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Abstract

Despite recent advances in our understanding of drought impacts on tree

functioning, we lack knowledge about the dynamic responses of mature trees to

recurrent drought stress. At a subalpine forest site, we assessed the effects of

three years of recurrent experimental summer drought on tree growth and water

relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European

conifers representative for contrasting water‐use strategies. We combined

dendrometer and xylem sap flow measurements with analyses of xylem anatomy

and non‐structural carbohydrates and their carbon‐isotope composition. Recurrent

drought increased the effects of soil moisture limitation on growth and xylogenesis,

and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses

to recurrent drought, reduced starch concentrations in branches and increased

water‐use efficiency when compared to L. decidua. Despite comparatively larger

maximum tree water deficits than in P. abies, xylem formation of L. decidua was less

affected by drought, suggesting a stronger capacity of rehydration or lower cambial

turgor thresholds for growth. Our study shows that recurrent drought progressively

increases impacts on mature trees of both species, which suggests that in a future

climate increasing drought frequency could impose strong legacies on carbon and

water dynamics of treeline species.
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1 | INTRODUCTION

Trees are exposed to an increasing risk of drought stress due to the

recent and projected rise in the frequency and severity of drought

events (C. D. Allen et al., 2010; Büntgen et al., 2021; IPCC, 2018).

Drought effects on trees can range from short‐term impacts, such as

reduced carbon (C) uptake and/or growth during a drought event

(Bréda et al., 2006; Eilmann et al., 2006; Rennenberg et al., 2006), to

long‐lasting legacies (Müller & Bahn, 2022; Schwalm et al., 2017),

including multi‐year growth reductions (Anderegg et al., 2015) and

increased mortality (Adams et al., 2017; C. D. Allen et al., 2010) after

drought. Tree functioning can be increasingly impaired by repeatedly

occurring drought events (Kannenberg et al., 2020) and drought

legacies may also lead to increased vulnerability to subsequent

drought events (Kannenberg et al., 2020; Menezes‐Silva et al., 2019;

Peltier & Ogle, 2019; Rennenberg et al., 2006), especially if time

between droughts does not sufficiently allow for recovery (Schwalm

et al., 2017). However, susceptibility of trees and forests to recurrent

drought is highly variable among species (Anderegg et al., 2020) and

the underlying mechanisms are not well understood. This is related to

the fact that multi‐year datasets are largely restricted to tree rings

and thus provide only low temporal resolution information on

drought responses of tree radial growth. Furthermore, the quantifi-

cation of drought effects in tree‐ring studies is based on assumptions

of tree growth under different non‐drought conditions (Kannenberg

et al., 2020). To understand and consistently quantify drought effects

on growth and water‐use dynamics, experimental studies are needed

(Grams et al., 2021; Zuidema et al., 2018), yet most available

experiments to date have been performed on young saplings in non‐

natural growing environments, such as potted plants in greenhouses

or common garden setups (Hartmann, Moura, et al., 2018). However,

drought responses can differ strongly depending on tree age or size,

which limits the possibility of transferring observations on saplings to

mature trees (Andivia et al., 2020; Bennett et al., 2015; Cavender‐

Bares & Bazzaz, 2000; Hanson et al., 2001; Hartmann, Adams,

et al., 2018). Most information on mature tree drought responses

come from studies of natural drought events in drought‐prone regions

or drought experiments performed in (semi‐)arid regions (e.g., Adams

et al., 2015; Gaylord et al., 2013; McDowell et al., 2019; Plaut

et al., 2012). In contrast, trees growing at sites with previously ample

water supply might be particularly vulnerable to intense and/or

recurrent drought due to a lack in drought adaptation (Blumstein

et al., 2020; Isaac‐Renton et al., 2018). Furthermore, there is increasing

evidence that, as a result of ongoing climate change, drought severity

and frequency are increasing in regions that were previously largely

unaffected by drought, including large parts of the Alps (Büntgen

et al., 2021; Calanca, 2007; Gobiet et al., 2014; Moravec et al., 2021;

Spinoni et al., 2018), increasing potential risks also for mountain forests

(Albrich et al., 2020). The twofold rise in temperatures in many mountain

regions, compared to global average (Gobiet et al., 2014; Pepin

et al., 2015; Rangwala & Miller, 2012), has also led to increased

evapotranspiration and water vapour pressure deficits (VPD), which

accelerate and amplify drought stress (Grossiord et al., 2020; Sangines

de Carcer et al., 2018). Because an increase in drought frequency,

severity and spatial extent has the potential to ultimately cause

persistent shifts in species composition, forest dynamics and stand

structure (McDowell et al., 2020; Trugman et al., 2020), it is of major

importance to better understand the effects of recurrent drought on

tree functioning and to resolve the mechanisms on mature trees in their

natural environment.

Next to drought responses of radial growth and xylem sap flow, the

effects of drought on stem shrinking and swelling dynamics provide

major insights into the processes underlying tree functioning under

water limitation (Mencuccini et al., 2013; Peters et al., 2021; Steppe

et al., 2015; Zweifel, 2016; Zweifel et al., 2006). Dehydration occurs

when water gets withdrawn from the inner bark to maintain

transpiration during periods of high evaporative demand (Zweifel

et al., 2001). It can be strongly enhanced under reduced plant water

status at low soil water availability (Sevanto, 2018; Steppe et al., 2015).

Under such conditions, reduced turgor and increased phloem sap

viscosity impair phloem functioning (Sevanto, 2014, 2018). Simulta-

neously, a low water availability in the vascular cambium limits cell

formation due to decreased turgor for cell expansion and proliferation

(Cabon et al., 2020; Körner, 2003; Zweifel, Haeni, et al., 2016). While

there is increasing evidence that cambium and phloem hydration play a

major role under lethal drought (Lamacque et al., 2020; Preisler

et al., 2021), the sensitivity of these tissues to dehydration is still

largely unknown. Knowledge about dehydration dynamics and sensitiv-

ity could strongly contribute to understanding how tree functioning is

limited under drought (Martinez‐Vilalta et al., 2019) and may help

explain why drought responses differ between species.

Here, we aimed to determine growth and water‐use response

dynamics of mature trees to identify key limitations for tree

functioning under recurrent drought at a subalpine forest, a site

previously unaffected by severe drought events. We subjected

mature trees from two major coniferous species in the European

Alps, deciduous European larch (Larix decidua Mill.) and evergreen

Norway spruce (Picea abies L. Karst.), to 3 years of recurrent (i.e.,

annually repeated) experimental summer drought followed by typical

wet winter seasons. While sharing similar hydraulic characteristics

(Charra‐Vaskou et al., 2011; Rosner et al., 2019), the two species

represent contrasting water‐use strategies that are reflected by a

deep versus shallow rooting system (Schmid & Kazda, 2002; Valentini

et al., 1994) as well as an exploitative versus conservative stomatal

behaviour (Anfodillo et al., 1998; Leo et al., 2014), respectively. In

consequence, L. decidua has been associated with a lower drought

vulnerability than P. abies (Anfodillo et al., 1998; Hartl‐Meier

et al., 2014). We quantified radial and shoot elongation growth and

xylem anatomy, xylem sap flow, diel stem radius variations as a proxy

for tree water status and stem electrical resistivity as a proxy for

xylem water content. Furthermore, we analysed leaf and branch non‐

structural carbohydrate (NSC) concentrations and carbon isotope

composition of soluble sugars (δ13C) as a measure for tree carbon

status and intrinsic water‐use efficiency. We tested the hypotheses

that (i) drought affects key parameters of tree carbon and water

relations (including growth dynamics, wood anatomical traits, stem
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tissue hydration dynamics, xylem sap flow, NSC concentrations and

intrinsic water use efficiency) more strongly for P. abies than for L.

decidua, and (ii) recurrent summer drought amplifies negative drought

impacts on these parameters and enhances the differences between

the two species.

2 | MATERIALS AND METHODS

2.1 | Study site and experimental design

The subalpine forest site is situated in the Austrian Central Alps at the

long‐term ecological research (LTER) master site Stubai valleya (47°07′

34″N, 11°17′42″E). The site is situated on a south–southeast exposed

slope between 1960 and 2000m.a.s.l., with an inclination of 20–35°.

Mean annual temperature and mean annual precipitation are 3°C and

1097mm, respectively (Bahn et al., 2006; Schmitt et al., 2010). The area

was formerly used as a pasture and upon abandonment was reforested in

the early 1980s. It is dominated by the deciduous coniferous tree species

European larch (Larix decidua Mill.) and the evergreen species Norway

spruce (Picea abies L. Karst.). Trees form an open stand with a minor

portion of Swiss stone pine (Pinus cembra L.) and Swiss mountain pine

(Pinus mugo Turra), and an understory vegetation dominated by

graminoids and forbs typical of the nearby grasslands (Schmitt et al., 2010)

with a few dwarf shrubs (Vaccinium spp.). Soils are dystric cambisols on

siliceous and calcareous bedrock as in an adjacent abandoned grassland

(Meyer et al., 2012). Field capacity and permanent wilting point of the

soils are at 46.8 and 23 vol%, respectively, determined using HYPROP

evaporation method (HYPROP 2, Meter Group).

Three drought plots and three control plots were established in

2015, each plot covering an area of ~230m2 (Supporting Information:

Figure S1). In the centre of each plot, two individual trees of each

L. decidua and P. abies were located, resulting in a total of 24 studied

trees (six trees per species and treatment). Tree size and stand

characteristics did not differ significantly between treatments and within

species at the beginning of the experiment (Table 1). Trees were

subjected to sustained and recurrent summer drought by excluding

100% of the precipitation in the drought plots up to 4months during the

main growing season in 2016, 2017 and 2018 (Table 2). The exact timing

of the treatment depended on weather conditions that determined site

accessibility for shelter installation and removal in spring and autumn,

respectively. To exclude precipitation, semi‐transparent ripstop plastic

sheets were mounted 1.3m above ground on manually constructed

wooden racks, where precipitation would run off without affecting other

plots. Plastic sheets were mounted tight on the stems and sealed to

prevent stem runoff and avoid throughfall precipitation. While the

wooden constructions were left installed also during winter, plastic

sheets were removed each year at the end of each growing season.

To prevent subsurface water flow from entering the drought plots, 1.5m

deep trenches were installed upslope of the drought plots. The distance

of these trenches from the stems of the studied trees was at least three

times the radius of their respective crowns in all plots. Therefore, and

due to a lack of lateral trenches, the root system of study trees was not

considered to have been significantly damaged by trenching. Trenches

were laid out with plastic sheets to evacuate water to the outsides of the

plots and refilled with excavated soil. Trenches remained permanently

installed, thus soil water content (SWC) recovered mainly through water

input from precipitation. Because trees were potentially able to access

some small amount of water from the untrenched areas adjacent to the

rainout shelters, the treatment likely underestimated drought effects as

recently shown for many drought experiments when compared to

natural droughts (Kröel‐Dulay et al., 2022).

2.2 | Microclimate

In one control and one drought plot each, a micrometeorological

station was set up to measure air temperature (Ta) and relative

humidity (RH; bothVaisala HMP45AC) in the open 2m above ground.

Furthermore, SWC (SM150T, Delta‐T Devices Ltd) was measured at

5, 10, 20, 40 and 80 cm soil depth. Measured values were averaged

and logged at 30min intervals using CR1000 data loggers (Campbell

Scientific). Precipitation (P) measurements were taken from a

meadow study site (Schmitt et al., 2010) located within a distance

of 800m to avoid measurement artefacts by needles plugging the

rain gauge (Model 52202, R. M. Young Company). VPD was

calculated from Ta and RH following R.G. Allen et al. (1998).

2.3 | Dendrochronological and wood anatomy
analysis

In spring 2019, two radii per tree were extracted from opposite sides

of the stem at 0.5 m height using an increment borer. Trees were

TABLE 1 Mean ± 1 SE tree characteristics (stem diameter, stem perimeter and crown diameter) and plot characteristics (stand height, soil
depth) as assessed in 2015 (n = 6 trees per species and treatment, n = 3 plots per treatment)

Treatment Species Stem diameter (cm) Stem perimeter (cm) Crown diameter (m) Stand height (m) Soil depth (cm)

Control Larix decidua 18.05 ± 1.01 56.70 ± 3.19 5.00 ± 0.26 7.00 ± 0.37 36.67 ± 3.80

Picea abies 16.13 ± 1.60 50.65 ± 5.02 4.00 ± 0.34

Drought Larix decidua 18.88 ± 1.47 59.32 ± 4.65 4.58 ± 0.38 6.67 ± 0.46 38.33 ± 2.10

Picea abies 17.40 ± 1.46 54.65 ± 4.60 3.92 ± 0.15

Note: Differences between treatments were not significant (p > 0.5).
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cored parallel to the contour to avoid biases induced by formation of

reaction wood. In the laboratory, increment cores were air‐dried,

mounted on grooved boards and the surface was prepared with a

sharp razor blade to produce flat surfaces. For contrast enhancement

of tree‐ring boundaries, white chalk powder was rubbed into the

tracheid‐lumen (Pilcher, 1990). Ring widths were measured to the

nearest 1 µm using a light microscope (Olympus SZ61) fitted with a

LINTAB measuring system (Frank Rinn). Correct dating of measured

time series of ring width were checked with COFECHA software

(Holmes, 1983) and individual ring‐width chronologies were devel-

oped for each individual tree. To account for pre‐treatment

differences in tree radial growth, tree ring width during the study

period 2016–2018 was analysed for each individual tree and year in

relation to mean tree ring width in a 5‐year period before the

treatment started (2011–2015). To assess drought effects on xylem

formation, the average number of cell rows per tree ring,

corresponding to annual cell formation rate, was measured for the

3 study years (2016–2018). Mean radial cell diameter as a proxy for

cell enlargement was calculated as the quotient of tree ring width and

the number of cell rows formed in the corresponding year.

2.4 | Dendrometer measurements

All trees were equipped with high‐resolution circumference band

dendrometers (DC2, Ecomatik GmbH), which were installed in 2015,

1 year before the beginning of the drought treatment. We mounted

dendrometers at a height of 150 cm above ground on the north

facing side of the stem to minimise radiation effects on the sensors.

Part of the dead outermost layers of the bark was removed before

installation to minimise the influence of hygroscopic shrinking and

swelling on dendrometer records. Data were logged in 15min

intervals by HOBO UX120‐006M analogue data loggers (Onset

Computer Corporation). Stem circumference data were converted to

stem radius data, which we subsequently used to calculate diurnal

radius variations, maximum daily stem shrinkage (MDS) and

TWD following Zweifel (2016) and Dietrich, Zweifel, Kahmen (2018).

Daily values for TWD were calculated as the difference between the

daily maximum radius in the morning and its preceding maximum

radius reading, indicating overall water deficit‐related stem shrinkage.

Daily values for MDS, as an indicator of diurnal water deficit related

stem shrinkage, were calculated as the difference between the

maximum radius before the onset of stem shrinkage in the morning,

corresponding to the maximum expansion of the stem due to growth,

water refilling and saturation, and the minimum radius during the day,

corresponding to maximal diurnal depletion of water stored in the

stem. Monthly averages of MDS and diurnal stem radius variations

were subsequently calculated for each individual tree.

Additionally, growth models were fit to the dendrometer‐derived

annual stem radius change data for each individual tree and year to

estimate the date of the onset of radial growth (GROstart), date of

maximum growth rate and maximum growth rate (dGROmax and

GROmax, respectively) and the date of the end of radial growth

(GROend) following the approach of Kahm et al. (2010) and Paine

et al. (2012). In short, Gompertz and logistic growth functions were fit

to the data and the better model fit was chosen based on Akaike

Information Criterion (AIC) evaluation for analysis of the growth

curve. Growth parameters were calculated as the x‐axis intercept of

the tangent of the inflection point (GROstart), the date at the

inflection point (dGROmax), the slope at the inflection point (GROmax)

and the point of interception of the upper asymptote and the tangent

of the inflection point (GROend) of the growth curve.

2.5 | Shoot growth

Shoot growth was repeatedly assessed at four time points during the

growing season of 2018 (Supporting Information: Figure S6). For

each tree, five south‐exposed shoots were selected and marked

before the onset of shoot growth and were measured at each of the

four time points using a digital caliper gauge. For statistical analyses

the mean values per tree were used.

2.6 | Sap flow

All 24 studied trees were equipped with a set of tissue heat balance

sap flow sensors (EMS 51, EMS Brno, Brno, CZ; described in detail by

Čermák et al. [2004]). Sensors were mounted at a height of ~100 cm

above ground at the south facing side of the stem before the

beginning of the treatment in 2016. To prevent confounding heating

effects from solar radiation, sensors and the surrounding tissue were

protected with aluminium‐faced foam insulation covers provided

with the EMS 51 sap flow system. Xylem sap flow rates (l h−1) were

measured in 10 s intervals and 15min averages were recorded by the

EMS 51 data logger.

2.7 | Electrical resistivity tomography

To estimate effects of drought on water distribution in stem xylem,

electrical resistivity measurements were performed on three P. abies

trees per treatment at peak drought in the third study year (end of

September 2018). A set of nails (length 5 cm) was installed around the

trunk circumference at 24 measuring points, 40 cm above the ground

(see Bär et al., 2019; Ganthaler et al., 2019; Losso et al., 2020). Nails

were installed with equal distance to each other (counterclockwise

numbering with north orientation of measuring point 1), until contact

to the sapwood was established. Tree geometry and positions of

measuring points were determined with an electronic caliper (PiCUS

Calliper Standard Version, Argus Electronic Gmbh) and processed

using the PiCUS Software (PiCUS Q73, Argus Electronic Gmbh). Nails

were connected to a 24‐channel resistivity system (PiCUS: Tree-

Tronic, Argus Electronic Gmbh) and electrical voltages (voltage levels

between 2 and 4) were applied systematically to all measuring points

(overall duration of measurements was less than 5min). For each
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tree, a tomogram was generated using a dedicated software, which

calculates the cross‐sectional distribution of electrical resistivities and

spatially distribute them using an inversion scheme based on a finite

element simulation operating with regularly arranged tetrahedrons

(see Günther, 2004; Günther et al., 2006; Rücker et al., 2006).

Tomograms are based on triangle areas, where each triangle was

coloured according to its resistivity for a better visualisation of

patterns. To analyse tomography data, stem resistivity values were

binned and averaged in 10 sections along the radius, each section

spanning 10% intervals of the radius from the stem centre (1st decile)

to the stem periphery (10th decile). To account for effects of the

chosen plots in the statistical analysis, a random intercept for plots

was included in the regression model as described in the data analysis

section below.

2.8 | NSC and their δ13C

Three shoots per individual tree were sampled and pooled at the

onset of drought (June) and at peak drought (i.e., immediately before

the end of the drought treatment in September) in 2018 to measure

NSC concentrations and analyse δ13C of soluble sugars, as an

indicator of intrinsic water‐use efficiency (Francey & Farquhar, 1982).

For samples of L. decidua taken at the onset of drought 2018, no

leaves were available, as samples were taken before leaf out. Needles

and branches were separated and ground to fine powder using a ball

mill (Retsch MM400). Soluble sugars and starch were extracted

following the protocol of Landhäusser et al. (2018). Briefly,

approximately 30mg of fine powders were extracted with 1ml of

85% ethanol, vortexed for 1 min, incubated at 90°C for 10min, and

centrifuged at 13 000g for 1 min. The supernatant was collected,

diluted and analysed for glucose, sucrose, and fructose using a high‐

performance liquid chromatography coupled to a pulsed amperomet-

ric detection (HPLC‐PAD). The remaining pellet was washed by 85%

ethanol twice, dried and digested with 1.0 ml of sterilised water

containing 600 units of α‐amylase, vortexed for 1 min, incubated at

85°C for 30min, and then centrifuged at 13 000g for 1min. An

aliquot of supernatants was collected and digested with amyloglu-

cosidase (Sigma‐Aldrich), incubated at 55°C for 30min, and analysed

for glucose hydrolysate using HPLC‐PAD. Starch was calculated as

glucose equivalents multiplied by a factor of 0.9.

An aliquot of the ethanol extracts was pipetted into a tin cup,

dried at 40°C and analysed for δ13C using a Finnigan Delta Plus XL

EA‐IRMS (Thermo Finnigan GmbH) coupled with an autosampler

(Huang et al., 2019). We used the δ13C of ethanol extracts as a

reliable proxy for the δ13C of soluble sugars, as has been previously

shown in Pinus sylvestris (Brandes et al., 2006).

2.9 | Data analysis

All calculations and statistical analyses were performed in R Statistical

software (R Development Core Team, 2020) and RStudio (RStudio

Team, 2020), strongly employing R packages ‘lubridate’ (Grolemund &

Wickham, 2011) and ‘tidyverse’ (Wickham et al., 2019).

The effect of the drought treatment on all parameters, except

xylem sap flow (see below), was estimated using robust Bayesian multi‐

level linear regression models, implemented in Stan modelling software

(Stan DevelopmentTeam, 2020) using R package ‘brms’ (Bürkner, 2017).

The linear model included the respective parameter as the response

variable and treatment as the predictor variable. Variation between

plots was accounted for by allowing the intercept to vary by plots.

In addition, residual standard deviation of the response distribution was

predicted from and thereby allowed to vary by treatment (including a

random plot intercept) to account for unequal variances between

treatments (Bürkner, 2018). We chose the t distribution as the

response distribution, which is assumed to be more robust to outliers

than normal distribution (J. K. Kruschke, 2013). Please note that count

data (number of cells in tree rings) was modelled using a Poisson

distribution. Hence, the following model was established:

y T ν μ σ~ ( , , ),i i i

μ β β= + *treatment ,i i t iplot[ ]

σ γ γ= + *treatmenti i t iplot[ ] ,

where yi denotes the ith observation of the corresponding response

variable, sampled as random draws from a t‐distribution (T) with ν

degrees of freedom, mean μi and standard deviation σi . βplot i[ ] and γplot i[ ]

denote plot‐specific intercepts, βt and γt denote treatment coefficients

and treatmenti denotes the treatment (control, drought) as the

explanatory variable. Weakly informative priors (i.e., Normal distribution

with mean=0 and standard deviation =5) were chosen for treatment

coefficients to ensure unbiased estimates of treatment coefficients but

still provide a minimum level of regularisation. For all other parameters,

default priors from the ‘brms’ package were used. We ran four Markov‐

Chain‐Monte‐Carlo chains with 4000 iterations each (half of which were

warm‐up runs) to ensure chain convergence. The number of iterations

was increased to 10 000 in a few cases where chains did not converge

after 4000 iterations. Convergence of the MCMC chains was evaluated

using visual inspection of trace plots and Gelman‐Rubin statistic

(Rhat < 1.01) (Brooks & Gelman, 1998; Gelman & Rubin, 1992). Further-

more, model fits were evaluated with graphical posterior predictive

checks. Models were run separately for each species. Values reported in

this manuscript are median and 95% credible intervals (95% highest

density interval) of the posterior distribution of the treatment covariate.

Additionally, the posterior probability that the treatment effect is positive

or negative and lies above or below the region of practical equivalence

around the null value (ROPE; defined here following the suggestion of

J. Kruschke [2014] and J. K. Kruschke [2018] as the standard deviation of

0.1 from the null value, which corresponds to half of a small effect size

according to Cohen [1988]) is reported in this manuscript as the posterior

probability of direction (pp; Makowski et al., 2019).

To assess xylem sap flow response to VPD, a generalised additive

mixed model (GAMM) was fit to the data separately for each species,

treatment and month in the corresponding study year. The model

was fit to xylem sap flow as the response variable, with VPD
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(including a separate cubic regression spline for each treatment) and

treatment as the predictor variables, as well as a random intercepts

and slopes for tree nested in plot. To account for heterogeneity of

variances, the models were fit with a fixed variance structure

accounting for an increase in residuals as VPD increases (Zuur

et al., 2009). Because VPD was recorded in 30min intervals, xylem

sap flow data, which were recorded in 15min intervals, were

aggregated to half hourly means for the GAMM. We assumed that

stomatal responses to VPD are negligible during nighttime and

therefore excluded data between 20:00 and 06:00 h.

To evaluate overall relationships of all studied parameters,

PCA was performed separately for the two species on data gathered

during peak drought in 2018, where most parameters were measured

in close temporal proximity. As input variables, annual values were

taken for radial increment, shoot length, day when radial growth

stopped and xylem anatomical parameters. For NSC, data sampled at

peak drought (September) were used. Time series data were

aggregated to mean daily maximum xylem sap flow and mean daily

stem radius shrinkage of a 1‐week period during peak drought when

NSC samples were collected.

3 | RESULTS

3.1 | Microclimate and treatment effects on soil
water availability

The rain‐exclusion treatment strongly reduced SWC in all 3 study

years when compared to control, reaching levels close to the

permanent wilting point in 2016 and 2017 and levels below the

permanent wilting point in 2018 (Figure 1g–i, Supporting Informa-

tion: Figure S2; Supporting Information: Table S1). SWC progressively

decreased with treatment duration, remained low across the whole

soil profile for several weeks after the treatment ended, and fully

recovered only during winter (Supporting Information: Figure S2). Air

temperature, RH and VPD were in a similar range in the 3 study

years, whereas precipitation was lower in 2018 when compared to

2016 and 2017 (Supporting Information: Figure S3; Table 2,

Supporting Information: Table S1), which resulted in comparatively

lower SWC from early August 2018 onwards in both treatments

(Figure 1i, Supporting Information: Figure S2).

3.2 | Tree growth and anatomy

Radial growth was reduced under drought in both species and

the drought effects increased under recurrent drought (Figure 1a–f,

Supporting Information: Figures S4 and S5; Supporting Information:

Table S2). Under drought radial growth of L. decidua was only slightly

reduced in 2016, but strongly reduced by 33.6% (pp = 1) and 35.4%

(pp = 0.96) in 2017 and 2018, respectively. In P. abies, growth

remained unaffected by drought in 2016, but progressively

decreased by 26.1% (pp = 0.94) and 38.6% (pp = 1) when compared

to control trees in 2017 and 2018, respectively. In L. decidua, annual

radial growth ended earlier under drought than in control trees in the

second year (2017; pp = 0.97) and third year of the drought treatment

(2018; pp = 0.98) (Figure 2a). P. abies trees exposed to drought

stopped radial growth significantly earlier than control trees in all

study years and the effects increased with recurrent drought

(Figure 2a; pp ≥ 0.99). We did not find any relevant effects of

drought on the date of growth onset, the maximum growth rate and

the date at which the maximum growth occurred. Throughout the

third year of drought, shoot growth was unaffected by drought in

L. decidua, but consistently reduced in P. abies (pp > 0.97), the length

of newly formed shoots declining by 34% relative to control trees

(Supporting Information: Figure S6).

Xylem cell formation was more limited by drought in P. abies

across all years, but hardly affected in L. decidua (Figure 2b–d;

Supporting Information: Table S2). The number of cell rows formed

per year was increasingly reduced in the second and third year of

drought in drought exposed trees of both species when compared to

the respective control trees (Figure 2b). However, a reduced average

radial cell width (Figure 2c) and an increased number of cells per mm

increment (Figure 2d) indicate that only in P. abies cell expansion was

significantly impaired by drought in 2017 and 2018. In contrast, radial

cell width showed no response in L. decidua.

3.3 | Tree water relations

In both species, diel stem radius dynamics and the resulting maximum

daily stem shrinkage (MDS) increased already at the onset of the first

drought and remained strongly increased throughout the period of

rain‐exclusion in each year (pp > 0.98; Figure 3; Supporting Informa-

tion: Table S3). Daily stem radius shrinkage, as an indicator of stem

water depletion, was increased in drought exposed trees already

from early morning (i.e., at the start of transpiration) and persisted

throughout the whole day so that stems did not fully recover their full

radius towards the end of the day under drought. The relative

difference in MDS between treatments was stronger in L. decidua,

which was mainly an effect of lower MDS of L. decidua control trees

when compared with P. abies control trees (Supporting Information:

Table S4). This effect was specifically pronounced in the warm and

dry month of August 2018, when SWC was comparatively low also in

control plots (Figure 1i, Supporting Information: Figure S2) and MDS

of control trees of P. abies reached levels of drought trees. In

consequence, no significant treatment effect was observed in this

species. Additionally, overall TWD of drought‐exposed trees

increased in both species as drought progressed in all study years

and both species showed the strongest response in the last year of

drought in 2018 (Supporting Information: Figure S7).

Xylem sap flow of both species was strongly related to VPD and

saturated at intermediate levels of VPD (Figure 4; Supporting

Information: Table S5), when stomatal closure likely balanced

increased evaporative demand. In P. abies, xylem sap flow of

drought‐exposed trees tended to be reduced at higher VPD levels
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towards the end of the drought treatment in 2016 but showed no

clear drought response in 2017. In contrast, in L. decidua the drought

treatment showed no effects on xylem sap flow in 2016, but a

gradual decrease in sap flow with drought progression could be

observed in 2017 when compared with control trees. During the

third year of drought, xylem sap flow at a given VPD was persistently

reduced for both species already from the onset of drought, with

most pronounced effects in September 2018 for L. decidua and in

August 2018 for P. abies (p < 0.04).

Furthermore, drought increased stem electrical resistivity in

P. abies at peak drought in 2018 (Figure 5), which reflects a decrease

in stem water content (Bär et al., 2019). Under drought, electrical

resistivity increased particularly from the third to the ninth decile

from the stem centre (pp > 0.9; Table S6), indicating an increasing

area of dehydrated xylem in the centre of the stem.

3.4 | NSC and their δ13C

Concentrations of non‐structural carbohydrates (NSC) studied in the

third experimental year (2018) showed no clear drought response in

L. decidua (Figure 6, Supporting Information: Figure S8; Supporting

(a)

(d)

(b)

(e)

(c)

(f)

(g) (h) (i)

F IGURE 1 Stem radius variations (a–f) for Larix decidua (a–c) and Picea abies (d–f) and mean volumetric soil water content (SWC; g–i) in the
growing periods of the 3 study years 2016, 2017 and 2018. (a–f) Lines and background shadings indicate mean ± 1 SE for stem radius variations
(n = 6 trees per species and treatment). For SWC (g–i), solid lines represent SWC averaged over the sensors in 5, 10, 20, 40 and 80 cm soil depth
(see Supporting Information: Figure S2, for SWC of individual soil depths). Colours denote treatment (blue = control, orange = drought).
Background ribbons indicate periods when rainout shelters were closed.

TABLE 2 Duration of the rain exclusion treatment, annual
precipitation and precipitation during the rain‐exclusion period in the
3 study years 2016–2018

Year
Rain exclusion
period

Duration of
treatment
(days)

Annual
precipitation
(mm)

Precipitation
during rain‐
exclusion
period (mm)

2016 10.07–21.09 73 1100 411

2017 10.05–27.09 140 1330 929

2018 31.05–26.09 118 876 433
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Information: Table S7). In drought exposed P. abies trees, soluble

sugar concentrations tended to be higher in branches and needles of

drought‐exposed trees already at the onset of drought (pp > 0.91) and

at peak drought (pp > 0.89; Figure 6a,c), but concentrations increased

less between drought onset to peak drought when compared to

control trees (Supporting Information: Figure S8). Total NSC

concentrations tended to be higher in branches and needles of

drought exposed trees already at the onset of drought (pp > 0.9).

However, the magnitude of NSC accumulation during the growing

season differed between treatments only in branches, but not in

(a)

(b)

(c)

(d)

F IGURE 2 Different measures related to
radial growth and xylem anatomy for Larix
decidua (left) and Picea abies (right). (a) Day of
year (DOY) at which tree growth ended in the
corresponding year; (b) number of cell rows
measured in radial direction per total tree ring;
(c) average radial cell width (µm); (d) average
number of cell rows measured in radial
direction per mm increment. Boxplots denote
median (bold horizontal line), 25th and
75th quartile (box) and 1.5 * interquartile
range (whiskers). Points represent individual
observations. Colours denote treatment
(blue = control, orange = drought). Asterisks
and plus signs indicate differences between
treatments with a posterior probability >0.95
and >0.9, respectively (n = 6 per species and
treatment). [Color figure can be viewed at
wileyonlinelibrary.com]
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needles (Supporting Information: Figure S8). At peak drought, starch

concentration was reduced in the branches by 35.2% (pp = 1), but not

the in needles of P. abies (Figure 6b), which was also reflected in a

higher decrease in starch and lower increase in total NSC between

onset of drought and peak drought (pp > 0.97; Supporting Informa-

tion: Figure S8).

Furthermore, δ13C of soluble sugars sampled in 2018 was

analysed to estimate drought effects on water‐use efficiency. In both

species, δ13C of soluble sugars was higher already at the onset of

drought in drought‐exposed trees compared to control trees

(Figure 7), indicating increased water‐use efficiency. In P. abies,

δ13C levels remained higher also at peak drought, but δ13C levels did

not change strongly between drought onset and peak drought within

treatments. In drought‐exposed L. decidua, δ13C of needles was also

higher at peak drought. δ13C in branches of control trees increased

from drought onset towards peak drought and, therefore, no

difference between treatments was observed in branches at peak

drought for L. decidua.

3.5 | PCA of all parameters in response to drought

To evaluate overall relationships between parameters in response to

recurrent drought, a PCA was performed for each species on all

parameters sampled in 2018 (Supporting Information: Figure S9).

Control and drought treatments were clearly separated along with

F IGURE 3 Normalised mean diel (0–24 h) stem radius variations (µm) during the summer months in the pre‐treatment year 2015 and drought
treatment years 2016–2018 for Larix decidua (upper panels) and Picea abies (lower panels). Lines and shadings represent mean ± 1 SE. Values were
normalised to maximum radial expansion in the morning, before shrinkage occurred. Asterisks indicate differences in maximum daily shrinkage (MDS)
between treatments with a posterior probability >0.95 (n = 6 per species and treatment). [Color figure can be viewed at wileyonlinelibrary.com]
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principal component (PC) 1 in both species, which was mainly related

to a negative relationship of MDS, which mainly reflects stem and

especially cambium and phloem dehydration, and growth‐related

parameters (shoot and stem growth, end of growth, number of cells

formed and cell width). While PC1 explained 30.6% of multi‐variate

variability in the data of L. decidua, a stronger association of these

parameters with PC1 was found for P. abies (46.8% of multi‐variate

variability in the data), which suggests a stronger link between MDS

and tree growth in this species.

4 | DISCUSSION

Our multi‐year rain‐exclusion experiment on mature trees at a

subalpine forest site showed that, while differing in their water‐use

strategies, both L. decidua and P. abies strongly responded to drought.

Drought responses were most pronounced as concerns growth and

xylogenesis as well as stem tissue hydration, whereas xylem sap flow

was less strongly affected. Drought effects were progressively

amplified under recurrent drought, in spite of long winter seasons

F IGURE 4 Response of xylem sap flow to vapour pressure deficit (VPD) during the summer months of 2016–2018. Response curves show
generalised additive model (GAM) fits for the species Larix decidua (upper panels) and Picea abies (lower panels) for the years 2016, 2017 and
2018 (top to bottom) in the control (blue) and drought (orange) treatment. Shadings represent the 95% confidence intervals, and scatter in the
background represents individual mean observations for each species and treatment (n = 6 trees per species and treatment). Asterisks and plus
signs indicate differences between treatment intercepts with a p‐value < 0.05 and p‐value < 0.1, respectively (n = 6 trees per species and
treatment). [Color figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

F IGURE 5 Electrical resistivity of Picea abies stems measured at peak drought in 2018. (a) Electrical resistivity tomograms of the trunk of
three control trees (upper panel) and three drought exposed trees (lower panel) of P. abiesmeasured at peak drought in 2018. In each tomogram,
areas of high electrical resistivity are indicated by red colour while areas of low electrical resistivity are indicated by blue color. Note that the
range of displayed electrical resistivity was set manually to 100–1000Ωm to optimise visualisation. (b) Mean electrical resistivity (Ωm) for each
decile along the stem radius from the stem centre (1st decile) to the stem periphery (10th decile). Colours denote treatment (control = blue,
drought = orange). Points represent individual observations. Asterisks and plus signs indicate differences between treatments with a posterior
probability >0.95 and >0.9, respectively (n = 3 per treatment). Note that electrical resistivity is inversely related to water content. [Color figure
can be viewed at wileyonlinelibrary.com]
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during which soil water status was fully restored. Stem hydration

dynamics were highly indicative of overall tree responses to drought,

though their relationship with growth and NSC differed between the

two species.

4.1 | Species‐specific drought responses

L. decidua and P. abies have both been suggested to be sensitive to

reduced soil moisture availability, especially at low to mid‐elevations

in xeric and mesic sites across the European Alps (e.g., Arend

et al., 2021; Lévesque et al., 2013; Obojes et al., 2018). Compared to

L. decidua, P. abies is generally considered the more drought‐sensitive

species, because it is more shallow‐rooted and more conservative

concerning its water use (Anfodillo et al., 1998; Hartl‐Meier

et al., 2014; Leo et al., 2014; Schmid & Kazda, 2002). It has also

been shown that L. decidua downregulates stomatal conductance

more strongly than P. abies during atmospheric drought (Peters

et al., 2019). Interestingly, in our study drought effects on xylem sap

flow responses to VPD were similar in both species (Figure 4), which

suggests a broadly similar stomatal sensitivity to VPD under reduced

SWC. At the same time, under drought relativeTWD was consistently

larger in L. decidua (Figure 3, Supporting Information: Figure S7;

Supporting Information: Table S4). This reflects more pronounced

MDS in control trees of P. abies (Figure 3), but also indicates a more

anisohydric behaviour of L. decidua under severely limiting soil

moisture conditions. In spite of the larger TWDs, drought effects on

xylem formation, in terms of xylem cell width and the number of cells

formed, were less pronounced for L. decidua than for P. abies

(Figure 2c,d). Studies showed that, on a diel scale, tree growth

predominantly occurs during the night, when VPD is low and stem

water is replenished (Chan et al., 2016; Zweifel et al., 2021), but there

is also evidence that growth can peak in the afternoon (Mencuccini

et al., 2017). In our study, stem hydration was similarly reduced by

(a)

(b)

(c)

F IGURE 6 Concentrations of (a) soluble sugars, (b) starch and (c) total non‐structural carbohydrates (NSC) measured in branches and needles
in Larix decidua (left) and Picea abies (right). Samples were taken at the onset of drought (June) and at peak drought (September) in the third year
of the drought treatment (2018). Colours denote treatment (blue = control, orange = drought). Boxplots denote median (bold horizontal line),
25th and 75th quartile (box) and 1.5 * interquartile range (whiskers). Points represent individual observations (n = 6 trees per species and
treatment). Asterisks and plus signs indicate differences between treatments with a posterior probability >0.95 and >0.9, respectively.
[Color figure can be viewed at wileyonlinelibrary.com]
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drought throughout the full diurnal cycle in both species (Figure 3),

therefore differences in growth responses were likely related to

diverging species‐specific sensitivities to tissue water deficit. Given

that turgor is the key determinant of cell formation and expansion

rates (Cabon et al., 2020; Eilmann et al., 2009; Hsiao &

Acevedo, 1974; Peters et al., 2021), species‐specific differences in

capacitance (Salomón et al., 2017, 2020), cell wall elasticity (Fan

et al., 1994; Coussement et al., 2018) and regulation of tissue

osmolality (Lintunen et al., 2016; Mencuccini et al., 2013; Paljakka

et al., 2017; Peters et al., 2021), which affect turgor build‐up and thus

cell expansion, could have played a critical role.

L. decidua and P. abies also differed in their drought responses

concerning NSC concentrations in branches and needles. While NSC

concentrations in L. decidua were largely unaffected by drought, P. abies

showed reduced starch concentrations in branches towards peak

drought in the third year of drought (Figure 6, Supporting Informa-

tion: S8). In addition, concentrations of NSC were higher in branches

and needles of P. abies already at the onset of drought (Figure 6). This

may have been caused by a shift in source‐sink relations due to

decreased growth in preceding years, but could also reflect an increased

demand for osmoprotection (see below). Furthermore, less negative

δ13C of soluble sugars in needles and branches at peak drought

(Figure 7) indicates that intrinsic water‐use efficiency of P. abies was

more strongly increased under drought compared to L. decidua. Because

an increase in δ13C and intrinsic water‐use efficiency is strongly driven

by a decrease in stomatal conductance under drought (Chaves

et al., 2003; Flexas & Medrano, 2002; Lawlor & Tezara, 2009), our

observation contrasts with recent findings on stomatal sensitivity to

drought for these two species (Peters et al., 2019). Increased intrinsic

water‐use efficiency has been previously observed in tree‐rings formed

in dry years, both in L. decidua and, to a stronger degree, P. abies

(Lévesque et al., 2013; Lévesque et al., 2014). A recent tree‐ring‐based

study also suggests that increased intrinsic water‐use efficiency in

another Picea‐species was associated with a higher drought recovery

potential (Wu et al., 2020).

In addition to our experiment on mature trees, we performed a

drought experiment on saplings of L. decidua and P. abies growing in an

open gap adjacent to our study site composed only of young trees,

where precipitation was excluded during the same treatment periods. In

contrast to what we found for mature trees, tree growth and the water

use of saplings of both species was largely unaffected by the drought

treatment (Wieser et al., 2019). This supports the notion that mature

trees have a lower drought acclimation capacity than young and small

trees (Fajardo et al., 2019; Olson et al., 2018). Because drought effects

on saplings in subalpine forests are thus less pronounced, forest stand

structure may change under future climate as a consequence of a higher

drought vulnerability and species‐specific differences of tall trees

(Albrich et al., 2020; Bennett et al., 2015; Fajardo et al., 2019; Grote

et al., 2016; McDowell et al., 2020; Stovall et al., 2019).

4.2 | Amplified responses under recurrent drought

While TWD was significantly increased by drought only in later

summer of the first year of the experiment, it was clearly detectable

in both species already from the onset of the drought treatments in

F IGURE 7 δ13C of soluble sugars of Larix
decidua (upper panels) and Picea abies (lower
panels) sampled from branches (left) and needles
(right) grown in 2018. Boxplots denote median
(bold horizontal line), 25th and 75th quartile (box)
and 1.5 * interquartile range (whiskers). Points
represent individual observations. Colours denote
treatment (blue = control, orange = drought).
Asterisks and plus signs indicate differences
between treatments with a posterior probability
>0.95 and >0.9, respectively (n = 6 per species
and treatment). [Color figure can be viewed at
wileyonlinelibrary.com]
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the second and third year (Figure 3, Supporting Information:

Figure S7) and was associated with impaired xylogenesis and

significant growth reductions (Figures 1a–f and 2, Supporting Infor-

mation: Figure S4). Interestingly, even though the magnitude of MDS

was similar in all the study years, dehydration effects on tree growth

and its timing and on xylogenesis increased with recurrent drought. It

is unlikely that the increased sensitivity of radial growth to TWD was

due to progressive carbon limitation, given that leaves and branches

had relatively constant levels of NSC under drought and that stem

and roots may store substantial amounts of carbohydrates to sustain

metabolism (Hoch et al., 2003; Rademacher et al., 2021; Rosell

et al., 2021). Therefore, our findings suggest that the sensitivity of

radial growth to TWD can increase under recurrent drought, which

may be due to progressively decreasing stem hydraulic capacitance.

Though its role under drought is not yet fully resolved (Körner, 2019),

tree capacitance has been shown to decrease with drought stress

(Salomón et al., 2017). Due to its lower relative volume, the

contribution of water stored in the inner bark to stem hydraulic

capacitance (Epila et al., 2017; Salomón et al., 2017) was likely limited

in the species we studied. However, a reduction of the amount of

water stored in the xylem could have played an important role, as

suggested by the electrical resistivity tomography data for P. abies in

the third year of drought (Figure 5). Multiple recurrent drought

events could also decrease stem capacitance by reducing the

diameter of xylem conduits (Figure 2; McCulloh et al., 2014).

Furthermore changes in xylem anatomy, including pit anatomy, may

affect the hydraulic conductivity and vulnerability to embolism (Gullo

et al., 1995; Tyree & Ewers, 1991; Tyree & Sperry, 1989).

Because TWD is also linked to changes in phloem dehydration

(Steppe et al., 2015), the observed MDS and TWD responses

(Figure 3, Supporting Information: Figure S7) could indicate that

phloem functioning was increasingly impaired under recurrent

drought. Decreased phloem hydration is associated with low phloem

turgor and high phloem sap viscosity, with direct consequences for

tree carbon dynamics. Because the phloem functions as the main

tissue for carbohydrate transport (Sevanto, 2014, 2018), impaired

phloem transport can slow down C‐supply to sinks (Ruehr et al., 2009;

Salmon et al., 2019) and enhance a depletion of stored NSC in sink

organs if local demand exceeds supply (Bréda et al., 2006; Dickman

et al., 2015). Furthermore, carbon relocation across organs was

shown to be hampered by drought (Hartmann, Ziegler, Kolle,

et al., 2013; Hartmann, Ziegler, Trumbore, et al., 2013), thus

remobilisation of stored carbon likely played a small role in NSC

responses in branches and needles. As a result, the significant

reduction in starch concentration in shoots during the third drought

treatment (Figure 6, Supporting Information: Figure S8), which was

similarly also reported for P. abies at a low elevation site exposed to a

severe natural drought event (Arend et al., 2021), does not provide an

indication of reduced phloem transport to sink organs. Because the

concentrations of soluble sugars and total NSC were increased in

needles and branches of drought‐exposed P. abies (Figure 6), the

reduction in starch content more likely reflected an active conversion

to osmotically active sugars, and therefore a prioritisation of osmotic

regulation of water potential over C storage (Guo et al., 2020). The

accumulation of osmotically active sugars has been observed

repeatedly as a drought response in leaves, involving the conversion

of starch as well as a preferential allocation of recently assimilated C

to sugars (Chaves et al., 2003; Hartmann, Ziegler, Trumbore et al.,

2013; Hasibeder et al., 2015; Nio et al., 2011). Interestingly, starch

and soluble sugar concentrations in branches tended to be increased

already at the onset of third drought treatment (reflected also in a

significant increase in total NSC, Figure 6), which may result from

greater reductions in growth than in photosynthesis under moderate

drought conditions (McDowell et al., 2011). Furthermore, increased

δ13C of soluble sugars observed at the onset of the third drought in

both species (Supporting Information: Figure S8) indicate a sustained

imprint of previous drought treatments on intrinsic water‐use

efficiency (see above). Thus, recurrent drought had distinct legacies

on tree C‐water relations and overall C dynamics. Legacy effects of

recurrent drought on radial growth may not only be due to decreased

capacitance (see above), but could have also involved the legacy of an

altered C balance in the previous year (Peters et al., 2017).

From previous studies based on natural drought events

(Dietrich, Delzon, et al., 2018; Schuldt et al., 2020) and experimental

droughts (He et al., 2020; Ježík et al., 2015; Zhang et al., 2018) we

had expected a rapid response of xylem sap flow of both species to

drought. However, in our experiment a significant reduction in xylem

sap flow occurred only towards peak drought during the first 2 years

and was distinct throughout the drought treatment only in the third

year. Even under VPD levels at which no effects were observed in

previous years and under comparatively low evaporative demand, in

the third year of recurrent drought sensitivity of xylem sap flow to

VDP was significantly increased (Figure 4), reflecting pronounced soil

water controls on stomatal response (Carminati & Javaux, 2020;

Cochard et al., 1996). This may have been partly caused by the

exceptionally warm and dry summer of 2018, however, also clearly

indicates a drought legacy in that xylem sap flow showed increased

sensitivity to VPD already immediately after the start of the drought

treatment when soil water potential was still comparatively high.

There is only limited evidence from studies that suggest altered

stomatal sensitivity to soil and plant water status under recurrent

drought (e.g., Grossiord et al., 2018; Tombesi et al., 2018). Structural

adjustments, as well as increasing limitations of root water uptake

under recurrent drought, for example, caused by impaired root

growth (Zwetsloot & Bauerle, 2021), decreased root functioning

(Cuneo et al., 2016; Rodríguez‐Calcerrada et al., 2017), reduced root

mass (Meier & Leuschner, 2008), hydraulic disconnection from the

soil (Carminati & Javaux, 2020; Carminati et al., 2009), as well as

enhanced embolism in xylem conduits may have increased the

sensitivity of transpiration to VPD under recurrent drought

(Hammond, 2020; Mackay et al., 2020). Given the greater xylem

dehydration observed in P. abies (Figure 5), an increased loss of

hydraulic conductivity likely occurred at the peak of the third

drought. It remains to be shown whether and to what degree under

recurrent drought water loss of L. decidua and P. abies will be reduced

through structural and physiological adjustments or through a loss of
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hydraulic conductivity, the former decreasing and the latter increas-

ing the risk of hydraulic failure.

4.3 | Conclusions

We conclude that recurrent drought amplified responses of L. decidua

and P. abies to water stress by reducing tree water storage and the

capacity of its replenishment, both on a diel and a seasonal timescale,

with consequences for carbon relations including growth. While both

species showed similar TWD responses, P. abies showed stronger

growth responses to recurrent drought, reduced starch concentrations

in branches and increased water‐use efficiency when compared to

L. decidua. Overall, our findings suggest that species differences in their

growth responses to recurrent drought not only relate to the degree and

dynamics of TWDs, but may also involve differences in turgor

thresholds for growth, as well as differences in carbon‐water relation-

ships and the allocation of NSC to osmoregulation versus storage and

growth. Increasing impacts of recurrent drought on tree carbon and

water dynamics of both species suggest that increased drought

frequencies could impose strong legacies with implications for the

structure and functioning of mountain forests in a future climate.
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