenerate ground states.
When J = 0, the Hamiltonian is that of the 1D cluster state in an external field,
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tuned to its gapless critical point [94]. Furthermore, for both h, J 6= 0, there is
an extended gapless phase, which can be considered as being protected by the
anomalous boundary symmetry [95]. We see that this simple example of a boundary
Hamiltonian does not lead to a unique gapped ground state, and indeed it was
shown in Ref. [74] that a system which respects an anomalous symmetry (one with
a non-trivial 3-cocycle) cannot have a unique gapped ground state.

A final perspective on the SPT order of |UJ〉 comes from the decorated domain
wall (DDW) perspective [96]. Namely, using the relation CCZijk = |0〉〈0|i ⊗ 1jk +
|1〉〈1|i ⊗CZjk, we observe that, for every face in the lattice, the effect of the CCZ
operators acting on that face is to put CZ operators along the edges of the face if
that face is in the state |1〉, and otherwise it does nothing. These CZ operators
acting on the initial |+〉 states create 1D cluster states (Eq. 2.11). Therefore,
|UJ〉 can be expressed as an equal-weight superposition over all configurations of
the face qubits, where the domain walls between face qubits are decorated by 1D
cluster states on the vertex qubits, as pictured in Fig. 2.4(b). One can deduce the
presence of non-trivial boundary physics from this DDW picture [96].
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2.3 Intrinsic topological order
In this section we consider intrinsic topological order, which is usually referred to
simply as topological order. Here, we use the word intrinsic to indicate that the
topological order does not rely on the presence of a symmetry, as would be the
case for SPT order. That is, intrinsic topological phases are those that cannot be
mapped to a product state via any FDQC, such that they are characterized by
certain patterns of long-range entanglement.

The namesake feature of topological order is a ground state degeneracy that
depends on the topology of the manifold that the system lives on [6]. While the
ground state will be unique on a topologically trivially manifold such as a sphere, it
will become degenerate on a manifold with holes such as a torus. Furthermore, in
the case that the ground space is degenerate, the different ground states cannot be
distinguished by any local operator, in contrast to, e.g., an Ising model where the
degenerate ground states are distinguished by local magnetization. The sensitivity
to global topology and the locally indistinguishable ground states are indicators of
the long-range nature of the entanglement in topologically ordered systems.

The most important feature of topological phases is the existence of topological
excitations with anyonic statistics, or simply anyons. In 2D, anyons are point-
like excitations which, when exchanged or braided around each other, can give
phase factors different from bosonic or fermionic statistics, such as factors of i.
These anyons can fuse together to annihilate each other or create new anyon
types, and certain topological orders can have non-abelian anyons whose fusion
rules depend on their braiding history [6, 7]. In 3D and higher, the topological
excitations may no longer be point-like, and can instead by extended 1D objects,
for example [97]. These 1D excitations can also be characterized by generalized
3-loop braiding processes [98]. In general, the set of topological excitations along
with the information of how they braid and fuse with each other can completely
classify the possible topological phases, and mathematical language that captures
this algebraic theory of anyons is that of category theory [99].

Topological order has extremely promising applications for the storage and
processing of quantum information [6–9]. This is primarily due to the way in
which information can be stored non-locally in a topologically ordered system: if
we store information in the degenerate ground space of a topological order, the
local indistinguishability of the ground states ensures that the information cannot
be destroyed by any local errors that appear due to effects such as thermal noise.
Over time, these local errors may conspire to form a logical error that affects the
encoded information, but this can be actively prevented by using techniques from
quantum error correction [6]. One can further perform operations on the encoded
information by adiabatically manipulating the topology of the lattice [9]. These
operations are topological in the sense that they are insensitive to local details
of their implementation, and hence they also enjoy a certain robustness against
noise. Unfortunately, in many cases these operations are insufficient for universal
computation [100], and they must be supplemented with additional techniques such
as magic state distillation, all culminating in the field of fault-tolerant quantum
computation [101]. Another approach to universal topological computation uses
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non-abelian anyons, where one can encode logical information in the collective
state of several spatially separated anyons [7]. This information is again robust
to local noise sources, and furthermore their non-abelian nature allows one to
perform logical operations by braiding, which is again a topological operation that
is insensitive to local details.

2.3.1 Example of topological order in 2D

To demonstrate the basic features of topological order, we will look at the simple
example of the 2D toric code [6]. The system lives on a square lattice with periodic
boundary conditions (a torus), where qubits live on the edge of the lattice. The
toric code is defined by the following Hamiltonian,

HTC = −
∑
i

Ai −
∑
f

Bf ,

Ai =
∏
e3i
Ze,

Bf =
∏
e∈f

Xe,

(2.28)

where e 3 i denotes all edges incident on vertex i, and e ∈ f denotes all edges
around a face f , as depicted in Fig. 2.5(a) The Hamiltonian terms all mutually
commute, so the ground space consists of states that are in the +1 eigenspace of
each term. On an L×L torus, there are 2L2 qubits, but only 2L2− 2 independent
Hamiltonian terms, since we have the relations∏iAi = 1 and∏f Bf = 1. Therefore,
the ground space is 22 = 4-fold degenerate.

We can get an understanding of the long-range entanglement in the ground
states by visualising them directly. Observe that the states in the +1 eigenspace of
all Ai terms are those with an even number of qubits in the |1〉 state around each
vertex, and the Bf terms transform between different states in this eigenspace.
Therefore, the following is a ground state of HTC ,

|TC〉 = 1
N

∑
loops
|loop〉, (2.29)

where the sum is over all basis states |loop〉 which have an even number of edges in
the state |1〉 around each vertex. If we visualize basis states by drawing a line on
an edge if the qubit is in the state |1〉, then the sum in Eq. 2.29 is over all states
where the lines form closed loops, see Fig. 2.5(c). Such a state is often called a
“loop-soup”. To understand the degeneracy of the ground space on a torus, note
that acting with the Bp terms can never create or destroy a single topologically
non-trivial loop, i.e. a loop which wraps all the way around the torus. The four
degenerate ground states are therefore distinguished by whether or not the states
|loop〉 in Eq. 2.29 are chosen to contain these non-trivial loops. Since there are two
non-trivial loops, each of which can be present or not, there are four ground states.
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(a) (b)

(c) (d)

Figure 2.5: The toric code model. In all figures, the lattice has periodic boundary
conditions with qubits on the edges being identified. (a) Terms in HTC and Wilson
loop operators. (b) String operators that create excitations at their endpoints, with
crosses marking the locations of violated Hamiltonian terms. (c) The ground state
|TC〉 is a superposition over all configurations where the edges in state |1〉, denoted
by a thick line, form closed loops. One such configuration is shown. (d) Acting
with Sm

γ from (b) on the configuration of (c) flips qubits to create a configuration
with an open string, where excitations appear at the endpoints of the string.

These ground states can be distinguished by non-local Wilson operators defined as,

WZ =
∏
e∈C1

Ze, (2.30)

W ′
Z =

∏
e∈C2

Ze, (2.31)

where C1 and C2 are topologically non-trivial loops, as indicated in Fig. 2.5(a).
Then, for example, 〈WZ〉 = −1 if there is a non-trivial loop in the vertical direction,
and +1 otherwise. In summary, the ground states of HTC can be visualized as
equal-weight superpositions over closed-loop configurations, a loop-soup, and they
are distinguished from each other by non-local operators which wrap around the
entire system.

The excitations of the model, corresponding to states where a subset of Hamil-
tonian terms have eigenvalue −1, are created at the endpoints of string operators,
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see Fig. 2.5(b). The operator,

Se
λ =

∏
e∈λ

Ze, (2.32)

creates a pair of violations of the Bf terms, called electric (e) anyons, at the
endpoints of a curve λ ⊂ E on the dual lattice. Likewise, the operator

Sm
γ =

∏
e∈γ

Xe. (2.33)

produces a pair of violations of the Ai terms, called magnetic (m) anyons, at the
endpoints of a curve γ ⊂ E on the lattice. If one tries to braid an e-anyon around
an m-anyon, one will inevitably have to move a Z operator past an X, which
results in a sign of −1. This shows that the e and m anyons have a mutual −1
braiding statistic.

The m-anyons have an intuitive representation in terms of the loop-soup picture.
Namely, acting with Sm

γ on any closed-loop state |loop〉 results in a state where
there are endpoints of open loops at the endpoints of γ. So, while the ground
states are superpositions of closed loops, the endpoints of open loops coincide with
m-anyons, see Fig. 2.5(d). This picture will be useful for an intuitive construction
of enriching the toric code with symmetry in Section 2.4. The e-anyons appear as
a sign structure in the superposition over loops (Eq. 2.29). Namely, in the presence
of an e-anyon on a face f , a given loop configuration |loop〉 gains a relative factor
of −1 if an odd number of loops encircle f .

2.3.2 Example of topological order in 3D
Here we will briefly introduce the 3D toric code as a simple example of topological
order in 3D [97, 102]. The model lives on a 3D cubic lattice with qubits on the
faces f ∈ F . The Hamiltonian is defined as follows,

H3DTC = −
∑
e

Ae −
∑
c

Bc,

Ae =
∏
f3e

Zf ,

Bc =
∏
f∈c

Xf ,

(2.34)

where f 3 e denotes the four faces incident on the edge e, and f ∈ c denotes the
six faces around the cell c.

In the same way that the 2D toric code ground states can be viewed as equal-
weight superpositions over closed-loop configurations (loop-soup), the ground states
of the 3D toric code can be viewed as closed-membrane configurations (membrane-
soup). Namely, if we represent states on our lattice by colouring a face if its
associated qubit is in the state |1〉, then the ground state consists of configurations
|mem.〉 where the coloured faces create closed 2D surfaces, or, membranes,

|TC3D〉 = 1
N

∑
mem.
|mem.〉. (2.35)
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(a) (b)

Figure 2.6: The 3D toric code model. (a) The membrane-soup picture of the
ground state. One state |mem.〉 of the soup is pictured by colouring faces in the
state |1〉. (b) The membrane and string operators that create excitations. The
violated Hamiltonian terms are marked by circles.

This structure is depicted in Fig. 2.6(a). On topologically non-trivial manifolds like
a 3-torus, there are degenerate ground states that can be obtained by including
topologically non-trivial (non-contractible) membranes in the superposition.

The excitations in the model come in two types, see Fig. 2.6(b). Electric
excitations corresponding to violations of Bc appear at the endpoints of string
operators,

Se
Λ =

∏
f∈Λ

Zf , (2.36)

where Λ is a set of faces defined by a curve on the dual lattice. The most important
distinction between the 2D and 3D toric codes is that magnetic excitations of the
3D toric code, corresponding to violations of Ae, are extended 1D objects rather
than point-like particles. They appear at the boundaries of membrane operators,

Sm
Σ =

∏
f∈Σ

Xf , (2.37)

where Σ is some open membrane of faces. The electric and magnetic excitations
have a mutual braiding statistic of −1 upon winding an electric excitation through
the loop of a magnetic excitation. The picture of the excitations in terms of the
membrane-soup picture is similar to that of the loop-soup: The magnetic excitations
appear at the 1D boundaries of open membranes, and an electric excitation at
cell c gives the different states |mem.〉 in the membrane-soup a −1 sign if an even
number of membranes enclose c.

2.3.3 Topological entanglement entropy
One important notion in characterizing topological order is the topological entan-
glement entropy (TEE), which refers to a constant correction γ to the entanglement
area law [103–105],

S(ρA) = α|∂A| − γ + . . . , (2.38)

where the dots indicate terms that go to zero as the size of A is increased. The
TEE reflects the presence of long range entanglement in the system, and shows that
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there are some global constraints on the structure of ρA which are independent of
system size. The TEE is an invariant of a topological phase, in that it is insensitive
to small deformations of the region A and small changes in the quantum state. In
fact, it has been shown that the TEE is equal to the total quantum dimension of
topological order which, in the case of abelian topological order, simply counts the
number of distinct anyons [72, 104, 105]. Furthermore, by calculating the TEE
on a torus for the various degenerate ground states, one can even retrieve the
anyon braiding statistics, which can give a nearly complete determination of the
topological order [70]. This emphasizes the fact that the ground state entanglement
encodes not only ground state properties, but also important information about
the excitations.

To extract the TEE for a 2D system, one straightforward method is to calculate
the entropy between two halves of a cylinder of radius L. Making fits of entropy vs
L, the area law prefactor α will be the slope, and the TEE γ will be the y-intercept.
This method has been used successfully in numerical calculations, especially since it
is amenable to a quasi-1D approach [106]. However, it is also sensitive to finite-size
effects, since the form Eq. 2.38 only holds for large A. It can be more insightful to
rather extract the TEE in terms of a linear combination of entropies, in such a
way that the area law contributions cancel exactly, leaving only the TEE behind
[104, 105]. However, as we will discuss in Chapter 4, all of these prescriptions
are vulnerable to “false positives” where the extracted value of the TEE does not
match the expected value [107].

For stabilizer models like the toric code, there is a simple recipe to calculate
entanglement entropy [103]. Recall that a stabilizer state |ψ〉 on N qubits can
be uniquely described by a set of N stabilizers Si which are products of Pauli
operators (for models like the toric code with degenerate ground states, a unique
ground state can be specified by adding non-local Wilson loops into the set of
stabilizers). The stabilizers generate an abelian group G = 〈Si|i = 1, . . . , N〉. Let
us assume that the stabilizers are all independent, i.e. there are no non-trivial
products of stabilizers that equal the identity. Then we have |G| = 2N . We can
express |ψ〉 in terms of the projector onto the +1 eigenspace of all stabilizers,

ρ = |ψ〉〈ψ| =
N∏
i=1

1
2(1 + Si) = 1

2N
∑
g∈G

g. (2.39)

Now consider an arbitrary bipartition of the system into subsystems A and B, and
define the subgroup GA ⊂ G as the set of elements of G which act non-trivially
only within A. Observe that, if we trace over subsystem B, every element of G
that is not in GA has trace 0 (since Pauli operators have trace 0). Then, we have,

ρA = TrBρ = 1
2NA

∑
g∈GA

g, (2.40)

where NA is the number of qubits in subsystem A. Now, we can calculate the
Rényi α-entropy, defined as,

S
(α)
A ≡ S(α)(ρA) = 1

1− α log2 Tr(ραA), (2.41)
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where the Von Neumann entropy SA = −Tr ρa ln ρA is recovered in the limit α→ 1.
Noting that,

ραA = |GA|α−1

2NA·α
∑
g∈GA

g, (2.42)

and Tr∑g∈GA g = 2NA , we have,

S
(α)
A = NA − log2 |GA|. (2.43)

This result is independent of α since the spectrum of ρ is flat for stabilizer states.

2.3.4 Gauging as a duality map between phases
Intrinsic topological order is closely related to the idea of gauge theories. In fact,
the toric code model can be viewed as a Z2 lattice gauge theory. The concept of
gauging—mapping a system with a global symmetry to one with a local symmetry—
is ubiquitous in physics. In the context of gapped phases of matter, it plays an
interesting role as a duality mapping between different types of topological order.
The concept will be very important for Chapter 5 of this thesis, so we review it
here.

Let us begin with a 2D transverse field Ising model describing qubits on the
vertices of a square lattice,

HTFIM = −J
∑
〈ij〉

ZiZj − h
∑
i

Xi. (2.44)

This system has a Z2 global on-site symmetry U = ⊗
iXi. In the limit h→ 0, the

symmetry is spontaneously broken and the degenerate ground space of HTFIM is
spanned by the states |00 . . . 0〉 and |11 . . . 1〉, while the unique ground state in the
limit J → 0 is |++ · · ·+〉. These two regimes are separated by a symmetry-breaking
phase transition.

To gauge the Z2 global symmetry, we first add new qubit “gauge” degrees of
freedom to the links of the lattice. To couple them to the vertex degrees of freedom,
we modify the Ising interaction according to the usual minimal coupling procedure,

ZiZj 7→ ZiZeijZj, (2.45)
where eij denotes the edge between vertices i and j. The modified Hamiltonian
now commutes with a local gauge symmetry given by the operators,

Gi = Xi

∏
〈ij〉

Xeij . (2.46)

To add some dynamics to the gauge fields, we can introduce a Hamiltonian term
which commutes with the gauge symmetry, and with the existing Hamiltonian
terms for simplicity. The smallest such operator can be found to be ∏e∈f Ze, where
e ∈ f denotes all edges around a face f . Altogether, we have the gauge-matter
Hamiltonian,

Hg−m = −J
∑
〈ij〉

ZiZeijZj − h
∑
i

Xi −K
∑
f

∏
e∈f

Ze, (2.47)
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where e ∈ f denotes all edges around a face f . This describes a Hamiltonian
formulation of a Z2 lattice gauge theory [108].

Since Gi all commute with the Hamiltonian, we can enforce a gauge constraint
of Gi = 1 which specifies the “physical” Hilbert space. Having enforced this
constraint, we can replace Xi 7→

∏
〈ij〉Xeij in Hg−m, after which it is observed that

Hg−m commutes with Zi for all vertices i. We can again focus on the sector where
Zi = 1 for all i, which essentially freezes the vertex (matter) degrees of freedom to
the |0〉 state. This results in a Hamiltonian acting only on the gauge degrees of
freedom,

Hg = −J
∑
e

Ze − h
∑
i

∏
e3i
Xe −K

∑
f

∏
e∈f

Ze, (2.48)

where e 3 i denotes all edges incident on vertex i. If we set J = 0, we recognize
that Hg is identical to the toric code Hamiltonian (Eq. 2.28), up to a lattice shift
that interchanges vertices and faces. On the other hand, if we turn on J , this
introduces a confinement of fluxes (m-anyons) in the toric code via a tension that
penalizes long loops, which drives it into a topologically trivial phase [109]. That is
to say, the gauging procedure maps the paramagnetic phase of the transverse field
Ising model to the topological toric code, while it maps the symmetry-breaking
phase to a topologically trivial phase where m-anyons are confined.

The overall procedure, which takes a Hamiltonian defined on the matter (vertex)
degrees of freedom to a new Hamiltonian on the gauge (edge) degrees of freedom
can be summarized by the following mapping on the Z2-symmetric Pauli algebra,

Xi 7→
∏
e3i
Xe ZiZj 7→

∏
e∈γij

Ze, (2.49)

where γij is a path connecting i and j. This path is only defined up to multiplication
by the local operators ∏e∈f Ze, which are equal to 1 in the ground space of the
gauged Hamiltonian. It is straightforward to generalize this procedure to arbitrary
lattices and (finite) symmetry groups [93]. For example, performing this procedure
for the 3D paramagnet on a cubic lattice results in the 3D toric code.

Another perspective on the gauging map can be given in terms of a duality
transformation on states [91]. On a basis state ⊗i |ai〉 of the vertex qubits, the
gauging map Γ produces a state of the edge qubits defined as,

Γ
(⊗

i

|ai〉
)

=
⊗
〈ij〉
|beij〉 , beij = ai ⊕ aj, (2.50)

where ⊕ denotes mod-2 addition. In this way, the edge qubits are in the state |1〉
on the domain walls of the vertex qubits, and |0〉 otherwise, as depicted below for
a single face of the lattice,

(2.51)

28



2.3. Intrinsic topological order

We can see from this that the states after gauging will all have local (gauge) symme-
try ∏e∈f Ze for all faces f , since this evaluates to (−1)ai+aj+aj+ak+ak+al+al+ai = 1.
The mapping is surjective on this gauge-symmetric subspace, while it is injective if
we restrict the domain of Γ to the Z2-symmetric subspace of states. Furthermore,
the mapping preserves the inner product of states. That is, Γ defines an isometric
duality map between the space of states with a global symmetry to the space of
states with a gauge symmetry [91]. The corresponding action of Γ on Z2-symmetric
operators is exactly the one defined in Eq. 2.49.

The viewpoint of gauging as a duality map is very helpful. Since it is an
isometry, it preserves the spectrum of Hamiltonians, such that a smooth, gapped
path connecting two states before gauging, will translate to a smooth path after
gauging. The mapping also preserves locality. Therefore, if two systems are in
different gapped phases after gauging (subject to the gauge symmetry constraint),
meaning there is no gapped path connecting them, they will also be in different
phases after gauging (subject to the global symmetry constraint). This gives a
method to identify the non-trivial order of a state via gauging [41, 90, 91].

Let us showcase this method with a few examples. As a simple case, applying
the gauging map to the 1D transverse field Ising model simply interchanges the
Ising and magnetic field terms, such that the gauging map is nothing more than
the famous Kramers-Wannier duality that maps the paramagnetic phase to the
ferromagnetic phase 2. On the other hand, the 1D cluster state (Eq. 2.12) turns
out to map onto itself after gauging (up to a local basis change) [110]. Since the
ferromagnet is in a different phase than the cluster state (as they have different
symmetry), we can confirm that the paramagnet is also in a different phase than
the cluster state, i.e. the cluster state has non-trivial SPT order.

In higher dimensions, the situation becomes more interesting. Consider the
Union-Jack SPT model (Eq. 2.19), and let us first focus on the diagonal Z2 subgroup
of the symmetry group, corresponding to flipping every spin on the lattice. Gauging
this subgroup results in the double-semion model defined on the square-octagon
lattice (the dual of the Union-Jack lattice) [90]. This model is similar to the toric
code, except it has anyons with semionic statistics, defined by a phase of i upon
self-exchange. These semionic statistics show that the double-semion model is in
a different topological phase from the toric code, so the 2D paramagnet, which
we saw gauges to the toric code, is in a different symmetry-protected phase from
the Union-Jack model. Going further, we can consider gauging the whole Z3

2
symmetry group of the Union-Jack model, which turns out to lead to a non-abelian
topological order called the D8 quantum double model, as we will discuss in the
next section. There, we will also gauge other subgroups of Z3

2 to obtain models
with symmetry-enriched topological order.

2In this case, the gauge symmetry turns out to be the same global symmetry, since there is
only one “loop” in a 1D ring: the whole ring.
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2.4 Symmetry-enriched topological order
When intrinsic topological order is additionally equipped with a symmetry, the
phase classification can become refined. Two systems which are in the same intrinsic
topological phase without symmetry may be in different phases when a symmetry
is imposed, and we call these phases symmetry-enriched topological (SET) phases.
These phases are characterized by a non-trivial action of the symmetry on the
anyons of the topological order. An important concept in SET phases is that of
symmetry defects. These are defined to appear at the endpoints of the open domain
wall operators VC(g), as defined in Section 2.2.1 and Fig. 2.3(b), and they can
be viewed as confined quasi-particles (confined because the domain wall operator
connecting the defects has an energy cost). The effect of braiding a g-defect around
an anyon has the same effect as applying the symmetry g to the anyon. The
resulting theory containing both anyons and symmetry defects is described by the
mathematical framework of G-enriched category theory, which gives a classification
of SET order [111].

To understand the ways in which a global symmetry U(g) can act non-trivially
on the anyons, consider a topological state containing two separated anyonic
excitations labelled by a and b, as shown in Fig. 2.7. Suppose that these two
anyons can annihilate each other when brought together. First, it is possible that
the action of the symmetry can send each of a and b to a different species of
anyon. This permutation is not arbitrary, as the permuted anyons species must
still be able to annihilate each other. Assuming for simplicity that permutation
does not occur, the other possibility is known as symmetry fractionalization. For a
gapped system with local interactions, it will be possible to reduce the effect of
U(g) to a tensor product of operators Va(g) and Vb(g) localised near the anyons,
as shown in Fig. 2.7. This is possible because, far from the anyons, the state looks
locally like the ground state and is therefore symmetric. Now the situation is the
same as what occurs in a 1D SPT order: the global symmetry can be reduced as
U(g) ∼ Va(g) ⊗ Vb(g). Therefore, Va(g) can be a projective representation that
carries non-trivial phase factors, so long as Vb(g) carries the inverse factors.

In the context of SET phases, there turns out to be an additional restriction
on the possible projective representations: the phase factors that appear in the
representation Va(g) must be obtainable by braiding some anyon around a [111].
Because the non-trivial U(1) phase factors can be labelled by anyons (which are
necessarily abelian to get phase factors from braiding), the relevant cohomology
group which classifies symmetry fractionalization is not H2(G,U(1)), as it was for
1D SPT phases, but rather H2(G,A), where A is the set of abelian anyons [111].
Because of this, certain symmetry groups G which do not support non-trivial 1D
SPT phases can nonetheless lead to non-trivial symmetry fractionalization, with
G = Z2 being a simple example [112]. When anyon permutation is present, the
cohomology group has to be additionally supplemented with an action of the group
G on the set A [113].

Enriching a topological phase with symmetry can augment its usefulness for
quantum computation. By treating the symmetry defects as part of the anyon
content of the theory, one can expand the set of logical operators implementable by
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Figure 2.7: Illustration of the phenomenon of symmetry fractionalization. a and b
denote two anyonic excitations. The action of the global symmetry U(g) reduces
to a product of actions Va/b(g) acting near the anyons.

braiding [9, 39, 43, 47]. An early example of this was shown in Ref. [39], where the
author considered an anyon permuting symmetry of the toric code given by a lattice
shift, and showed that the corresponding lattice defect acted like a non-abelian
anyon. It has also been shown that models of SET order appearing on the boundary
of certain 3D SPT ordered systems can be used as quantum memories that are
self-correcting in the presence of certain bulk symmetries [42].

2.4.1 Examples of SET order in 2D
In this section we construct exactly solvable models of SET order in 2D. To do
this, we will make use of the gauging procedure outlined in the previous section.
Starting with the Union-Jack model introduced in Section 2.2.3, we will gauge
different subgroups of the symmetry group to obtain different types of SET order.
For this section, it is convenient to view the Union-Jack lattice as having qubits
on the vertices and faces of a square lattice, where the red qubits in Fig. 2.4(a)
live on the faces and the blue/yellow qubits alternate on the vertices.

Example with symmetry fractionalization

To obtain an SET model exhibiting symmetry fractionalization, we will gauge the
Z2 subgroup of the symmetry of HUJ corresponding to flipping red (face) qubits
XR. This will leave us with a residual Z2×Z2 subgroup which will fractionalize on
the magnetic excitations. We note that this same model was derived in Ref. [114]
from a different perspective.

First, let us derive the ground state wave function after gauging. Recall that
|UJ〉 in Eq. 2.18 is defined by acting with a unitary circuit on a product state, so
we can get the gauged ground state by applying the gauged version of the circuit
to the gauged initial state. Note that the red qubits form a square lattice, so we
can directly apply the gauging map to obtain a new lattice with the red qubits on
the edges between the blue and yellow qubits. The gauged initial state consists of
blue and yellow qubits still in the |+〉 state, with the red edge qubits now forming
a toric code |TC〉. The gauged version of the unitary circuit consists of CCZ gates
acting on every triplet of neighbouring blue and yellow qubits plus the red qubit
between them. Applying this circuit to the gauged initial state, we get the SET
ground state.
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(a) (b)

Figure 2.8: (a) The ground state of HSET exhibiting symmetry fractionalization
is an equal-weight superposition of loop configurations formed by the red qubits.
The blue and yellow qubits are in |+〉 states away from the loops, and in 1D
cluster states along the loops, indicated by the wavy red lines. (b) The ground
state of H ′SET exhibiting an anyon permuting symmetry. The blue and yellow
qubits independently form closed loops indicated by the solid and dashed lines,
respectively. The red qubits are in the |−〉 state at the intersections of the blue
and yellow loops, and otherwise in the |+〉 state.

To understand the structure of the resulting state, recall that the ground
states of the toric code can be described as a loop soup, which is an equal weight
superpositions of configurations in which the edge qubits in state |1〉 form closed
loops, as depicted in Fig. 2.5(c). When we act on such a configuration with the
gauged CCZ unitaries, we get a CZ between all pairs of vertices along loops,
and no effect away from the loops3. The CZ’s along loops act on the initial |+〉
states of the blue and yellow vertices, creating segments of 1D cluster states. So
the SET ground state can be viewed as an equal weight superposition of closed
loop configurations where the loops are decorated with 1D cluster states, see
Fig. 2.8(a). One can also see this structure by starting with the DDW structure of
the Union-Jack model (Fig. 2.4(b)) and applying the gauging map, which directly
maps states of the face qubits to closed-loop configurations on the domain walls.

In this picture, the residual Z2 × Z2 symmetry is inherited from the same
symmetry carried by the 1D cluster states. The decorated structure also allows us
to understand the nature of the fractionalization. Recall that, in the toric code,
magnetic excitations appear at the endpoints of open loops, see Fig. 2.5(d). Now,
these endpoints coincide with the edges of 1D cluster states, which fractionalize
the symmetry as discussed in Section 2.2.2. Therefore, the magnetic anyons carry
the same fractionalization as the boundary of the 1D cluster state.

To see the fractionalization more explicitly, we will construct the gauged Hamil-
tonian and derive the action of the symmetry on the string operators. Following

3This follows from the fact that CCZ|ijk〉 = |i〉 ⊗ CZi|jk〉.
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2.4. Symmetry-enriched topological order

the recipe outlined in Section 2.3.4 the gauged Hamiltonian is,

HSET = −
∑
i

Ai −
∑
f

Bf −
∑
i

Ci
1 + Ai

2 , (2.52)

where,
Ai =

∏
e3i
Ze,

Bf =
∏
e∈f

XeCZ∂e,

Ci = Xi

∏
〈ij〉

CZj,eij .

(2.53)

Therein, CZ∂e denotes the action of CZ on the two vertex qubits at the endpoints
of edge e. The terms Bf (Ci) are the direct output of applying the gauging map
the Hamiltonian terms in HUJ associated to the red (blue/yellow) qubits, while
Ai is the zero-flux term. We have additionally projected Ci onto the zero-flux
subspace to ensure that HSET commutes with the residual Z2 × Z2 symmetry.

Now, consider the following string operator,

SΓ =
∏
e∈Γ

XeCZ∂e, (2.54)

where Γ is some open string of edges with terminal vertices i1 and i2, which we
assume to both be yellow without loss of generality. If we apply this operator
to a ground state |SET 〉, we get an excited state with e-anyons at i1 and i2,
corresponding to Ai = −1. Because Ai = −1 at these points, the projection

(
1+Ai

2

)
annihilates the Hamiltonian terms involving Ci1/2 , so we can dress the endpoints of
SΓ with Z’s without changing the energy of the resulting excitations. This means
we have four different string operators,

SΓ(a, b) = SΓZ
a
i1Z

b
i2 , a, b = 0, 1, (2.55)

such that each anyon carries a two-fold degeneracy. Furthermore, the Z2 × Z2
symmetry acts projectively on each anyon. To see this, consider the subspace of
degenerate states |a, b〉 := SΓ(a, b)|SET 〉. We compute,

XB|a, b〉 = |a⊕ 1, b⊕ 1〉,
XY |a, b〉 = (−1)a(−1)b|a, b〉.

(2.56)

Therefore, XB ∼ X ⊗ X and XY ∼ Z ⊗ Z in this subspace. Since X and Z
anticommute, each anyon carries a projective representation of Z2 × Z2, which
demonstrates the fractionalization.

Example with anyon permuting symmetry

A very simple model of SET order with an anyon permuting symmetry can be
obtained by taking two copies of the toric code and considering a Z2 symmetry
that swaps the two layers, thereby exchanging the anyons between layers [115].
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Even simpler, we can consider a single toric code, where lattice translation by a
factor of (1

2 ,
1
2), followed by global application of the unitary H = X+Z√

2 exchanges
the electric and magnetic anyons [39]. Here, we will continue the above story and
obtain a model with anyon permutation by gauging the Z2 × Z2 symmetry of HUJ

corresponding to XB and XY . This will leave us with a Z2 symmetry which will
permute the anyons in the resulting topological order. The resulting model is more
complex, but it allows us to make a useful final statement about the commutation
of gauging maps. It also has an advantage that the symmetries remain products
of on-site X operators, so we don’t need two-body SWAP operations or lattice
translations.

We again begin by the finding gauged ground state. Notice that the blue and
yellow vertices each form 45◦-rotated square lattices whose edges intersect on the
faces of the original lattice. Gauging each XB and XY separately then results in a
system with three qubits on each face of a square lattice: the original red qubit,
and gauge qubits corresponding to the original blue and yellow sublattices. In
the gauged initial state, the red qubits remain in the |+〉 state while the blue and
yellow qubits independently form two toric codes on the rotated square lattices.
The gauged unitary circuit applies CCZ to the three qubits on each face. The
resulting gauged ground state can be viewed as two independent loop soups formed
by the blue and yellow qubits. In any given configuration of loops, the red qubits
are in the |+〉 state, except where the blue and yellow loops intersect, where the
CCZ gate has the effect of applying a Z to the red qubit, flipping |+〉 to |−〉. This
structure is pictured in Fig. 2.8(b).

How can we see the anyon permutation from this structure? Observe that, for
every closed loop configuration, there is an even number of intersections between
yellow and blue loops, so there will be an even number of red qubits in the |−〉 state,
so XR is a symmetry. Now suppose we act with XR on a configuration containing
an open yellow string with m-anyons at its endpoints. The symmetry action will
give a loop configuration a factor of −1 if an odd number of blue loops encircle the
endpoints of the yellow string, since that would mean there are an odd number of
blue-yellow intersections and therefore an odd number of red qubits in the |−〉 state.
As discussed in Section 2.3.1, this sign structure means there are blue e-anyons
located at the endpoints of the yellow string. In other words, the symmetry XR

attaches a blue e-anyon to the yellow m-anyon. We can repeat the same analysis
exchanging blue and yellow. Overall, if we let mb/y (eb/y) denote the blue/yellow
m-anyons (e-anyons), then the residual Z2 symmetry permutes anyons by attaching
to every m-particle an e-particle of opposite colour, i.e. mb/y ↔ mb/yey/b.

Let us again derive the gauged Hamiltonian to capture the anyon permutation
more explicitly. For convenience, we denote the subsets of all blue/yellow vertices
by VB/Y , and label the three qubits per face as fr,b,y with fr labelling the ungauged
red qubit. The gauged Hamiltonian reads,

H ′SET = −
∑
v∈VB

(
Ayv −Bb

v

1 + Ayv
2

)
−
∑
v∈VY

(
Abv −By

v

1 + Abv
2

)
−
∑
f∈F

C ′f , (2.57)
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where, if we let Fv ⊂ F denote the four faces surrounding vertex v,

Ab/yv =
∏
f∈Fv

Zfb/y ,

Bb/y
v =

∏
f∈Fv

Xfb/yCZfr,fy/b ,

C ′f = XfrCZfb,fy .

(2.58)

We have again projected certain terms onto the zero-flux subspace to ensure the
Hamiltonian is symmetric.

To see the permutation, consider the following string operator,

QΛ =
∏
f∈Λ

XfyCZfr,fb , (2.59)

where Λ is a connected path of faces. If we apply this operator to a ground state
|ψg〉 of H ′SET , we get an excited state with a pair of yellow m-anyons (corresponding
to violations of Ayv) located at the two blue vertices at the endpoints of the path.
Now, if we apply the symmetry to this state, we find,

XFQΛ|ψg〉 = QΛ

∏
f∈Λ

Zfb

XF |ψg〉 = QΛ
∏
f∈Λ

Zfb|ψg〉. (2.60)

The string operator ∏f∈Λ Zfb acting on |ψg〉 create violations of Bb
v at the same

yellow vertices, which correspond to blue e-anyons. Continuing in this way, we can
reproduce all of the permutation actions claimed above in terms of the transforma-
tion properties of string operators.

Gauging all symmetries

For completeness, we can also consider gauging the whole Z2 × Z2 × Z2 symmetry
group of HUJ . While it is cumbersome to perform this calculation explicitly,
we can use some general results to determine the resulting gauge theory. First,
suppose we start from HSET and gauge the fractionalized Z2 × Z2 symmetry. In
general, when a symmetry acts on the anyons as a higher-dimensional (projective)
representation, gauging it results in non-abelian anyons [111]. The fractionalization
pattern observed for HSET corresponds precisely to that shown in Fig. 2(c) of
Ref. [116], and it is shown therein that gauging the symmetry results in a model
with D8 topological order [105], where D8 is the non-abelian symmetry group of a
square.

Now, let us rather start from H ′SET and gauge the anyon-permuting symmetry.
In Ref. [115], it was shown in general that gauging an anyon-permuting symmetry
leads to non-abelian anyons. The symmetry considered in Ref. [115] was a layer swap
of a bilayer toric code, which appears superficially different from the permutation
observed for H ′SET . However, upon a relabelling of anyons that preserves the
braiding and fusion rules, the two symmetries turn out to be the same. Therefore,
the resulting gauge theory should be the same as the one found in Ref. [115],
namely D8 topological order.
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As the two above cases show, we expect a non-abelian D8 topological order after
gauging all symmetries of HUJ , regardless of the order in which the symmetries
are gauged. This reinforces the intuition that the gauging operations for a pair of
commuting symmetry subgroups should commute, which will be helpful for part of
Chapter 5.
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2.5. Tensor networks

2.5 Tensor networks

By this point, we have seen in several examples the importance that ground state
wavefunctions play in the classification and characterization of gapped phases
of matter. Due to the exponentially growing Hilbert space of quantum many-
body systems, it can quickly become impossible write down these wavefunctions
without the use of efficient representations. One such representation is the stabilizer
formalism which we have used several times already. Another representation works
directly in the physical corner of Hilbert space which, as discussed in Section 2.1,
consists of states satisfying an entanglement area law. Such states are naturally
captured using the language of tensor networks. This language plays an essential
role in Chapters 3 and 4 of this thesis, so here we outline some of its basic concepts
and techniques.

Let us first describe a brief history of tensor networks. While traces of tensor
network methods date back to transfer matrix methods in statistical mechanics
[117], a true appreciation of their power started with the Affleck-Kennedy-Lieb-
Tasaki (AKLT) state [118]. This state was constructed to help understand the
physics of the spin-1 antiferromagnetic Heisenberg chain 4. The authors of Ref. [118]
showed that, by slightly modifying the model, one can obtain a Hamiltonian whose
ground state can be written down exactly in a very simple form that involves
distributing a fixed amount of entanglement between neighbouring sites. Soon
after this, the concept of finitely-correlated states was introduced to generalize
the AKLT construction to a large class of Hamiltonians with provable spectral
gaps [119]. These states eventually extended to the so-called matrix product
states (MPS), which are simple 1D tensor networks. Concurrently, the density-
matrix-renormalization-group (DMRG) algorithm for finding ground states of 1D
Hamiltonians was introduced by White [120], and later it was understood that this
algorithm was essentially just a variational method over the class of MPS [121].
Eventually, analogues of these constructions in 2D dimensions and higher, called
projected-entangled pair states (PEPS), were introduced and found to also have
impressive analytical and numerical power [122–124]. By now, tensor networks
are a well-established tool for both numerical and analytical studies of quantum
many-body systems and beyond [3, 125].

2.5.1 Tensor network fundamentals

Tensor networks are used to provide an efficient description of quantum states
and operators, while also providing a useful graphical calculus. The description
breaks the quantum wavefunction, which has exponentially many parameters, into
a contraction of smaller tensors. Here, a tensor is simply a multidimensional
array with a certain number of legs that index its entries. For example, a general
wavefunction of N systems with dimension d can be described by a tensor c with

4The AKLT state also happens to be a prototypical example of SPT order, and lies in the
same SPT phase as the 1D cluster state.
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N indices as,

|ψ〉 =
d∑

i1,...,iN=1
ci1,i2,...,in|i1, i2, . . . , in〉. (2.61)

Tensor networks describe the various ways in which the tensor c can be decomposed
into a network of smaller tensors in order to reduce the number of free parameters.

Matrix product states

An important example of a tensor network decomposition is the matrix product
state (MPS):

ci1,i2,...,in =
D∑

α1,...,αN=1
Ai1α1,α2A

i2
α2,α3 . . . A

iN
αN ,α1 . (2.62)

Here, the defining object is the three-index tensor A with components Aiα,β. The
index i is called the physical index, as it runs over the dimension of the on-site
Hilbert space. The indices α, β which are summed over are called the virtual
indices, and D is called the bond dimension of the tensor network. If we express
the tensors in terms of matrices Ai = ∑D

α,β=1A
i
α,β|α〉〈β| acting in the virtual space

of the MPS, then we can write,

ci1,i2,...,in = Tr Ai1Ai2 . . . AiN , (2.63)

which makes the name “matrix product state” more evident. Here, and throughout
most of this thesis, we consider translationally invariant MPS, where the tensor A
does not depend on the site, and periodic boundary conditions, which lead to the
trace in the above equation.

One can formally derive an MPS representation of an arbitrary state by a series
of successive Schmidt decompositions, where the Schmidt rank across a given cut
becomes the bond dimension across that cut [4]. For generic states, this will lead
to an MPS whose bond dimension D grows exponentially with the system size N .
However, states in the physical corner of Hilbert space, i.e. states satisfying an
area law (even allowing logarithmic violations), can be well-approximated by MPS
whose bond dimension grows at most polynomially in N [126, 127]. Intuitively,
this is because, for states satisfying an area law, the Schmidt coefficients decay
quickly enough to allow one to throw away all but polynomially many of them
without significantly changing the quantum state. This truncation of the Schmidt
coefficients then gives a corresponding reduction in the bond dimension. This result
means that we can represent such states using only NdD2 coefficients (where the
factor of N appears in absence of translational invariance), which is an immense
improvement over the 2N coefficients required to write down ci1,i2,...,iN in general.

We can depict an MPS graphically in the following way. First, we depict the
tensor A as a three-legged object,

. (2.64)
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Then, we use the rule that connecting the legs of two tensors corresponds to sum-
ming over the corresponding indices, such that we can represent the wavefunction
of Eq. 2.62 as,

, (2.65)

where the bent legs at the two ends of the chain connect to each other, representing
periodic boundary conditions. We will often draw the above diagram without
labelling indices to represent the state |ψ〉. This graphical description is very useful,
as it allows us to make compact descriptions of complex quantum states and make
various calculations on them without having to deal with many indices explicitly.

Transfer matrix and correlations in MPS

We now define the transfer matrix, which is a central object used in MPS calcula-
tions. As an equation, the transfer matrix is defined as

T =
d∑
i=1

Ai ⊗ Āi, (2.66)

where the bar denotes complex conjugation. As a diagram, we have,

. (2.67)

The transfer matrix encodes many important properties of the MPS (in fact it
specifies it completely up to a change of basis). For example, let us calculate the
two-point correlation function,

. (2.68)

Letting ` = |i− j| − 1, we can write the above diagram as the following equation,

〈ψ|OiOj|ψ〉 = Tr
(
T (O)T `T (O)TN−`−2

)
, (2.69)

where we have defined,

. (2.70)
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We now employ an eigenvalue decomposition of T . While it is not Hermitian in
general, we assume that it is nonetheless diagonalizable,

T =
D2∑
i=1

λi|Ri〉〈Li|. (2.71)

This decomposition has the property 〈Li|Ri〉 = δi,j and |λ1| ≥ |λ2| ≥ · · · ≥ |λD2|.
Let us normalize T such that λ1 = 1, and denote the corresponding eigenvectors
as |R1〉 ≡ |R〉 and |L1〉 ≡ |L〉. For now, we assume that |λi| < 1 for all i > 1, such
that T has a unique largest eigenvalue in magnitude. In this case, for large N , we
can write TN = |R〉〈L| with corrections that go to zero exponentially in N . Then,
if N >> ` >> 1, we can write,

〈ψ|OiOj|ψ〉 = Tr
T (O)

|R〉〈L|+ D2∑
i=2

λ`i |Ri〉〈Li|

T (O)|R〉〈L|


= 〈L|T (O)|R〉〈L|T (O)|R〉+
D2∑
i=2

λ`i〈L|T (O)|Ri〉〈Li|T (O)|R〉. (2.72)

Now observe that 〈L|T (O)|R〉 = 〈ψ|Oi|ψ〉, so we can identify the first term of
the above as 〈ψ|Oi|ψ〉〈ψ|Oj|ψ〉. If we subtract this part, we obtain the connected
correlator,

〈ψ|OiOj|ψ〉 − 〈ψ|Oi|ψ〉〈ψ|Oj|ψ〉 = O(λ`2) = O(e−`/ξ), (2.73)

which decays to zero exponentially with correlation length ξ = −1/ ln |λ2|. On
the other hand, if |λ2| = 1, we can generally find some local operator O which
has long-range correlations, i.e. correlations that do not decay with distance.
This is the case for a ferromagnetic ground state |000 . . . 〉 + |111 . . . 〉 for which
〈ψ|ZiZj|ψ〉 − 〈ψ|Zi|ψ〉〈ψ|Zj|ψ〉 = 1 for all i 6= j.

Therefore, we see that, if the largest eigenvalue of T is unique in magnitude, the
MPS has a finite correlation length ξ = −1/ ln |λ2| for all local operators, while a
degenerate largest eigenvalue leads to long-range correlations. If the former case is
satisfied, the MPS is said to be normal [3]. This is the generic case in the absence
of symmetry breaking [128], and all MPS found in this thesis from this point on
are assumed to be normal.

Sometimes, we will find it convenient to re-orient the legs of the transfer matrix
and its fixed-points. Namely, we can equivalently write the transfer matrix as a
quantum channel,

T (ρ) =
∑
i

Ai(ρ)Ai†, (2.74)

and its dual channel,
T †(ρ) =

∑
i

Ai†(ρ)Ai. (2.75)

The eigenvectors |R〉 and 〈L| correspond to fixed-points σR and σL of T and T †,
respectively.
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Bulk-boundary correspondence and entanglement in MPS

Another key property of MPS is the bulk-boundary correspondence [129], which
states that, if we divide the system into two connected subsystems A and B, the
reduced density matrix ρA = TrB|ψ〉〈ψ| has the same spectrum as another matrix
σ that can be viewed as living on the virtual indices on the boundary between
A and B. To derive this correspondence, let us first write an MPS with open
boundary conditions,

|ψ〉 =
∑

i1,...,iN

Ai1LA
i2 . . . AiN−1AiNR |i1, i2, . . . , iN〉

= , (2.76)

for some vectors (dual vectors) AiL (AiR). With this, we can depict ρA in the
following way,

, (2.77)

where we have omitted the tensor labels to avoid confusion with the label for
subsystem A. The part of the tensor network contained in subsystem B is nothing
more than the transfer matrix applied many times to a boundary vector, which
converges to the right fixed-point σR for |B| >> ξ giving,

. (2.78)

For the part contained in subsystem A, we first express it in terms of a linear map
L from the virtual indices at the boundary of A and B to the physical indices,

. (2.79)

We can now apply the polar decomposition to L to write L = VP where P =√
L†L is a positive matrix and V is an isometry from the virtual to physical legs,
V†V = 1D×D. We can write L†L graphically as,

, (2.80)
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which can be replaced with the left fixed-point σL as shown. Therefore, we can
write P = √σL. Putting everything together, we have

. (2.81)

Since V is an isometry, this shows that ρA has the same spectrum as the operator
σ =

√
σTLσR

√
σTL that lives in the virtual space, up to padding with zeros. The most

immediate conclusion of this is that the entanglement entropy S(ρA) is equivalent
to S(σ), which is upper bounded by logD, giving a clear derivation of the area
law for MPS. More generally, the entanglement spectrum, defined as the spectrum
of ρA, is contained in the spectrum of σ. The entanglement spectrum plays an
important role in the understanding of gapped phases of matter [73, 130], and
tensor networks provide an efficient way to obtain it and represent the information
contained within it.

Example of an MPS: the 1D cluster state

To see an example of an MPS, let us derive the MPS representation of the 1D
cluster state from its circuit representation (Eq. 2.11). Observe that the initial
state |+ + · · ·+〉 is an equal weight superposition over all states in the |0/1〉 basis.
The action of the circuit of CZ gates on these basis states is to give a factor of −1
for every pair of neighbouring 1’s. That is, the cluster state can be equivalently
written as,

|C〉 = 1
2N/2

∑
i1,...,iN=0,1

(−1)# of neighbouring 1’s|i1, . . . , iN〉. (2.82)

An MPS representation of this wavefunction can be obtained by defining the
components of a tensor C1 as,

C0
1 = |0〉〈+|,

C1
1 = |1〉〈−|.

(2.83)

In this way, Tr Ci1
1 . . . CiN

1 evaluates to a sequence of inner products which equal
−1 if two neighbours are in the |1〉 state and 1 otherwise (since only 〈−|1〉 = −1).
So the cluster state can be represented exactly as an MPS with bond dimension
D = 2. We remark that the subscript “1” is used here to distinguish this tensor,
which has one qubit per unit cell, from a later one which will have two qubits per
unit cell.

When considering MPS as resources for measurement-based quantum computa-
tion, we will sometimes want to express the MPS tensor with respect to a different
basis of the physical index. For this, we introduce notation A[φ] := ∑

i〈φ|i〉Ai
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which represents the contraction of the physical leg of A with the state |φ〉. For
example, the cluster state tensors can be written in the X-basis as

C1[+] := 1√
2

(C0
1 + C1

1) = H,

C1[−] := 1√
2

(C0
1 − C1

1) = HZ,
(2.84)

where H = X+Z√
2 is the Hadamard matrix.

Projected entangled pair states

Tensor networks in higher dimensions are typically referred to as projected entangled
pair states (PEPS). This name comes from the method of constructing tensor
networks by distributing a maximally entangled pair of virtual particles between
neighbouring sites and mapping these onto the physical degree of freedom by a
projection matrix5. This picture is not so useful for our purposes, so we do not
expand on it further, but we nonetheless will use conventional terminology of
PEPS.

For a model with degrees of freedom on the vertices of a square lattice, we can
start with a five-index tensor A,

, (2.85)

and use it to build a basic PEPS,

, (2.86)

which gives us our state |ψ〉 after applying appropriate open or closed boundary
conditions. It would be very cumbersome to write down an equation for this
wavefunction, as we could in the case of an MPS, but the power of the graphical
representation ensures that this is rarely necessary.

Many of the concepts discussed above for MPS carry over to PEPS, but with
some important modifications. In fact, throughout this thesis, we will largely deal
with PEPS in a quasi-1D representation. By placing a PEPS on a cylinder or torus
or circumference N , we can block a column of tensors and group legs to obtain an

5See Ref. [87] for an explanation and a demonstration of the equivalence to the normal picture.
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MPS description via a tensor A:

, (2.87)

where i = (i1, i2, . . . , iN), and α, β are defined similarly. In general, we will use
doubled lines and bold letters to indicate blocked indices.

With this quasi-1D perspective, we can immediately define the PEPS transfer
matrix,

T =
∑

i
Ai ⊗ Āi, (2.88)

which is now an extended 1D object with an associated length N . The addition
of this N -dependence makes it more complicated to understand the emergence of
long-range order in PEPS [131], but we will still assume that the transfer matrix
of a generic PEPS without symmetry-breaking or topological order has unique
fixed-points (which are also now 1D objects) as in the case of a normal MPS.

Matrix product operators

Tensor networks can represent operators as well as states. A simple 1D example is
the matrix product operator,

O =
∑

i1,...,in
j1,...,jn

Tr
(
M i1,j1M i2,j2 . . .M in,jn

)
|i1〉〈j1| ⊗ |i2〉〈j2| ⊗ · · · ⊗ |in〉〈jn|, (2.89)

which we can write graphically using a 4-legged tensor M ,

. (2.90)

An MPO can be viewed as an MPS with two physical indices per site corresponding
to bra and ket. In the same way that an MPS of bond dimension 1 is a product
state, an MPO of bond dimension 1 is a tensor product of operators. With larger
bond dimension, MPOs can represent finite depth quantum circuits [132], local
Hamiltonians [125], density operators [133], and more.

2.5.2 Symmetries and the classification of phases in tensor
networks

Tensor networks are not only suited to capturing gapped phases, they also provide a
uniquely clear window to their symmetries and topological properties. Remarkably,
properties of a state that are inherently non-local, such as topological degeneracy
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[134] or string order [135], can be understood locally in terms of symmetries of
the local tensors. Studying these symmetries leads to an extremely powerful
approach to detect and even classify topological order [134, 136, 137], SPT order
[87, 93, 130, 138–140], and others [141–144]. In particular, the procedure to extract
cocycles characterizing SPT order can be made more rigourous and well-defined as
compared to the Else-Nayak procedure. Here, we give a summary of these results
in 1D and 2D.

Symmetries and SPT order in MPS

First, let us consider how global on-site symmetries are manifested in MPS. Suppose
our tensor satisfies the following condition,

, (2.91)

where V is a unitary matrix. In this notation, an operator drawn by an open leg
of a tensor represents the operator acting on that leg, such that the condition can
be written as an equation as ∑j uijA

j = V AiV †. Then, the state |ψ〉 has a global
symmetry u⊗N since the V and V † coming from neighbouring tensors cancel on
the virtual bond between them. Graphically,

. (2.92)

It turns out that this is the only way to encode a global symmetry into a normal
MPS, subject to some technical conditions [145]. That is, if u is a global symmetry,
we can always find a V such that Eq. 2.91 holds.

This observation leads to a classification of 1D SPT phases. If we have a
symmetry group G with on-site representation u(g), this corresponds to a virtual
representation V (g) acting on the virtual bond of the MPS as defined by Eq. 2.91.
Because V (g) always appears with its hermitian conjugate, it is only defined up
to a phase factor. Therefore, we are in the same situation as in Section 2.2.1,
where the endpoint operators Va/b(g) were also only defined up to a phase. In
fact, V (g) satisfies the same relations as Va(g), so it is a projective representation,
V (g)V (h) = ω(g, h)V (gh), and the 2-cocycle ω corresponds to some cohomology
class [ω] in H2(G,U(1)). The virtual representation V (g) therefore provides a
more transparent and unique way to extract [ω], as compared to the somewhat
vague procedure outlined in Section 2.2.1.

The advantage of the MPS formulation is that one can prove that [ω] can not
be changed under symmetric, gap preserving deformations of the MPS tensor A
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[87]. Therefore, we have a proof that states with different [ω] belong to distinct
SPT phases, at least within the realm of MPS, which approximate gapped ground
states well. To have a completely rigourous proof, one would additionally need to
show that there is a symmetric gapped path between an arbitrary gapped ground
state and its MPS approximation.

Constraints on MPS tensors in SPT phases

From the above procedure, we can extract a cohomology class [ω] from an MPS
tensor A with on-site symmetry u(g). It turns out that we can also do the reverse:
given [ω] and u(g), we can constrain the possible A that are consistent with the
symmetry relation of Eq. 2.91. This result, along with its analogues for more
complicated symmetries in 2D, is of central importance for this thesis.

The following is a reproduction of the proof in Ref. [15]. Consider a tensor A
which satisfies the symmetry relation of Eq. 2.91, which we rewrite for a group G
as, ∑

j

u(g)ijAj = V (g)AiV (g)†. (2.93)

To proceed, we make some restrictions on the symmetry and SPT phase. First,
we restrict that G is a finite abelian group, which implies that we can choose the
basis {|k〉} of our physical on-site Hilbert space to diagonalize u(g), such that
u(g)|k〉 = χk(g)|k〉 for some 1D representations χk(g). For reasons that will become
clear in the next section, we call this basis the wire basis. The second restriction is to
SPT phases labelled by a cohomology class [ω] that is maximally non-commutative,
meaning the subset {g ∈ G|ω(g, h) = ω(h, g) ∀h ∈ G} contains only the identity
element6. In terms of the virtual representation V (g), this condition means that
V (g)V (h) = V (h)V (g) for all h ∈ G if and only if g = e, hence the term maximally
non-commutative. It is known that any V (g) having a maximally non-commutative
cocycle can be written as,

V (g) = 1⊗ Ṽ (g), (2.94)

where Ṽ (g) is an irreducible representation of dimension
√
|G| [15]. This gives

some insight into the boundary physics of MPS: in order for the boundary to
transform under such a representation, it must support an edge mode of dimension
at least

√
|G|.

In Ref. [15], the authors used Schur’s Lemma to prove that any normal MPS
tensor A transforming as in Eq. 2.93, subject to the above restrictions, can be put
into the following form,

A[k] = B[k]⊗ C[k], (2.95)

where B[k] are arbitrary matrices and C[k] = Ṽ (gk) for a group element gk ∈ G
that is determined by the equation,

χk(g)Ṽ (gk) = Ṽ (g)Ṽ (gk)Ṽ (g)†. (2.96)
6We observe that this condition is independent of the choice of cocycle ω representing the

class [ω]. A group G can support a maximally non-commutative cocycle only if it is of the form
G = H ×H for some group H [146].
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According to Eq. 2.95, the virtual space decomposes into two subsystems. We call
the subsystem where B[k] (C[k]) acts the junk (logical) subsystem. Importantly,
as one moves around in the SPT phase labelled by [ω], the matrices B[k] change
while C[k] do not. This decomposition therefore provides a concrete way to see
the entanglement that is uniform throughout an SPT phase, i.e. that which is
conducted via the logical subsystem of the tensor network.

Importantly, Eq. 2.95 only holds in the wire basis. An equivalent basis-
independent way of stating the result is as follows. Letting C be the tensor
defined by the components C[k] = Ṽ (gk), we can write the tensor A as,

, (2.97)

where B is a tensor describing some MPO. Note the condition that B commutes
with the symmetry action is essential, since otherwise the statement holds trivially
from the fact that every state in the same SPT phase as the cluster phase can be
related to the cluster state by a FDQC (which can be represented as an MPO).
The symmetry condition on B ensures that, upon contracting the physical leg with
a state |k〉 in the u(g)-basis, the result is Eq. 2.95.

This decomposition is central to our understanding of measurement-based
quantum computation with SPT phases, as we will see in Section 2.6. It can also
be used, for example, to find the hidden symmetry breaking structure present in
SPT phases [147], to quantify the entanglement in SPT phases under symmetry-
restricted operations [64], and to understand the sign structure in SPT phases
[48]. A more general result which drops both restrictions of finite abelian G and
maximally non-commutative [ω] was given in Ref. [148]. Therein, the authors show
how to constrain the MPS tensor in terms of certain Clebsch-Gordon coefficients
of the symmetry representations. However, this more general decomposition lacks
some of the structure that allow results such as those mentioned above to be proven,
especially the connection to quantum computation. In Ref. [149], it was shown
that this structure can be recovered if the maximally non-commutative constraint
is removed, while the finite abelian group constraint is preserved.

Example: SPT order in 1D cluster state

As an example of SPT order in MPS, we can re-examine SPT order of the 1D
cluster state under the lens of MPS. Recall that the 1D cluster state has a Z2 ×Z2
symmetry generated by flipping all even or all odd spins. To fit this into the above
framework where the symmetry acts in the same way on every site, we need to
consider a two-qubit unit cell. If we consider the local X-basis for each qubit, we
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can express the blocked tensor C2 in terms of the components,

C2[++] := C1[+]C1[+] = 1,

C2[+−] := C1[+]C1[−] = Z,

C2[−+] := C1[−]C1[+] = X,

C2[−−] := C1[+]C1[+] = XZ,

(2.98)

where the subscript “2” represents the two-qubit unit cell. Pictorially, we draw
this blocking as,

. (2.99)

We can use Eq. 2.98 to find the operators V (g) in Eq. 2.93. Writing g = (g1, g2) ∈
Z2×Z2 as in Section 2.2.2, we can work out that V (g1, g2) = Zg1Xg2 , in agreement
with the calculations of Section 2.2.2. This representation satisfies our condition of
maximal non-commutativity, and we can confirm that Eq. 2.95 holds, since the
local X-basis is the wire basis in this case, and the matrices in Eq. 2.98 are indeed
elements of V (g). Other states in the same SPT phase as the cluster state can
therefore be written in terms of MPS tensors of the form in Eq. 2.97 where C = C2.

Symmetries and SPT order in PEPS

Gapped phases in 2D can also be understood in terms of symmetries of the local
tensors in a PEPS, although our understanding is not nearly as complete or
rigourous as in the 1D scenario. A simple way to encode a global symmetry into a
PEPS is given by a straightforward extension of Eq. 2.91,

. (2.100)

For some unitary matrices V and W . As in the case of MPS, we can define a
class of normal PEPS for which we can prove that Eq. 2.100 is the only way to
represent a global symmetry of a PEPS [150]. However it turns out that the class
of normal PEPS is much more restrictive than that of normal MPS. In particular,
they cannot capture topological order or SPT order. The reason they cannot
capture topological order is because every normal PEPS is provably the unique
ground state of its parent Hamiltonian [134] and therefore cannot replicate the
topological degeneracy. The reason they cannot capture SPT order is the following.
We can extract a cocycle from the virtual representation V (g) (or W (g), which
may or may not be the same). Suppose we then block our tensors into 2× 2 unit
cells. Then, the symmetry relation of the blocked tensor looks like,

. (2.101)
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Now, our virtual representation on the left edge has gone from V (g) to V (g)⊗V (g).
If V (g) has cocycle ω, then V (g)⊗V (g) will have cocycle ω2, which will correspond
to a different cohomology class. So we see that the cohomology class, and therefore
the SPT phase, is not stable under blocking [134]. If we disallow blocking by
enforcing translational invariance, then ω can have a well defined meaning. Such
phases that are stable only with translational invariance are called weak SPT
phases [60].

To capture genuine 2D SPT order, one needs to consider more general classes
of PEPS. One proposal that has emerged is the class of MPO-injective PEPS [93].
These satisfy the following symmetry relation,

, (2.102)

where the action in the virtual space is that of an MPO. Unlike Eq. 2.100, Eq. 2.102
is stable under blocking, since the relation on a blocked tensor gives,

. (2.103)

So the same MPO appears in the virtual space of the blocked tensor. As long as
the quantity we extract from the MPO is independent of its length, we can get an
invariant that is stable under blocking. Given our understanding of 2D SPT phases,
this invariant should be a 3-cocycle. The procedure to extract this cocycle was
given in Ref. [74], and we will not demonstrate the procedure in full here. The key
point is that, given an MPO representation O(g), there is a special “zipper” tensor
which fuses the product of MPOs O(g)O(h) into a single MPO O(gh). There are
then two inequivalent ways to use the zipper tensors to fuse three different MPOs
O(g), O(h), and O(k), and these two ways differ by a phase factor ω(g, h, k); the
3-cocycle. This procedure is again similar to the Else-Nayak procedure: we first
reduce the global symmetry in a patch to a 1D operator on the boundary (here,
the MPO), and the we extract the cocycle from the boundary of that 1D operator
(via the zipper tensor).

As in the 1D case, the tensor network approach lets us make more powerful
statements. For example, an alternate construction called “semi-injective” PEPS
[140] can also capture 2D SPT orders thanks to an entangled-plaquette structure
that resembles the original CZX model proposed in Ref. [74]. Using semi-injective
PEPS, more rigourous claims can be made regarding the well-definedness of the
MPO representation and the 3-cocycle. As another example, one can prove that
no normal MPS can be invariant under an MPO representation with non-trivial
3-cocycle [74]. This means that an invariant state must develop long range order
(such that the MPS is not normal) or be critical (such that it cannot be represented
as an MPS), putting the observations we made about the boundaries of 2D SPT
phases in Section 2.2.3 on more rigourous footing.
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Other phases of matter in PEPS

PEPS can also capture other phases of matter beyond SPT order [3]. For example,
to capture intrinsic topological order, one can impose symmetries of the PEPS
tensor that act purely on the virtual legs,

, (2.104)

where Ug is a representation of a finite group G [134]. PEPS with these symmetries
can capture G-quantum double models, which are generalizations of the toric code
model (for which G = Z2) [105] and simple symmetry-enriched models obtained
via anyon condensation [151]. The same symmetry constraints where G is an
infinite group can capture critical models [144]. Similarly, PEPS tensors with a
virtual MPO symmetry can capture more complicated topological orders such
as twisted quantum double models [152] and string-net models [153], as well as
general symmetry-enriched topological models [142].

2.5.3 Tensor network numerics
Apart from their analytical applications, tensor networks are equally (or even
more) powerful when applied to numerical calculations [124]. Since we will use
tensor network-based numerical techniques in Chapter 4, we will briefly go over
the basic ideas here. The core principles behind tensor network numerics are that
(a) tensor networks provide a way to efficiently parametrize the physical corner of
Hilbert space that contains ground states of gapped Hamiltonians, as discussed
above, and (b) a tensor network representation allows efficient computation of
expectation values by using transfer matrices and their fixed-points to condense the
environment surrounding a local operator, as we have seen above for 1D systems.
The bond dimension D, which limits the amount of entanglement in the system
(with D = 1 corresponding to a mean-field theory ansatz), gives us systematic
control over error in the approximations.

A large class of tensor network algorithms can be viewed as variational methods
within the space of tensor network states. That is, one varies the basic tensor A
defining an MPS or PEPS in order to minimize a quantity of interest such as energy.
There are many ways to do this variation in 1D [124, 154, 155], with DMRG being
a key early example. In 2D, this problem is more difficult, a primary reason being
that 2D tensor networks cannot be efficiently contracted in general [156]. Luckily,
one can use various transfer matrix methods [157, 158] or methods inspired by
real-space renormalization [159, 160] to approximately contract the tensor network,
with an error that is again controllable using the bond dimension. Using such
methods, one can efficiently calculate expectation values of local operators, and
even correlation functions. This in turn allows one to calculate energy gradients
which can be used to optimize the variational ground state tensor [161, 162].

Another broad class of tensor network algorithms is time-evolving block deci-
mation (TEBD) algorithms [4, 163] In 1D, these involve taking an initial MPS and
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evolving it by acting with a quantum circuit or an MPO at each time step. The
resulting state is still an MPS, but with an enlarged bond dimension. In order to
keep the bond dimension from exploding over time, the crucial step is to truncate
this MPS back to the original bond dimension in such a way that the state is
changed as little as possible. Determining the optimal truncation is straightforward
to perform in 1D using singular-value decompositions and the canonical form [4],
but it is much harder to determine in 2D due to the lack of an equivalent of
the canonical form, although many successful approaches have nonetheless been
found [164–167]. These types of algorithms can capture time evolution (including
imaginary time evolution which can be used to compute ground states) and can be
used to find fixed-points of transfer matrices, which is a necessary step in some of
the approximate 2D contraction schemes mentioned above.

Combining these two classes of algorithms gives a powerful suite of tools that
can be used to understand many-body systems. Many of these algorithms can work
directly in the thermodynamic limit, eliminating finite size effects and enabling the
sharp detection of events like phase transitions. In some cases, they can even be
used for critical systems that cannot be captured by a a tensor network with finite
bond dimension. This possibility is based on the observation that a finite bond
dimension can be viewed as an effective length scale, and observing the scaling of
observables with this length scale can be used to extract the universal quantities
that characterize critical systems [168–170]. Also, by interpreting the space of
tensor network states as a non-linear manifold, one can formulate tangent-space
methods to access low-energy excited states in addition to the ground state [171].

Another reason that tensor networks are excellent numerical tools, particularly
in the context of quantum phases of matter, is that they allow direct access to
the entanglement degrees of freedom of a wavefunction via the virtual legs of the
network. For example, we have seen that one can easily extract entanglement
entropies and, more generally, the entire entanglement spectrum [129], which
contains vital information about the quantum order of a ground state. This direct
access to the entanglement is particularly useful in the context of topological phases,
where one can construct excited states containing anyons using operators living on
the virtual legs of the tensor network, which can then be used to construct order
parameters for topological phase transitions [137].
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2.6 Measurement-based quantum computation with
SPT phases

As alluded to in the introduction, there is a deep connection between measurement-
based quantum computation (MBQC) and SPT phases. MBQC is a model of
quantum computation that is driven solely by single-body measurements on an
initially entangled many-body resource state [11]. The initialization of the logical
information, the unitary evolution, and the final readout are all performed using
these single-body measurements. The fundamental questions of MBQC are therefore
to find which resources states lead to universal computation, and then to understand
how these states may be prepared in a laboratory setting. To this end, much
research was done into finding resource states which appear as the unique ground
state of physically realistic gapped Hamiltonians, allowing them to be prepared
by cooling a system governed by such a Hamiltonian to low temperatures. Many
of these examples, such as the 2D AKLT states, fall into the picture of valence-
bond-states [172], whose use for MBQC can be clearly seen from the lens of
quantum teleportation [122]. These ventures brought the study MBQC closer to
condensed matter physics, and allowed us to characterize physical systems by their
computational capability.

Remarkably, it turns out that in some cases this computational capability
is not a property of a single ground state, but rather an entire gapped phase
of matter. We call such phases of matter computational phases of matter [12–
15, 17, 19, 20]. In this setting, physical phases of matter coincide with regions
of uniform computational capability. This was first observed for classes of states
containing 1D AKLT state, which allows universal MBQC on a single encoded
qubit [173]. The 1D AKLT state can be viewed as an exactly solvable point in the
1D SPT phase protected by SO(3) spin rotation, often referred to as the Haldane
phase7. Ref. [13] studied a family of states in this phase described by a single
parameter β known as the bilinear-biquadratic spin chain, and showed that the
system could be used for MBQC even away from the AKLT point, so long as β
was chosen such that the system remained in the Haldane phase. The author was
able to formulate the MBQC protocol in terms of the properties of the Haldane
phase, thereby establishing a relationship between MBQC and SPT order.

To see why SPT phases can be useful for MBQC, consider the following toy
picture. From Section 2.2, we know that 1D SPT phases have robust edge modes.
That is, if we consider an SPT ordered state on a half-infinite spin chain, there
will be a edge mode degeneracy associated to the edge of the chain. For a simple
Z2×Z2 chain like the cluster state, this means that the ground state will be two-fold
degenerate, with the two ground states differing by some operator exponentially
localised near the edge.

Suppose we encode a qubit state |L〉 in this edge mode. If we measure the
spin closest to the boundary of the chain, the measured spin will be projected
to a product state |s〉 depending on the measurement outcome. This spin is now

7It turns out that a finite subgroup Z2 × Z2 ⊂ SO(3) is sufficient to protect the SPT order,
allowing us to fit this example into our later results that require abelian symmetries.
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Figure 2.9: Toy picture of measurement-based quantum computation in SPT
phases. The orange wedge represents the two-level edge mode that is localised
near the edge. Measurement of the right-most spin induces unitary evolution of
the edge mode.

disentangled from the rest of the chain, so we can ignore it from now on. What
remains is a chain that is one spin shorter, and this new chain will also have an
edge mode that will in general be in a new state |L′〉. The key insight is that,
if we choose our measurement basis correctly, the new state |L′〉 will be related
to the original one via a unitary that depends on the measurement outcome s,
|L′〉 = Us|L〉. In other words, measurement of the physical spins translates into
unitary evolution of the encoded qubit on the edge [13]. Since the edge modes are
robust within an SPT phase, one may hope that this notion of computation is
robust as well. This is indeed the case for a fairly general class of 1D SPT phases,
as we will see shortly.

2.6.1 MBQC in tensor networks

The above picture can be made precise using matrix product states [122, 174].
Specifically, consider an MPS with open boundary conditions, which we can write
in the following form,

|ψ〉 =
∑

i1,...,iN

〈L|Ai1Ai2 . . . AiN−1AiN |R〉|i1, i2, . . . , iN〉

= , (2.105)

for some boundary vectors 〈L| and |R〉. Now suppose we encode a logical qudit in
|L〉. If we measure the first spin (corresponding to index i1) and obtain a measure-
ment outcome corresponding to an eigenstate |s〉 of the measured observable, then
the state of the unmeasured spins is

|ψ′〉 =
∑

i2,...,iN

〈L′|Ai2 . . . AiN−1AiN |R〉|i1, i2, . . . , iN〉, (2.106)

where the new boundary vector is,

|L′〉 = A[s]†|L〉, (2.107)
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and we recall the notation A[φ] := ∑
i〈φ|i〉Ai. Pictorially, this is,

. (2.108)

If A[s] is a unitary, we will have induced unitary evolution of the virtual space by
measurement of the physical space. Of course, A[s] depends on the measurement
outcome s, which we cannot control, and this is a fundamental issue that can be
solved particularly nicely in the context of SPT phases.

Let us consider a specific example of the above process using the 1D cluster
state as a resource. Recall that the cluster state can be described by an MPS
with a two-qubit unit cell defined by the matrices A[ab] = XaZb where a, b = 0 (1)
represents the state |+〉 (|−〉) (See Eq. 2.98). Then, measuring two qubits in the
X-basis results in an outcome-dependent Pauli operator in the virtual space. The
outcome-dependent operator is called a byproduct operator, and it can be dealt
with using the using the symmetry relation of the MPS tensor. Observe that these
Pauli byproduct operators are elements of the projective representation V (g) for
some g ∈ Z2 × Z2. Then, we can propagate this operator to the other end of the
chain using the symmetry relation in Eq. 2.91,

. (2.109)

In this way, this process of byproduct propagation pushes the byproduct operator
to the end of the chain, where it will eventually affect the decoding of the logical
state. The practical meaning of this is that all future measurement bases must
be altered according to the symmetry operators u(g). This is a symmetry-based
perspective on the conventional formulation of MBQC, where measurement bases
are modified according to past measurement outcomes.

Using byproduct propagation, we can use the 1D cluster state as a “quantum
wire”, where measurements in the X-basis deterministically shuttle the state |L〉
along the chain. In other words, we can do the identity gate with perfect fidelity.
This is why we called the X-basis the wire basis in Section 2.5.2. We can perform
non-trivial gates by rotating the measurement basis away from the wire basis.
Define a rotated basis spanned by the states,

|θ+〉 = cos(θ)|+〉 − i sin(θ)|−〉,
|θ−〉 = −i sin(θ)|+〉+ cos(θ)|−〉.

(2.110)
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If we measure the first qubit in the unit cell in the rotated basis, and the second
in the wire basis, we get,

A[θ+b] = cos(θ)A[+b] + i sin(θ)A[−b] = (cos(θ)1 + i sin(θ)X)Zb = eiθXZb,

A[θ−b] = i sin(θ)A[+b] + cos(θ)A[−b] = (i sin(θ)1 + cos(θ)X)Zb = eiθXXZb.
(2.111)

Putting these together, we find A[θab] = eiθXXaZb, so the measurement results in
a rotation by θ about the X-axis of the encoded qubit, up to Pauli byproducts.
Similarly, measuring the first qubit in the wire basis and the second qubit in
the rotated basis gives a rotation about the Z-axis. These two types of rotations
generate all unitary evolutions of a single qubit, so we can achieve universal quantum
computation on a single qubit when using a 1D cluster state as a resource.

We can also capture MBQC with 2D resource states using PEPS. Namely, if
we put a PEPS on a cylinder of circumference n (or fix the boundaries otherwise),
we can encode n states on the boundary,

. (2.112)

Measuring the first column of spins, for example, would result in an MPO acting
on the encoded states. We will explore this further in the Section 2.7.

2.6.2 Computational phases of matter in 1D
The universality of the 1D cluster state persists throughout the entire Z2×Z2 SPT
phase in which it resides, and this is in fact true for all SPT phases with maximally
non-commutative cocycles (as defined in Section 2.5.2). The key reason why this
is possible is Eq. 2.95. Suppose we encode our logical state |ψ〉 only in the logical
subsystem of Eq. 2.95, writing |L〉 = |J〉 ⊗ |ψ〉 for some arbitrary vector |J〉 in the
junk subspace. Then, measuring in the wire basis evolves the virtual state as,

|L′〉 = A[k]|L〉 = B[k]|J〉 ⊗ C[k]|ψ〉, (2.113)

so the junk and logical subsystems remain unentangled. Since C[k] = Ṽ (gk), and
the virtual symmetry representation acts only on the logical subspace (Eq. 2.94),
we can also do byproduct propagation as before. Therefore, we recover the
quantum wire property in the logical subspace. The junk subspace evolves in an
uncontrollable and a priori unknown manner, but this is not a problem yet, since
the encoded qubit stays in the logical subspace.

The difficulty comes when we try to do non-trivial gates on the encoded qubit.
Suppose we measure in a rotated basis and obtain some measurement outcome
which is a superposition of states in the wire basis, α|k〉+ β|k′〉. The evolution of
the virtual space induced by this measurement is,

|L′〉 = α
(
B[k]|J〉 ⊗ C[k]|ψ〉

)
+ β

(
B[k′]|J〉 ⊗ C[k′]|ψ〉

)
, (2.114)
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such that the junk and logical subsystems are now entangled. Since we might not
have any knowledge of the matrices B[k], this makes it difficult to keep track of
the encoded state |ψ〉, and to perform byproduct propagation. An early solution
to this problem came from Ref. [17], where the authors used a “computational
renormalization” scheme (inspired by an earlier work [14]), but this was particularly
tailored to a certain subset of the Haldane phase with a larger S4 symmetry group.

A general solution was given in Refs. [19, 20]. Therein, it was shown that the
junk and logical subsystems, once entangled, can be disentangled by measuring
a large number of spins in the wire basis, and the overall evolution of the logical
subspace is unitary as long as the angles θ describing deviations from the wire basis
are kept small. This solution works for all SPT phases protected by abelian groups
[149], but the resulting set of logical gates is only guaranteed to be universal in
the maximally non-commutative case. Importantly, the protocol of Refs. [19, 20]
does not require us to know the precise location of our system within the SPT
phase. Rather, we are content with just knowing which phase it belongs to. The
microscopic details of the states that are encoded in the junk matrices B[k] are
condensed into a handful of complex numbers that can be obtained during a
calibration procedure that uses only local measurements. Finally, the initialization
of the logical state |ψ〉 and its readout at the end of the computation can also be
achieved with local measurements [20].

2.6.3 Higher dimensions and implications
There are also connections between MBQC and SPT phases in 2D. The 2D
AKLT states, which have weak SPT order8, were shown to be universal on several
different lattices [175–178]. This power was shown to persist for a certain path of
Hamiltonian deformations, up until a phase transition into a symmetry-breaking
phase of matter [179]. Similarly, fixed-point states for general SPT phases in 2D,
which are essentially products of GHZ states, are universal for MBQC [21], and
this universality persists under certain deformations [24]. In all of the above cases,
the first step of the MBQC protocol is the use local measurements to reduce the
resource state to a cluster state on some lattice. The universality then follows from
the universality of the 2D cluster state, as long as certain percolation conditions
are met [175].

In other works, resource states with genuine 2D SPT order were used to gain
additional computational capability beyond that of the 2D cluster state. Namely, it
was shown in Ref. [22] that the Union-Jack state (Eq. 2.18) is universal for MBQC
using only Pauli measurements (that is, measurements of Pauli observables X, Y, Z).
This is not possible for the 2D cluster state, which also needs measurements in, e.g.,
the X − Y plane9. This was later shown to also be true for other SPT states that

8It should be noted that the canonical resource for MQBC, the 2D cluster state, also has weak
SPT order [22], although we will see later that it is better characterized by a different type of
SPT order.

9The fact that such measurements are necessary can be seen as a consequence of the Gottesman-
Knill theorem [180]: Pauli measurements on a stabilizer state like the cluster state are efficiently
classically simuable, so they cannot lead to universal quantum computation. The Union-Jack
state, on the other hand, is not a stabilizer state.
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have a similar structure to the Union-Jack state [23, 181]. For these results, the
intrinsic properties of 2D SPT orders (namely, their essential “non-stabilizerness”
[48]) lead to computational advantages.

Notably, none of the above 2D investigations find a 2D SPT phase in which
all ground states are universal for MBQC. Such a phase is presented in the next
section, although we will find that it is necessary to go beyond the typical notion
of SPT order to understand it.

Let us briefly explore the implications of the deep connections between SPT
order and MBQC, starting with the practical. The initial motivation for studying
SPT ordered states as resources for MBQC was to aid in state preparation [12,
173, 182]. If one encodes the MBQC resource state in the ground state of gapped
Hamiltonian, it can be prepared by simulating this Hamiltonian in an experimental
system and cooling the system to sufficiently low temperatures. If our resource state
lies in an SPT phase which shares the same MBQC power, then our engineering
of the Hamiltonian can endure unidentified errors: we do not need to prepare a
specific Hamiltonian, rather we just need to make sure it belongs to the correct
SPT phase of matter. This gives the state preparation step a certain kind of
robustness to symmetry-preserving errors.

On the fundamental side, these results help us to understand the origin of quan-
tum computational power. By now, it has been understood that quantum resources
can be used to speed up certain computations. Yet, we do not fully understand
which aspects of the quantum resources allow for this speed up. Candidates include
superposition and interference [183], entanglement [4], and more contemporary
ideas such as contextuality [184, 185], but none appear to tell the whole story.
MBQC gives a unique viewpoint on this problem, since it pushes a majority of the
potential “quantumness” onto the initial state10, thereby allowing us to approach
the problem in terms of properties of many-body ground states. In the present
case, we see that the structure of resource states that leads to universality seems
to be closely related to the same structure that allows for SPT order to exist.

10The measurements do still contain some of this power, due to the fact that resource states
like the Union-Jack can be universal with a smaller set of measurements bases compared to other
resource states.
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2.7 Subsystem symmetries
The discussion up to this point of the thesis lies within the universe of global
symmetries, with topological phases being dual to systems with global symmetries
via gauging. The remaining content of this thesis is concerned with a new universe:
that of subsystem symmetries. In a system with D spatial dimensions, we define
a subsystem symmetry to be generated by operators that have non-trivial action
only on rigid k-dimensional subsystems, with 1 < k < D. This can include 1D
lines in a 2D system, 2D planes in 3D, or even fractals of non-integer dimension.
We emphasize the word rigid to differentiate subsystem symmetries from the
similar higher-form symmetries [91, 186, 187]. These symmetries also act on
lower-dimensional subsystems, but they can be deformed and hence have no rigid
geometrical structure. The rigid structure is a key element of subsystem symmetries,
and is what leads to many of their unique properties that fall beyond the realm of
topological quantum field theory [57].

In this section, we will first define the 2D cluster state and the 2D cluster phase,
which is an example of a symmetry-protected topological order with subsystem
symmetries. These constructions are very important to the rest of this thesis, so
we will examine them in detail. Afterwards, we will show how they can naturally
fit into the framework of MBQC with SPT phases, providing the first example of a
computationally universal phase of matter. We will finish by briefly discussing the
gauging of subsystem symmetries and fracton topological order.

2.7.1 The cluster state and SSPT order
The 2D cluster state (which we may simply refer to as “the cluster state” from
now on), was originally envisioned for its entanglement properties: measuring one
spin of the entangled many-body state in any basis leaves the rest of the spins
entangled [188]. This means the entanglement is “persistent” as compared to, say,
a GHZ (cat) state where measuring one spin can collapse the entire system into a
product state. More importantly, it was shown that these measurements can be
used to efficiently simulate the universal circuit model of quantum computation,
thereby introducing the notion of measurement-based quantum computation with
the cluster state as the original universal resource state [189]. Among its many
other useful properties relating to entanglement and quantum computation, the
cluster state is also interesting in terms of its properties as the ground state of a
gapped Hamiltonian. As we have seen in Section 2.2.2, the 1D cluster state has
SPT order. Now, we will show that the 2D cluster state is the simplest example of
an SPT order with subsystem symmetries.

The 2D cluster state is defined similarly to the 1D cluster state (Eq. 2.11). We
put qubits on the vertices of a square lattice, and define the state as,

|C〉 =
∏
〈ij〉

CZij

 |+ + · · ·+〉, (2.115)

where the product is over all nearest neighbours. More generally, we could define a
cluster state on any lattice or graph by putting |+〉 states on the vertices and CZ
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(a) (b)

(c) (d)

Figure 2.10: (a) and (b) show the line and cone symmetries of the 2D cluster
state, respectively, where filled circles represent X operators. We show sections of
an infinite lattice; the operators span the entire lattice. (c) The product of line
symmetries along the thick diagonal lines cancels out in the middle region, leaving
operators (indicated by small circles) only in cone-shaped regions. To an operator
with local support, such as the large circular region, this product of line symmetries
looks like a single cone symmetry. Therefore, if a local operator commutes with all
line symmetries, it also commutes with the cone symmetries. (d) The cluster state
on a rotated square lattice. Subsystem symmetries act on vertical (also horizontal)
lines as indicated by highlighted regions.

gates on between all pairs of vertices sharing an edge. States constructed in this
way are also sometimes called graph states. Note that we use similar notation for
the 1D and 2D cluster states, as it will be clear from the context which one we
refer to. A Hamiltonian for which the 2D cluster state is the unique ground state
can be found in a similar manner as for the 1D cluster state, giving,

HC = −
∑
x,y

Kx,y, (2.116)

where Kx,y = Xx,yZx+1,yZx−1,yZx,y+1Zx,y−1 is the cluster state stabilizer and we
label sites on the square lattice by a position i = (x, y). The cluster state satisfies
the relations,

Kx,y|C〉 = |C〉, (2.117)

for all x, y.
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This Hamiltonian commutes with subsystem symmetries consisting of X acting
on every site along any diagonal line on the lattice,

Uc,± =
∏
x

Xx,c±x. (2.118)

These symmetry operators can be derived by multiplying the Hamiltonian terms
(stabilizers) in such a way that all Z operators cancel out, leaving only X operators
behind, see Fig. 2.10(a) The line symmetries are actually a subgroup of a larger sub-
system symmetry group generated by the cone symmetries pictured in Fig. 2.10(b).
The line symmetries can be expressed as a product of cone symmetries11, but
the opposite is not true. Indeed, on an N ×N torus, there are 2N independent
cone symmetries but only 2N − 1 independent line symmetries (since the product
of all lines in both directions is the identity). In practice, this distinction is not
important. This is because any local operator (such as a Hamiltonian term or a
unitary gate) that commutes with the line symmetries also commutes with the
cone symmetries, see Fig. 2.10(c). While it is sufficient to consider only the line
symmetries, the cone symmetries will nonetheless be useful in some cases.

Let us now understand the nature of the SPT order of the cluster state by
applying the Else-Nayak procedure. For this analysis, we choose our open system
M to have the boundary conditions of a 45◦-rotated square lattice, such that
the line symmetries now move horizontally and vertically, see Fig. 2.10(d). As
before, we remove all Hamiltonian terms associated to the boundary spins and
then characterize the resulting degenerate ground space in terms of effective Pauli
operators X i, Zi defined as follows,

X i = UCZ,MXiU
†
CZ,M = XiZi− 1

2
Zi+ 1

2
,

Zi = UCZ,MZiU
†
CZ,M = Zi,

(2.119)

where the index i labels the boundary spins as shown in Fig. 2.10(d), and UCZ,M is
the truncated circuit of CZ gates applied to every edge in the truncated lattice M .
Then, we can act on the effective Pauli operators with the vertical line symmetries
to find,

UiZiU
†
i = −Zi,

Ui± 1
2
X iU

†
i± 1

2
= −X i,

(2.120)

with all other actions being trivial, where Ui label line symmetries as in Fig. 2.10(d).
We therefore find that the subsystem symmetries Ui act on the boundary as Vi
defined as,

Vi = X i , Vi+ 1
2

= ZiZi+1. (2.121)
It is clear that no local term can be added which commutes with all of these
boundary symmetries. Therefore, the boundary of the cluster state has an extensive
boundary degeneracy that is protected by the symmetry.

The SSPT order of the cluster state is characterized by the anti-commutation
of neighbouring line symmetries on the boundary. This can be compared to a

11For example, the product of the left cone symmetry in Fig. 2.10(b) with the same symmetry
shifted by one site down and to the right yields the left line symmetry in Fig. 2.10(a).
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stack of 1D cluster states, which also has line-like subsystem symmetries (in one
direction) corresponding to the global symmetries of each of the 1D states. There is
a pair of line symmetries for each line, and the pair anti-commute on the boundary.
However, unlike the case of the 2D cluster state, these anti-commutations are
restricted to a single line; symmetries on different lines always commute. This
difference is what underlies the distinction between strong and weak SSPT order:
an SSPT order is said to be weak if it is equivalent to a stack of 1D SPT orders,
and otherwise it is strong [59, 190]. The 2D cluster state is an example of strong
SSPT order [190].

It should be noted that cluster states on different lattices can have different
forms of subsystem symmetry, including fractal symmetries [27, 191, 192]. In these
cases, one can find similar forms of subsystem symmetry fractionalization on the
boundaries.

2.7.2 Tensor network representation
Here we construct a tensor network representation of the 2D cluster state and
investigate how the subsystem symmetries are realized in terms of symmetries of
the local tensor. First, observe that the 1D cluster state tensor with a single-qubit
unit-cell (Eq. 2.83) can be drawn pictorially as,

, (2.122)

where H is the Hadamard matrix and the small circle represents a δ-tensor which
enforces that all incoming legs take the same value in the {|0〉, |1〉} basis,

. (2.123)

With these definitions, we can depict a PEPS tensor for the 2D cluster state as
follows,

. (2.124)

This tensor produces the correct sign structure of the 2D cluster state, in that it
gives a factor of −1 to every pair of neighbouring 1’s, just as in the MPS tensor
for the 1D cluster state.

For visual clarity, we introduce an alternate tensor network notation,

, (2.125)

where the physical index lives inside the circle. To derive the symmetries of the
cluster tensor C1, note that the δ-tensor is invariant under applying X to all of its
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Figure 2.11: Tensor network realization of the line symmetries. The physical X
operators in the circles push onto the virtual legs as products of Z and X operators.
These operators are absorbed pairwise by the neighbouring tensors using the tensor
symmetries, as indicated by diamond outlines.

legs, as well as applying Z to any pair of legs, and that H interchanges X and Z.
With this, we can find the following symmetries,

. (2.126)

The first symmetry shows how to push the action of a physical X operator onto the
virtual legs of the tensor. The other three symmetries are purely virtual, in that
there is no action of the physical index. The products of the above symmetries are
also symmetries, but these four form a minimal generating set. These symmetries
work together to realize the subsystem symmetries: the X operators push through
onto the virtual legs and are subsequently annihilated pairwise using the purely
virtual symmetries of neighbouring tensors, see Fig. 2.11. A similar picture holds
for the lines symmetries in the other directions and for the cone symmetries.

2.7.3 The cluster phase
Having defined the cluster state and identified its symmetries, we move on to
defining the cluster phase. The cluster phase is defined as the symmetry-protected
topological phase of matter that contains the cluster state and respects its line
symmetries. That is, the cluster phase consists of all states that can be connected
to the cluster state with a finite depth quantum circuit whose gates commute with
all of the line symmetries. This generalizes the notion of SPT phase to subsystem
symmetries, so it is called a subsystem SPT (SSPT) phase [26, 59].

Our first step to characterizing the cluster phase is to understand the structure
of PEPS representations of states within the phase. For this, we will establish an
equivalent of Eq. 2.97 for the cluster phase [26]. That is, we will see that all states
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in the cluster phase can be viewed as a cluster state with extra “junk” entanglement
on top, as captured a decomposition of the PEPS tensor.

To warm up, we will re-derive Eq. 2.97 for the 1D cluster phase using an
alternative approach. Let |Φ〉 be a state in the same SPT phase as the 1D cluster
state |C〉 (recall that this phase is defined by a G = Z2 × Z2 symmetry with
U(g1, g2) = Xg1

evenX
g2
odd). By definition, this means there is a finite depth quantum

circuit UΦ = ∏
i uΦ,i such that |Φ〉 = UΦ|C〉, where each uΦ,i acts on d qubits and

[uΦ,i, U(g)] = 0 for all g ∈ G. Being a finite depth quantum circuit, UΦ can be
expressed as a finite bond-dimension MPO. We could simply combine the MPO
tensor with the cluster state MPS tensor to get an MPS representation of |Φ〉,
giving the first part of Eq. 2.97, but we would be lacking the symmetry condition
given by the second part of Eq. 2.97.

We will now transform UΦ to another operator that acts equivalently on the
cluster state such that the resulting MPO tensor satisfies the symmetry condition.
Let us expand each gate uΦ,i in the basis of d-qubit Pauli operators P ∈ Pd (which
is always possible as they form a basis). We can write any Pauli operator (up to
a phase) as a product P = PXPZ where PX/Z is some string of X/Z operators
(with Y = iZX). We then write,

uΦ,i =
∑
j

cjP
X
j P

Z
j , (2.127)

for some complex numbers cj. Since each Pauli operator either commutes or
anticommutes with each symmetry U(g), each Pauli operator in the expansion
must be individually symmetric, U(g)PX/Z

j U(g) = P
X/Z
j . Clearly PX

j can be
anything, while one can convince oneself that PZ

j is only symmetric if it can be
written as a product of operators ZiZi+2.

Now, we observe that ZiZi+2|C〉 = Xi+1|C〉 by the form of the cluster state
stabilizer. Therefore, when acting on the cluster state, any symmetric Z-string can
be replaced by an X-string, such that every gate uΦ,i in the first layer of the circuit
can be re-written as sums of X-strings. For subsequent layers, we need to push the
Z-strings down to the first layer where they can act on the cluster state and become
X-strings. After all Z-strings in UΦ have been replaced by X-strings, we will be
left with a new operator TΦ which acts in the same way as UΦ on the cluster state.
In general, TΦ will no longer be unitary, and the required bond dimension of its
MPO representation will be larger than that of UΦ due to phase factors that were
introduced by commuting Z-strings to the first layer, which creates correlations
between overlapping gates. Importantly, this increase of bond dimension will only
depend on the range and depth of the circuit, which are both finite, so the bond
dimension remains finite in the thermodynamic limit. If we denote the MPO tensor
that represents TΦ as BΦ, we can construct an MPS representation of |Φ〉 using a
tensor AΦ defined as,

. (2.128)
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which is precisely the statement of Eq. 2.97 for the cluster phase. The symmetry
condition follows simply from the fact that TΦ consists of X operators only.

Now we will repeat this process for the 2D cluster phase. As before, we have
a symmetric circuit UΦ connecting a state |Φ〉 to the 2D cluster state. In this
case, we take every gate in UΦ to commute with the line symmetries of the cluster
state. Expanding the gates in the Pauli basis, we again have constraints on which
Z-strings can appear. Namely, they must be a product of the star operators
Sx,y = Zx−1,yZx+1,yZx,y−1Zx,y+1 [26]. Using the 2D cluster state stabilizer, we can
write Sx,y|C〉 = Xx,y|C〉, so we can again replace UΦ by an linear operator TΦ which
consists only of X-operators. Representing TΦ as a tensor network defined by a
6-legged tensor BΦ, we can construct a PEPS representation for |Φ〉 by defining a
PEPS tensor AΦ as,

. (2.129)

This equation gives the fundamental characterization of the 2D cluster phase,
and it will be very important for Chapters 3 and 4. One important implication of
this equation is that the tensor symmetries of Eq. 2.126 hold throughout the entire
cluster phase, where the operators acting on the virtual legs now in general act on
a subsystem of the entire virtual space. We will now see how these symmetries
allow us to further characterize the SPT order of the cluster phase, and to derive
its universality for MBQC.

2.7.4 Quasi-1D SPT order
To analyze the cluster phase further, it will be very useful to adopt a quasi-1D
picture. To move to quasi-1D, consider a long cylinder of circumference N and
group sites of the lattice into N ×N blocks. Then, the line symmetries act the
same way on each block, such that the subsystem symmetries become standard
global symmetries on the level of blocks, see Fig. 2.12. In this way, for each N ,
we can examine the 1D SPT order with respect to the line symmetries, which
generate a Z2N−1

2 global symmetry group. Likewise, the cone symmetries generate
a Z2N

2 global symmetry group. Let AΦ denote the tensor obtained by contracting
an N ×N block of the local tensor AΦ. As the subsystem symmetries are global
symmetries of this blocked tensor, we can find the virtual representation V (g)
of the symmetry group as in Eq. 2.91. This can be done by using the tensor
symmetries of Eq. 2.126, and the results are shown in Fig. 2.13. These symmetries
hold throughout the entire cluster phase, where the virtual operators act on a
subspace in general, by virtue of Eq. 2.129.

From these relations, we see that neighbouring line symmetries moving in the
same direction anti-commute on the virtual boundary. This reproduces the result
we saw using the Else-Nayak procedure. The advantage of the tensor network
approach is that we can see this anti-commutation throughout the entire cluster
phase. The virtual representation of the whole Z2N

2 group of cone symmetries, on
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Figure 2.12: Line symmetries on a cylinder with periodic boundaries in the vertical
direction. The lines become global symmetries on N × N blocks (N = 6 here),
indicated by the square outlines.

the other hand, is given by the full set of N qubit Pauli operators. Importantly,
this representation satisfies the condition of maximal non-commutativity defined
in Section 2.5.2, since no Pauli operator commutes with all others. This means we
can cast the tensor AΦ into the form of Eq. 2.95,

AΦ[k] = BΦ[k]⊗ C[k], (2.130)

where k labels states of the N ×N block in the local X-bases. The matrices C[k]
will be elements of the virtual symmetry representation, i.e. Pauli operators, and
can be equivalently determined either by using Eq. 2.96, or by stitching together
the cluster tensors C1 into blocks.

2.7.5 Universal MBQC in the cluster phase
In this section we show that the cluster phase is a computationally universal phase
of matter, in that every ground state in the phase can be used as a resource
for universal MBQC. As we saw in Section 2.6, MBQC with SPT phases can be
understood as an encoding of logical information into the protected edge modes.
Since SSPT order has an extensive number of protected edge modes, it allows us
to encode an extensive number of logical qubits, as is required to have a universal
MBQC scheme. This simple observation helps to explain why SSPT order is
the natural thing to consider for universal MBQC in 2D. Since the 2D cluster
state fits into the framework of 1D SPT order after blocking, we can apply the
techniques for MBQC with 1D SPT phases. We note that our use of blocking does
not affect the notion of locality for MBQC, as we will still employ only single-qubit
measurements. Indeed, this restriction to single-qubit measurements12 is what
stops us from trivially achieving universal MBQC by applying the 1D results to a
1D SPT phase with an exponentially large edge mode.

12More precisely, we would like that the dimension of the measured local degrees of freedom
does not grow with the number of logical qubits.
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(a)

(b)

Figure 2.13: (a) Tensor network representation of line symmetries on the level of
blocks, with the corresponding virtual symmetry representations shown on the
edges. (b) Tensor network representation of cone symmetries.

To determine which gates can be performed, we need to identify (some of) the
operators C[k] in Eq. 2.130. Let |ei,j〉 denote the state of a block of N ×N qubits
where all qubits in the block are in the state |+〉 except for the qubit in column i
and row j, which is in the state |−〉. Then, we can find,

C[e1,j] = Zj,

C[e2,j] = Zj−1XjZj+1,

C[eN,j] = Xj.

(2.131)

Recall that non-trivial gates in the MBQC scheme are performed measuring in
a rotated basis. The above equations tell us that measuring the j-th spin in the
first (last) column in the basis {|θ+〉, |θ−〉} [Eq. 2.110] results in a rotation of the
j-th logical qubit about the Z-axis (X-axis) by θ, up to Pauli byproduct operators.
These operations generate all single-qubit unitaries. Measuring the j-th qubit
in the second column in the rotated basis results in an entangling gate between
the j-th qubit and its two neighbours. Together with the single-qubit gates, this
generates a full set of N -qubit gates [193]. Using the same techniques for 1D SPT
phases, with some slight modifications, these gates can be implemented throughout
the entire 2D cluster phase, making it the first example of a computationally
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universal phase of matter [26].

2.7.6 Gauging subsystem symmetries and fracton topological
order

In Section 2.3.4, we defined the gauging map that transforms trivial and SPT
phases into topological phases. In this section, we briefly describe a generalized
gauging procedure that can be done for subsystem symmetries [53, 110, 194]. In the
case of global symmetries, we finished by expressing the gauging map as a duality
transformation between the pure matter and pure gauge theories. For subsystem
symmetries, we will jump straight to this expression of gauging, although we note
that one can derive the following procedure using a more conventional minimal
coupling procedure [53].

The generalized gauging procedure can be defined by the following three steps.
For simplicity, will focus on gauging Z2 symmetries whose generators consist of
products of X operators.

• The first step in the gauging procedure is to identify the minimal coupling
terms. These are the minimal interactions that can be added to a Hamiltonian
which respect all symmetries. For a global Z2 symmetry, the minimal coupling
terms corresponds to nearest-neighbour ZZ interactions. We then add one
gauge qubit associated to each minimal coupling term at the centre of the
interaction, e.g. on the links of the lattice in the case of a global symmetry.

• The second step is to add the gauge constraint term. To identify this term,
we look for relations among the minimal coupling terms, i.e. products of
them that equal the identity. The gauge constraint is then a product of Z
operators on every gauge qubit whose associated minimal coupling terms are
involved in the relation. For example, the product of all nearest-neighbour
ZZ interactions around a face of the lattice is the identity, so the gauge
constraint for a global symmetry is a product of Z on all edges around each
face.

• The final step is to map the original Hamiltonian terms of the matter theory
onto modified terms acting on the gauge qubits. Every symmetric term can
be expressed in terms of X operators and products of the minimal coupling
terms. Each minimal coupling term is mapped onto a single Z acting on
the associated gauge qubit. X operators are mapped onto a product of X
operators on every gauge qubit whose associated minimal coupling terms
anti-commutes with the original X operator.

It is straightforward to verify that applying this procedure to a global symmetry
reproduces the procedure outlined in Section 2.3.4. In Chapter 5.2, we will apply
this procedure to an example with subsystem symmetries. Importantly, only the
final step depends on the Hamiltonian that is to be gauged, and the rest of the
procedure depends only on the form of the subsystem symmetries.
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Chapter 2. Background

While gauging global symmetries can result in topological order, gauging certain
subsystem symmetries can result in a more exotic kind of order known as fracton
topological order (or simply fracton order) [30, 50–55, 194–198]. This can only
occur in 3D and higher [57]. Indeed, gauging, e.g., line symmetries in 2D results
in a model with symmetry breaking (or, in the case of the cluster state, simply
maps it onto itself [110]). In 3D, gauging subsystem symmetries that act on
planes or fractals can result in model of topological order in which the point-like
topological excitations have restricted mobility [53, 110, 194]. That is, individual
excitations may only be able to move (without creating additional excitations)
in one or two directions, or they may be completely immobile. These mobility
constraints, which arise from the geometry of the subsystem symmetries, are the
defining characteristics of the umbrella term of fracton order.

Due to the rigid nature of the subsystem symmetries, models with fracton
order are sensitive to the geometry of the space on which they are defined, as
opposed to topological models which depend only on global topology. For example,
the ground space degeneracy [30, 54] and topological entanglement entropy [199–
201] of fracton models can depend both on topology and system size, and the
nature of gapped boundaries changes drastically depending on the shape of the
boundary [202]. These features mean that fracton order is beyond the realm of
topological quantum field theory due to a mixing of infrared and ultraviolet scales
[203], which makes it difficult to apply our usual tools for classifying phases of
matter, although some promising frameworks are arising [57, 204]. Additionally,
the mobility restrictions lead to slow dynamics [205] that can make certain fracton
models suitable for robust storage of quantum information. More precisely, for
some models, the energy barrier between two topological ground states grows with
system size, meaning the lifetime of a qubit stored in the ground space grows
with system size [44, 45]. For these reasons and more, fracton topological order is
interesting to both the condensed matter and quantum information communities.

68



Chapter 3

Universal subsystem symmetry
protected topological phases from
quantum cellular automata

At the end of the previous chapter, we defined an SSPT phase of matter with
line-like subsystem symmetries called the cluster phase. We then characterized it in
terms of symmetries of PEPS tensors, and showed that it was an MBQC-universal
phase of matter. In this chapter, we aim to generalize this result to encompass
other SSPT phases with other types of subsystem symmetry. Our goal is twofold:
we wish to characterize the symmetries and entanglement structure of these phases
of matter, and we wish to understand their use for MBQC. It turns out that a single
concept is sufficient to achieve both of these goals: quantum cellular automata
(QCA) [132, 206–208]. QCA can be simply defined as a locality preserving unitary
operators and, for the class of QCA we consider, they are equivalent to finite-depth
quantum circuits.

To see why QCA are relevant to SSPT phases, consider a single column of the
cluster state PEPS. Using the symmetries of a single tensor (Eq. 2.126), we can
derive the following symmetries of the column,

(3.1)

These equations show that the operator Zi transforms into Xi when passing through
the column tensor, while Xi transforms into Zi−1XiZi+1 (with the help of an X on
the physical index). From these relations, it follows that contracting the physical
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Chapter 3. Universal SSPT phases from quantum cellular automata

legs of the column tensor with states in the X-basis gives the following operator,

(3.2)

where ik = 0, 1 represent the physical states |+〉,|−〉, respectively. We have drawn
the resulting virtual operator using the notation of quantum circuits, where H is
the Hadamard matrix, and the vertical lines represent CZ operators acting on the
two connected legs. Contracting the physical legs in the {|+〉, |−〉} basis results in
a quantum circuit acting in the virtual space. As we will see in this chapter, this
quantum circuit, which can be described using the language of QCA, determines
the form of the subsystem symmetries, and plays an essential role in MBQC.

The construction in this chapter involves modifying this QCA to change the
symmetries and MBQC power of the resulting SSPT phase of matter. In more
detail, given a QCA, we define a fixed-point state via a local PEPS tensor such
that the QCA lives in the virtual space of the tensor network, as in Eq. 3.2. This
fixed-point state will have some subsystem symmetries determined by the QCA, so
we can define an associated SSPT phase of matter as the set of all states connected
to the fixed-point state while respecting the subsystem symmetries. This SSPT
phase of matter will in turn have an associated MBQC scheme whose elementary
gates are determined by the QCA. The whole process can be summarized via the
following flowchart,

In this way, we show that QCA are the essential ingredient that unify SSPT phases
and MBQC, see Fig. 3.1.

Our first main result in this construction shows that non-trivial SSPT order
under the symmetries we consider is characterized by the presence of the QCA
within the tensor network, which is persistent throughout the corresponding SSPT
phase. This is akin to the behaviour that we have seen in the cluster phase in
Section 2.7.1. This means the patterns of entanglement found in these phases are
characterized in part by QCA, demonstrating the possible use of tensor networks
in obtaining a classification of SSPT order. Interestingly, our framework treats
line-like symmetries and fractal symmetries on the same footing, showing that
different types of subsystem symmetries are more similar than one would think
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(a) (b)

Figure 3.1: Two of the roles played by QCA in our results. a) Example of a
fractal symmetry operator defined by QCA that emerges from our framework.
The operator is a tensor product of local Pauli-X operators arranged on a square
lattice in the pattern shown. b) We define tensor network states from QCA, such
that measuring a block of spins results in a quantum circuit living in the virtual
space of the tensor network. The circuit, which forms the backbone of our MBQC
scheme, consists of global applications of the QCA interspersed by single qubit
rotations determined by the bases in which spins are measured. This structure
appears within every state in the corresponding SSPT phase, leading to uniform
computational power across the phase.

based on their structure. Indeed, we find that the 2D cluster state has SSPT order
under both types of symmetries.

We then turn to investigating the computational capability of the constructed
phases. Using the above characterization, we show that every phase we construct
is computationally universal in the same way as the cluster phase, except for those
defined by non-entangling QCA. Hence, our framework gives a systematic way
to identify computationally universal phases of matter which, up until now, have
remained elusive outside a select few cases [26, 27]. The computational schemes we
develop are strictly tied to the QCA that define the phases (see Fig. 3.1(b)), further
strengthening the connection between quantum computation and SPT phases in
2D1.

Our perspective on MBQC based on QCA has the additional feature that, by
choosing different QCA, the set of gates executable in a single step can be tailored
to suit the problem at hand. In particular, our framework allowed us to uncover a
particular class of SSPT phases for which the corresponding computational schemes
enjoy a quadratic reduction in the number of measurements per gate versus the
number of logical qubits, as compared to previous schemes [26, 27]. One such
phase is built around a modified cluster state with additional qubits placed on the
horizontal edges. We briefly discuss the implications that this result and our general
framework may have on related tasks such as blind quantum computation [209, 210],
quantum computation with global control [193, 211, 212], and in experimental
demonstrations of quantum computational advantage [213, 214].

1Since the writing of this chapter, another work has furthered this line of work by identifying
the QCA underlying cluster states on various regular lattices [192].
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Chapter 3. Universal SSPT phases from quantum cellular automata

The rest of this chapter is organized as follows. In Section 3.1, we begin
with a review the basic properties of QCA. In Section 3.2, we use QCA to define
tensor network states and show that they have non-trivial SPT order under certain
subsystem symmetries. Then, in Section 3.3, we investigate the properties of the
corresponding SPT phases in a quasi-1D picture before moving to a genuine 2D
picture in Section 3.4. In Section 3.5, we classify these phases by their computational
power in measurement-based quantum computing. Finally, in Section 3.6, we
discuss possible applications and extensions of our results.

3.1 Quantum cellular automata
In this section, we present a review of quantum cellular automata (QCA) for
qubit systems, as described in Refs. [206–208], as they will be central to our
description of SSPT order. A 1D QCA is a translationally-invariant locality-
preserving unitary acting on a 1D chain of qubits [206]. That is, a QCA maps
any locally supported operator to another locally supported operator, with the
size of the support increased by an amount independent of the size of the original
support. In Ref. [132], it was shown that QCA acting on 1D systems are equivalent
to matrix product unitaries (MPU), in that every QCA can be represented as an
MPU with finite bond dimension, and every MPU is a QCA. An MPU is a matrix
product operator defined by a local tensor T , which generates a unitary T on a
ring of arbitrary length N . Graphically, the MPU can be represented by the tensor
network,

. (3.3)

We note that all QCA described in this chapter act on systems with periodic
boundary conditions.

In what follows, we will focus on Clifford quantum cellular automata (CQCA)
[207, 208], which are QCA that map products of Pauli operators to products of
Pauli operators. For reasons of simplicity of notation, we focus on the Pauli Clifford
group for qubits, even though the formalism laid out here could be applied larger
dimensions as well [215, 216]. On a finite chain of N qubits, we can define the
Pauli group PN as the group generated by all local Pauli operators Xi, Yi, and Zi
acting on qubit i, where i is defined modulo N and can take negative values giving,
for example, X−1 = XN−1. A CQCA is a QCA that is also an automorphism of
PN , defined by a unitary transition function T such that P 7→ T (P ) := T †PT for
any P ∈ PN .

CQCA have been studied extensively in Refs. [207, 208] which introduced a
compact representation of CQCA. Firstly, a CQCA T is completely specified by
the images T (X0) and T (Z0). To see this, note that the QCA is translationally
invariant, and that Xi and Zi generate the whole Pauli group up to phases, which
contains a basis of the space of all 2N × 2N matrices. We represent elements of
PN , up to phases, by 2N -component binary strings ξ = (ξX , ξZ) such that,

V (ξ) =
N⊗
i=1

X
ξXi
i Z

ξZi
i ∈ PN . (3.4)

72



3.1. Quantum cellular automata

These strings form the group ZN
2 × ZN

2 , for which ξ 7→ V (ξ) forms a faithful
irreducible projective representation. Note that we ignore all complex phases in
front of Pauli operators throughout, since they do not affect the symmetries or
phases of matter we define. We further condense the notation using the language
of Laurent polynomials [207]. We map ξ onto a vector of polynomials of a variable
u as, (

ξX

ξZ

)
7→
(∑

i(ui)ξ
X
i∑

i(ui)ξ
Z
i

)
. (3.5)

The purpose of the variable u is the keep track of the moving and spreading of
local Pauli operators under T . For example, the operator X1Z0X−1 is represented
as,

ξ =
(
u+ u−1

1

)
. (3.6)

We use the symbol ξ to represent both the binary and polynomial representations
of an element of PN interchangeably.

Finally, we can represent the CQCA T as a 2× 2 matrix t of polynomials by
arranging,

T (X0) := t

(
1
0

)
, T (Z0) := t

(
0
1

)
, (3.7)

into columns of a matrix. For a concrete example, consider the CQCA Tg defined
by the relations,

Tg(Xi) = Xi−1ZiXi+1 , Tg(Zi) = Xi. (3.8)

This CQCA is the QCA of the 2D cluster state [11], which was derived in the
introduction of this chapter and has appeared several times already in the context
of quantum computation [193, 213, 217]. The subscript g refers to the term glider
which we shall introduce shortly. In the polynomial representation, this CQCA
becomes,

tg =
(
u+ u−1 1

1 0

)
. (3.9)

Every CQCA T can be represented as a 2 × 2 matrix t whose entries are Laurent
polynomials over Z2, up to phase factors [207]. We further restrict to CQCA for
which the images T (Xi), T (Zi) are symmetric about site i, meaning there is no
translation in the CQCA2. As shown in Ref. [207], this corresponds to the matrix
t having unit determinant. We make this restriction only because translation will
not be particularly interesting for our purposes, as it would correspond to a simple
lattice shear. With this restriction, we have that all entries in t are symmetric
Laurent polynomials, meaning that u−k appears whenever uk does, for all k. Finally,
we implement the periodic boundary conditions by taking all polynomials modulo
the relation uN = 1.

CQCA can be split into three classes depending on their trace [208].

• Periodic CQCA. When Tr(t) = 0 or 1 the CQCA has periodic behaviour.
2In Refs. [132, 218], QCA are assigned an index according to the amount of information flow

to the left or right. Our restriction is to QCA with index 0
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Chapter 3. Universal SSPT phases from quantum cellular automata

• Glider CQCA. When Tr(t) = uc + u−c for some positive integer c, the CQCA
supports gliders. These are operators on which the CQCA acts as translation
by ±c sites.

• Fractal CQCA. If neither of these conditions hold, the CQCA will display
self-similar fractal behaviour.

The CQCA in Eq. (3.8) is of glider type, with Tr(tg) = u+ u−1. Indeed, we can
check that Tg(XiZi−1) = Xi+1Zi, and Tg(Zi+1Xi) = ZiXi−1.

The Laurent polynomial representation allows us to uncover an identity which
will be useful at several points throughout this work. Namely, due to the Cayley-
Hamilton theorem, we obtain [208],

t2 = Tr(t)t+ 1, (3.10)

where we have used our assumption that det(t) = 1, and the fact that the poly-
nomials are defined over the field Z2, so addition and subtraction are equivalent.
This useful equation allows us to reduce any power of t to a linear combination of
t and 1.

3.2 Defining PEPS from QCA
Now we use the correspondence between QCA and MPU to define fixed-point
PEPS. Given a CQCA T , we first represent it as an MPU with local tensor T , as
described in Ref. [132]. We then define the PEPS in terms of T by a local tensor
AT whose components are given by,

. (3.11)

Given T , the PEPS tensors AT for local qubit dimension can be uniquely defined
in this way, the vectors {|+〉, |−〉} constituting a basis. In this chapter we will
mainly consider a quasi-1D geometry with the mapping to quasi-1D proceeding as
in Section 2.7. That is, we put our PEPS on a long, skinny torus of dimensions
N ×M (M � N) and block tensors AT into rings along the skinny direction of
the torus,

, (3.12)

where ji = 0 (1) denotes the state |+〉 (|−〉). We denote the resulting blocked
MPS tensor by AT . Notably, the virtual legs of AT that are contracted to form
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AT correspond to the virtual legs of the MPU defining T , such that the CQCA T
appears in the virtual space of AT as seen in the introduction of this chapter.

The state vector of the fixed-point PEPS is then written as,

|ψT 〉 =
∑

j1,...jM

Tr
(
Aj1
TA

j2
T . . .A

jM
T

)
|j1, j2, . . . , jM〉. (3.13)

In general, |ψT 〉 will not be be rotationally invariant, and the dimension of the
virtual indices along the horizontal and vertical directions may not even match.
Since we will be mainly treating these PEPS as quasi-1D systems, we will not worry
about this property of our construction here. We call the states |ψT 〉 “fixed-point”
PEPS because they will appear as special points within SPT phases, such as the
cluster state within the cluster phase. However, they are not fixed-points of any
renormalization transformation defined here. We stress that, although we use a
quasi-1D approach, the SSPT phases that we construct can be distinct from stacks
of 1D SPT chains, as will be discussed in Section 3.4.

We could have instead chosen to define our PEPS by replacing the Pauli Z
in the |−〉-component of AT with an X or Y . It turns out that these cases are
already included in the current definition. For example, replacing the Z with an
X is equivalent to conjugating T by Hadamard gates on every leg, represented as
t 7→ hth−1 where,

h =
(

0 1
1 0

)
. (3.14)

Similarly, exchanging Z with Y is equivalent to conjugation by phase gates,
t 7→ sts−1, where,

s =
(

1 0
1 1

)
. (3.15)

Were we to also include a Pauli operator in the |+〉-component of AT , this would
be equivalent to one of the three cases discussed above, up to rephasing of T , which
is unimportant to us. Hence, we can use the definition of AT given by Eq. (3.11)
without loss of generality.

As follows straightforwardly from its definition (Eqs. (3.11,3.12)), the tensor
AT has the symmetries,

,

.

(3.16)

That is, a Pauli Z acting in the virtual space passes through each ring freely and
is transformed by the QCA T , while a virtual X passes through with the help of a
physical X operator. This is the generalization of Eq. 3.1. More generally, we can
push any Pauli operator V (ξ) through the ring in the following manner,

, (3.17)
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where we have defined the physical symmetry operator,

u(ξ) :=
N⊗
i=1

X
ξXi
i . (3.18)

Since we impose periodic boundary conditions, the CQCA will have a finite
period L such that tL = 1. In general, L is a complicated function of the
circumference N of the torus, a point which we return to in Section 3.5.1. If we
push any Pauli operator in the virtual space through L rings of the PEPS, it will
be mapped to itself, leading to the symmetry,

. (3.19)

Hence, if we set M = kL, k ∈ N, our state satisfies,

UT (ξ)⊗k|ψT 〉 = |ψT 〉, (3.20)

where the symmetry representation ξ 7→ UT (ξ)⊗k is defined as,

UT (ξ) := u(ξ)⊗ u(tξ)⊗ · · · ⊗ u(tL−1ξ). (3.21)

The unitary UT (ξ) is more general than the usual global on-site symmetry operator.
Rather than acting the same way on each site in the lattice, the representation
“cycles” with a period L. Such symmetries have been called L-cycle symmetries in
Ref. [219]. If we block our PEPS into large blocks of size N ×L, UT (ξ)⊗k becomes
a standard global symmetry that acts in the same way on each block. In this
way, we can look at the conventional 1D SPT order protected by UT (ξ). Since
ξ 7→ V (ξ) forms a projective representation of ZN

2 × ZN
2 , the fixed-point PEPS

have non-trivial quasi-1D SPT order with respect to this symmetry, and in fact
satisfies the condition of maximal non-commutativity given in Section 2.5.2. As
we discuss in Section 3.4, this means they also have non-trivial 2D SPT order with
respect to the same symmetries.

Examples. Let us study some examples of the fixed-point PEPS we have constructed.
First, consider the CQCA Tg from Eq. (3.8). In this case, the fixed-point PEPS
defined by Eq. (3.11) represents the 2D cluster state. The corresponding L-
cycle symmetry has the form of cone-like operators with L = N , as pictured in
Fig. 2.10(b). The SPT phase defined by these symmetries is exactly the cluster
phase defined in Section 2.7.1.

For an example using a CQCA with fractal behaviour, consider the CQCA Tf
defined by the relations,

Tf (Xi) = Xi−1YiXi+1 , Tf (Zi) = Xi. (3.22)
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The corresponding fixed-point PEPS will turn out to be the cluster state again,
with the phase gate,

S =
(

1 0
0 i

)
, (3.23)

applied to each site. The L-cycle symmetries also have a fractal structure, see
Fig. 3.1(a) for an example with N = 512, L = 3

2N = 768. This shows that the
cluster state also has SPT order under fractal symmetries that are tensor products
of Pauli-Y operators (since SXS† = Y ).

For a periodic CQCA, we choose Tp defined as,

Tp(Xi) = Zi , Tp(Zi) = Xi. (3.24)

That is, tp = h where h is as defined in Eq. (3.14). This corresponds to a stack
of decoupled 1D cluster states, and the L-cycle symmetries are simple horizontal
lines which are the symmetries of each of the 1D states.

3.2.1 Stabilizer representations of fixed-point PEPS

The above examples are all states that can be defined by a local stabilizer group
[89], which is a feature common for any fixed-point PEPS constructed by Eq. (3.11),
as we now demonstrate.

To start, notice that the fixed-point PEPS defined by Eq. (3.11) have more sym-
metries than those shown in Eq. (3.16). They also have the following symmetries,

. (3.25)

Note that these symmetries exist only at the fixed-point, and they do not persist
throughout the corresponding SPT phase. In addition to these symmetries, we also
need the identity from Eq. (3.10). In general, we have Tr(t) = ∑m

k=1 αk(uk+u−k)+β
for αk, β ∈ {0, 1}. Stated in terms of operators, Eq. (3.10) tells us,

T 2(Zi) = Zi
m⊗
k=1

[T (Zi−k)T (Zi+k)]αk T (Zi)β. (3.26)

Using Eqs. (3.16), (3.25) and (3.26), we can now determine the form of the stabilizers
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for our states,

. (3.27)

In the first equality, we have used Eq. (3.25). In the second, we used the symmetry
relation of Eq. (3.16) and defined ξ̃ = (0, ui) which represents the operator Zi.
In the third equality, we have used Eq. (3.26), and Eq. (3.25) to pull the Zi and
Z̃ := ⊗m

k=1 [Zi−kZi+k]αk Zβ
i onto the physical legs. Since u(ξ̃) is a localized product

of X operators and Z̃ is a localized product of Z operators, we have derived a local
stabilizer operator. We can derive an independent stabilizer Ki for any site i in the
lattice. One can easily check that, due to the reflection symmetry of the stabilizers,
all stabilizers commute as needed. So the fixed-point PEPS is the unique ground
state of the Hamiltonian,

H = −
∑
i

Ki, (3.28)

which is a local Hamiltonian with a uniform spectral gap.
We can now verify the claimed examples in Section 3.2. If we construct the

stabilizers for the fixed-point PEPS defined by the CQCA Tg in Eq. (3.8), then we
find that they have the following form,

Z

Ki = Z Xi Z,

Z (3.29)

which is indeed the familiar form of the cluster stabilizer. If we use the CQCA Tf
in Eq. (3.22), we find

Z

Ki = Z Yi Z,

Z (3.30)

which corresponds to the cluster state with the operator S (Eq. (3.23)) applied to
every site. Finally, with the CQCA Tp of Eq. (3.24), we get stabilizers with the
simple form,

Ki = ZXiZ, (3.31)
which does indeed correspond to a stack of uncoupled 1D cluster states.
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3.2.2 Simple CQCA
For the time being, we will restrict our attention to simple CQCA, which we define
to be CQCA that have the form,

t =
(

Tr(t) 1
1 0

)
. (3.32)

We make this restriction based on the fact that the MPS tensors AT that are
normal for all N if and only if T is simple, as we will prove in this section. Recall
that an MPS tensor A is said to be normal if its transfer matrix has a unique
fixed point. This is also equivalent to the statement that, for sufficiently large l,
the set of products {Ai1Ai2 . . . Ail} spans the space of all D ×D matrices where
D is the bond dimension [220]. An MPS tensor being normal means that it has
finite correlation length. Therefore, restricting to simple CQCA ensures that the
correlation length of the fixed-point PEPS has a well-defined thermodynamic limit.
In Sec. 3.5 we will slightly alter the way in which we construct PEPS from CQCA,
and in this construction we will no longer need to impose any restriction on the
choice of CQCA.

Consider the N -qubit MPS tensor AT defined by Eqs. (3.11),(3.12). Note that
AT is a different MPS tensor for each N . In particular, whether or not AT is
normal can depend on N . In this section only, we make the N dependence explicit
by using the notation AT,N to indicate that AT is defined on a ring of circumference
N . We now prove the following result.

Proposition 1. AT,N is normal for all N if and only if T is a simple CQCA, as
defined in Eq. 3.32.

The proof follows from the following two lemmas:

Lemma 1. AT,N is normal if and only if the set of operators Zi and T (Zi),
i = 1, . . . , N , and their products forms a basis for all 2N × 2N matrices.

Proof. In the present case, normal means that the set of products {Aj1
T,N . . .A

jl
T,N}j1,...,jl

spans the space of all 2N × 2N matrices. Since we have Aj
T,N = Cj

NT with
Cj
N := ⊗N

i=1(Zi)ji , we can rewrite this set as {Cj1
NT (Cj2

N ) . . . T l−1(Cjl
N)T l}j1,...,jl

where T k(Cj
N) = T kCj

NT
†k. When checking if the tensor is normal, the T l at the

end can be ignored, since it does not affect the rank of the span. Using Eq. (3.10),
we can always reduce powers of T , such that T k(Cj

N ) can always be expressed as a
product of Cj

N , T (Cj
N) and their translations. Therefore, the tensor is normal if

the operators Zi, T (Zi) and their products form a basis.

In particular, Lemma 1 says that AT,N is normal if and only if it is possible to
obtain the operator X0 as a product of Zi and T (Zi), with Xi for i 6= 0 following
from translation invariance.

To facilitate the rest of the proof, let us move to the Laurent polynomial
notation. Recall that, when considering a ring of circumference N , we identify
uN = 1. We also work over the field Z2, so all coefficients of the polynomials will
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be taken modulo 2. In what follows, we use congruency (≡) to indicate equality
subject to these identifications.

The condition that we can express X0 as a product of Zi and T (Zi) translates
into the existence of Laurent polynomials ξZ and ζZ such that(

0
ξZ

)
+ t

(
0

ζZ

)
≡
(

1
0

)
. (3.33)

In particular, we have,
t12ζ

Z ≡ 1. (3.34)
That is, t12 is invertible subject to the identification uN = 1, which we call N -
invertible. This can only be true for all N in the trivial case, as stated by the next
Lemma,

Lemma 2. A symmetric Laurent polynomial p(u) with coefficients in Z2 is N-
invertible for all N if and only if p(u) = 1.

Proof. Clearly, p(u) = 1 is N -invertible for all N . For the converse we use Ref. [221],
which shows that a polynomial p(u) over Z2 is N -invertible if and only if no N -th
root of unity ω is a root of p(u), i.e. p(ω) ≡ 0. To finish the proof, We will first
show that p(u) has such a root on the unit circle. Then, we will show that it must
be an N -th root of unity for some N .

By assumption, p(u) is a symmetric Laurent polynomial over Z2, meaning it
can be written in the following form,

p(u) = β +
∑
k

αk(uk + u−k), (3.35)

for some β, αk ∈ {0, 1}. If β = 0, then p(1) ≡ 0, and therefore 1 is trivially a root,
so assume β = 1. If we write u = eiφ for some angle φ, then we have,

p(eiφ) = 1 + 2
∑
k

αk cos(kφ). (3.36)

Let K denote the number of non-zero αk (which is finite), giving p(1) = 2K + 1.
Let θ = π

k
for some k with αk 6= 0, giving p(eiθ) ≤ 2K − 1. Then, since p(eiφ) is

continuous, there must exist some ψ ∈ (0, θ) such that p(eiψ) = 2K ≡ 0. Calling
ω = eiψ, we have a root on the unit circle.

Next, notice that p(u2n) ≡ p(u)2n for any n ∈ N. This holds because our
coefficients are in Z2, so the cross terms cancel out each time p(u) is squared.
Hence we have p(ω2n) = p(ω)2n ≡ 0, so ω2n is also a root for all n ∈ N. But there
are only a finite number of roots on the unit circle (since p(u) is bounded on it),
so we must have ω2n = ω2m for some m < n. Thus ω is an N -th root of unity for
N = k(2n − 2m) for any k ∈ N, and therefore p(u) is not N -invertible.

Proof of Proposition 1. Applying this Lemma to t12, which is by definition a
symmetric Laurent polynomial, we see that if we want AT,N to be normal for all N ,
we need to fix t12 = 1. By examining the stabilizer representation of our fixed-point
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PEPS derived in Section 3.2.1, it is clear that the PEPS depends only on t12 and
Tr(t). Hence, if we set t12 = 1, the only meaningful degree of freedom left is Tr(t),
which we can obtain by setting t11 = Tr(t) and t22 = 0. Finally, our condition that
t has unit determinant enforces t21 = 1, and we are left with Eq. (3.32). �

We finish this section by observing two nice properties of fixed-point PEPS
defined by simple CQCA. First, ξ 7→ UT (ξ) is a faithful representation of ZN

2 ×ZN
2

when T is simple. To see this, suppose that UT (ξ) = 1 for some ξ ∈ ZN
2 × ZN

2 .
In particular, this implies that u(ξ) = u(tξ) = 1. Since u(ξ) = ⊗N

i=1X
ξXi
i , we see

that ξXi = 0, ∀i. Using this and Eq. (3.32), we have that u(tξ) = ⊗N
i=1X

ξZi
i , which

then implies ξZi = 0, ∀i. So ξ = 0 and thus ξ 7→ UT (ξ) is a faithful representation.
Finally, we observe, in general, the fixed-point PEPS defined by simple CQCA are
graph states [222], up to a global application of the unitary S, as can be seen using
their stabilizer representation.

3.3 SPT order with L-cycle symmetries

Above, we have used CQCA to define fixed-point PEPS with quasi-1D SPT
order protected by L-cycle symmetries. We would now like to investigate the
corresponding SPT phases that surround these fixed-points. It is important to
note that these are indeed gapped phases of matter, since the fixed-point PEPS
have gapped parent Hamiltonians, as shown in Section 3.2.1.

To begin, we first need a better understanding of L-cycle symmetries in 1D
systems. In general, we consider a (quasi) 1D chain of d-level systems with length
M = kL which is invariant under L-cycle symmetries of the form U(g)⊗k|ψ〉 = |ψ〉
where,

|ψ〉 =
d∑

j1,...,jM=1
Tr
(
Aj1 . . .AjM

)
|j1, . . . , jM〉, (3.37)

and,

U(g) := u(g)⊗ u(φ(g))⊗ · · · ⊗ u(φL−1(g)), (3.38)

with g 7→ u(g) being a d-dimensional unitary representation of a group G 3 g, and
φ an automorphism of G with φL = 1. The representation g 7→ u(g) needs not be
a faithful representation, but the whole cycle U(g) should be faithful (otherwise G
should be redefined such that U(g) becomes faithful). The symmetries found in
the previous section fall under this definition.

Again, we can block L consecutive sites into one larger site such that U(g)⊗k
acts in the same way on each block. If our state vector |ψ〉 is invariant under this
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symmetry, then Eq. 3.43 holds,

. (3.39)

Therein, g 7→ V (g) is a projective representation of the group G, satisfying
V (g)V (h) = ω(g, h)V (gh) for a cocycle ω [87]. We will focus here on maximally
non-commutative cocycles, as defined in Section 2.5.2. Recall that these are defined
to satisfy the property,

{g|ω(g, h) = ω(h, g) ∀h ∈ G} = {e}, (3.40)

An important property is that, given a maximally non-commutative cocycle ω,
there is only one irreducible representation Ṽ (g) with cocycle ω, up to unitary
equivalence [146]. Then, the decomposition of V (g) into irreducible representations
is made of up many copies of Ṽ (g), such that we have the decomposition,

V (g) = 1⊗ Ṽ (g), (3.41)

∀g ∈ G. Our first main result is the following theorem.

Theorem 1 (Normal form of MPS in maximally non-commutative SPT phase).
Any state vector |ψ〉 on a ring of length kL that is in a maximally non-commutative
SPT phase with respect to an L-cycle symmetry representation (Eq. (3.38)) of a
finite Abelian group G admits an MPS representation of the form,

Aj[l] = Bj
[l] ⊗ (CjΦ), (3.42)

for suitable tensors Bj
[l]. Therein, [l] is a site index such that [l] = [l + L], Φ is

uniquely defined by the relation Ṽ (g) = Φ†Ṽ (φ(g))Φ, and Cj = Ṽ (gj) for some
gj ∈ G. Throughout the phase, Cj and Φ remain constant, while Bj

[l] varies.

This result is the essentially analogous to that given in Section 2.5.2 when
extended to L-cycle symmetries. Φ and Cj are hence protected by the symmetry
g 7→ U(g), in that they are present in a subspace of the virtual space of the MPS
representation of all states in the phase. Cj are completely defined by the on-site
representation g 7→ u(g) of Eq. (3.38), while the transformation Φ contains the
information about the structure of the L-cycle symmetry. Hence, the same patterns
that define the L-cycle symmetry also appear in the entanglement structure.

Proof. We begin with a state whose MPS tensor is normal and satisfies Eq. (3.39),
where V (g) is a projective representation of a finite Abelian group G with maximally
non-commutative cocycle ω. First, we use the result of Ref. [150], which shows
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that, if a state is invariant under the L-cycle symmetry in Eq. (3.38), then the
tensor A satisfies the symmetry,

, (3.43)

for some unitaries Wl(g) (l = 0, . . . , L) with W0(g) = WL(g). This equation, and
all others that follow in this section, hold for all g ∈ G. From Eq. (3.43), we get,

. (3.44)

If the tensor is normal, the only way this equation and Eq. (3.39) can both be true
is if W0(g) ∝ V (g). If we connect the relations in Eq. (3.43) in a different order,
we find,

, (3.45)

where we have used the fact that φL(g) = g. Now compare this to Eq. (3.39) with g
replaced by φ(g). Again, since the tensor is normal, we find that W1(g) ∝ V (φ(g)).
So, for some scalar λ(g), we have,

. (3.46)

Now, we would like to use Eq. (3.46) to prove Eq. (3.42). This proof is similar
to that of Theorem 1 in Ref. [15], adapted to L-cycle symmetries. First, if g 7→ u(g)
is a linear representation, and Ṽ (g) (Eq. 3.41) is an irrep with cocycle ω, Eq. (3.46)
tells us that the cocycle of Ṽ (φ(g)) must be in the same cohomology class as
ω. That is, there exist phases γ(g) such that γ(g)Ṽ (φ(g)) has cocycle ω. Since
Ṽ (g) is the unique irrep with cocycle ω, we must have γ(g)Ṽ (φ(g)) = Φ†Ṽ (g)Φ
for some unitary Φ. Then it follows from Eq. (3.46) that g 7→ λ(g)γ(g) is a 1D
representation of G. Then, according to Ref. [15], we can find a unitary Λ such
that λ(g)γ(g)Ṽ (g) = Λ†Ṽ (g)Λ.
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With the above we can now rewrite Eq. (3.46) as,

. (3.47)

If we multiply each side by 1⊗ Φ†Λ† on the right, then we get a relation for the
composite tensor Aj(1⊗ Φ†Λ†). With this relation, we can use Schur’s Lemma as
in Theorem 1 of Ref. [15] to obtain,

Aj(1⊗ Φ†Λ†) = Bj ⊗ Cj, (3.48)

hence,
Aj = Bj ⊗ (CjΛΦ). (3.49)

This expression holds with respect to the basis of physical spins {|j〉} that diago-
nalizes u(g), such that u(g)|j〉 = χj(g)|j〉 where g 7→ χj(g) are 1D representations
of G. We then have Cj = Ṽ (gj) where gj are defined uniquely by the relation
χj(g)Ṽ (g) = Ṽ (gj)†Ṽ (g)Ṽ (gj). Bj are unconstrained tensors and can vary through-
out the SPT phase. Since λ is not uniformly defined throughout the SPT phase, Λ
can also vary throughout the phase.

Finally, we would like to rewrite Eq. (3.49) in such a way that we separate the
parts which are universal throughout the phase, namely Φ and Cj, from the rest.
We can accomplish this in the following way. On each block of L sites, we push
the matrix Λ through the tensors to the end of the block,

Bj1 . . . BjL ⊗ Cj1ΛΦ . . . CjLΛΦ = Bj1
[1] . . . B

jL
[L] ⊗ C

j1Φ . . . CjLΦΛ∗. (3.50)

Λ commutes with all Ṽ (gj) up to a phase. So when Λ passes through the tensor
Aj, it leaves behind a phase, which is absorbed into the tensor Bj. The tensors
Bj

[l] are the original tensors Bj along with these phases, which are in general
not translationally invariant within a block (We do, however, have Bj

[l] = Bj
[l+L],

so the representation is invariant under translation by L sites). The matrix
Λ∗ := ΛΦL−1†ΛΦL−1 . . .Φ†ΛΦ is a scalar matrix and can thus be removed from the
above expression. To see this, note that Eq. (3.39) says that λ(g) must satisfy the
constraint

λ∗(g) := λ(g)λ(φ(g)) . . . λ(φL−1(g)) = 1. (3.51)
By definition, we have λ∗(g)Ṽ (g) = Λ†∗Ṽ (g)Λ∗. Since λ∗(g) = 1, we have Λ∗ ∝ 1
by Schur’s lemma. The proportionality constant can be absorbed into one of the
tensors Bj

[l] and therefore Λ∗ can be removed from Eq. (3.50). Hence, we can
represent our state by an MPS of the form

Aj[l] = Bj
[l] ⊗ (CjΦ), (3.52)

as desired. �

We can now apply Theorem 1 to the constructions found in the previous section.
Given a CQCA T , we get a fixed-point PEPS which is in a non-trivial quasi-1D
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SPT phase with respect to the L-cycle symmetry ξ 7→ UT (ξ) for ξ ∈ ZN
2 × ZN

2 .
Since V (ξ) are N -qubit Pauli operators, it follows that this SPT phase is maximally
non-commutative. Hence, Theorem 1 applies, and if we consider an arbitrary state
within this SPT phase, it admits a quasi-1D MPS representation of the form
Eq. (3.42), which in this case reads

Aj
[l] = Bj

[l] ⊗ (CjT ), (3.53)

where j = (j1, j2, . . . , jN) denotes the state of the N spins along a ring with j = 0
(1) corresponding to the vectors |+〉 (|−〉), and Cj = ⊗N

i=1(Zi)ji . Notice that
setting Bj

[l] = 1 leaves us with Aj
[l] = CjT , which is the fixed-point PEPS defined

in Eq. (3.11).
Thus, when CQCA are used to define subsystem symmetries, the presence of

non-trivial SPT order under those symmetries is equivalent to the presence of
the CQCA on the virtual level of the tensor network. This shows that the same
structure appearing in the subsystem symmetry also appears in the entanglement
structure found throughout the phase. This correspondence between QCA and
SPT order protected by subsystem symmetries is the first major result of this work.

3.4 Relation to SSPT order
In this section, we re-cast our phases, which are so far only defined in the quasi-1D
picture, as genuine 2D phases of matter protected by subsystem symmetries. We
then show that, for phases defined by glider CQCA, the full L-cycle symmetry
group is not necessary to protect the phase, and a subgroup of rigid line-like
symmetries is sufficient.

3.4.1 From quasi-1D to 2D
Let us be clear about what is meant by quasi-1D SPT order and how it differs
from a genuine 2D SPT order. The difference is in the notion of locality. SPT
order can be defined as equivalence classes of states under finite depth quantum
circuits which respect the symmetry [60]; two states are in the same SPT phase if
they can be transformed into each other by such a circuit, which corresponds to
a quasi-adiabatic evolution along a path of gapped, local Hamiltonians [5]. Here,
‘local’ depends on the dimensionality of the system. For our quasi-1D scenario, the
evolution must be local between different rings of the torus (the long direction of
the torus), but it may be non-local along the rings (the skinny direction around
the torus). When we promote to a true 2D scenario, we enforce locality in both
directions.

From each fixed-point PEPS, we define the corresponding quasi-1D (2D) SPT
phase as all states that can be reached from the fixed-point PEPS via symmetric
finite depth quantum circuits which are local in the quasi-1D (2D) sense. Note that,
since any circuit that is local in the 2D sense is also local in the quasi-1D sense,
the 2D SPT phases are contained within the quasi-1D SPT phases. Therefore, the
results on quasi-1D phases derived in the previous section, Eq. (3.53) in particular,
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also hold throughout the corresponding 2D phase defined by the same symmetries.
One implication of this is the presence of zero-energy edge modes of dimension
2N [223] throughout the phase. This exponentially growing edge degeneracy was
noted in Refs. [59, 191] as a signature of SSPT phases. In Section 3.5, we encode
logical information in these protected edge modes for the purposes of computation.

We note an important distinction between the quasi-1D and 2D scenarios. As
mentioned in Sec. 3.3, 1D SPT phases are classified by a symmetry group G,
a representation g 7→ U(g), and a cocycle ω. Often, the representation is not
considered important to the classification of 1D SPT phases [87, 94, 138] because
one can construct a path of Hamiltonians that smoothly interpolates between
any two local symmetry representations without closing the gap. So 1D SPT
phases that only differ by the symmetry representation defining them are often
said to be equivalent. This is precisely the case for the SPT phases considered here:
When regarded as quasi-1D SPT phases, they differ only by the L-cycle symmetry
representation ξ 7→ UT (ξ). Therefore, as quasi-1D phases, they may all be seen as
equivalent. This argument breaks down in the 2D scenario, since the interpolation
can act non-locally on blocks of size N × L, violating the 2D notion of locality. So
SPT phases defined by different CQCA can be distinct in the genuine 2D scenario.
Indeed, as we saw above, defining the symmetry by the CQCA Tp (Eq. (3.24))
leads to an SPT phase built around a stack of decoupled 1D cluster states, while
the phase defined by the CQCA Tg (Eq. (3.8)) is built around the 2D cluster state.
These two phases are physically distinct, as discussed in the next subsection.

3.4.2 Line-like symmetries protect glider CQCA
In the case of glider CQCA, promoting to a 2D notion of locality allows us to
equivalently define our phases in terms of rigid line-like symmetries acting on
1D subsystems. In Section 2.7.1, we argued that the 2D cluster phase can be
equivalently defined by the line or cone symmetries, Here, we extend this argument
to all phases defined by glider CQCA. The generating symmetries defined by a
general glider CQCA are shaped like cones. This follows from Eq. (3.10) which,
for glider CQCA, takes the form t2 = (uc + u−c)t+ 1. Thus, if we apply T to any
single-qubit Pauli Pi, we find,

T (T (Pi)) = T 2(Pi) = T (Pi−c)PiT (Pi+c). (3.54)

We can continue in this fashion to see that powers of T can be expressed as cones
which expand until they wrap all the way around the torus, after which they
contract back to a point (see Fig. 3.2(a) for the case Pi = Zi).

This picture also gives us an easy way to understand the existence of gliders,
see Fig. 3.2(b). The gliders lead to line-like symmetries of the state, as pictured
in Fig. 2.10(a) for the cluster phase. The line symmetries can be generated as
products of the cone symmetries, but the converse is not true on a finite torus.
Indeed, the line symmetries form a Z2(N−1)

2 subgroup of the full Z2N
2 symmetry

group of cones in the cluster phase. Despite this, we can prove the following result:
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T (Z) Z
T (Z) Z T (Z) Z

Z T (Z) Z T (Z) Z T (Z) Z
T (Z) Z T (Z) Z

T (Z) Z
(a)

T (Z) Z
T (Z) Z

T (Z) Z T (Z)
Z T (Z) Z

T (Z) Z
T (Z) Z
(b)

Figure 3.2: Representation of the general appearance of cones (a) and lines (b) in
glider CQCA, for c = 1. Each column represents a product of Pauli operators on
N = 6 qubits with periodic boundaries, and advancing to the right is equivalent to
one application of T . For example, the first three columns of (a) represents the
operators Z3, T (Z3), and T (Z2)Z3T (Z4). After 6 steps, any operator returns to
itself.

Proposition 2. Consider a glider CQCA T and a 2D-local quantum circuit Ucirc
that commutes with all line symmetries UT (ξ), corresponding to ξ that are gliders.
Then, Ucirc in fact commutes with the whole subsystem symmetry group.

This result tells us that, when a 2D notion of locality is enforced, the line
symmetries defined by gliders are sufficient to protect the SPT order, i.e. the 2D
phase defined by line symmetries is contained within the quasi-1D phase defined
by the cone symmetries.

Proof. Fig. 3.2(b) shows that the operator T (Zi)Zi−1 defines a glider and hence
a line symmetry. Likewise, ZiT (Zi−1) defines a glider moving in the opposite
direction. Now, for any even integer k, we can write

Zi ⊗ Zi−k = (ZiT (Zi−1))(T (Zi−1)Zi−2) . . . (T (Zi−k+1)Zi−k). (3.55)

That is, we can write a product of non-neighbouring Z’s as a product of gliders.
Since Zi in the virtual space corresponds to a cone symmetry in the physical
space, we see that we can create pairs of cone symmetries with products of line
symmetries. The same argument can be repeated for Xi in place of Zi.

If we separate these cones sufficiently far from each other, then each local gate
in the finite depth quantum circuit will see only one of the cones. So a local gate
that is symmetric under the line symmetries is also symmetric under the cone
symmetries. Since we require in the definition of SPT order that each local gate of
the finite depth quantum circuit commutes with the symmetry, this implies that a
circuit which is symmetric under the line symmetries is also symmetric under the
cone symmetries, which generate the entire subsystem symmetry group.
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In Section 2.7, we made the distinction between weak and string SSPT phases
with line symmetries, where a phase is called weak if it can be trivialized by adding
1D SPT chains along the direction of the symmetry operators, while strong SSPT
phases are genuine 2D phases of matter that cannot be viewed as stacks of 1D
SPT chains. For simple, periodic CQCA, the fixed-point states we construct are
themselves stacks of 1D chains, so periodic CQCA correspond to weak SSPT phases.
On the other hand, phases defined by simple, glider CQCA are strong. This has
been shown in Ref. [190] for the 2D cluster phase. For phases defined by other
simple glider CQCA, one can use the stabilizer representation of the fixed-point
PEPS (Section 3.2.1) to see that they correspond to stacks of 2D cluster states.
Since the subsystem symmetry group acts independently on each cluster state,
the resulting system is still in a strong SSPT phase. Finally, for fractal CQCA,
there are no line-like symmetries [208], and we must treat the fractal symmetries
themselves as fundamental. This leads to a definition of 2D phases via fractal
symmetry operators, as in Refs. [191, 224]. Whether there exists a notion of strong
versus weak phases under fractal symmetry remains unknown [190].

3.5 Computational power of the QCA phases
Now that we have defined 2D SPT phases via CQCA, and we have understood some
basic properties of these phases, we move on to characterizing their computational
power in measurement-based quantum computing.

Before we can state our second main result, we need to define another class of
CQCA, entangling CQCA. We call a CQCA T entangling if one or more of the
entries of the matrix t is not 0 or 1. In other words, entangling CQCA are CQCA
that spread information. All glider and fractal CQCA are entangling, but not all
periodic CQCA are. In particular, non-entangling CQCA are those for which t
can be expressed as a product of h, h−1 and s, s−1 as defined in Eq. (3.14) and
Eq. (3.15), respectively. For this class of CQCA, we will prove our second main
result:

Theorem 2 (Computational phases of matter). For every entangling CQCA, there
exists a 2D SPT phase in which every state is a resource for universal MBQC,
except for a possible subset of zero measure. Furthermore, the universal circuit
model is simulated with polynomial overhead.

We begin with an outline of the main ideas that are needed to use an SPT
phase as a resource for MBQC [19, 20, 26]. This is a more detailed account of
the story that was presented in Section 2.7.5. There are three key features of the
constructions which are relevant to the current work:

1. Logical qubits are encoded in the virtual space of the tensor network, as
described in Section 2.6. Specifically, N qubits are encoded in the 2N -
dimensional logical subspace of Eq. (3.53) which is uniform throughout the
corresponding SPT phase. One time-step of the computation is enacted by
individually measuring every qubit in a block of size N × L consisting of L
consecutive rings around the torus, where L is the period of the CQCA (to
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be determined in Sec. 3.5.1). Information can be initialized into this space
and subsequently read-out by appropriate measurement patterns on blocks.

2. Logical gates are performed by measuring a single qubit in a block in a
perturbed basis,

{|+〉+ idα|−〉, |−〉 − idα|+〉}, (3.56)

with |dα| � 1, and measuring the rest of the qubits in a block in the
basis {|+〉, |−〉}. According to Eq. (3.53), and the computational scheme of
Ref. [20], if the qubit measured in the perturbed basis is located at site (i, l)
in the block, the corresponding logical gate is, up to second order in dα,

R(i,l)(dα) = exp(2idαν(i,l)T
L−l+1(Zi)), (3.57)

where {ν(i,l)} is a set of constants that characterize the part of the state that
is not uniform within the SPT phase. That is, they are defined in terms
of the Bj

[l] from Eq. (3.53). These constants can be easily measured before
computation, again using local measurements only. Therefore, they may be
accounted for by adjusting dα accordingly. If one of ν(i,l) is equal to 0, which
only occurs for a subset of states of zero measure, the computation fails. The
gate R(i,l)(dα) represents an infinitesimal rotation generated by TL−l+1(Zi).
By composing these gates in the appropriate order, we can achieve any
rotation generated by elements of the Lie algebra OT which is generated by
the set {T l(Zi)|i = 1, . . . , N, l = 1, . . . , L} with linear combinations and the
matrix commutator. Thus our full set of gates is given by the Lie group
LT = exp(iOT ). LT is the same for every state in the SPT phase defined by
the CQCA T (to be investigated in Section 3.5.2).

3. Every non-trivial gate must be followed up by measuring a large number of
blocks of qubits in the {|+〉, |−〉} basis. The number of blocks measured is
on the order of the correlation length of the system (in the long direction),
which is finite by the assumption of the tensors being normal. This serves
to decouple the two virtual subspaces in Eq. (3.53), which become slightly
entangled after each logical gate.

3.5.1 Period of the CQCA
We first determine the period L of our CQCA, which determines the length of a
single step of computation. We recall the matrix representation t of the CQCA.
The task is to determine the smallest L such that tL = 1, which we do by invoking
Eq. (3.10). We will prove the following result:

Proposition 3. For every CQCA, there exists an unbounded sequence of increasing
system sizes N such that the period grows at most linearly in N .

This result is important, since it means that size of computational blocks, as
described above, grows efficiently with the number of qubits.
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N L N L N L
2 3 18 84 34 510
4 6 20 60 36 168
6 12 22 186 38 1026
8 12 24 48 40 120
10 30 26 126 42 2340
12 24 28 36 44 372
14 18 30 1020 46 12282
16 24 32 48 48 96

Table 3.1: The period L as a function of the circumference N for the fractal CQCA
Tf in Eq. (3.22). For N = 2k, the relationship is linear. In general, L appears to
grow with an exponential envelope.

Proof. Since the trace of the CQCA appears in t2, the analysis now splits into
three parts, depending on whether the CQCA is of periodic, glider, or fractal type.

Periodic CQCA. For periodic CQCA, we have Tr(t) = a, where a = 0, 1. Using
Eq. (3.10), it is easy to check that the period is then L = a+ 2 [208]. Note that
this period is independent of the circumference N . In particular, the CQCA is
periodic even on an infinite chain, while the glider and fractal CQCA have a finite
period only when periodic boundary conditions are enforced. This is the reason
why only these CQCA are called “periodic”.

Glider CQCA. For CQCA that support gliders, the period can be determined from
the cone structure in Fig. 3.2(a). For c = 1 and N even, this cycle takes N steps
(for odd N , it takes 2N steps, but we only consider even N). For c > 1, the above
is still true, but there may be a smaller number L also satisfying tL = 1. We
ignore this possibility for simplicity. Thus, the period of a glider CQCA on a ring
of circumference 2N can always be taken to be L = 2N .

Fractal CQCA. The case is more complicated for CQCA with fractal behaviour.
Indeed, due to their fractal nature, the period L of these CQCA can be a wildly
fluctuating function of N . In fact, L(N) can appear to have exponentially growing
behaviour, see Table 3.1. This would pose a significant problem to computation.
Since N is essentially the number of qubits, and L controls the duration of a
single step of computation, an exponential relationship implies that computation
time scales exponentially with the number of qubits. Thus, we could not call
the resulting computational scheme universal, even if we have a full set of gates.
Luckily, it turns out that this problem can be avoided. Indeed, although L(N) may
have an exponential envelope, it turns out that there is a subsequence of system
sizes for which the relationship in linear. Specifically, for N = 2k, the period L of
a fractal CQCA is either L = 2k = N or L = 2k + 2k−1 = 3

2N , as we now show.
Throughout this calculation, we will be taking powers of polynomials like∑

k cku
k. As in Section 3.2.2, we can write (∑k cku

k)2n = ∑
k ck(uk)2n ∀n ∈ N. This
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simplifies the following calculations significantly. Let,

γ := Tr(t) = β +
∑
i

αi(ui + u−i), (3.58)

for αi, β ∈ {0, 1}. With the periodic boundary conditions, we identify u−2k−1 and
u2k−1 . Then we have,

γ2k−1 = β +
∑
i

αi((u2k−1)i + (u−2k−1)i) = β. (3.59)

The proof now splits into two cases:

Case 1: β = 0. From Eq. (3.10), we have,

t2
k = (t2)2k−1 = (γt+ 1)2k−1 = γ2k−1

t2
k−1 + 1, (3.60)

where cross terms again cancel out. Since γ2k−1 = β = 0, we have t2k = 1, showing
L = 2k = N .

Case 2: β = 1. We need a formula for t2k+2k−1 . The result, which we will prove by
induction, is,

t2
k+2k−1 = (1 + γ2k)γ2k−1−1t+

[
(1 + γ2k)pk(γ) + γ2k−1]

1. (3.61)

Therein, γ = Tr(t), and pk(γ) is some polynomial in γ. The expression is simple
to confirm for k = 1 using Eq. (3.10), where p1(γ) = 0. Now assume it is true for
k. Then we have,

t2
k+1+2k = (t2k+2k−1)2 = (1 + γ2k+1)γ2k−2t2 +

[
(1 + γ2k)pk(γ) + γ2k−1]2

1. (3.62)

Now, we apply Eq. (3.10) to find,

t2
k+1+2k = (1 + γ2k+1)γ2k−1t+

[
(1 + γ2k+1)pk+1(γ) + γ2k

]
1, (3.63)

which is the desired expression where pk+1(γ) = p2
k(γ) + γ2k−2. So the formula

holds for all k. Now, since γ2k−1 = β = 1, we get t2k+2k−1 = 1, so L = 2k + 2k−1 =
3
2N .

3.5.2 Determining gate set
We must now determine the Lie group of gates LT . We will show that we can
construct a universal set of gates as long as T is simple and entangling, which
implies that T is of glider or fractal type. We construct arbitrary single-qubit
gates and a non-trivial two-qubit entangling gate, which together form a full gate
set [225–227]. The single-qubit gates follow from the fact that T is a simple CQCA,
which implies that T (Zi) = Xi. Then, if we set l = 1 in Eq. (3.57), we get all
Z-rotations on a single qubit, while setting l = L gives all X-rotations. Together,
these give a full set of single qubit gates.
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To construct an entangling gate, we generalize the technique from Ref. [26],
in which a two-qubit gate was constructed from a three-qubit gate by initializing
one qubit into a particular eigenstate on which the three-qubit gate acts trivially.
Consider T 2(Zi) for any i. If T is entangling, this operator must act non-trivially
outside of site i. Then T 2(Zi) will be a product of Pauli operators supported on
the interval [i− n, i+ n], for some minimal n 6= 0, which is symmetric about site
i. The trick now is to make every 2n-th qubit a logical qubit, and initialize the
qubits in between each logical qubit into the +1 eigenstate of the middle 2n− 1
operators in T 2(Zi). This initialization can always be done since we have all single
qubit gates at our disposal, as described in Ref. [26]. Then, T 2(Zi) will act as
a two-qubit gate on logical qubits at positions i− n and i+ n while leaving the
qubits in between unchanged. Hence, by setting l = L− 1 in Eq. (3.57), we get a
non-trivial two-qubit entangling gate on all neighbouring pairs of logical qubits
which, together with the single-qubit gates, form a universal set.

For an explicit example, consider the CQCA from Eq. (3.8) with T 2
g (Zi) =

Xi−1ZiXi+1. We initialize every even numbered qubit in the |0〉 eigenstate and use
only odd-numbered qubits as logical qubits. Then the gate exp(2idαT 2

g (Z2i)) =
exp(2idαX2i−1Z2iX2i+1) reduces to exp(2idαX2i−1X2i+1), which is an entangling
gate on the logical qubits.

3.5.3 Proving computational universality
We have now all ingredients needed for the proof of Theorem 2 for simple, entangling
CQCA. Next we show how to modify the above scheme such that we can drop the
condition that our CQCA is simple and instead apply it to any entangling CQCA.
One advantage of using simple QCA is that they allow us to easily construct a full
set of single-qubit gates. For arbitrary CQCA that are not simple, this is not as
straightforward. To address this issue, we modify the way in which we construct
fixed-point PEPS from CQCA.

The new fixed-point PEPS are defined in terms of a two-qubit unit cell, labelling
the two qubits within a unit cell by a and b. The local tensor A′T has components
given by,

(3.64)

where T is again the MPU representation of the CQCA. The choice of CQCA in
this definition is completely free, as opposed to the previous sections where we
required T to be simple CQCA.

The tensors A′T can be used to define the ring tensor A′T as in Eq. (3.12).
Proceeding from here in the same way as the qubit case, we can construct an
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3.5. Computational power of the QCA phases

Figure 3.3: The modified cone symmetries arising from the cluster CQCA Tg
of Eq. (3.8) when using the two qubit per-site construction. A (B) denotes the
Pauli-X operator acting on qubit a (b) on a given site, while operators on the
edges show the corresponding virtual representation. Modified line symmetries
can similarly be constructed as products of the modified cone symmetries. Note
that the analysis in Section 3.4 still holds in this case: the line symmetries are still
sufficient to protect the phase.

L-cycle symmetry representation,

ξ 7→ U ′T (ξ) = u′(ξ)⊗ u′(tξ)⊗ · · · ⊗ u′(tL−1ξ), (3.65)

of ZN
2 × ZN

2 , where the on-site representation is defined by,

u′(ξ) =
N⊗
i=1

Xa
i
ξXi Xb

i

ξZi , (3.66)

where Xa
i , Xb

i denotes the Pauli-X matrix acting on the qubit a and b at site i,
respectively (see Fig. 3.3). It can be easily verified that ξ 7→ U ′T (ξ) is a faithful
representation of ZN

2 ×ZN
2 as before. The virtual representation ξ 7→ V (ξ) is again

the Pauli representation, so the resulting state has non-trivial SPT order under
this L-cycle symmetry. We can thus prove that Eq. (3.53) holds throughout the
corresponding SPT phase, where Cj can now be any N -qubit Pauli, not just a
product of Z’s.

We can briefly compare this two-qubit construction to the original one-qubit
construction of Eq. (3.11). First, we show that every PEPS defined by Eq. (3.11)
with a simple CQCA T is equivalent to the PEPS defined by Eq. (3.64) with CQCA
T 2. Therefore, this construction subsumes the original one, in that all fixed-point
PEPS defined by Eq. (3.11) with a simple CQCA, along with the corresponding
SSPT phases, can also be constructed by Eq. (3.64). To see this, note that the
fixed-point PEPS defined by Eq. (3.11) can be written as an MPS as follows,

|ψT 〉 =
∑

j1,...jM

Tr
(
Zj1T . . . ZjMT

)
|j1, . . . , jM〉. (3.67)

Where P j = ⊗N
i=1(Pi)ji for a Pauli operator P = X, Y, Z. If we commute half

of the Zj past the neighbouring CQCA T on the right, and we use the fact that
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T (Zj) = X j for simple CQCA, we get

|ψT 〉 =
∑

j1...jM

Tr
(
X jMZj1T 2 . . . X jM−2ZjM−1T 2

)
|j1, . . . , jM〉. (3.68)

If we group the i-th qubits of columns 2k and 2k + 1 together, this state is exactly
the fixed-point PEPS defined by Eq. (3.64) with CQCA T 2.

Since we no longer restrict to simple CQCA, we get new fixed-point states and
phases in addition to those constructed by Eq. (3.11). In particular, all fixed-point
states in the previous sections were graph states, while this is not generally the case
for states defined by Eq. (3.64). It can also be shown, using the same technique
as before, that they are nevertheless still stabilizer states, and so they are again
unique ground states of gapped, local Hamiltonians.

The important distinction between the two constructions appears in their use
for MBQC. Because of the different Cj appearing in Eq. (3.53), the set of logical
gates that we can execute in one step is enlarged. The computational scheme is
almost identical to that described above for the single-qubit unit cell, except that
we now have a choice to measure either qubit a or b at a given site in a perturbed
basis for a logical gate. The logical gates we can execute now have the form,

R′(i,l)(dα) = exp(2idαν(i,l)T
L−l+1(Pi)), (3.69)

where Pi is either Zi or Xi, depending on whether qubit a or b is measured in the
perturbed basis, respectively. Therefore, setting l = 1 in Eq. (3.69) already gives a
full set of single-qubit rotations. We can then construct an entangling gate in a
way exactly analogous to the previous case. Again, this construction can fail only
if T is not entangling.

With this, we have constructed a full set of gates for all CQCA T which are
entangling. So we can finally complete the proof of Theorem 2,

Proof of Theorem 2. Based on the above discussions, we see that a) N can always
be scaled in such a way that the period L is linear in N or constant, and b) we
can construct a universal set of gates on q = bN/2nc qubits for a fixed n, i.e.
SU(2q) ⊂ LT . Finally, the computational scheme of Refs. [19, 20, 26] which we
employ here has polynomial overhead for logical gates. Thus, overall, we can
simulate the circuit model of quantum computation on q logical qubits in poly(q)
time, as stated in the theorem. �

Within each phase, the computational power remains uniform and hence they
truly constitute computational phases of matter. However, it is important to
note that the measurement protocol needed for gates depends on certain details
about the specific point within the phase, namely the constants ν(i,l), as in similar
schemes from previous works [19, 20, 26, 27]. This means that our schemes are
not necessarily robust against unknown small deformations within the phase, as
would be the case in fault-tolerant schemes for quantum computing. However,
the constants ν(i,l) can be readily obtained via local measurements, in a small pre-
computation before the actual quantum computation [20], giving rise to uniform
computational power across the phase. These constants are the same for each
block of computation, as we have assumed translational invariance throughout.
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3.5. Computational power of the QCA phases

Figure 3.4: The dressed cluster state as defined by the CQCA te in Eq. (3.70).
Each circle represents a qubit, and dotted lines represent graph state edges (not
tensor network legs). One symmetry generator with period L = 4 is depicted.
Since te is periodic, symmetries act along horizontal lines. However, because te is
also entangling, the width of some horizontal lines is larger than one.

3.5.4 Periodic, entangling CQCA as universal resources for
MBQC

Theorem 2 does not apply to every periodic CQCA, and there are examples of
non-entangling periodic CQCA which do not lead to universal phases: consider
again the CQCA Tp in Eq. (3.24), which is periodic and describes decoupled 1D
chains. Such a system cannot be a universal resource for measurement-based
quantum computation with our methods, since we cannot create entangling gates
with local measurements. This shows that the presence of zero-energy edge modes
of dimension 2N is not sufficient for universal MBQC, and that some additional
structure is needed to allow entangling gates. However, periodic CQCA can
also be entangling and hence computationally universal as stated in Theorem 2.
Surprisingly, in such cases being periodic is not a bug but rather a feature that we
now investigate.

Periodic, entangling CQCA have a computational advantage over glider or
fractal CQCA due to a quadratic reduction in the number of measurements per
gate. This improvement stems from the constant period L of periodic CQCA
in contrast to a period that scales linearly in N for glider or fractal CQCA (see
Section 3.5.1). As an example, consider the following periodic, entangling CQCA,

te = htg =
(

1 0
u+ u−1 1

)
. (3.70)

The corresponding fixed-point state defined via Eq. (3.64) is a dressed cluster state
which features additional qubits along horizontal lines (see Fig. 3.4). The CQCA has
a period of 2 since t2e = 1. Nevertheless, it is entangling since T (Xi) = Zi−1XiZi+1
spreads information. According to our computational scheme T (Xi) can be used as
an entangling gate on qubits i− 1 and i+ 1 while single qubit gates come for free
in the two-qubit construction. The advantage of the periodic CQCA comes from
the fact that our scheme requires all the qubits within a block to be measured in
order to perform a single gate. Since the block size is N × L with L = 2 for te, we
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gain a computational advantage over glider and fractal CQCA which require at
least N ×N measurements per block.

3.6 Discussion & Conclusions
In this work, we have used quantum cellular automata to define subsystem symme-
tries and, subsequently, SSPT phases of matter. With this, we developed a new
framework for identifying computationally universal phases of matter, and also for
characterizing SSPT order. We have determined which of the resulting phases of
matter are computationally universal from the perspective of measurement-based
quantum computation. The relation we uncovered between QCA and SSPT order
in tensor networks should aid in the understanding and classification of these novel
phases of matter.

Our general framework of building MBQC schemes based on CQCA remains
relatively unexplored. In particular, we can choose different CQCA in order to
tailor the elementary logical gate set towards the problem at hand, a fact that we
did not take advantage of in our general proof of universality. For example, when
two-qubit nearest neighbour gates are sufficient, periodic CQCA can be employed
for a computational speedup as shown in the previous section. On the other hand,
altering the elementary gate set in MBQC to include higher order entangling gates
is possible in our framework, and can lead to depth-savings in gate synthesis [181].
Also, as pointed out in Ref. [27], the self-similar nature of fractal CQCA can lead
to the possibility of entangling far-separated qubits in a single step. It is therefore
worthwhile to explore the different computational properties bestowed by different
CQCA.

The flexibility of our framework could also have implications for other related
protocols of quantum computation that are partially based around QCA. One
example is that of secure delegated quantum computation: some protocols for
universal blind quantum computation [209, 210] employ schemes for MBQC that
only make use of measurements in a single plane. This requirement is naturally
fulfilled by our scheme. The same requirement has also recently appeared in
proposals to demonstrate superior quantum computational power in near-term
devices [213, 214]. Also related is quantum computation restricted to translationally
invariant operations [193, 211], which is particularly useful for quantum computing
architectures that are restricted to global control [212]. There are examples of all
of the above protocols that are based on the cluster state QCA Tg. It would be
interesting to investigate whether our general framework can be adapted to these
settings, and in particular whether the speedup identified in Section 3.5.4 carries
over to advantages in any of the above protocols.

Finally, while we only considered QCA acting as Clifford circuits on chains of
qubits, it is possible to generalize beyond this scenario. First, we could extend
our analysis to systems of arbitrary local dimension d. In this case, we could
realize systems with subsystem symmetry groups of the form (G × G)N for an
arbitrary finite Abelian group G with |G| = d, and our analysis would be in
terms of generalized Pauli and Clifford operators [216]. Our general formalism in
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Section 3.3 is already equipped to handle this extension, which would lead to new
computationally universal phases, and may be useful for the classification of SSPT
phases. Similarly, we can extend our results to higher dimensions using the same
mapping to a quasi-1D system. In particular, moving to 3D opens up the study of
fracton topological order [30, 52, 53] and fault-tolerant MBQC [228, 229]. Finally,
with some modifications, our framework should also be able to handle non-Clifford
QCA, although in this case the resulting subsystem symmetries would likely not
be simple products of local operators.
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Chapter 4

Detecting subsystem
symmetry-protected topological
order via entanglement entropy

By this point, we have characterized SSPT phases in terms of their tensor network
representations, and shown how they may be used for universal MBQC. In this
chapter, we turn to the physical properties of SSPT phases and show how they
may be detected in numerical simulations. The starting point of our analysis is
the observation of Ref. [107] that the topological entanglement entropy (TEE) of a
ground state (see Section 2.3.3) may not always match the expected value based
on the topological phase in which the state resides. In particular, the authors
of Ref. [107] showed that the 2D cluster state has a non-zero TEE for certain
bipartitions, despite the fact that it lies in a trivial topological phase. Further
studies have found similar results, typically due to the presence of symmetry-
protected topological (SPT) order localized around the boundary of the bipartition
[107, 190, 230–233]. These observations are cause for concern since the existence
of a non-zero TEE is often used as a smoking-gun signature of topological order in
analytical, numerical, and potentially even experimental studies [106, 234–242].

The point of this chapter is to show that the “spurious” TEE of the 2D cluster
state is not an accident, but rather an indication of non-trivial SSPT order. Before
the writing of this chapter, SSPT order had been given as a sufficient condition for
a non-zero TEE [190], but also an example of two states in the same SSPT phase
with different non-zero values of the TEE had been given [232]. This suggests
that SSPT phases of matter are not associated with a particular value of the TEE
and therefore that its precise value is not useful for the characterization of SSPT
order. In this chapter, we demonstrate the contrary by showing that the TEE takes
the same value for all generic states in the cluster phase phase, with deviations
only occurring at fine-tuned points. This value of the TEE, which we refer to as
the symmetry-protected entanglement entropy (SPEE) in order to emphasize its
origin, relates to the non-trivial symmetry fractionalization that occurs on the
boundary of every state in the cluster phase. Therefore, the SPEE may be used to
characterize SSPT phases of matter in the same way that the TEE characterizes
topological phases of matter.
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Going further, we turn the situation on its head by proposing to use the SPEE
as the basis for a new numerical technique to detect SSPT order in ground states
of gapped local Hamiltonians. Namely, we show how one can straightforwardly
extract the SPEE from a PEPS representation of a ground state, and then apply
this method to the ground states of various Hamiltonians obtained by perturbing
the cluster state Hamiltonian. In accordance with our analytical arguments, we
find that the SPEE can reliably and unambiguously detect SSPT order and SSPT
phase transitions. Moreover, since the SPEE makes no reference to any particular
symmetry of the system, it detects any and all SSPT order within a ground state,
unlike usual SPT order parameters which must be defined with respect to a specific
representation of the symmetry [14, 59, 135, 223, 243]. As a consequence of this,
we discover a large region in which the SSPT order of the cluster state appears
to persist despite the subsystem symmetries being explicitly broken. We make
a preliminary analysis of this new phase of matter in terms of a new notion of
subsystem time-reversal symmetry of the cluster state.

Together, our analytical and numerical results show that the SPEE is an
effective tool to detect and characterize the SSPT order of the 2D cluster phase.
Going beyond this, we also study 3D cluster states with different types of subsystem
symmetries and calculate γ in each case, observing distinct behaviours depending
on the structure of the symmetries. We believe that our uniformity arguments
for the 2D cluster phase will hold equally well for these 3D phases, and also other
types of SSPT order. In an outlook, we discuss the implications of our results
for measurement-based quantum computation, detection of fracton order, and the
possible experimental observation of SSPT order.

This chapter is organized as follows. In Section 4.1, we define the cluster state
and cluster phase, and show their relation to corrections to the area law. In Section
4.2, we present an analytical argument that γ is the same for almost every state in
the cluster phase. Then, in Section 4.3, we formulate our numerical method and
use it to examine the SSPT order of the cluster state with various Hamiltonian
fields and interactions added. In Section 4.4, we calculate the area law corrections
for cluster states defined on various 3D lattices, and we finish in Section 4.5 by
presenting our conclusions and future directions of work.

4.1 Cluster phase and corrections to the area law
We will begin by reviewing the definition of the cluster state and the cluster phase.
We will then calculate the entanglement entropy for a continuous one-parameter
family of states in the cluster phase, and find that all states in this family have the
same correction to the area law, except for a singular point where the correction
is larger. This singular point corresponds to the example given in Ref. [232]. We
trace back this larger correction to extra symmetries of the state which do not
generically hold in the cluster phase, thereby establishing the premise that all
generic states in the cluster phase have the same correction to the area law.

Throughout this chapter, we consider the quasi-1D geometry of a 45◦ rotated
2D square lattice on an infinitely long cylinder with circumference N (although
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Figure 4.1: A section of the rotated square lattice considered in this chapter. The
lattice lives on an infinite cylinder, extending infinitely to the left and right with
periodic boundary conditions in the vertical direction. Here, the circumference
is N = 5. The dashed line indicates the boundary between the A (right) and B
(left) subsystems. The solid rectangle denotes the two columns of sites that make
up one block in the quasi-1D system considered in Section 4.2. The subsystem
symmetries Uh,v(c) defining the cluster phase are pictured, as are the stabilizers
Kx,y and K ′x,y that define the states |C〉 and |C(π)〉, respectively.

similar results hold also for a finite cylinder or torus with dimensions much larger
than the correlation length). The cylinder is bipartitioned into two semi-infinite
subsystems, denoted A and B. We denote the cluster state on this lattice as |C〉
and recall the Hamiltonian of the 2D cluster state,

HC = −
∑
x,y

Kx,y. (4.1)

which is given in terms of the stabilizers Kx,y = Xx,yZx+1,yZx−1,yZx,y+1Zx,y−1.
Having rotated the square lattice, we denote the subsystem line symmetries, which
move horizontally and vertically along the cylinder, as

Uv(c) =
N∏
x=1

Xx,c−x,

Uh(c) =
∞∏

x=−∞
Xx,c+x.

(4.2)

We set our origin such that Uv(0) corresponds to the symmetry lying parallel to
the boundary of A, see Fig. 4.1.

This chapter deals with calculating the entropy of entanglement of the reduced
density matrix ρA, where the A subsystem corresponds to the right half of the
cylinder. For much of this chapter we will make statements about the structure of
ρA directly, such that our claims hold for any α-Rényi entropy (Eq. 2.41) including
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the Von Neumann entropy obtained in the limit α→ 1. However, we will sometimes
focus on S(2)

A as it is most amicable to our numerical methods. It is also the most
convenient to measure experimentally [240–242]. Whenever we make a statement
that holds for all α, we will simply use the notation S or SA ≡ S(ρA).

As the cluster state is a stabilizer state, SA may be straightforwardly calculated
using the method shown in Section 2.3.3. Namely, if G is the group generated
by all stabilizers Kx,y, and GA ⊂ G is the group of all elements of G which act
non-trivially only on region A, then we have the following equation from Section
2.3.3:

SA = |A| − log2 |GA|. (4.3)
All stabilizers Kx,y corresponding to lattice sites (x, y) ∈ A− ∂A are contained in
GA. The product of all stabilizers along the boundary, which is precisely the line
symmetry Uv(0), is also in GA, see Fig. 4.1. Hence we have |GA| = 2|A|−|∂A|+1, so
SA = |∂A| − 1 = N − 1. We see that the SPEE takes the value γ = 1 (= log2 2) for
the cluster state, due to the subsystem symmetries forming non-local constraints
lying along the boundary of A [107, 232, 233].

As a first venture away from the cluster state, we consider a family of states
|C(θ)〉 = U(θ)|C〉, where the circuit U(θ) is defined by acting with the two-body
unitary (H ⊗H)Cθ(H ⊗H) on every pair of neighbouring sites, where H is the
Hadamard matrix and Cθ = diag(1, 1, 1, eiθ). U(θ) is diagonal in the local X-
basis, hence it commutes with the subsystem symmetries of the cluster state, so
|C(θ)〉 is in the cluster phase for all θ. We choose this family since it provides a
smooth interpolation between the cluster state, |C(0)〉, and the state considered in
Ref. [232], |C(π)〉, which was shown to display an enlarged value of γ.

For general θ, |C(θ)〉 is not a stabilizer state, so we need a different method to
calculate its entropy. In order to calculate S(2)

A (θ), we use the method of Ref. [107].
Notice that |C(θ)〉 may be created by a unitary circuit acting on a product state.
Therefore, by applying unitaries on the A and B subsystems separately, which
does not change the entropy, we may disentangle all qubits except those on a strip
along the boundary. Thus the calculation of entropy for our 2D system is reduced
to that of a 1D system with an extensive bipartitioning, and this may be easily
computed using a transfer matrix method. Namely, we can construct a matrix Q(θ)
that follows from the definition of |C(θ)〉, such that S(2)

A (θ) = − log2 Tr(Q(θ)N),
see Ref. [107] for more details. Let {λk}k be the set of eigenvalues of Q(θ) with
maximum magnitude and write λk = reiφk . The entropy is then,

S
(2)
A (θ) = N log2 r − log2m+ . . . , (4.4)

where m = ∑
k e

iNφk and the terms contained in the dots decay exponentially in N .
The prefactor of the area law is therefore given by log2 r, while the SPEE is given by
log2m. Thus, the SPEE can be determined by examining the eigenvalues of Q(θ)
with largest magnitude. If there are no non-positive eigenvalues with magnitude r,
then the constant m is simply the degeneracy of the largest eigenvalue. If such
eigenvalues do exist, then m can exhibit periodic N dependence.

The spectrum of Q(θ) can be computed exactly1, and the results are shown in
1This is possible because Q(θ) is simply a 256 × 256 matrix, which can be exactly diagonalized
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Figure 4.2: Spectrum of the transfer matrix Q(θ). For each value of θ, the moduli
of the 18 largest eigenvalues of Q(θ) are depicted, where each dot indicates at least
2 degenerate eigenvalues. At each value of θ, the largest eigenvalue is two-fold
degenerate, except for the point θ = π where it is 16-fold degenerate in magnitude.

Fig. 4.2. For θ 6= π, there are two eigenvalues of largest magnitude, both of which
are positive. Hence we have m = 2 and γ = 1. At θ = π, there are 16 eigenvalues
of largest magnitude. More precisely, we find that the non-zero eigenvalues of Q(π)
are 1

4 , −
1
4 ,

i
4 , and −

i
4 with degeneracies 8, 4, 2 and 2, respectively. In this case, we

have m =
(
8 + 4(−1)N + 2iN + 2(−i)N

)
, which gives,

S
(2)
A (π) =


2N − 4 if 4 | N
2N − 3 if 2 | N and 4 - N
2N − 2 if 2 - N

. (4.5)

Therefore, the states |C(θ)〉 have a SPEE γ = 1 for all θ 6= π, while γ > 1 for
θ = π.

The enlarged SPEE for θ = π can be attributed to the fact that |C(π)〉 has
many extra symmetries, aside from those in Eq. (4.2), which are not satisfied for
θ 6= π. Namely, |C(π)〉 is a stabilizer state satisfying K ′x,y|C(π)〉 = |C(π)〉 where
the stabilizers K ′x,y are as pictured in Fig. 4.1. One can alternatively compute
S

(2)
A (π) using Eq. (4.3), and the results agree with Eq. (4.5)2. At the end of the

next section, we will use the tensor network representation of |C(π)〉 to more
clearly identify the mechanism through which these extra symmetries lead to a
larger SPEE.

numerically
2The enlarged SPEE comes from extra subsystem symmetries which appear in GA. It would

be interesting to investigate whether or not the enlarged SPEE would persist if these extra
symmetries where preserved.
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Figure 4.3: Two different tensor network representations of the 2D cluster state.
On the left, we define the tensor C1 which has the geometry of the rotated square
lattice. On the right, we define the tensor C2 which has two physical legs per
tensor, labelled a and b. The corresponding tensor network has the geometry of
a (non-rotated) square lattice. Both tensors are defined in terms of Kronecker-δ
tensors and the Hadamard matrix H. The dashed lines indicate the boundary
between the A and B subsystems.

4.2 Analytical argument for uniformity of the SPEE
The results of the previous section suggest that the SPEE γ is uniform throughout
the cluster phase, except for certain fine-tuned states with enhanced symmetries.
Now, we will use tensor networks to give an analytical argument that all generic
states in the cluster phase do indeed have the same SPEE. The fact that γ ≥ 1
was argued in Ref. [190] (using the result of Ref. [107]) under a similar set of
assumptions as those used here3. The purpose of the more careful argument of this
section is to argue that γ = 1 exactly. We begin by restating the tensor network
characterization of the cluster phase given in Section 2.7.1 in a more suitable
manner, and then we show how this can be used to constrain γ.

4.2.1 Tensor network description of the cluster phase
In Fig. 4.3, we define two PEPS representations of the cluster state. The first
tensor, C1, is the usual PEPS representation of the cluster state (Eq. 2.124). In this
section, we will find it more convenient to consider a different PEPS representation
of the cluster state, denoted C2, which has two qubits per unit cell and is defined
on a 45◦-rotated square lattice, see Fig. 4.3. The two tensor networks in Fig. 4.3

3Namely, they assumed that, throughout the phase, we can disentangle the degrees of freedom
far from the cut using unitary operators localized on either side of it. This is essentially the same
as assuming a finite bond-dimension PEPS representation, as we do here.
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4.2. Analytical argument for uniformity of the SPEE

can be related by merging and splitting δ-tensors appropriately. The equivalent
tensor characterization of the cluster phase (Eq. 2.129) for this two qubit unit cell
is,

where

. (4.6)

B2 is some tensor describing a projected entangled pair operator which commutes
locally with Xa/b as indicated, where Xa/b denotes X acting on one of the two
qubits in a unit cell, labelled a/b as in Fig. 4.3. Throughout the cluster phase, C2
stays the same, but B2 varies.

If we contract the physical leg of any tensor A with some state |i〉 ∈ {|+ +〉, |+
−〉, | −+〉, | − −〉}, we obtain a tensor with 4 virtual legs, denoted Ai. In terms of
these components, Eq. (4.6) reads,

Ai2 = Bi
2 ⊗ Ci

2. (4.7)

Thus, the virtual space of the tensor network decomposes into two subspaces, which
are again called the junk and protected subspaces, corresponding to the operators
Bi

2 and Ci
2, respectively. This decomposition is central to the following arguments.

We now map our system onto a quasi-1D system by combining 2N spins around
the cylinder into one larger block as shown in Fig. 4.1. The associated tensor A is
obtained by combining N tensors A2 in a ring around the cylinder, see Fig. 4.4. If
we let i = (i1, i2, . . . , iN) be an element of the index set I labelling all 22N states
in a block, we can again define the tensor components Ai. Due to the subsystem
symmetries Uv(c), the wavefunction of our state consists only of terms with an even
number of |−〉 states in both columns in each block. Denoting this even-parity
subset of states Ie ⊂ I and the corresponding odd-parity subspace as Io ⊂ I, we
can therefore modify the tensor A by setting Ai = 0, ∀i ∈ Io, without changing
the state described by A. This modification simplifies our description later on.

For the remaining i ∈ Ie, Eq. (4.7) implies the decomposition Ai = Bi ⊗ Ci,
where B and C denote the blocked tensors living in the junk and protected subspaces,
respectively. We can straightforwardly determine Ci using the definition of C2.
We find that Ci = P iΠ, ∀i ∈ Ie, where each P i is some tensor product of Pauli
operators and,

Π = 1 +X⊗N

2 , (4.8)

is a rank-2N−1 projection matrix with X⊗N ≡ ∏N
k=1 Xk. Therein, Xk denotes X

acting on the k-th component of the N -component protected subspace. Importantly,
the operators P i also satisfy P iΠ = ΠP i, for all i ∈ Ie.

4.2.2 Constraining the SPEE in the cluster phase
We will now use the above characterization of the cluster phase to show that the
entanglement entropy SA can be decomposed into two parts, SA = SB + SC , where
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Figure 4.4: a) Illustration of the PEPS transfer matrix and its fixed points. b)
Relation between the fixed points of T and T via reorientation of the legs of each
tensor. c) The matrix Q whose spectrum encodes the entanglement entropy for all
system sizes N .

SC is the entropy of the cluster state, and SB is essentially the entropy of the
PEPS defined by the tensor Bi

2. Since we know SC = N − 1, and we will argue SB
satisfies an area law with no correction for generic Bi

2, we will find that SA has a
correction of γ = 1 for generic states in the cluster phase.

As shown in Section 2.5, entanglement entropy can be straightforwardly calcu-
lated in tensor networks in terms of the fixed points of the transfer matrix. We
define the transfer matrix as,

T =
∑
i∈I
Ai ⊗ Āi, (4.9)

where the bar denotes complex conjugation. We can normalize our PEPS such
that the largest eigenvalue of T is 1, and denote by |R〉 and 〈L| the left and right
fixed-points of T, such that T|R〉 = |R〉 and 〈L|T = 〈L|. For the following proof,
we will find it more convenient to work with the associated quantum channel,

T (ρ) =
∑
i∈I
AiρAi†, (4.10)

which is related to T by redefining the input and output legs of the tensor. We
will refer to both T and T as the transfer matrix. The fixed points |R〉 and 〈L|
of T correspond to fixed points σR and σL of T and its adjoint T † = ∑

iAi†ρAi,
respectively. See Fig. 4.4 for a graphical representation of these objects.

An important property of the cluster phase is that the fixed point of the
transfer matrix is unique, with all other eigenvalues having magnitude less than
unity. Specifically, a degenerate fixed point space of the transfer operator would
manifest itself as long-range correlations along the cylinder axis – either for local
operators, amounting to conventional long-range order [131], or for loop operators
acting around the cylinder, amounting to topological order [244]. Since any such
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order is absent in the cluster state (whose transfer operator has a unique fixed
point), and thus by definition in the whole cluster phase, the fixed point of the
transfer matrix must be unique in the whole cluster phase.

As shown in Section 2.5, we can express the reduced density matrix ρA as
ρA = V†σV where V is an isometry and σ =

√
σTLσR

√
σTL , with T denoting the

transpose. Thus, SA = S(σ). The rest of this section is dedicated to constraining
σ within the cluster phase.

To begin, note that, due to Eq. (4.7), T satisfies many symmetries throughout
the entire cluster phase. First, we have,

T ([1⊗Xk] ρ [1⊗Xk]) =
∑
i∈I
Ai [1⊗Xk] ρ [1⊗Xk]Ai†

=
∑
i∈Ie

(
Bi ⊗ P iΠXk

)
ρ
(
Bi ⊗XkΠP i

)
=
∑
i∈Ie

(
Bi ⊗XkP iΠ

)
ρ
(
Bi ⊗ ΠP iXk

)
= [1⊗Xk] T (ρ) [1⊗Xk] . (4.11)

Therein, Xk acts on the protected subspace, while 1 acts on the junk subspace. In
the second equality, we substituted Ai = Bi ⊗ P iΠ. In the third equality, we used
the facts that XkP i = ±P iXk and XkΠ = ΠXk. In the same way, we can derive,

T (ZkZk+1ρZkZk+1) = ZkZk+1T (ρ)ZkZk+1. (4.12)

Above, and in the rest of this section, we have omitted the identity operators acting
on the junk subspace for notational simplicity. Finally, because X⊗NΠ = Π, we
also have the symmetries,

T (ρ) = X⊗NT (ρ) = T (ρ)X⊗N . (4.13)

All of the above symmetries hold also for T †. These symmetries are a reflection
of the symmetry fractionalization on the boundary that characterizes the cluster
phase, as described in Section 2.7.1.

Since the fixed-points are unique, they inherit these symmetries. For example,
if σR is the fixed-point of T , Eq. (4.11) implies that XkσRXk is as well. Since
the fixed-point is unique up to a multiplicative constant, we have XkσRXk ∝ σR.
Since σR is positive, and conjugation by Xk preserves the trace, we must have
XkσRXk = σR. Using similar arguments, we get all of the following symmetries:[

σR/L, Xk

]
=
[
σR/L, ZkZk+1

]
= 0,

X⊗NσR/L = σR/LX
⊗N = σR/L. (4.14)

These symmetries completely constrain σR/L on the protected subspace, with Π
being the unique solution to the constraints. Thus, the fixed points decompose
across the junk and protected subspaces as σR/L = σ̃R/L ⊗ Π for some unknown
states σ̃R/L. This gives σ = σ̃ ⊗ Π, where σ̃ =

√
σ̃TL σ̃R

√
σ̃TL .
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Having constrained the fixed points in the protected subspace, what can we
now say about the unconstrained part σ̃? It turns out that σ̃R/L are themselves
fixed points of a certain transfer operator. Indeed, we have,

T (σ̃R ⊗ Π) =
∑
i∈I
Ai(σ̃R ⊗ Π)Ai†

=
∑
i∈I
Biσ̃RBi† ⊗ CiΠCi†

=
∑
i∈Ie
Biσ̃RBi† ⊗ Π, (4.15)

where we used the facts that Ci = 0, ∀i ∈ Io, and [Ci,Π] = 0, ∀i ∈ Ie. Since
T (σ̃R ⊗ Π) = σ̃R ⊗ Π by definition, this gives

T̃ (σ̃R) :=
∑
i∈Ie
Biσ̃RBi† = σ̃R. (4.16)

Furthermore, Eq. (4.15) implies that every eigenvector ρ̃ of T̃ yields an eigenvector
ρ̃⊗Π of T with the same eigenvalue. Therefore, σ̃R is the unique fixed-point of T̃ ,
since the fixed-point of T is unique. Similarly, σ̃L is the unique fixed-point of T̃ †.

Since σ = σ̃ ⊗ Π, the entanglement entropy decomposes into two components,

SA = S(σ) = S(σ̃) + S(Π), (4.17)

where S(Π) = N − 1 is the entropy of the cluster state. What remains is to
understand the entropy contribution S(σ̃). We will argue that S(σ̃) generically
satisfies an area law with no correction. To this end, consider a generic tensor
Ai2 = Bi

2 ⊗ Ci
2 which is in the cluster phase. Since it belongs to the cluster phase,

it can be connected to the cluster state via a smooth path Ai2(θ) = Bi
2(θ) ⊗ Ci

2
without closing the gap of the transfer operator T . This implies that Bi

2(θ) smoothly
connects Bi

2 to a trivial tensor, where the corresponding transfer operator T̃ must
remain gapped along the path as well. Up to the restriction i ∈ Ie, T̃ is thus
the transfer operator of a system in the trivial phase. However, we expect that
such a global parity constraint will only affect the entropy if the system either has
topological order – which we have ruled out – or physical symmetries in the basis
of the constraint, which would require fine-tuning of the Bi

2. Thus, we expect the
fixed point of T̃ to have the structure of a generic fixed point in the trivial phase,
which does not exhibit long-range correlations and thus no constant correction to
the area law.

Overall, this reasoning implies that, for generic points in the cluster phase, the
entropy S(σ̃) should scale as,

S(σ̃) ∝ N, (4.18)

with corrections vanishing as N →∞, whereas constant corrections are expected
only at fine-tuned points with additional symmetries. This is confirmed by numeri-
cal study of generic tensors Bi

2 up to bond dimension 4. We thus find that, for
a generic point in the cluster phase, the entanglement entropy should scale like
SA = aN − 1 for some constant a.
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4.3. Numerical detection of SSPT order

In light of these arguments, let us now reconsider why |C(π)〉 from Section
4.1 has a correction γ > 1. For this state, one can write a PEPS in the form of
Eq. (4.6), where Bi is the same tensor as Ci, up to applying H on each physical leg.
Therefore, in addition to Eqs. (4.11-4.13), T has just as many extra symmetries
which act non-trivially on the junk subspace. These symmetries serve to constrain
σ̃R/L, leading to the increased value of γ. Such symmetries are generically not
present in the cluster phase, and indeed disappear for all θ 6= π, reflected by the
generic correction γ = 1.

4.3 Numerical detection of SSPT order
Above, we have argued that γ = 1 within the entire cluster phase, except at certain
fine-tuned points of enhanced symmetry. In this section, we perform numerical
calculations of γ in ground states. The motivation of this is twofold. First, we
would like to substantiate our analytical arguments. By considering known models,
we will confirm that γ = 1 within the cluster phase, and γ = 0 in the trivial phase.
Second, once we are confident that γ = 1 indicates the presence of SSPT order,
we can use it as a probe for phase transitions. We will add various fields and
interactions onto the cluster Hamiltonian, with phase transitions into the trivial
phase indicated by γ suddenly dropping from 1 to 0. This study will lead us to
the discovery of a new phase of matter beyond the cluster phase.

4.3.1 Description of the algorithm
We use the following method to calculate γ in ground states. Given a Hamiltonian
H, we use variational infinite projected entangled pair state (iPEPS) techniques to
obtain a PEPS approximation to the ground state [161]. We then use this PEPS
to construct the transfer matrix as in Eq. (4.10), and use a TEBD-based infinite
matrix product state (iMPS) algorithm to obtain matrix product operator (MPO)
approximations for the fixed-points σR and σL. Using this, we can write

S
(2)
A = − log2 Tr(σRσTLσRσTL) = − log2 Tr

(
QN

)
, (4.19)

where Q is a matrix obtained from the MPO tensors describing σR and σTL , see
Fig. 4.4 4. For all states encountered in this section, the leading eigenvalue of Q
will either be unique or two-fold degenerate. Denote the two largest eigenvalues of
Q (which may or may not be degenerate) as λ0 and λ1. In analogy with Eq. (4.4),
we have

S
(2)
A = N log2 λ0 − γ + . . . , (4.20)

where γ = 1 if λ0 = λ1, and γ = 0 otherwise. Therefore, we can determine γ
from the ratio λ1/λ0. We note that this ratio is closely related to the replica
correlation length that was introduced in Ref. [107] to study spurious corrections
to the area law. A similar method to compute entanglement entropy in PEPS was
also proposed in Ref. [245].

4We remark that the matrix Q is not the same object as the matrix Q(θ) introduced in Section
4.1, although they are closely related
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4.3.2 Stability of the cluster phase
Now we use the above method to investigate the fate of the SPEE under various
local fields or interactions added to the cluster Hamiltonian, one at a time. The
goal is to support our argument that the value γ = 1 characterizes the cluster phase,
meaning that this value persists unless the subsystem symmetries are explicitly
broken or a phase transition is crossed.

We consider a Hamiltonian of the form:

H ′ = HC +
∑
x,y

h′x,y, (4.21)

for several different choices of h′x,y, each with different symmetries. In Fig. 4.5, we
plot λ1/λ0 as a function of the strength of the perturbation h′x,y. The important
findings are the following:

(i) When a small symmetry respecting perturbation is added to the Hamiltonian,
the SPEE keeps the value γ = 1.

(ii) When the strength of the symmetry respecting perturbations are increased,
we encounter phase transitions indicated by a sudden drop to γ = 0. The location
of the phase transitions agree with known results where available.

(iii) Adding a term which does not commute with the subsystem symmetries
removes the SPEE for any finite coupling strength.

Overall, these results support our analytical results and confirm that the SPEE
is a useful probe for detecting SSPT order and phase transitions. We will now
discuss each choice of h′x,y in more detail.

Symmetry respecting terms

We first consider adding terms which commute with the subsystem symmetries.
For such terms, we expect that the value of the SPEE will remain constant up
until an SSPT phase transition is reached, at which point it should should jump
to 0. The first term we consider is a simple local X-field:

h′x,y = −hXXx,y. (4.22)

The model of a cluster Hamiltonian with added X-field been studied previously
in Refs. [12, 49, 59, 246]. For hX →∞, the model becomes a trivial paramagnet
without SSPT order, so there must be a phase transition at some value of hX .
The model is self dual under the unitary circuit UCZ := U(π) (see Section 4.1),
so this phase transition should occur at hX = 1. Indeed, via a non-local duality
transformation, this model can be mapped to the so-called Xu-Moore model with
a transverse field, which is known to have a first order phase transition at hX = 1
[12, 59, 247]. In agreement with these facts, we find that λ1/λ0 changes from
1 discontinuously at the transition point, such that γ jumps to 0 at this point,
thereby correctly detecting the phase transition.

The next term we consider is a four-body interaction,

h′x,y = −J�ZZZZZx−1,yZx+1,yZx,y−1Zx,y+1. (4.23)
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Figure 4.5: Entanglement entropy versus field or interaction strength of various
terms added to the cluster Hamiltonian. h is a dummy variable, standing for the
different variables indicated in the legend. The y-axis shows the ratio of the two
largest eigenvalues of the transfer matrix Q defined in Fig. 4.4. There is a correction
γ = 1 to the area law if λ1/λ0 = 1, and otherwise it is 0. The inset zooms in on
the region indicated by the dotted circle, and shows that the symmetry-breaking
terms destroy the correction for any finite value of h.

This is the minimal term that contains Z operators yet still commutes with all
subsystem symmetries. Interestingly, this model behaves in the opposite way to
first one, in that it is mapped to the Xu-Moore model under UCZ , while it is
self-dual under the same non-local duality transformation. These facts predict a
phase transition at J�ZZZZ = 1, and this is again in agreement with the behaviour
of λ1/λ0.

The final symmetry-preserving term we consider is a nearest-neighbour Ising
interaction,

h′x,y = −JXX (Xx,yXx+1,y +Xx,yXx,y+1) . (4.24)

To the best of our knowledge, this model has yet to be studied in the literature.
Via the same non-local duality transformation mentioned earlier, it may be mapped
onto two Xu-Moore models coupled by Ising interactions. The SPEE disappears at
JXX = 0.5, suggesting that there is an SSPT phase transition into the symmetry-
breaking phase at this point.

We also verified that simultaneously adding all three symmetry respecting
terms with random small couplings does not change the SPEE. This shows that
the behaviour observed above is not a consequence of the specific Hamiltonians
considered, and is instead generic behaviour.

Symmetry breaking terms

We now turn our attention to terms which anti-commute with the subsystem
symmetries, and therefore explicitly break them. For these terms, the SSPT order
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Figure 4.6: Phase diagram of the cluster model with added local Pauli X and Y
fields with field strengths hX and hY , respectively. The local magnetizations 〈mX〉
and 〈mY 〉 along the X and Y directions, and the ground state energy per site 〈H〉
are plotted alongside the ratio λ1/λ0 of the two largest eigenvalues of the matrix
Q. There is a large region in which this ratio is very nearly 1, indicating that the
SPEE takes the value γ = 1 in this region.

should be destroyed for any finite coupling strength, so λ1/λ0 should decrease from
1 immediately. The simplest symmetry-breaking term is a Z-field,

h′x,y = −hZZx,y. (4.25)

As predicted, we find λ1/λ0 < 1 for any value of hZ . Furthermore, this model is
mapped to a trivial Hamiltonian under the action of UCZ . Therefore, there is no
phase transition for any value of hZ , and this is consistent with the smooth decay
of λ1/λ0 that we observe.

The next term we consider is a next-nearest neighbour interaction,

h′x,y = −J×ZZ (Zx,yZx+1,y+1 + Zx,yZx−1,y+1) . (4.26)

While this term anti-commutes with the subsystem symmetries, it commutes with
the global “checkerboard” Z2×Z2 symmetry of the cluster state, which is generated
by applying X to all even or all odd spins on the square lattice. The cluster state
has “weak” 2D SPT order under this global symmetry group, which is defined by
a 2D SPT order that is only non-trivial in the presence of translational invariance
[22, 60]. Therefore, it is important to confirm that the non-zero value of the SPEE
is due to the subsystem symmetries, and not the global symmetries alone. Indeed,
we find λ1/λ0 < 1 for any finite value of J×ZZ , indicating that the global symmetries
are not sufficient to protect the SPEE. As opposed to the previous case, we observe
some singular behaviour of λ1/λ0 as J×ZZ is increased. This is explained by the fact
that, under UCZ , this model is mapped to two decoupled 2D quantum Ising models,
which undergo a second order phase transition into a symmetry-breaking phase at
J×ZZ ≈ 0.3285. Thus, the behaviour of λ1/λ0 also helps to detect non-SSPT phase
transitions.

4.3.3 Beyond the cluster phase — Time reversal symmetry
We now consider adding the term,

h′x,y = −hY Yx,y. (4.27)
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This term anti-commutes with the subsystem symmetries, as with Eq. (4.25).
Therefore, according to our findings in the previous subsection, we would expect
any finite value of hY to remove the SPEE. This turns out not to be the case, as
seen in Fig. 4.6, and this section is devoted to understanding this behaviour.

It was shown in Ref. [61] that the cluster state also has non-trivial SSPT order
protected by fractal subsystem symmetries which are composed of tensor products
of Y operators. Since the model is trivial when hY →∞, there should be a phase
transition into the trivial phase for some hY . Since the model is self-dual under
UCZ followed by applying S = diag(1, i) on every site, this transition should occur
at hY = 1. Along the y-axes of Fig. 4.6, we see good evidence that this is the case.
For example, the magnetization along the Y axis jumps discontinuously at this
point.

What is surprising is that this transition is also detected by the SPEE, which
remains equal to 1 up until hY = 1, even though the Y -field does not commute
with the subsystem symmetries. It is tempting to attribute the SPEE to the fractal
symmetries of the cluster state, which do commute with the Y -field, but this is not
the case. Consider simultaneously adding X and Y magnetic fields to the cluster
state,

h′x,y = −hXXx,y − hY Yx,y. (4.28)
We see in Fig. 4.6 that the SPEE still persists in a large region. This cannot be
due to the X line-like symmetries of Eq. (4.2), nor the Y fractal symmetries, since
both are explicitly broken by the added fields. Therefore, it appears that we have
discovered a new SSPT phase which contains at least part of cluster phase, and
which is also accompanied by a non-zero SPEE.

A similar phenomenon occurs in 1D. The 1D cluster state has SPT order under
a global Z2×Z2 symmetry, generated by applying X to all even or all odd spins on
the chain. Similar to the current scenario, this SPT order is stable under adding a
Y -field, despite the fact that this is a symmetry-breaking term. In this case, the
resolution is that the 1D cluster state also has time-reversal symmetry [94]. This
symmetry also protects the SPT order of the cluster state, and commutes with the
Y -field.

Time-reversal turns out to be the solution here as well, although it takes an
unusual form. In Ref. [59], the authors defined subsystem time-reversal symmetries
as subsystem unitary symmetries, such as the line-like symmetries considered here,
followed by global time-reversal. But it is easy to see that this also does not work,
since the global time-reversal flips the sign of all Y -fields, not just those lying
along a given line of subsystem symmetry. We therefore need a different notion
of subsystem time-reversal, in which we enact time-reversal locally only on those
sites of the lattice on which the subsystem symmetry acts non-trivially.

Ref. [248] suggested one way to implement time-reversal locally on a tensor
network. Globally, time-reversal symmetry acts on a quantum state by the action
of a unitary operator (here, the subsystem symmetries) combined with complex
conjugation of the wavefunction. With tensor networks, the wavefunction is divided
into local tensors. Thus, one can define local complex conjugation at a given site
by conjugating only the tensor associated to that site. More precisely, we can
define operators Kx,y which act on the PEPS by conjugating the tensor at site
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(x, y) only. Note that, to ensure that the proper notion of locality is used, we use
the tensor network defined on a rotated square lattice with a single-qubit unit cell,
shown in Fig. 4.3.

With this, we define our subsystem time-reversal as,

UT
v (c) =

N∏
x=1

Xx,c−xKx,c−x,

UT
h (c) =

∞∏
x=−∞

Xx,c+xKx,c+x.
(4.29)

Is this the correct symmetry to describe the phase of matter observed in Fig. 4.6?
To answer this, we consider a state described by a tensor of the following form,

where

, (4.30)
where C1 is the cluster tensor, and B∗T is the complex conjugate of BT . The state
described by a tensor of this form is not generally symmetric under Uh,v(c), but
it is symmetric under UT

h,v(c) (note that the cluster state tensor C1 is real, and
hence unaffected by K). Furthermore, if we pick a random AT of the form given
in Eq. (4.30) with bond dimension 4, then we can confirm numerically that the
resulting PEPS does indeed have γ = 1.

We conjecture that ground states in the non-trivial phase in Fig. 4.6 can be
captured by tensors of the form Eq. (4.30), in the same way that the cluster phase
is captured by tensors of the form Eq. (4.7). To argue this, we use the framework
of perturbation theory in PEPS. Consider a small perturbation away from the
cluster state

H ′ = HC +
∑
x,y

h′x,y, (4.31)

where h′x,y = −hXXx,y − hY Yx,y with hX , hY � 1. Throughout this following, we
will label sites by a single index j = (x, y) to condense notation. Defining,

V (hX , hY ) = (HC − EC)−1(1− |C〉 〈C|)
∑
j

h′j, (4.32)

the ground state, to first order in perturbation, is given by,
|ψ(hX , hY )〉 = [1 + V (hX , hY )] |C〉 (4.33)

=
1−

∑
j

(HC − EC)−1(1− |C〉 〈C|) (hXXj + hY Yj)
 |C〉 (4.34)

=
1−

∑
j

(HC − EC)−1 (hXXj + hY Yj)
 |C〉 (4.35)

=
1−

∑
j

(
hX
8 Xj + hY

10 Yj
) |C〉 (4.36)

= Λ(hX , hY )⊗N |C〉+O
(
h2
X , h

2
Y , hXhY

)
, (4.37)
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where,
Λ(hX , hY ) = 1− hX

8 X − hY
10 Y. (4.38)

In going from Eq. (4.34) to (4.35), we have used that (adopting the notation of
Section 4.4),

〈C|Xk|C〉 = 〈+|⊗N
∏
〈ij〉

CZij

Xk

∏
〈ij〉

CZij

 |+〉⊗N (4.39)

= 〈+|⊗N
∏
〈ij〉

CZij

∏
〈ij〉

CZij

Xk

∏
k′∈N(k)

Zk′ |+〉⊗N (4.40)

= 〈+|+〉N−4 〈+|−〉4 (4.41)
= 0, (4.42)

where N(k) denotes all nearest neighbours of the site k. Similarly, 〈C|Yj|C〉 =
0 ∀j, since,

Yk

∏
〈ij〉

CZij

 =
∏
〈ij〉

CZij

Yk ∏
k′∈N(k)

Zk′ . (4.43)

To go from Eq. (4.35) to (4.36), we exploited the fact that,

−HCXj |C〉 =
∑
i

KiXj |C〉 (4.44)

=
∑

i∈N(j)
KiXj |C〉+

∑
i/∈N(j)

KiXj |C〉 (4.45)

= −
∑

i∈N(j)
XjKi |C〉+

∑
i/∈N(j)

XjKi |C〉 (4.46)

= 4
∑

i∈N(j)
Xj |C〉+ (4−N)

∑
i/∈N(j)

Xj |C〉 , (4.47)

which implies that for all j, Xj |C〉 is an eigenstate of (HC − EC)−1 with inverse
energy 1/8 (note that j /∈ N(j)). The same statement holds for Yj |C〉 with inverse
energy 1/10.

Therefore, to first order in perturbation theory, we can approximate the ground
states of the model described by Eqs. (4.21,4.28) with the following PEPS tensor,

, (4.48)

where Λ = Λ(hX , hY ). Notice that Λ satisfies XΛX = Λ∗, such that A is of the
form given in Eq. (4.30). Furthermore, one can confirm that the fixed-point σ of
the associated transfer matrix is exactly Π, independent of the values of hX of hY ,
so we have γ = 1.

We will now argue that Eq. 4.30 holds to all orders in perturbation theory. To
reach higher orders in perturbation theory, we use the exponential perturbation
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theory developed in Ref. [249], which requires us to evaluate exp (V )|C〉 where
V = V (hX , hY ). Therefore, we must evaluate terms like V 2 |C〉 , V 3 |C〉, and so on.
We can use the machinery of [249] to write down PEPOs enacting the perturbations
with increasing bond dimension for any given order. The extra bond dimension is
needed to account for the fact that higher powers of V will introduce products of
Xs and Y s with different prefactors, depending on the geometry of the operator.

As long as the action of V n |C〉 on the cluster state can be expressed as sums
of Pauli strings of Xs and Y s with real coefficients, one can always find a tensor
network representation of exp(V ) in terms of a 6-legged tensor B which fulfills the
right-hand-side of Eq. 4.30. In other words, we want to show that,

V n |C〉 =
∑
ab
cabPab |C〉 , (4.49)

for all n, where Pab = ⊗
kX

akY bk , a and b are bit strings on the lattice and the
cab are real coefficients. We have seen explicitly that Eq. (4.49) holds for n = 1.
Now, assuming Eq. (4.49) holds for some n, we have,

V n+1 |C〉 = V
∑
ab
cabPab |C〉 = (HC − EC)−1(1− |C〉 〈C|)

∑
x,y

h′x,y
∑
ab
cabPab |C〉

=
∑
ab
c′abPab |C〉 , (4.50)

where c′ab are also real. Therein, we have used that the perturbation h′ consists
of Pauli-Xs and Y s with real coefficients and the fact that each product of Pauli
matrices either maps the cluster state to an exact excitation or to itself, making
(HC − EC)−1(1− |C〉 〈C|) act simply as a multiplication of each of the cab by a
real number. So Eq. (4.49) holds for all n by induction.

Therefore, it is clear that, at any given order, the tensor B describing the
perturbation will again act as a real linear combination of 1, X, Y and XY for any
given virtual state, hence the resulting PEPS tensor has the form of Eq. (4.30).
Therefore, at least up to the phase transition where perturbation theory breaks
down, the ground states in the non-trivial phase of Fig. 4.6 can be captured by
PEPS of the form Eq. (4.30), which we believe will generically have γ = 1. On
the other hand, if we also add a Z field to the Hamiltonian, the tensor obtained
from perturbation theory no longer has the form of Eq. (4.30) and, accordingly,
the SPEE disappears.

To summarize, our understanding of the phase of matter in Fig. 4.6 comes from
three steps: (1) The subsystem time reversal symmetries UT

h,v(c) are the relevant
symmetries that protect the SSPT order and (2) states in the same phase as the
cluster state under UT

h,v(c) can be captured by PEPS of the form Eq. (4.30), which
(3) generically have a SPEE of γ = 1. We leave a more rigorous confirmation of
steps (1)-(3) to future work.

4.3.4 Remarks on the numerical method
We finish this section by commenting on some relevant features of our numerical
method. To begin, we briefly compare our method of computing γ to the more
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common approach, which involves calculating ground states and their respective
entropies SA for several system sizes N , and then making a linear fit to extract
γ [106]. This method is relatively costly, in that it requires the determination of
several ground states, and it is also sensitive to finite size effects. On the other
hand, our method can obtain γ from one PEPS tensor, and works directly in the
thermodynamic limit, such that finite size effects are minimized.

Second, we see from Figs. 4.5 and 4.6 that the SPEE can serve as a very
good probe for SSPT phase transitions, with the phase boundary marked by a
clear discontinuity. In some cases, the phase transitions observed here may also
be detected by discontinuities in local magnetizations. For example, the phase
transition induced by an added X-field can be detected by 〈mX〉, as seen in Fig. 4.6.
However, Fig. 4.6 also shows that neither 〈mX〉 nor 〈mY 〉 can resolve the entire
phase diagram alone. This is to be expected, as SPT phases cannot be completely
detected by local order parameters. The SPEE, on the other hand, is inherently
non-local, and can resolve the entire phase diagram. Nevertheless, the SPEE is
still comparably simple to calculate given a PEPS ground state, so it is a genuinely
useful tool to detect SSPT phase transitions.

Finally, we note a distinct property that the SPEE has as a tool to detect SSPT
order. Usual quantities used to detect SPT order, such as string order parameters,
are explicitly defined in terms of a certain symmetry [14, 59, 135, 223, 243]. Such
quantities therefore can only determine whether a state has SPT order with respect
to this symmetry. In contrast, the SPEE is “symmetry-agnostic”, meaning that
it is not defined with respect to any particular symmetry of the state5. This is
the reason that we were able to detect the phase of matter in Fig. 4.6 without a
prior understanding of the relevant symmetry. The fact that a symmetry-agnostic
quantity like the SPEE can characterize SSPT order reflects its fundamental
differences from standard SPT order [233].

4.4 3D cluster states
We have now seen that the 2D cluster phase can be detected and characterized by
a value γ = 1 of the SPEE. In this section, we move to investigating the SPEE
in 3D systems. Going to 3D allows us to consider different types of subsystem
symmetry, and also brings our discussion closer to fracton order, which exists only
in dimension 3 and higher. We will consider cluster states defined on different 3D
lattices, each with a different notion of subsystem symmetry, and each leading to
a different type of area law correction. In light of our results for the 2D cluster
phase, we expect the observed behaviour to hold throughout the corresponding
SSPT phases.

We start by reviewing how to define cluster states on lattices other than the 2D
square lattice, also known as graph states. Consider a graph G = (V,E) consisting
of vertices v ∈ V and edges e ∈ E. To define the corresponding graph state |G〉,

5The geometry of the bipartition we use to calculate entropy is informed by the geometry of
the subsystem symmetries, but this is the only way in which the symmetry enters the definition
of the SPEE
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Figure 4.7: Summary of the results of Section 4.4. Light (dark) circles correspond
to qubits on the A (B) sublattices.

we place a qubit in the |+〉 state on every vertex, and then act with CZ on every
pair of vertices connected by an edge,

|G〉 =
∏
e∈E

CZe
⊗
v∈V
|+〉v. (4.51)

|G〉 is the ground state the following Hamiltonian,

HG = −
∑
v∈V

Xv

∏
u∈N(v)

Zu, (4.52)

where N(v) ⊂ V is the neighbourhood of v, and contains all vertices u where are
connected to v by an edge.

To compute entanglement entropy, we need only consider an effective 2D system
lying along the boundary of the partition, as discussed in Section 4.1. For these 2D
boundary systems, we can use Eq. (4.3) to calculate SA. In what follows, we will
consider 3D cubic lattices with dimensions L× L× L (such that |∂A| = L2) and
periodic boundary conditions in all directions. Similar statements can be made for
open boundary conditions after the addition of boundary terms in the Hamiltonians.
We will consider a biparition whose boundary is perpendicular to a coordinate axis,
and all symmetries discussed will be tensor products of Pauli-X operators. We
note that graph state symmetries made of Pauli-Y operators can also exist, but
with drastically different, e.g. fractal, geometry as shown in Ref. [61].

Our results are summarized in Fig. 4.7. In each case, the boundary subsystem
has dimensions L× L. We will now discuss each model in turn.
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(i) bcc lattice. This model has qubits on the vertices and centers of cubes. The
subsystem symmetries take the form of lines moving in the x, y, z directions of the
lattice. It was previously studied in Ref. [59], where it was also shown that it has
non-trivial SSPT order under these line-like symmetries. The 2D system living
on the boundary of the bipartition is exactly the 2D cluster state, where the A
and B subsystems correspond to the A and B sublattices. Therefore, the 2L− 1
line-like symmetries of the cluster state generate GA in Eq. (4.3), and we get a
lower dimensional “perimeter law” correction to the area law.

(ii) fcc lattice. The second model cubits on the faces and vertices, and has line-like
symmetries on the face qubits, but only planar symmetries on the vertex qubits.
The 2D boundary system has only a single global symmetry in GA, so there is
a constant correction rather than a perimeter law correction. Thus, the planar
symmetries seem to dictate the physics of this model, rather than the line-like
symmetries. This example, along with the previous, suggest that SSPT phases
in dimension D with k-dimensional subsystem symmetries are associated with a
correction to the area law that scales like LD−k−1.

(iii) RBH lattice. The third model, first introduced by Raussendorf, Bravyi,
and Harrington (RBH) [193], was originally used in the context of fault-tolerant
quantum computation [228, 229]. It is defined by qubits on the faces and edges of
the lattice. It was later shown in Ref. [41] to have SPT order protected by so-called
“1-form” symmetries [91]. Such symmetries are distinct from subsystem symmetries
because they are deformable. While subsystem symmetries have rigid geometry
like lines or planes, 1-form symmetries in a 3D system can live on any closed 2D
surface. This follows from local symmetries generated by applying X to every face
qubit in a single unit cell (or every edge qubit connected to a given vertex). In
particular, this model also has planar symmetries as in the fcc lattice. Despite
this, the boundary state is trivial, consisting of entangled pairs between the two
subsystems, so there is no correction to the area law. The reason for this is as
follows: For the previous two cases, as well as the 2D cluster state, the correction
emerges because there is a non-local stabilizer that lives in one subsystem and is
composed of local stabilizers that have support in both subsystems. For the case of
1-form symmetries, this is not the case: the non-local stabilizers can be decomposed
into local stabilizers that are also contained in one subsystem. This behaviour was
also noticed in a 2D example (which is actually the same state emerging on the
boundary of the fcc lattice), in Ref. [232]. Therefore, 1-form symmetries are likely
not associated with area law corrections in general.

4.5 Discussions & Conclusions
In this chapter, we have shown that the 2D cluster phase can be characterized by
a uniform correction γ = 1 to the area law which we have called the symmetry-
protected entanglement entropy (SPEE), and we used this to construct a new
numerical technique to detect SSPT order. The SPEE is relatively easy to calculate
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given a ground state PEPS tensor, hence it is an effective tool to detect SSPT
order and SSPT phase transitions. A next step would be to check if the results
presented in this chapter are unique to the 2D cluster phase, or are generally true
for all non-trivial SSPT phases. For example, Ref. [190] showed that the SSPT
phases protected by the line-like symmetries considered here can be sorted into 8
different equivalence classes, and constructed representative states for each class.
It is also easy to generalize the cluster state to different symmetry groups as in
Ref. [59] and Ref. [250], for example. Also, as shown here, there is rich behaviour
of the correction for 3D cluster states. In all of these cases, it would be interesting
to see whether there is a uniform value of the SPEE within the corresponding
SSPT phases.

Using our method, we uncovered the surprising result that the SSPT order of
the cluster state is preserved under the addition of local magnetic fields pointing
anywhere in the X-Y plane, as indicated by the SPEE. This indicates that the
cluster phase defined previously [26, 59, 190] is part of a larger, more robust
SSPT phase of matter. We attributed this larger phase of matter to subsystem
time-reversal symmetry, although an in-depth understanding is still missing. In
particular, the physical meaning of our notion of subsystem time-reversal is unclear.
Interestingly, the newly discovered phase (‘T’) contains at least part of both the
cluster phase (‘X’) and the fractal SSPT phase (‘Y’) containing the cluster state
[61]. This suggests that the phases ‘X’ and ‘Y’, whose symmetries differ drastically
in geometry, can potentially be unified by considering the anti-unitary symmetries
of the phase ‘T’.

This newly discovered phase may also have implications in terms of quantum
computation. It is known that phases ‘X’ and ‘Y’ are computationally universal
[26, 61], meaning that every state within these phases may be used as a resource
for universal measurement-based quantum computation. If the phase ‘T’ is also
computationally universal, this would mean that the computational power of the
cluster state is robust to a much larger class of perturbations than previously
thought. In general, it would be worthwhile to understand whether there is a clear
link between the SPEE and the usefulness of a state as a computational resource,
and if so, how well the SPEE compares to other figures of merit used to determine
the computational usefulness of, e.g., perturbed cluster states [12, 49, 246].

In 3D, certain models with subsystem symmetries are dual to models with
fracton order [53, 56, 110, 194, 224, 251]. This duality is realized by gauging the
subsystem symmetries. In particular, if this gauging procedure is applied to a state
with SSPT order, the resulting fracton model can be twisted [251], in the same
way that gauging a 2D SPT leads to a twisted Toric Code, i.e. Double Semion
model [90]. It is therefore plausible to think that a transition between different
fracton orders could be dual to a transition between different SSPT orders, which
could in turn be detected by the SPEE, or a 3D generalization thereof.

Finally, we briefly comment on the possibility to measure the SPEE experi-
mentally. Measuring the topological entanglement entropy would be a direct way
of observing the presence of topological order in a many-body state. However,
this is experimentally daunting; a principle barrier being the difficulty of creating
topological states in the first place. On the other hand, cluster states are relatively
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easy to make in optical lattices with nearest-neighbour interactions [252]. Further-
more, the second Rényi entropy can be measured in optical lattices by interfering
two identical copies of a ground state and performing local parity measurements
[240, 241], and this has been done to observe area laws in 1D systems [242]. Thus,
measuring the SPEE of the cluster phase seems feasible with current or near-term
technologies. This would serve as a first route to verifying non-trivial quantum
order via entanglement entropy.
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Chapter 5

Subsystem symmetry-enriched
topological order in three dimensions

In the previous two chapters, we have investigated SPT protected by subsystem
symmetries. In this chapter, we turn to another role played by symmetries in
quantum phases of matter: symmetry fractionalization. As a reminder, symmetry
fractionalization occurs when the anyons carry a non-trivial symmetry charge, i.e.
they transform under a non-trivial projective representation [111, 113, 253–256].
Symmetry fractionalization is possible in 2D due to the presence of conservation
laws. For example, a conservation law in the toric code requires that there is always
an even number of anyons in any excited state. In this way, each anyon can pick
up, for example, an extra −1 phase factor under symmetry transformations, and
the total phase factor coming from all anyons will always multiply to 1. Can such
phenomena also occur in the presence of subsystem symmetries?

A simple argument suggests that subsystem symmetry fractionalization is not
possible in 2D. It is commonly accepted that topological phases in 2D can be
described by topological quantum field theories which have mobile, point-like
anyonic excitations [77]. Suppose we act with a line-like subsystem symmetry on
an excited state with some configuration of anyons. Because the anyons are mobile,
we can move all except one away from the support of the line symmetry. Then,
since the overall action of the symmetry must be linear (non-projective), and the
symmetry only acts on a single anyon, the action of the symmetry on a single
anyon must be linear, so there is no fractionalization. That is, because there are
no conservation laws that restrict how many anyons exist on a given line, there can
be no fractionalization. This same argument shows that subsystem symmetries
of arbitrary geometry in any dimension cannot fractionalize on mobile, point-like
anyons.

There are two ways around this argument1. The first is to consider anyons with
restricted mobility, such as those appearing in fracton topological orders in 3D
and higher. The mobility constraints in fracton orders can be expressed in terms
of conservation laws which, for example, say that the number of anyons in each

1Recently, a third way has been discovered and is currently undergoing investigation. It is
possible that mobile anyons can have their mobility restricted in the presence of subsystem
symmetries, which may allow for subsystem symmetry fractionalization even in 2D.
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(a) (b)

Figure 5.1: (a) Schematic diagram of a 2D SSPT order with line-like symmetries
(dashed line) in the presence of a boundary (thick red line). Near a boundary,
neighbouring line symmetries locally anti-commute (small circles), leading to an
extensive degeneracy on the edge. (b) The ground state of the 3D SSET order
has planar subsystem symmetries, and is a condensate of closed membranes of
2D SSPT orders. Left: a closed membrane of 2D SSPT order. Planar operators
intersect the membrane along a loop, indicated by the dashed line, and reduce to
the line symmetries of the membrane. Right: an open membrane carries a line-like
excitation on its boundary, indicated by the thick red line, which transforms
non-trivially under subsystem symmetries in the same way as the boundary of the
2D SSPT order.

plane must be even. In this case, fractionalization of a planar subsystem would be
possible, leading to symmetry-enriched fracton order. This possibility was studied
in Ref.[251].

As we will see in this chapter, another way around the argument is to consider
higher-dimensional excitations. As we saw in Section 2.3.2, the 3D toric code model
has 1D loop-like excitations in addition to point-like anyons2. The main insight
of this chapter is that there is a conservation law that says a closed loop must
penetrate any plane an even number of times. Acting with a planar subsystem
symmetry on the loop excitation reduces to a product of local actions at each
intersection point, and these local actions can now be projective thanks to the
conservation law. In this way, we can say that the loop-like excitations fractionalize
the planar subsystem symmetries. A model exhibiting such behaviour can therefore
be called an example of subsystem symmetry-enriched topological (SSET) order.
The aim of this chapter is to construct such a model and analyze its properties.

Summary of results
Our SSET model can be understood as a decorated 3D toric code model (Section
2.3.2). Recall that the 3D toric code consists of qubits on the faces of a cubic

2For conventional SET order, these loop-like excitations complicate our understanding of
symmetry fractionalization, but significant progress has nonetheless been made [257–263].
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lattice, and the ground states can be visualized as equal-weight superpositions over
all basis states where the faces in the state |1〉 form unions of closed 2D membranes.
To enrich this model with subsystem symmetries, we introduce new qubits on the
edges of the lattice and couple them to the faces in such a way that edge qubits
lying on membranes form 2D cluster states, and those away from membranes
remain in symmetric product states. Constructed in this way, the decorated model
has planar subsystem symmetries acting on the edge qubits. This is due to the fact
that, along the intersections of a given plane and the membranes, the symmetry
action of the plane reduces to the line-like symmetries of the decorating cluster
states, see Fig 5.1. Furthermore, the loop excitations of the toric code, which
appear along the boundary of open membranes, now coincide with the boundary of
cluster states. Due to the SSPT order of cluster states, these boundaries, and hence
the loop excitations, fractionalize under the planar symmetries. The immediate
consequence of this fractionalization is that the loop excitations are endowed with
a degeneracy per unit length which is protected by the subsystem symmetry. The
procedure of decorating topological orders with lower-dimensional SPT orders is a
well-established way to create SET orders [96, 114, 264, 265], and our construction
here can be seen as a generalization of this procedure to subsystem symmetries,
with the notable feature that d-dimensional subsystem symmetries of the decorating
SSPT translate into (d+ 1)-dimensional subsystem symmetries of the decorated
model.

Another effect of the subsystem symmetry fractionalization that we discover is
an increased value of the topological entanglement entropy (TEE). The 3D toric
code, being an example of topologically order, naturally has a non-zero topological
entanglement entropy [102]. In addition, as discussed in the previous chapter, the
cluster state has a non-zero value of the TEE, called the SPEE, for bipartitions
aligned with the subsystem symmetries. Since the SSET model consists of a
fluctuating “soup” of 2D cluster states, on might expect that the value of the TEE
is increased as compared to the usual 3D toric code due to the additional presence
of the SPEE, and we confirm that this is indeed the case.

Our SSET model stems from a unique interplay of global and subsystem sym-
metries. To better understand this interplay, we consider gauging and ungauging
the symmetries of the SSET in various combinations, resulting in a network of eight
different models, as pictured in Fig. 5.2. At the root of this network is a short range
entangled model with SSPT order under a combination of global and subsystem
symmetries. We calculate the cocycle that encodes the non-trivial action of the
symmetries on the boundary of this model, revealing a mixed anomaly between
global and subsystem symmetries. Using this cocycle, we calculate the effect of
the symmetries on the extrinsic symmetry defects, which allows us to predict the
outcome of gauging the symmetries in different combinations. We then discuss
the nature of the topological order and the symmetry enrichment of each of the
eight models, and in particular show that the model resulting from gauging all
symmetries, i.e. the model resulting from gauging the subsystem symmetries of the
SSET, displays the “panoptic” order that was recently discovered in Refs. [115, 266],
and contains non-abelian fractons. Additionally, we find models containing both
point-like excitations with restricted mobility, as well as loop-like excitations, and
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SSPT
Sec. 5.1

SSET
Sec. 5.2

SSE Fracton
Sec. 5.3.2

SSE Fracton
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Sec. 5.3.3

SSE Panoptic
Sec. 5.3.3
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Figure 5.2: Flowchart describing the various models obtained by gauging and
ungauging the symmetries of the SSET in different ways. The arrows are labelled
by the symmetry which is gauged along the direction they point, where g, s1,
and s2 represent the global symmetry, lattice-plane subsystem symmetries, and
dual-plane subsystem symmetries, respectively. A model is called “fracton” if all
excitations display some mobility restrictions and “panoptic” if restricted-mobility
excitations appear alongside fully mobile and loop-like excitations. “SE” (“SSE”)
denotes models with symmetry enrichment due to global (subsystem) symmetries.

a non-trivial symmetry action that couples the two types, shedding further light
on the roles that subsystem symmetries can play in 3D topological phases.

The rest of the chapter is structured as follows. In Section 5.1, we introduce
a model with both global and subsystem symmetries, and show that it has non-
trivial SPT order by analysing its boundary. Then, in Section 5.2, we gauge the
global symmetries of this model to obtain our model of SSET order and study
its properties. In Section 5.3, we consider gauging the subsystem symmetries and
investigate the network of models in Fig. 5.2. Finally, in Section 5.4, we give our
conclusions and discuss possible routes of future work.

5.1 SPT order with global and subsystem symmetries
To derive our model of SSET order, we begin with a short-ranged entangled
model that has SPT order with respect to a combination of global and subsystem
symmetries. The SSET model is obtained by gauging only the global symmetries of
this model. The process of partially gauging symmetries of an SPT order to obtain
SET order is well understood in the case of global symmetries [111, 142, 151, 263],
as was discussed in a simpler 2D setting in Section 2.4.1.

We first define the short-range entangled model, and demonstrate its non-trivial
SPT order by identifying the non-trivial action of the symmetries on the boundary,
as encoded by a certain 3-cocycle. Notably, the non-trivial order arises from an
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interplay between the global and subsystem symmetries, and the system becomes
trivial if only the global symmetry or only the subsystem subsystem symmetry is
preserved. We will refer to this type of order as SSPT order, despite the equal
importance of both global and subsystem symmetries.

The SSPT model lives on a simple 3D cubic lattice, with qubits in the body
centers (C) and on the edges (E). To begin, consider a trivial paramagnetic
Hamiltonian acting on this system,

Htriv = −
∑
c∈C

Xc −
∑
e∈E

Xe, (5.1)

whose unique ground state is a product state of |+〉 = 1√
2(|0〉+ |1〉) on every edge

and body qubit. Our model can be defined by acting on this trivial system with a
finite depth unitary circuit,

UCCZ =
∏
4
CCZ4, (5.2)

where the product runs over all triples of qubits 4 consisting of one body qubit
and two of its nearest-neighbouring edge qubits, as pictured in Fig.5.3(a), and
CCZ4 acts on the three qubits as CCZ|i〉|j〉|k〉 = (−1)ijk|i〉|j〉|k〉. Using the fact
that CCZabcXaCCZ

†
abc = XaCZbc, where CZ|i〉|j〉 = (−1)ij|i〉|j〉, we obtain the

Hamiltonian,

HSSPT = UCCZHtrivU
†
CCZ = −

∑
c∈C

B̃c −
∑
e∈E

C̃e, (5.3)

where C̃e ≡ UCCZXeU
†
CCZ is defined pictorially in Fig. 5.3(a) (bottom), and

B̃c = XcUc with
Uc =

∏
f∈c

Uf , (5.4)

where f ∈ c runs over the six faces of c, Uf is a product of four CZ operators in a
diamond on face f , see Fig. 5.3(a).

HSSPT has a unique ground state which we denote by |SSPT 〉. We can get
some intuition for this ground state using the viewpoint of decorated domain walls
(DDW) [96], as shown in Fig. 5.3(b). Let C ⊂ C be a set of body centre qubits,
and define the state |C〉 of the body centre qubits such that each qubit in C is in
the |1〉 state, while the rest are in |0〉. Noting that CCZ|i〉|j〉|k〉 = |i〉⊗CZi|j〉|k〉,
we can write the ground state in the following way,

|SSPT 〉 =
∑
C⊂C
|C〉 ⊗ |GC〉, (5.5)

where the sum is over all subsets C of C and we have defined the state |GC〉 on the
edge qubits as,

|GC〉 =
∏
c∈C

Uc |+〉⊗|E|. (5.6)

Since the CZ gates cancel out between neighbouring cubes in C, |GC〉 describes
a state of 2D cluster states on the domain walls of C, and |+〉 states away from
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(a) (b)

Figure 5.3: (a) Top: a unit cell of the 3D SSPT state. Four of the triangles 4
appearing in Eq. (5.2) are shown; there are four such triangles for each face within
this cell. The red lines represent the CZ gates contained in Uc (Eq. (5.4)). Bottom:
the Hamiltonian term C̃e, where e is the central vertical edge. (b) Decoration
by 2D cluster states. The shaded faces depict either domain walls, in the case of
|SSPT 〉, or membranes, in the case of |SSET 〉.

them. As we saw in Section 2.7, the 2D cluster state is the paradigmatic example
of a state with SSPT order under line-like symmetries. Therefore, |SSPT 〉 can be
described as an equal weight superposition over all body qubit configurations in
which the domain walls of the body qubits are decorated with 2D SSPT states.

Let us turn to the symmetries of |SSPT 〉. First, by nature of the DDW
structure of |SSPT 〉, we have a global Z2 symmetry acting on the body qubits
XC = ∏

c∈C Xc, which follows simply from the fact that the domain walls are
invariant under flipping all body spins. The edge qubits have planar subsystem
symmetries. For any plane moving parallel to one of the coordinate planes of the
cubic lattice, we define the subset P ⊂ E as the set of edges that are intersected
by this plane. We remark that these planes come in two distinct types, determined
by whether they are parallel or perpendicular to the edges they intersect, and we
refer to the two types as lattice-planes and dual-planes, respectively. We then
define the subsystem symmetry for each plane as XP = ∏

e∈P Xe. The fact that
XP is a symmetry of |SSPT 〉 for all planes P can be seen by first noticing that
[Uc, XP ] = 0 for all c ∈ C and all P . Then it follows that XP is a symmetry of |GC〉
for all C ⊂ C, and therefore is also a symmetry of |SSPT 〉 thanks to Eq. (5.5).

There is a more insightful way to understand the presence of the planar
symmetries. Observe that the intersection of a plane P with a domain wall
configuration forms closed 1D loops, as pictured in Fig. 5.1(b). Since XP acts
trivially away from the domain walls, where the edge qubits are in the symmetric
|+〉 state, we can restrict the action of XP onto these closed loops. This is a
symmetry, since the 2D cluster states living on the domain walls have line-like
subsystem symmetries. Therefore, the planar symmetries of the 3D SSPT follow
from the line-like symmetries of the 2D SSPT states which we use to decorate
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domain walls3.
We can see explicitly that |SSPT 〉 is in a trivial phase if only the global sym-

metry or only the subsystem symmetries are enforced by constructing disentangling
circuits which respect one of the symmetries. Namely, if we group all of the CCZ
gates from UCCZ that live in a given cube, we obtain a local unitary that respects
all of the subsystem symmetries. Applying this unitary to all cubes is therefore a
subsystem symmetry-respecting circuit that disentangles |SSPT 〉. A disentangling
circuit which respects the global symmetries can be obtained by similarly grouping
CCZs into octahedrons, one for each face of the lattice. Importantly, neither
disentangling circuit respects both types of symmetry, and we argue in the next
section that such a symmetric disentangling circuit does not exist by virtue of the
non-trivial SSPT order.

5.1.1 Boundary of the SSPT
We now demonstrate the non-trivial nature of our SSPT model by analyzing its
boundary. Let us consider the geometry pictured in Fig. 5.4, where the boundary
is a 2D square lattice with periodic boundary conditions and qubits on the edges.
In the presence of this boundary, the whole 3D state may no longer be symmetric
under the global or subsystem symmetries. In particular, it may be necessary to
dress symmetry operators with additional action on the boundary qubits in order
to leave the system invariant. For the planar symmetries, this turns out to be
unnecessary, and the action of the planar symmetries on the boundary, for planes
perpendicular to the boundary, is simply a line of X’s. The global symmetry, on
the other hand, must be decorated with additional CZ’s acting between every
nearest neighbouring pair of edges on the boundary. The action of the symmetries
on the boundary is summarized in Fig. 5.4. This process to extract the boundary
symmetry action is equivalent to that which was used throughout Chapter 2.

We see from the above analysis that neighbouring plane symmetries commute
on the boundary. This is different from the 2D SSPT order of the 2D cluster state,
where neighbouring line symmetries commute in the bulk but anti-commute on
the boundary. However, we will see that, in the presence of a global symmetry flux
threading the cylinder, which is introduced by adding the domain wall pictured in
Fig. 5.4, neighbouring plane symmetries will anti-commute. This highlights the
importance of both global and subsystem symmetries in our SSPT model.

To formalize this, we can use the language of group cohomology which classifies
SPT order. Imagine “compactifying” our 3D system into a quasi-2D system [267].
This is achieved simply by fixing the length R in the y direction, as indicated in
Fig. 5.4. We then get a different quasi-2D system for each compactification radius
R. The subsystem symmetries perpendicular to the compactification direction, i.e.
xz planes, become standard global symmetries of the compactified system. There
are 2R of these symmetries, labelled by indices for i = 1, . . . , 2R where even (odd)
i corresponds to lattice-plane (dual-plane) symmetries, as pictured in Fig. 5.4.

3We note that this picture breaks down when P is tangent to the domain walls, in which case
XP rather acts as a patch of global symmetry, which turns out to still be a symmetry

129



Chapter 5. Subsystem symmetry enriched topological order

Figure 5.4: The 3D cylinder with periodic boundary conditions in the x and y
directions, and open boundaries in the z direction. The effective action of the
bulk symmetries on the boundary is shown. The red lines denote CZ gates coming
from the global symmetry action, while blue lines indicate the action of xz planar
symmetries, with blue dots denoting X operators. The plane in the yz direction
represents a domain wall that is inserted to create a global symmetry flux through
the cylinder.

Including the global symmetry as well, we can consider the symmetry group,

GR = Z2 × Z2R
2

= {(g, ~s) |~s = {s1, . . . , s2R} ; g, si = 0, 1} , (5.7)

where the generators g and si correspond to the global and subsystem symmetries,
respectively.

For each R, we can study the 2D SPT order of the compactified system under the
symmetry group GR. This order is determined by a 3-cocycle ω : GR×GR×GR →
U(1) corresponding to a cohomology class [ω] ∈ H3(G,U(1)) which characterizes
the action of GR on the boundary [74, 92]. We can straightforwardly calculate this
cocycle using the Else-Nayak procedure (Section 2.2.1). Skipping over the details
of the computation, which are very similar to Section 2.2.3, the result is,

ω
(
(g, ~s), (g′, ~s ′), (g′′, ~s ′′)

)
= (−1)g′′

∑R

i=1 s
′
2i(s2i+1+s2i−1). (5.8)

We can determine the effect of inserting a global symmetry flux using the slant
product, as described in Section 2.2.3. If we compute the slant product with
a = (1,~0) corresponding to inserting a global symmetry flux via the domain wall
added in Fig. 5.4, we find,

χ(1,~0)

(
(g, ~s), (g′, ~s ′)

)
= (−1)

∑R

i=1 s
′
2i(s2i+1+s2i−1). (5.9)

In particular, the commutation relation reads,

χ(1,~0)

(
(g, ~s), (g′, ~s ′)

)
χ(1,~0)

(
(g′, ~s ′), (g, ~s)

) = (−1)
∑2R

i=1(sis′i+1+s′isi+1). (5.10)
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This says precisely that neighbouring plane symmetries anti-commute on the
boundary in the presence of a global symmetry flux. We can also compute the
slant product for a subsystem symmetry flux, corresponding to a = (0, î), where
the vector î contains 1 at position i, and 0 elsewhere. We find,

χ(0,̂i)

(
(g, ~s), (g′, ~s ′)

)
= (−1)g′(si−1+si+1), (5.11)

which tells us that, in the presence of a lattice-plane (dual-plane) subsystem
symmetry flux, the global symmetry anti-commutes on the boundary with the two
dual-plane (lattice-plane) subsystem symmetries neighbouring the flux.

One might wonder if we are missing out on any important information by only
considering subsystem symmetries in one direction (the xz planar symmetries).
Indeed, it could be the case that, e.g. perpendicular symmetry planes anti-commute
in the presence of a certain symmetry flux. However, we have checked that this is not
the case: the cases considered above capture all of the non-trivial fractionalization
that occurs in our model.

From the non-trivial slant products computed above, we see that the 3-cocycle
ω belongs to a non-trivial cohomology class for all compactification radii R. The
general arguments of Ref. [74] then show that the boundary, when considered as a
quasi-1D system, cannot be gapped and symmetric; either the symmetry will be
spontaneously broken, resulting in a boundary degeneracy, or the boundary will
be gapless. In addition to this, when we enforce a true 2D notion of locality, the
boundary could potentially gain even more non-trivial features that we miss by
employing compactification.

To probe these non-trivial features, we examine some possible Hamiltonians
which respect the boundary symmetries. Recall that, on the boundary, the planar
subsystem symmetries act like lines of X operators, while the global symmetry
acts like CZ’s between neighbouring edges. The two simplest Hamiltonians that
respect these symmetries are,

HcSSPT = −
∑
e∈∂E

Xe −
∑
e∈∂E

Xe

∏
e′∈n(e)

Ze′ , (5.12)

HSSB = −
∑
e∈∂E

∏
e′∈n(e)

Ze′ , (5.13)

where ∂E denotes the set of edges on the boundary, and n(e) contains the set of
four edges that are nearest-neighbouring edges to e, as measured by distance to the
centre-points of each edge. In HcSSPT , the global symmetry interchanges the two
sums. Note that the edge qubits lie on the vertices of the medial square lattice.

HcSSPT is exactly a 2D cluster Hamiltonian in an external field, tuned to
its critical point [12, 246]. This critical point corresponds to a first order phase
transition between the 2D SSPT phase of the cluster state and the trivial phase [62].
Being first order, the phase transition is caused by a level crossing, such thatHcSSPT

has two degenerate ground states with a gap above them. In fact, these two grounds
states are related by the boundary action of the global symmetry. HSSB, on the
other hand, corresponds to two decoupled plaquette Ising models [59], one on
the vertical edges, one on the horizontal edges. The ground states of this model
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spontaneously break the subsystem symmetries, such that there is an extensive
number of degenerate ground states, with a gap above them.

We see that both of the above Hamiltonians have a degenerate ground space
with a finite gap above. It is interesting to compare this to the analogous situation
which arises on the boundary of a 2D SPT order, as discussed in Section 2.2.3. In
that case, the boundary system is a 1D chain. The minimal Hamiltonian terms that
commute with the boundary symmetry correspond to the 1D cluster Hamiltonian
in a magnetic field tuned to its critical point, and two decoupled 1D Ising models.
Thus the situation is similar to the current one. A crucial difference, however, lies
in the fact that the ground state of the critical 1D cluster Hamiltonian respects the
anomalous symmetry, and is therefore gapless [90]. Furthermore, adding the Ising
interaction on top preserves the criticality in a finite region [95]. Therefore, the
2D SPT supports a boundary with symmetry-protected gaplessness. Conversely, it
is not immediately clear how to engineer a gapless boundary for |SSPT 〉. This is
similar to the situation for 2D SSPT phases, which also only support degenerate
boundaries [59]. We leave a more detailed analysis of the boundary of 3D SSPT
phases to future work.

5.2 Subsystem symmetry enriched topological order
In this section, we gauge the global Z2 symmetry of |SSPT 〉. The resulting model
is a Z2 gauge theory in which the loop-like topological excitations fractionalize
under the subsystem symmetries. We therefore call this model an example of SSET
order. We show that this implies an extensive degeneracy of the loop excitations
which is protected by the symmetry. We also show that the model has an enlarged
value of the topological entanglement entropy, as compared to the underlying
topological order, due to the subsystem symmetry enrichment.

The gauging procedure we employ is as described in Section 2.7.6. For the
present case, procedure maps body qubits to qubits on the faces (F ) of the lattice,
in such a way that the face qubits f ∈ F take the state |1〉 on the domain walls of
the body qubits, and |0〉 elsewhere. That is, given a state |C〉 on the body qubits,
the effect of the gauging map Γ can be written as Γ|C〉 = |∂C〉, where ∂C ⊂ F is
the set of faces on the boundary of C, and |∂C〉 describes a state on the face qubits
where all qubits in ∂C are in the state |1〉, and the rest are in |0〉. We note that the
edge qubits are unaffected under the action of this map. We can then extend the
map Γ to arbitrary states on the body qubits by linearity. Applying this procedure
to |SSPT 〉, we get,

|SSET 〉 = Γ|SSPT 〉
=
∑
C⊂C

Γ|C〉 ⊗ |GC〉

=
∑
C⊂C
|∂C〉 ⊗ |GC〉. (5.14)

This state can again be visualized using Fig. 5.3(b), where now the shaded faces
indicate elements of ∂C, which can be viewed as a configuration of closed membranes
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on the faces of the lattice. Therefore, |SSET 〉 is a superposition over all closed
membranes configurations on the face qubits, where the membranes are decorated
with 2D cluster states on the edge qubits. It is clear from this structure that
|SSET 〉 has the same subsystem symmetries on the edge qubits as |SSPT 〉.

If we were to remove |GC〉 from the above equation, the state described would
be exactly the 3D toric code, |TC〉 = ∑

C⊂C |∂C〉, which has topological order. In
fact, we can disentangle the edge qubits from the face qubits using a unitary circuit
ŨCCZ which places four CCZ’s on each face as in Fig. 5.5(a). Applying this circuit
to |SSET 〉, we get,

ŨCCZ |SSET 〉 =
∑
C⊂C

ŨCCZ(|∂C〉)⊗ |GC〉) (5.15)

=
∑
C⊂C
|∂C〉 ⊗

∏
c∈C

Uc |GC〉 (5.16)

= |TC〉 ⊗ |+〉⊗|E|. (5.17)

Therefore, |SSET 〉 is related to |TC〉 by a unitary circuit, up to trivial degrees of
freedom, so the two states have the same topological order. However, this circuit
does not respect the subsystem symmetries. In fact, we will show that, when these
symmetries are enforced, |SSET 〉 is in a distinct phase from |TC〉, as indicated by
symmetry enrichment of the topological excitations. Therefore, we can say that
|SSET 〉 has subsystem symmetry enriched topological order.

5.2.1 Excitations and symmetry enrichment
The Hamiltonian for which |SSET 〉 is a ground state can be obtained by gauging
HSSPT , and has the following form,

HSSET = −
∑
e∈E

Ae −
∑
c∈C

Bc −
∑
e∈E

Ce
1 + Ae

2 , (5.18)

where,
Ae =

∏
f3e

Zf ,

Bc = Uc
∏
f∈c

Xf ,
(5.19)

where f 3 e denotes all faces incident on edge e. Ce is defined pictorially in
Fig. 5.5(a). The new gauge term Ae enforces that the faces qubits form closed
membranes in the ground state. The modified terms Bc and Ce are simply the
original terms B̃c and C̃e rewritten as functions of the new face qubits, using the
rules Xc 7→

∏
f∈cXf and ∏c3f Zc 7→ Zf that follow from the gauging procedure.

In addition, we project the Ce term onto the closed membrane subspace (Ae = 1
∀e ∈ E) in order to ensure that the Hamiltonian respects the subsystem symmetries.
We note that all terms in HSSET commute. On a topologically non-trivial manifold
like a three-dimensional torus, the ground space of HSSET is degenerate. |SSET 〉
is one of the degenerate ground states, and the others can be obtained by adding
topologically non-trivial membranes into the superposition in Eq. (5.14).
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(a) (b) (c)

Figure 5.5: (a) Top: a unit cell of the 3D SSET state. Four of the triangles 4
appearing in ŨCCZ are shown; there are four such triangles on each face of the
lattice. Bottom: The Hamiltonian term Ce, where e is the central vertical edge.
(b) A loop-like excitation appearing on the boundary of the surface Σ, indicated by
shaded faces. Excitations appear on edges marked by points. (c) A 2D cut of our
3D lattice with a loop excitation corresponding to the half-infinite membrane Σ∞,
as viewed from above. There is an effective qubit degree of freedom for each edge
on the boundary of Σ∞, indicated by dots. The horizontal dashed lines represent
the intersection of two symmetry planes P with this 2D slice, and the action of XP
on the edge degrees of freedom, according to Eq. 5.24, is shown beside each line.

Let us now construct the excitations of HSSET , which come in three types.
Violations of Ce are topologically trivial particles that can be created locally by
acting with Ze, so we do not discuss them further. The other two types of excitation
are topologically non-trivial, and must be created by extended non-local operators.
Violations of Bc, called electric excitations, are point-like, and are created in pairs
at the end points of string operators,

Se
Λ =

∏
f∈Λ

Zf , (5.20)

where Λ ⊂ F is a curve on the dual lattice that penetrates faces. Violations of
Ae, called magnetic excitations, are loop-like. They appear along the boundary of
open membrane operators,

Sm
Σ =

∏
f∈Σ

XfUf , (5.21)

where Σ ⊂ F is an open membrane of faces, as pictured in Fig. 5.5(b). If we were
to braid an electric excitation through the loop of a magnetic excitation, we would
pick up a minus sign due to the anti-commutation of X and Z. This is the same
as in the toric code.

The difference from the toric code comes from the degeneracy of the excitations.
In particular, since Ae = −1 when acting on the boundary of Σ, the projection
(1 + Ae)/2 removes the corresponding terms Ce, so we can decorate the boundary
of the membrane operator Sm

Σ with Z operators without changing the energy of
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the resulting excitation:

Sm
Σ ({ae}e∈∂Σ) = Sm

Σ
∏
e∈∂Σ

Zae
e , ae = 0, 1, (5.22)

where ∂Σ denotes all edges on the boundary of the membrane Σ. Thus the loop-like
excitation is two-fold degenerate per unit length. This degeneracy is protected
by the subsystem symmetries. Intuitively, this is because the loop-like excitation
coincides with the boundary of a 2D cluster state which has an exponential
boundary degeneracy protected by the subsystem symmetries.

More precisely, consider a membrane Σ∞ which is a half-infinite plane, as shown
in Fig. 5.5(c). This creates an excitation lying along ∂Σ∞ which is a line of N
edges that we denote by ei for i = 1, . . . N . The degenerate subspace associated to
this excitation is spanned by the states |a1, . . . an〉 defined as,

|a1, . . . an〉 := Sm
Σ∞

N∏
i=1

Zai
ei
|SSET 〉 , ai = 0, 1. (5.23)

Let us now determine the action of the subsystem symmetries in this N -qubit
space. Consider those symmetry planes that are perpendicular to Σ∞ and also
cross ∂Σ∞, as pictured in Fig. 5.5(c). We can index these planes by Pi and Pi+1/2,
corresponding to dual-planes intersecting edge ei, or lattice-planes intersecting
between edges ei and ei+1, respectively. Then we can calculate,

XPi |a1, . . . an〉 = (−1)ai |a1, . . . an〉,
XPi+1/2|a1, . . . an〉 = |a1, . . . , ai ⊕ 1, ai+1 ⊕ 1, . . . , an〉.

(5.24)

Therefore, if we let X̃i, Z̃i denote the logical Pauli operators in the degenerate edge
subspace, we have XPi ∼= Z̃i and XPi+1/2

∼= X̃iX̃i+1. We see that neighbouring
plane symmetries anticommute on the edge of the excitation. This is the same
pattern of symmetry fractionalization found on the boundary of the 2D cluster
state [59]. In the case the case of the 2D cluster state, the line-like subsystem
symmetry protects the exponential edge degeneracy of the 2D cluster state. In
analogy, the planar subsystem symmetry here protects the exponential degeneracy
of the line-like excitation. A similar discussion holds for an arbitrary membrane
Σ, although there can be some finite size effects due to corners, as discussed in
Ref. [59]. Therefore, the loop-like magnetic excitations of |SSET 〉 carry a two-fold
degeneracy per unit length that is protected by the planar subsystem symmetries.

5.2.2 Topological entanglement entropy
In this section, we show that the topological entanglement entropy (TEE) of our
3D SSET state is larger than that of the 3D toric code when the boundaries of
bipartitions are aligned with the symmetry planes. This come in analogy to the
non-zero SPEE of the 2D cluster state that was examined in Chapter 4. In the
present case, we say that the 3D SSET has a non-zero SPEE in addition to the
TEE inherited from the topological order of the 3D toric code.
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The origin of the SPEE can be imagined as follows. Consider one closed
membrane in the membrane soup defining |SSET 〉. If we bisect the membrane
with a plane aligned with the subsystem symmetries, as in Fig. 5.1, we can
calculate the entanglement between the two halves of the membrane. Since the
membranes are decorated by 2D cluster states, and the cut is aligned with the
line-like symmetries of the cluster state, we find a non-zero SPEE for this membrane.
Since |SSET 〉 is a fluctuating soup of such membranes, one can imagine that it
also exhibits a non-zero SPEE. In the rest of this section, we show that this is
indeed the case. The calculation is somewhat cumbersome, so we first present a
high-level overview of it before giving the full details in the next section.

For simplicity we calculate the entropy of a finite section of a 3D torus, such that
the boundary between subsystems A and B is two disconnected 2D tori. However,
we expect the same results to hold for any geometry that is appropriately aligned
with the subsystem symmetries, as in Ref. [232]. We will aim to determine the
2-Rényi entropy S(2)

A = − ln Tr(ρ2
A) where ρA is the reduced state of subsystem A 4.

On a 3D torus, HSSET has eight degenerate ground states. We choose |SSET 〉 to
be one of the minimal entropy states which have the largest TEE [70]. This is done
by picking the ground state that is +1 eigenstate of the membrane operators Sm

Σz
where Σz is the non-contractible membrane, as well as the loop operators Se

Λx/y
where Λx/y are the non-contractible loops, as pictured in Fig. 5.6(a). In this way,
the subsystem A has maximum knowledge of the whole state, and hence minimum
entropy. We define G to be the abelian group generated by all Hamiltonian terms
Ae, Bc, Ce as well as Sm

Σz and Se
Λx/y .

For simplicity, we assume that region A contains L× L× L vertices, such that
L2 edges are cut on each boundary. In Appendix 5.2.3, we show that the entropy
can be expressed in the following way for large L,

S
(2)
A = (|A|+ 2L2) ln 2− ln |GA| − 2F(ln

√
2), (5.25)

where |A| = 6L3 + 3L2 is the number of qubits in A, GA is the subgroup of
G containing those operators that act non-trivially on A only, and F(β) is the
(extensive) free energy of a 2D square lattice Ising model at inverse temperature
β. By counting independent generators in the same way as for the 3D toric code,
[102], we can compute that |GA| = 26L3−2L2+4. Compared to the toric code case,
GA here contains an additional non-local operator for each boundary, namely the
product of Ce for all edges e on the boundary, which is equal to the subsystem
symmetry on the corresponding dual plane.

To compute the free energy, we can use Onsager’s result [268], which yields
F(ln

√
2) = ln 2(1

2 + ln 2)L2 for large L (for more details, see Appendix 5.2.3).
Crucially, the temperature β = ln

√
2 lies in the disordered phase of the Ising

model, such that the free energy is extensive with no constant term. Putting
everything together, the entropy is,

S
(2)
A = 2cL2 − 2γTEE − 2γSPEE + . . . , (5.26)

4Ideally, we would calculate the Von-Neumann entropy, but this is more difficult since the
entanglement spectrum will turn out to be non-flat
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(a) (c)

(b) (d)

Figure 5.6: (a) The geometry considered throughout this section. Opposite sides
are identified, resulting in a 3D torus. The A and B subsystems are shown, as
well as the non-contractible loops Λx,y and membrane Σz. (b) The dumbbell
configuration for detecting the SPEE in 2D systems from Ref. [232]. (c) The
picture frame configuration proposed to detect the SPEE that arises due to planar
subsystem symmetries in 3D systems. Here we see a view from the top. A cross
section along the dotted line reveals a shape identical to that of (b). (d) The
alternate picture frame configuration that does not detect SPEE due to line-like
symmetries.

where c = (3− ln 2) ln 2, γTEE = γSPEE = ln 2, and the dots represent terms that go
to zero as L goes to infinity. We include the factors of 2 to emphasize the fact that
A has two disconnected boundaries. γTEE comes simply from |GA| in the same
way as for the 3D toric code, whereas γSPEE is due to the subsystem symmetries
forming non-local constraints on the boundary of A.

While we have only shown the existence of a non-zero SPEE for this specific
bipartition, we expect that it would also be present for other bipartitions whose
geometry are aligned with the symmetry planes, as is the case for the SPEE of
the 2D cluster state [232]. In Ref. [232], the authors also constructed a method to
extract the SPEE due to line-like subsystem symmetries in a 2D system, such that
it can be separated from the TEE. They show that the combination of entropies,

SSPEE = SB + SABC − SAB − SBC , (5.27)

is equal to the SPEE, where subsystems A,B,C form a dumbbell shape as in
Fig. 5.6(b). This is due to the fact that the line-like symmetries (blue line in
Fig. 5.6(b)) can be terminated by applying local operators in the circled red regions,
such that we get a constraint that reduces SABC . Crucially, the red regions have a
larger radius than the width of B, such that the same truncated line cannot fit into
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B, AB, or BC. On the other hand, the TEE is the same for each of the four terms
in Eq. (5.27), and hence will cancel out, as will all extensive parts of the entropy.

Following the same logic, we propose a set of subsystems A,B,C such that
SSPEE will be equal to the SPEE due to planar symmetries, see Fig. 5.6(c). The
subsystem B is a thin slab, while A and C are thickened, giving a geometry similar
to that of a picture frame. As in the dumbbell, the planar subsystem symmetries
can be truncated by applying operators along the boundary. Such an operator will
fit into region ABC of the frame, but none of the other combinations. Therefore,
we conjecture that SSPEE should be equal to γSPEE for the picture frame geometry.
If there is also a SPEE due to linear subsystem symmetries, then SSPEE would
grow as the perimeter of region B. If we take the alternate picture frame geometry
in Fig. 5.6(d), we would only detect SPEE due to planar symmetries, since any
truncated line operator that contributes to SABC will also contribute to one of SAB
or SBC .

5.2.3 Calculation of topological entanglement entropy
Here we give the full calculation of the TEE. Observe that the subsystem A is
defined by two planar cuts that run parallel to subsystem symmetry planes and
intersect edges/faces of the lattice, such that the qubits on intersected edges and
faces lie within subsystem A (ie. A has rough boundaries rather than smooth
ones). The boundary between the two subsystems is therefore two disconnected
tori. In a slight misuse of our notation, let ∂AE ⊂ E denote the edges intersected
by the bipartitioning planes on each end of A. Likewise, let ∂AF ⊂ F denote
the intersected faces, and let ∂A = ∂AE ∪ ∂AF . Since the boundary is made
of two disconnected pieces, we can break each set into left and right parts, i.e.
∂AE = ∂ALE ∪ ∂ARE and ∂AF = ∂ALF ∪ ∂ARF .

Let G be the abelian stabilizer group defined in the previous section. Then,
since |SSET 〉 is the unique state satisfying g|ψ〉 = |ψ〉 ∀g ∈ G, we can write
[103, 107],

ρ = |ψ3D
SSET 〉〈ψ3D

SSET | =
1

2|A|+|B|
∑
g∈G

g. (5.28)

Where |A| and |B| are the number of qubits in subsystems A and B. When we
trace out the B subsystem, all elements in G which have non-trivial support in B
have zero partial trace, since the Pauli operators are traceless. The only exception
are the operators Ce where e ∈ ∂AE. In this case, the trace over B traces over
one of the qubits involved in half of the CZ operators in Ce. This does not give 0,
rather we have TraCZab = 2Pb where P = 1+Z

2 . Using this, we find,

ρA = 1
2|A|

∑
g∈G′A

g
∑
E⊂∂AE

C ′EPE , (5.29)

where we have defined the projector PE as,

PE =
∏
f∈dE

Pf , (5.30)
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Figure 5.7: After tracing out qubits in the B subsystem, as, indicated by the
slashes, the operator Ce (left) is transformed to C ′ePe up to a constant factor of
24 = 16.

with,
C ′E =

∏
e∈E

C ′e, (5.31)

where C ′e is a unitary operator obtained from Ce by removing half of the CZ’s, see
Fig. 5.7. The subgroup G′A is defined to be generated by all elements of G which
act non-trivially only on A, except for the two operators ∏

e∈∂AL/RE

Ce, which we
exclude for notational convenience.

To compute ρ2
A, we observe that [C ′E , g] = [PE , g] = 0 for all g ∈ G′A and

E ⊂ ∂AE. Then we get,

ρ2
A = 1

22|A| |G
′
A|

∑
g∈G′A

g
∑

E,E ′⊂∂AE
C ′E⊕E ′PEPE ′ , (5.32)

where we have used the facts (∑g∈G′A g)2 = |G′A|(
∑
g∈G′A g) and C ′EC ′E ′ = C ′E⊕E ′ . We

observe that ρ2
A is not proportional to ρA because of the presence of the projectors

PE . Therefore, ρA is not a projector, which shows that the entanglement spectrum
of our model is not flat, as it would be for the 3D toric code.

Now we take the trace of ρ2
A in three steps, TrA = Tr∂AFTr∂AETrA−∂A. When

taking the first trace, all non-trivial elements of G′A with support outside of ∂A
are traceless, except again for C ′e for e ∈ ∂AE. This gives,

TrA−∂A(ρ2
A) = 2−|∂A|

2|A| |G
′
A|

∑
g∈G′

∂A

g
∑

E,E ′⊂∂AE
XE⊕E ′PEPE ′ , (5.33)

where,
XE =

∏
e∈E

Xe, (5.34)

is obtained from C ′E after removing all CZ’s. G′∂A contains all elements of G′A
which have act non-trivially only on ∂A, and is generated by the operators Ae for
e ∈ ∂AE. Now, the trace over ∂AE is 0 unless E = E ′, giving,

Tr∂AETrA−∂A(ρ2
A) = 2−|∂AF |

2|A| |G
′
A|

∑
g∈G′

∂A

g
∑
E⊂∂AE

PE , (5.35)
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where we used that PEPE = PE . At this point, it is useful to consider the two
boundaries of A separately. We can write,

Tr∂AETrA−∂A(ρ2
A) = 2−|∂AF |

2|A| |G
′
A|

∑
g∈G′

∂AL

g
∑
E⊂∂ALE

PE
∑

g′∈G′
∂AR

g′
∑

E ′⊂∂ARE

PE ′ . (5.36)

Observing that the final trace over ∂AF can further be factorized as Tr∂AF =
Tr∂ALFTr∂ARF , and the left and right boundaries are disjoint and equivalent so we
can simply square the result for the left boundary, we get,

TrA(ρ2
A) = 2−|∂AF |

2|A| |G
′
A|

 ∑
E⊂∂ALE

Tr∂ALF

PE
 ∑
g∈G′

∂AL

g





2

. (5.37)

For each E this remaining trace is 0 unless g = e, or g = ∏
e∈E Ae. In the latter

case, we have PE
∏
e∈E Ae = PE . Therefore, every term in the sum over E gets

doubled, except when E = ∅ or E = ∂ALE. This gives,

TrA(ρ2
A) = 2−|∂AF |

2|A| |G
′
A|

2

 ∑
E⊂∂ALE

TrPE

− TrP∅ − TrP∂ALE


2

. (5.38)

Noting that TrP∅ = TrP∂ALE = 2|∂ALF |, we write,

TrA(ρ2
A) = 4

2|A| |G
′
A|

2−|∂ALF |
∑
E⊂∂ALE

TrPE − 1


2

. (5.39)

We now proceed by expressing the remaining sum in terms of the partition
function of a 2D square lattice Ising model. To this end, we define an auxiliary
square lattice system with degrees of freedom σi = ±1 on each vertex near the
boundary. Each vertex i corresponds to an edge ei ∈ ∂ALE. Given E , we define a
vector ~σ such that σi = −1 if ei ∈ E , and σi = 1 otherwise. With this notation, we
can rewrite,

PE =
∏
〈i,j〉

(
Pl(ei,ej)

) 1−σiσj
2 , (5.40)

with the trace given by,

TrPE =
∏
〈i,j〉

2
(1

2

) 1−σiσj
2

=
√

2|∂A
L
F | ∏
〈i,j〉

√
2σiσj , (5.41)

such that, ∑
E⊂∂ALE

TrPE =
√

2|∂A
L
F |∑

~σ

e
ln
√

2
∑
〈i,j〉 σiσj . (5.42)

We have written the sum in such a way that it corresponds to the partition function
Z(ln

√
2) of the 2D Ising model, where,

Z(β) =
∑
~σ

e
β
∑
〈i,j〉 σiσj . (5.43)
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With this, Eq. 5.39 becomes,

TrA(ρ2
A) = 4

2|A| |G
′
A|
(√

2−|∂A
L
F |Z(ln

√
2)− 1

)2
. (5.44)

For conceptual clarity, let us define the group GA which is obtained by adding
the two generators ∏

e∈∂AL/RE

Ce, which we omitted earlier, into G′A. Then we have
|GA| = 4|G′A|. By letting N = |∂ALE| be the number of spins in the Ising model,
we get,

S
(2)
A = − ln TrA(ρ2

A)
= |A| ln 2− ln |GA| − 2 ln(2−NZ(ln

√
2)− 1). (5.45)

This Ising model has a phase transition at inverse temperature βc = ln(1+
√

2)
2 [268].

Since ln
√

2 < βc, our partition function lies in the disordered phase. In this phase,
the free energy is extensive, in the sense that F(β) := lnZ(β) = αN for large
N . Importantly, there is no constant term in lnZ(β), as there would be in the
ordered phase. The 2D Ising model has been solved exactly in the large-N limit
by Onsager [268], and is given in Ref. [269] as,

α = ln (2 cosh(2β)) + 1
2π

∫ π

0
dφ ln 1

2

(
1 +

√
1− k2 sin2 φ

)
, (5.46)

where k = 2 sinh(2β)/ cosh2(2β). Evaluating this integral numerically for β =
ln
√

2, we find that α is equal to ln 2(ln 2 + 1
2) up to 6 decimal places. Thus for

large values of N we get

S
(2)
A = − ln TrA(ρ2

A)
= |A| ln 2− ln |GA| − 2 ln

(
eln 2(ln 2− 1

2 )N − 1
)
. (5.47)

Note that eln 2(ln 2− 1
2 ) > 1, such that we can approximate ln

(
eln 2(ln 2− 1

2 )N − 1
)
≈

ln
(
eln 2(ln 2− 1

2 )N
)
for large N , giving,

S
(2)
A = |A| ln 2− ln |GA| − 2 ln 2(ln 2− 1

2)N. (5.48)

The final step is to evaluate |GA|. To do this, we need to count the number of
independent generators of GA. This is done using the usual counting arguments
for the 3D toric code [102]. Suppose for simplicity that the region A contains
L× L× L vertices, such that N = L2. We then have 3L3 + L2 edges contained in
A, and 3L3 + 2L2 faces, giving |A| = 6L3 + 3L2. Starting with the body centre
terms Bc, we have L3−L2 terms contained in A, all of which are independent. We
have 3L3 edge terms Ae, but they are not all independent. Namely, the product of
all edge terms around a given vertex is the identity, and so is the product of all
edge terms on a non-contractible plane (such as the plane Σz in Fig. 5.6(a), giving
L3 + 1 constraints, and hence 2L3 − 1 independent terms. Finally, we have one
Ce term for each edge away from the boundary, all of which are independent, and
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the two non-local terms ∏
e∈∂AL/RE

Ce, giving 3L3 − L2 + 2 terms. Finally, we have
the three non-local operators Sm

Σz and Se
Λx,y . Altogether, this gives 6L3 − 2L2 + 4

terms, such that |GA| = 26L3−2L2+4. The final result for the entropy is therefore,

S
(2)
A (L) = ln 2(6− 2 ln 2)L2 − 4 ln 2, (5.49)

plus corrections which go to zero as L goes to infinity.

5.3 Gauging the subsystem symmetries
In this section, we examine the variety of topological phases that arise from gauging
some or all of the subsystem symmetries, starting either from |SSPT 〉 or |SSET 〉.
More precisely, starting from |SSPT 〉, we can independently choose to gauge the
global symmetry, lattice-plane symmetry, and dual-plane symmetry, resulting in
eight possible models (including |SSPT 〉). We denote the global, lattice-plane,
and dual-plane symmetries as Zglob

2 , Zsub1
2 , and Zsub2

2 , respectively. We use this
notation with the understanding that there are a sub-extensive number of subsystem
symmetry generators, so Z

sub1/2
2 describes the local action of the symmetry, not

the total symmetry group. It is known that gauging subsystem symmetries can
result in models with fracton topological order [53, 110, 194]. Here, by “fracton”
topological order (or more succinctly fracton order), we mean any model in which
all topological excitations have restricted mobility of some sort. In our definition,
this includes systems like stacks of 2D toric codes, which are usually considered
to be trivial as fracton orders. We use the usual terminology of fracton, lineon,
and planon to describe point-like topological excitations which are fully immobile,
constrained to a 1D line, or constrained to a 2D plane, respectively. Later, we
consider models in which such excitations coexist with fully-mobile excitations,
and we refer to the order in these models as “panoptic” [115].

Throughout this section, we do not explicitly perform the gauging as we did in
the previous section (except in one case). Rather, we rely on our understanding of
|SSPT 〉 and its symmetries to determine both the mobility and type of symmetry
enrichment of the resulting topological excitations. The key properties of the
gauged models are summarized in Table 5.1.

5.3.1 Symmetry defects and gauging
To understand the effects of gauging, we need to understand the symmetry defects
of |SSPT 〉. We can define symmetry defects in terms of domain wall operators. We
recall from Section 2.2 that domain wall operators V∂M are obtained via UM which
applies some symmetry operator to a compact region M of the lattice. For a global
symmetry, M is some 3D region, whereas for our subsystem symmetry, M would
be a 2D region confined to a plane. Then, V∂M is defined as the operator supported
only on the boundary ∂M of M that acts equivalently to UM on the ground space.
V∂M is a membrane of CZ’s for Zglob

2 , while for the planar subsystem symmetries
it is a 1D loop operator also consisting of CZ’s. Symmetry defects are defined
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Table 5.1: Summary of gauged models. Gauge fluxes for the global symmetry are
always loop-like, and gauge fluxes for subsystem symmetries are planons, but they
may be composites of excitations with lower mobility.

Gauged symmetry Mobility of gauge
charges

Effect of ungauged
symmetries

None N.A. Mixed glob./sub.
boundary anomaly

Global Unrestricted mobility Fractionalization of loops
Lattice-plane Lineon Mixed glob./sub.

fractionalization
Dual-plane Planon Mixed glob./sub.

fractionalization

Global + Lattice-plane Unrestricted + Lineon Attaches charges to
fluxes

Global + Dual-plane Unrestricted + Planon Attaches charges to
fluxes

Lattice-plane +
Dual-plane

Fracton Fracton permutation

All Unrestricted + Fracton N.A.

to appear at the boundaries of open domain wall operators. The Zglob
2 symmetry

defects are closed 1D loops, while the Z
sub1/2
2 symmetry defects are point-like, see

Fig. 5.8.
The symmetry defects carry important information about what happens after

gauging the symmetry. After gauging, domain wall operators are proliferated,
and the symmetry defects become deconfined topological excitations that we call
gauge fluxes. As we saw in Section 5.2, Zglob

2 gauge fluxes are mobile loop-like
excitations. Gauge fluxes corresponding to generators of Z

sub1/2
2 , on the other hand,

are point-like and can only move within a single plane without creating additional
excitations, i.e. they are planons. This is because the Z

sub1/2
2 symmetry defects are

themselves point-like and mobile only within a given plane. However, we find that
in some cases these planons can be decomposed into a pair of excitations of lower
mobility, as in the X-cube model [53]. This is due to the symmetry domain walls
decomposing further, such as a planar domain wall decomposing into a product
of two cage-edge domain walls as in X-cube [55]. The properties of the symmetry
defects before gauging, including the action of symmetry on them, determine the
braiding and fusion statistics of the gauge fluxes, as well as possible symmetry
fractionalization under any ungauged symmetries [111, 142, 151].

The other type of topological excitations that emerge from gauging are called
the gauge charges. The gauge charges are gauged versions of symmetry charges,
which are objects that locally anti-commute with the symmetry, corresponding
in our case to a single Z operator on the lattice. As described in Ref. [110], the
mobility of gauge charges can be determined directly from the spatial structure of
the subsystem symmetries. Namely, if a symmetry charge is acted on by planar
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symmetries in one, two, or three orthogonal directions, then the corresponding
gauge charge will be a planon, lineon, or fracton, respectively.

The slant products calculated in Section 5.1 can be used to determine the
relationship between the symmetry generators, symmetry charges, and symmetry
defects. Indeed, although we initially performed these calculations in Section 5.1
to understand the action of the symmetry on the boundary in the presence of
symmetry flux, a symmetry flux is in fact inserted using a domain wall operator,
which terminates on the boundary via a symmetry defect. So we were actually
calculating the action of the symmetries on the symmetry defects, regardless of
whether or not these defects were pushed to the boundary. The action of the
symmetry on the defects in |SSPT 〉, as described by the slant products, allows
us to determine the topological excitations that result from gauging a symmetry,
along with the action of the ungauged symmetries on these excitations.

More precisely, for the SSPT model, if symmetries b and c anticommute on a a
defect, i.e. χa(b, c)/χa(c, b) = −1, then acting with b (c) on an a defect creates a c
(b) symmetry charge. This will manifest either as a fractionalization or permutation
of the excitations in the gauged theory, depending on which symmetries are gauged.
Specifically, if a is among the gauged symmetries, while b and c are not, the a
gauge flux will carry a fractional charge under b and c. If a and b are gauged
and c is not, then acting with c symmetry on an a (b) gauge flux attaches a b (a)
gauge charge. The action of the symmetries on the symmetry defects of |SSPT 〉
(and therefore on the corresponding gauge fluxes of the gauged models) can be
determined by Eqs. (5.9) and (5.11), and is summarized in Fig. 5.8.

5.3.2 Gauging only subsystem symmetries: Fracton order
We now turn to gauging the subsystem symmetries of |SSPT 〉. The resulting mod-
els all have fracton topological order, characterized by topological excitations with
restricted mobility. The ungauged symmetries will either permute the excitations
or fractionalize on them, depending on whether we gauge all or only some of the
subsystem symmetries.

Gauging lattice-plane symmetries

Gauging Zsub1
2 results in a non-trivial fracton model that is not obviously equivalent

to any known models. Symmetry charges before gauging are acted on by two
perpendicular subsystem symmetries, so the gauge charges are lineons. Interestingly,
due to how the ungauged symmetries act on the gauge fluxes by creating symmetry
charges (Figs. 5.8(b),5.8(c)), the gauge fluxes transform as a non-trivial projective
representation under Zglob

2 and adjacent Zsub2
2 symmetry generators. Therefore, this

model represents a fracton model where excitations carry a fractional charge under
the combination of global and subsystem symmetries.

Gauging dual-plane symmetries

Each edge qubit is acted on by only one generator of Zsub2
2 . Therefore, the gauge

charges are planons, and furthermore we can gauge the symmetry in each dual-plane
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(a) (b) (c)

Figure 5.8: Interplay between symmetries, symmetry defects, and symmetry charges
in |SSPT 〉, as revealed by Eqs. (5.9) and (5.11). (a) Acting with a Z

sub1/2
2 symmetry

on the line-like Zglob
2 flux creates Z

sub2/1
2 charges on neighbouring planes. (b) Zglob

2

symmetry on a point-like Z
sub1/2
2 flux creates Z

sub2/1
2 charges on neighbouring planes.

(c) Z
sub2/1
2 symmetry on a neighbouring Z

sub1/2
2 flux attaches a Zglob

2 charge to the
flux.

separately, such that we arrive at a stack of decoupled 2D toric codes in all three
directions, one for each dual plane, which can be viewed as a rather trivial fracton
model. The layers are coupled via the body qubits in such a way that the Zsub2

2
gauge fluxes in a given plane transform as a non-trivial projective representation
under the adjacent Zsub1

2 generators and Zglob
2 (Figs. 5.8(b),5.8(c)).

Gauging all subsystem symmetries

Gauging all subsystem symmetries of |SSPT 〉 results in a model with fracton
excitations, where the global symmetry permutes the fractons. This permutation
action can be understood by the fact that the global symmetry, when acting on a
lattice-plane (dual-plane) symmetry defect, attaches a pair of symmetry charges
to the neighbouring dual-planes (lattice-planes). Hence, in the gauged model, the
global symmetry attaches gauge charges to gauge fluxes (Fig. 5.8(b)). As in the
general case, the gauge flux is a planon. However, in this case, a planar domain
wall can be decomposed into a pair of domain walls and thus the planon can be
split into a pair of fractons. We can isolate these two fractons by considering the
symmetry defect corresponding to a stack of dual-plane symmetries. Gauging this
defect gives two fractons, one at the top of the stack and one at the bottom. The
fact that these are fractons follows from relations between the gauge constraints, as
we elaborate on in Fig. 5.9. Applying the global symmetry attaches a gauge charge
to each fracton. Since the symmetry charges are acted on by planar symmetries
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in all three directions, the gauge charges are fractons. In particular, there are
relations between all subsystem symmetries in two orthogonal directions that imply
the fractons are irreducible. Therefore, the global symmetry action causes fracton
permutation.

This permutation action will be useful for understanding the model obtained
by gauging all symmetries in Section 5.3.3, so here we will explicitly write down
the gauged Hamiltonian. To perform this gauging, we follow the procedure for
gauging subsystem symmetries outlined in Section 2.7.6. First, we identify the
minimal coupling terms which commute with all subsystem symmetries, which in
the present case takes the form of four-body interactions near an edge, pictured
in Fig. 5.9. The gauge qubits are placed in the nexus of these interactions as
shown in Fig. 5.9. We therefore have four qubits for each edge e, one for each
cube c surrounding e. We may therefore label gauge qubits uniquely by a pair
(c, e). We can view the gauge qubits as living on the edges of a smaller cube within
each cube of the lattice, and we use the labelling in Fig. 5.9 to reference each of
the twelve gauge qubits in a given cube. Following Ref. [110], we now express
existing Hamiltonian terms B̃c and C̃e in terms of the new gauge qubits, resulting
in the terms Bc and Ce. Furthermore, we add additional flux terms which enforce
a zero-flux constraint on the gauge qubits, as determined by relations between the
minimal coupling terms [110]. There is one flux term Ae for each edge, and nine
flux terms A(k)

c for each cube c. We define Ce and the flux terms in Fig. 5.9. The
precise form of Bc is not required for our purposes here, as it is not associated with
any topological excitations. Overall, the gauged Hamiltonian is,

Hfrac = −
∑
c∈C
Bc −

∑
e∈E
Ce −

∑
e∈E
Ae −

∑
c∈C

9∑
k=1
A(k)
c . (5.50)

Now let us investigate the excitations of Hfrac. Due to the sheer number
of terms, and the fact that they are not all independent, the full spectrum of
excitations is tedious to describe. Instead, let us focus on two types which allow us
to see the non-trivial action of the global symmetry. Gauge charges, i.e violations
of Ce, can be created at the corners of a membrane operator,

Se
R =

∏
c∈R

Z(c,j)Z(c,l), (5.51)

where R ⊂ C is a rectangle of cubic cells in the xz plane, and excitations appear
on the edges at the four corners of R. Gauge fluxes corresponding to violations of
Ae can be created by the following membrane operator,

Sm
R =

∏
c∈R

X(c,m)X(c,n)X(c,o)X(c,p)CZc,(c,j)CZc,(c,l), (5.52)

where gauge fluxes again appear at the four corners of R. The fact that these are
fractons follows from the three orthogonal relations among flux terms described in
Fig. 5.9. Now we observe that the global symmetry XC permutes the membrane
operators,

XCSm
RX

†
C = Sm

RSe
R. (5.53)

This shows that acting with the global symmetry attaches gauge charges onto
gauge fluxes, thereby permuting the fractons of the gauged theory.
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Figure 5.9: Hamiltonian terms of the fracton model obtained from gauging subsys-
tem symmetries of |SSPT 〉. (a) The minimal interaction term symmetric under all
subsystem symmetries. The gauge qubit (blue dot) is placed at the nexus of the
interaction. (b) Labelling of the 12 gauge qubits within a cube, which live on the
edges of a smaller inscribed cube. (c) The flux term Ae consists of four Z operators
acting on the gauge qubits closest to e, where e is the central vertical edge. (d) The
Hamiltonian term Ce consists of sixteen X operators acting on gauge qubits and
four CZ operators (denoted by a red line) that connect a gauge qubit to a body
centre qubit. The interaction is only shown in one quadrant for clarity; it acts in an
analogous (rotated) manner in all 4 cubes surrounding the edge e as indicated by
the dashes. (e) The nine flux terms within a cube. Z• is shorthand for Z(c,•). The
flux terms Ae and A(i)

c satisfy a number of relations which determine the mobility
of gauge fluxes, such as the product of all Ae and A(7)

c in an xz dual-plane; Ae,
A(4)
c , A(5)

c in a yx lattice-plane; and Ae, A(2)
c , A(3)

c in a yz lattice plane.

5.3.3 Gauging global and subsystem symmetries: Panoptic or-
der

In this section, we consider gauging the global symmetry of |SSPT 〉 along with some
or all of the subsystem symmetries. Equivalently, we are gauging the subsystem
symmetries of |SSET 〉. In each case, we will find that fully mobile point-like
and loop-like excitations, coming from the gauged global symmetry, coexist with
the restricted-mobility excitations coming from the gauged subsystem symmetries.
Such a system was dubbed to have “panoptic” order in Ref. [115].

Gauging lattice-plane and global symmetries

If we gauge Zsub1
2 and Zglob

2 , we end up with a model that is, in the absence
of symmetry, equivalent to a stack of the 3D toric code and the fracton model
from Section 5.3.2. The ungauged Zsub2

2 symmetry couples the two models by
permuting excitations between them. Specifically, a Zsub2

2 generator creates Zsub1
2

gauge charges on a pair of planes wherever it intersects the loop-like Zglob
2 gauge
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fluxes (Fig. 5.8(a)), and the same generator attaches a Zglob
2 gauge charge to Zsub1

2
gauge fluxes in adjacent planes (Fig. 5.8(c)). Thus, the symmetry enrichment
manifests as an interesting permutation involving fully mobile excitations and
those of restricted mobility.

Gauging dual-plane and global symmetries

Gauging Zsub1
2 and Zglob

2 gives a model in the same topological phase as a stack of
the 3D toric code and layers of 2D toric codes in all three directions. Similar to
the previous model, the remaining Zsub1

2 symmetry generators permute excitations
between the 2D and 3D toric codes by attaching Zsub2

2 gauge charges to the loop-like
Zglob

2 gauge fluxes (Fig. 5.8(a)) and by attaching Zglob
2 gauge charges to Zsub1

2 gauge
fluxes in adjacent planes (Fig. 5.8(c)).

Gauging all symmetries

To understand the model obtained by gauging all symmetries, it is easiest to
start from Hfrac in Eq. 5.50, where all subsystem symmetries have been gauged.
Then, what remains is to gauge the global symmetry, which we saw enacts a
non-trivial permutation on the fractons of the model. For this, we can use the
general arguments of Ref. [115] (see also Ref. [266]). Therein, it is argued that
gauging a fracton permuting symmetry results in a model with non-abelian fractons.
Furthermore, gauge fluxes will be loop-like excitations that braid non-trivially
with the excitations of reduced mobility. Since we expect the gauging of different
symmetries to commute (as was indeed the case in Section 2.4.1), we can conclude
that gauging the subsystem symmetries of the SSET will result in the same panoptic
order with non-abelian fractons.

It is interesting to compare to the model obtained by gauging the layer-swap
symmetry of the bilayer X-Cube model, as presented in Refs. [115, 266], which also
has panoptic order with non-abelian fractons. A potential equivalence between this
model and our own is suggested by the equivalence between the model obtained
by gauging the layer-swap symmetry of the bilayer 2D toric code [115, 266], and
the model obtained by gauging all symmetries of the non-trivial Z2×Z2×Z2 SPT
(which is somewhat analogous to |SSPT 〉), as discussed in Section 2.4.1. Therefore
it is tempting to conjecture that the gauged bilayer X-Cube model and the model
obtained by gauging all symmetries of |SSPT 〉 are equivalent as gapped phases of
matter.

5.4 Discussion & Conclusions
We investigated the phenomenon of subsystem symmetry enrichment in 3D systems.
We began with a base model possessing SPT order under a mix of global and
planar subsystem symmetries. By gauging the global symmetries of this model, we
obtained a topological model with loop-like excitations that carry fractional charge
of the subsystem symmetries, which we called an example of SSET order. We
showed that this fractionalization leads to a extensive degeneracy of the excitations,
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as well as an increased value of the topological entanglement entropy. We then
considered also gauging the subsystem symmetries of the base model, resulting in
a network of models all related by gauging and ungauging symmetries (Fig. 5.2).
Using the algebra of the symmetry defects of the SPT model, we were able to
understand the nature of each gauged model, uncovering several distinct types of
subsystem symmetry enrichment. In particular, we found models supporting mixed
global and subsystem symmetry fractionalization, permutation between mobile
and restricted mobility excitations, and a model with non-abelian fractons.

The key feature that allows symmetry fractionalization in our model is the
1-form conservation law on loop excitations, which enforces that an excitation
penetrates any closed 2D surface an even number of times. In particular, any loops
penetrates a plane an even number of times, and this allows a planar subsystem
symmetry to fractionalize. This suggests that a general theory of subsystem
symmetry enrichment comes from studying the interplay between the conservation
laws of the topological excitations and the geometry of the subsystem symmetries.
This is particularly clear in the context of fracton order, where the geometry of the
symmetries can be matched to the rigid mobility constraints of the excitations. As
we have seen here, the same principles apply to extended excitations such as loop
excitations, since the intersections of the excitations with the symmetry operators
can be viewed as point-like excitations from the perspective of fractionalization.

Our SSET model can be obtained by decorating the 3D toric code with 2D
cluster states. We can straightforwardly generalize our model by changing both
the underlying 3D topological model, as well as the 2D SSPT model used to
decorate. This raises the question of classification for SSET phases in 3D, and
whether all phases can be captured by such decorated constructions. We remark
that there should be some issues of compatibility, in that only certain combinations
of topological model and SSPT are allowed. For example, in 2D SET models,
the possible kinds of fractionalization that a point-like excitation can carry are
restricted by its braiding statistics with other excitations [111]. In analogy, we
suspect that there is a connection between subsystem symmetry fractionalization
in loop-like excitations and their braiding with point-like excitations. As a further
generalization, it is also plausible that, by decorating with a 2D SSPT possessing
2D fractal subsystem symmetries [61, 191, 194, 224], one could obtain a 3D SSET
enriched by 3D fractal subsystem symmetries. These questions are closely related
to the classification of SPTs with mixed global and subsystem symmetry, where
the approach of Ref. [270] should be applicable.

Finally, we address the possible applications of our models to the storage and
processing of quantum information. In general, it would be interesting to investigate
whether the introduction of subsystem symmetries and subsystem symmetry defects
into topological models can augment their computational capabilities, as is the case
of global symmetry defects in 2D topological systems [39, 47, 271]. Regarding the
SSET model from Section 5.2, the fact that it combines the universal (measurement-
based) quantum computational power of the SSPT order [26, 27, 61, 192] together
with the information storage capabilities of the topological order [6, 272, 273]
suggests some potential applications. A relevant phenomenon that may be of use
is the emergence of a symmetry protected degeneracy on the loop-like excitations.
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Chapter 6

Conclusions

The motivation for this thesis began with a desire to understand the computational
properties of subsystem symmetry-protected topological (SSPT) phases of matter.
This led to a unified understand of SSPT order and measurement-based quantum
computation (MBQC) using tensor networks and quantum cellular automata. This
venture revealed that these phases of matter also had interesting physical properties,
and so we moved on to investigating these properties through the lens of entangle-
ment entropy, which led to a numerical algorithm that can be used to detect SSPT
order. Finally, we explored further the various roles that subsystem symmetries can
play in topological phases of matter by consider subsystem symmetry enrichment
and fractionalization. Overall, the path taken during this thesis epitomizes the
deep and fruitful relationship between quantum computation and quantum phases
of matter.

On top of the open problems and further research directions proposed at the
end of each chapter, there are two more big questions which are raised by this
thesis, and we will conclude by briefly touching on them.

The results of Chapter 3 provide the most complete connection to date between
MBQC and SPT order by constructing a very general class of phases that are all
universal for MBQC. Yet, there remain some important open questions related to
this connection. In particular, there have some examples of SPT ordered states
that, when used as resources for MBQC, have nice properties beyond universality.
The first example is the Union-Jack state, presented in Section 2.2.3, which was
shown in Ref. [22] to be Pauli-universal, meaning that it is universal using only
measurement in the Pauli bases. It would be very interesting if this property could
be extended throughout an entire SPT phase of matter, since that would remove
the impractical requirement of precise measurement angles that is a part of the
usual scheme for MBQC with SPT phases. A potential route to find such a phase
of matter would be 3D SSPT phases, since these would naturally combine the
non-Clifford CCZ unitaries that are required for Pauli-universality with subsystem
symmetries, which seem to required for a universal phase of matter. Another
example of an SPT state that has interesting computational properties is the 3D
RBH cluster state discussed in Section 4.4. As a resource for MBQC, this state
has the advantage of fault-tolerance; the MBQC scheme is inherently robust to
noise and error. The RBH cluster state has SPT order protected by higher-form
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symmetries [41], which are similar to, yet distinct from, subsystem symmetries.
Extending fault-tolerance throughout an SPT phase of matter would lead to an
unprecedented robustness of the MBQC protocol.

Chapters 3 and 4 showed that tensor networks are useful to uncover the entan-
glement structure that characterizes 2D SSPT phases. As discussed throughout this
thesis, fracton topological phases are dual to systems with subsystem symmetries.
Despite the intense interest in fracton phases, there is almost no work regarding
their representation by tensor networks [274]. Finding a general tensor network
representation for fracton topological order, particularly for type II models such
as Haah’s code [30], should present an interesting avenue for understanding their
general structure, finding generalizations, and developing numerical algorithms.
More generally, it would be interesting to find tensor network representations that
can incorporate aspects of both global and subsystem symmetries, as found in the
model of Chapter 5. An interesting starting point is given by the hybrid fracton
models of Ref. [275], which can produce both topological order and fracton order
via condensation of certain excitations. Writing such a model as a tensor net-
work might reveal the general structure required to capture global and subsystem
symmetries.
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