Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Editorial

Shared Metadata for Data-Centric Materials Science

MPG-Autoren
/persons/resource/persons21549

Ghiringhelli,  Luca M.       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21325

Baldauf,  Carsten       
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons137143

Draxl,  Claudia
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons240571

Himmer,  Maja-Olivia Lenz       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons199248

Regler,  Benjamin       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2205.14774.pdf
(Preprint), 442KB

s41597-023-02501-8.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ghiringhelli, L. M., Baldauf, C., Bereau, T., Brockhauser, S., Carbogno, C., Chamanara, J., et al. (2023). Shared Metadata for Data-Centric Materials Science. Scientific Data, 10: 626. doi:10.1038/s41597-023-02501-8.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-A3F2-C
Zusammenfassung
The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on "Shared Metadata and Data Formats for Big-Data Driven Materials Science". We start from an operative definition of metadata, and what features a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them.