
Supplemental Document

Axial motion estimation and correction for
simultaneous multi-plane two-photon calcium
imaging: supplement

ANDRES FLORES-VALLE1,2,3 AND JOHANNES D. SEELIG1,4

1Max Planck Institute for Neurobiology of Behavior – caesar (MPINB), Bonn, Germany
2International Max Planck Research School for Brain and Behavior, Bonn, Germany
3andres.flores@mpinb.mpg.de
4johannes.seelig@mpinb.mpg.de

This supplement published with Optica Publishing Group on 14 March 2022 by The Authors
under the terms of the Creative Commons Attribution 4.0 License in the format provided by the
authors and unedited. Further distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.19137050

Parent Article DOI: https://doi.org/10.1364/BOE.445775



Supplement 1: Methods

Microscope setup

The setup was described in [23]. Briefly, two axially offset Gaussian beams were used to record
in two different focal planes using temporal multiplexing [18]. Temporal multiplexing was
performed using Scanimage in photon counting mode [14]. The diameter and collimation of each
beam was adjusted with two lenses (Thorlabs achromatic doublets), while the two beams were
linearly and orthogonality polarized and delayed by 2𝑚, as shown in Fig. 1B. The beams were
focused at the samples with a power of 6𝑚𝑊 for each beam by underfilling the objective of the
microscope (16X Nikon CFI LWD Plan Fluorite Objective, 0.80 NA, 3.0 mm WD). This created
elongated beam profiles along the axial direction (Fig. 1). The full width at half maximum
was adjusted to 9𝜇𝑚 and 16𝜇𝑚 (computed from the standard deviations: FWHM = 2.4𝜎),
respectively, and the peaks of the two beams were separated by 7𝜇𝑚.

Drosophila preparation

Imaging in behaving flies we performed as described in [23]. Briefly, We used 7-10 days
old female flies, either expressing GFP or GCaMP8f in wedge neurons (R60D05-GAL4). We
performed laser surgery to remove the cuticle over the brain. The cuticle and underlying tissue
were then removed either with a microrobotic arm or manually under a dissection scope [23].
Finally, a drop of glue was placed on the opening (DETAX, Freeform, 02204). The flies
expressing GCaMP8f were left to recover over night [23], while flies expressing GFP were imaged
directly after surgery.

For the fly expressing GFP, as well as for the fly in Fig. 6 the proboscis was fixed with wax
to prevent brain motion [7]. For imaging, flies were glued to a cover slide ((22 mm × 22 mm,
thickness No. 1, Cat. No. 631-0124, see [23] for details of the preparation).

Extracting head direction from calcium signals

We computed the trajectory of the bump of activity along the ROIs, 𝑏(𝑡), based on the ROI
position with maximum fluorescence value of the corrected Δ𝐹/𝐹:

𝑏(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖

[
corrected Δ𝐹/𝐹𝑖 (𝑡)

]
(6)

We then used this trajectory to compute the bump amplitude in both, measured and corrected
Δ𝐹/𝐹, in the ROIs along the bump trajectory:{

corrected bump amplitude(𝑡) = corrected Δ𝐹/𝐹𝑏 (𝑡) (𝑡)
measured bump amplitude(𝑡) = measured Δ𝐹/𝐹𝑏 (𝑡) (𝑡)

(7)

Analytical approximation of motion correction algorithm for a single ROI

While motion correction was performed numerically as described in Algorithm 1, we here first
explain the operation of the algorithm using an analytical approximation, assuming continuous
time and 𝑧-axis, first for a single ROI defined on a 3D sample in the absence of noise.

A single ROI is a voxel extended along the 𝑧-axis, which is described as a function 𝑒(𝐴, 𝑧)
representing the number of fluorescent proteins, for example GFP or GCaMP, inside the ROI at a
given 𝑧 position. The function 𝑒(𝐴, 𝑧) changes over time depending on a variable 𝐴, 𝐴 = 𝐴(𝑡),
representing neural activity in each ROI. Generally, the ROI function, 𝑒(𝐴, 𝑧), could have any
form. As an example, Fig. S1A shows a ROI function defined by the following Eq.:

𝑒(𝐴, 𝑡) = 𝐴 exp
[ (𝑧 + 𝑝1)2

2𝜎2

]
+ 𝐴2 exp

[ (𝑧 + 𝑝2)2
2𝜎2

]
, (8)



where 𝑝1 = −5𝜇𝑚 and 𝑝2 = 5𝜇𝑚 represent the center of two Gaussians with standard deviation
𝜎 = 2.5𝜇𝑚. In this case the activity 𝐴 changes the Gaussian peaks by different amplitudes (Fig.
S1A), meaning that fluorescence changes heterogeneously at different 𝑧 positions. This could for
example be the case if two different dendrites of a neuron receive inputs with different strengths.

To simplify the problem of motion estimation and correction, we can approximate the ROI
function to first order with a Taylor series around 𝐴 = 0:

𝑒(𝐴, 𝑧) ≈ 𝑒(0, 𝑧) + 𝜕𝑒(𝐴, 𝑧)
𝜕𝐴

���
𝐴=0

𝐴. (9)

The derivative of 𝑒(𝐴, 𝑧) with respect to 𝐴 and evaluated at 𝐴 = 0 is a function that only depends
on 𝑧, which we call 𝜌(𝑧). On the other hand, 𝑒(0, 𝑧) is the baseline fluorescence indicator
distribution along the 𝑧-axis which is not modulated by the activity 𝐴 of the ROI. We assume for
simplicity that 𝑒(0, 𝑧) is negligible, assuming that there is an activity baseline, 𝐴0, much larger
than 𝑒(0, 𝑧):

𝐴0𝜌(𝑧) >> 𝑒(0, 𝑧) (10)

With this approximation, we can write the ROI function as:

𝑒(𝐴, 𝑧) = 𝐴𝜌(𝑧) (11)

The function 𝜌(𝑧) describes a density of fluorescence proteins along the 𝑧-axis, while 𝐴 increases
activity inside the ROI homogeneously. In the following we refer to 𝜌(𝑧) as the ROI density
while 𝐴 is called the ROI activity. An example of Eq. (11) is given in Fig. S1B, where 𝜌(𝑧) is
defined by the following expression:

𝜌(𝑧) = exp
[ (𝑧 + 𝑝1)2

2𝜎2

]
+ exp

[ (𝑧 + 𝑝2)2
2𝜎2

]
(12)

In addition, we assume that the ROI undergoes axial (along the 𝑧-axis) motion, described with a
time-dependent variable, Δ𝑧(𝑡), which changes the offset of the ROI density along the 𝑧-axis.
Assuming no distortion in the sample during axial motion, the ROI density remains constant but
moves along the 𝑧-axis. Therefore, the ROI function is finally approximated as:

𝑒(𝑡, 𝑧) = 𝐴(𝑡)𝜌(𝑧 − Δ𝑧(𝑡)) (13)

Eq. (13) allows us to separate the ROI function, 𝑒(𝑡, 𝑧), into two parts, one which depends on the
activity of the ROI, 𝐴(𝑡), which is independent of the 𝑧-axis, and another one that depends on
the motion of the sample, 𝜌(𝑧 − Δ𝑧(𝑡)).

This first order approximation, which was valid in the biological samples used for the
experiments, allows us to develop an algorithm to estimate and correct the axial motion of the
sample. The goal of the algorithm is to estimate axial motion, Δ𝑧(𝑡), as well as to extract the
activity, 𝐴(𝑡).

The ROI activity is measured using two beams described by two functions, 𝑔1 (𝑧) and 𝑔2 (𝑧),
which represent the shape of the beams along the 𝑧-axis. For the algorithm to work, these two
beams must have different profiles along the 𝑧-axis (to provide unique information about the
sample) and must be integrable, meaning that their integral must be finite. In practice, we assume
that these are Gaussian beams centered at different positions along the 𝑧-axis, while their width
along the 𝑧-axis and power can be different. At each time, 𝑡, both beams excite the sample with a
time delay (on the order of the fluorescence lifetime), and produce two independently measured
fluorescence signals.



The intensity of each fluorescence signal associated with each beam, 𝐼1 (𝑡) and 𝐼2 (𝑡), is the
integral of the excitation of each beam within the ROI along the 𝑧-axis:

𝐼1 (𝑡) =
∫ ∞
−∞ 𝑒(𝑡, 𝑧)𝑔1 (𝑧)𝑑𝑧

𝐼2 (𝑡) =
∫ ∞
−∞ 𝑒(𝑡, 𝑧)𝑔2 (𝑧)𝑑𝑧.

(14)

Since the ROI activity, 𝐴(𝑡), is independent of 𝑧 (Eq. (13)), we can write the measured
intensities as: {

𝐼1 (𝑡) = 𝐴(𝑡)𝐺1 (Δ𝑧(𝑡))
𝐼2 (𝑡) = 𝐴(𝑡)𝐺2 (Δ𝑧(𝑡)),

(15)

where 𝐺1 and 𝐺2 are two functions defined by the integral over the excitation of each beam at
the ROI density, 𝜌(𝑧 − Δ𝑧(𝑡)), and only depend on the axial motion of the sample, Δ𝑧(𝑡). Eq.
(15) describes how changes in the measured intensities, 𝐼1 (𝑡) and 𝐼2 (𝑡), can have two different
contributions: the activity of the ROI and the axial motion of the sample.

For estimating axial motion of the sample, Δ𝑧(𝑡), a calibration step is first performed. At the
beginning of the experiment (𝑡 = 0), a 𝑧-stack is recorded with each beam by moving the two
beams simultaneously and continuously along the 𝑧-axis. We assume that the ROI activity and
axial motion of the sample, 𝐴(0) and Δ𝑧(0), do not change when recroding the stack. Moreover,
and without loss of generality, we define the origin of the axial motion while recording the
stacks so that Δ𝑧(0) = 0. In practice, the assumption that 𝐴(0) and Δ𝑧(0) do not change is
achieved by averaging over several stacks (see Results with biological samples expressing GFP
or GCaAMP8f). The algorithm however works with arbitrary activity 𝐴(0) during 𝑧-stack
acquisition. Since moving the beams is equivalent to moving the sample in the opposite direction
while leaving the beams fixed, the stacks are defined as follows:

𝐼
(𝑠𝑡𝑎𝑐𝑘)
1 (𝑧) = 𝐴(0)

∫ ∞
−∞ 𝜌(𝑧′ − 𝑧)𝑔1 (𝑧′)𝑑𝑧′

𝐼
(𝑠𝑡𝑎𝑐𝑘)
2 (𝑧) = 𝐴(0)

∫ ∞
−∞ 𝜌(𝑧′ − 𝑧)𝑔2 (𝑧′)𝑑𝑧′

(16)

This equation can be expressed as{
𝐼
(𝑠𝑡𝑎𝑐𝑘)
1 (𝑧) = 𝐴(0)𝐺1 (𝑧)
𝐼
(𝑠𝑡𝑎𝑐𝑘)
2 (𝑧) = 𝐴(0)𝐺2 (𝑧)

(17)

The ratios 𝐼1 (𝑡)/𝐼2 (𝑡) and 𝐼𝑠𝑡𝑎𝑐𝑘1 (𝑧)/𝐼𝑠𝑡𝑎𝑐𝑘2 (𝑧) do not depend on the activity and we use this to
define the following cost function,

𝐽𝐿2 (𝑧, 𝑡) =
(
𝐼1 (𝑡)
𝐼2 (𝑡)

−
𝐼𝑠𝑡𝑎𝑐𝑘1 (𝑧)
𝐼𝑠𝑡𝑎𝑐𝑘2 (𝑧)

)2

=

(
𝐺1 (Δ𝑧(𝑡))
𝐺2 (Δ𝑧(𝑡))

− 𝐺1 (𝑧)
𝐺2 (𝑧))

)2

(18)

The cost function 𝐽𝐿2 (𝑧) is minimized at time 𝑡 when 𝑧 = Δ𝑧(𝑡). This optimization is used to find
the axial motion of the sample, Δ𝑧(𝑡), using the stacks. We will show in the following sections
(Eq. (1)) that the shape of this cost function arises from a expectation–maximization approach.
To take into account that the axial motion of the sample is correlated in time, we modified Eq.
(18), with a Gaussian filter over time:

𝐽𝐿2 (𝑧, 𝑡) =
∫ ∞

−∞
𝑓 (𝑡 ′ − 𝑡, 𝜎𝑡 )

(
𝐼1 (𝑡)
𝐼2 (𝑡)

−
𝐼𝑠𝑡𝑎𝑐𝑘1 (𝑧)
𝐼𝑠𝑡𝑎𝑐𝑘2 (𝑧)

)2

𝑑𝑡 ′ (19)



where 𝑓 (𝑡 − 𝑡 ′, 𝜎) is a Gaussian kernel centered at time 𝑡 with standard deviation 𝜎𝑡 , defined as:

𝑓 (𝑡 ′ − 𝑡, 𝜎) = exp
[
− (𝑡

′ − 𝑡)2

2𝜎2
𝑡

]
(20)

Eq. (19) provides a filtered estimate of the axial motion of the sample by weighting contributions
from several intensity measurements. This cost function assumes that changes in axial motion
within the Gaussian kernel are small. The standard deviation, 𝜎𝑡 , is a manually-set parameter
that provides the size of the time window considered for the axial motion estimation.

To find the axial motion of the sample at any time 𝑡, we find the 𝑧-position in the stack, 𝑧(𝑡),
that minimizes the cost function.

𝑧(𝑡) = argmin𝑧

[
𝐽 (𝑧, 𝑡)

]
(21)

The value of the cost function evaluated at the estimated displacement, 𝑧(𝑡), provides a measure
for the quality of the optimisation result at time 𝑡.

cost function error(𝑡) = 𝐽 (𝑧(𝑡), 𝑡) (22)

Once the the motion of the sample is estimated, we correct the measured intensities by dividing
the intensity recorded by each beam by its corresponding stack, evaluated at the estimated slice
𝑧(𝑡) at any time 𝑡: 

𝐼𝑐𝑜𝑟1 (𝑡) = 𝐼1 (𝑡)
𝐼𝑠𝑡𝑎𝑐𝑘1 ( 𝑧̂ (𝑡)) =

𝐴(𝑡)
𝐴(0)

𝐺1 (Δ𝑧 (𝑡))
𝐺1 ( 𝑧̂ (𝑡))

𝐼𝑐𝑜𝑟2 (𝑡) = 𝐼2 (𝑡)
𝐼𝑠𝑡𝑎𝑐𝑘2 ( 𝑧̂ (𝑡)) =

𝐴(𝑡)
𝐴(0)

𝐺2 (Δ𝑧 (𝑡))
𝐺2 ( 𝑧̂ (𝑡))

(23)

This correction eliminates the contribution of the axial motion of the sample from the measured
intensities if the axial motion estimation is correct, i.e. 𝑧(𝑡) = Δ𝑧, leaving only the contributions
made by changes in the activity 𝐴(𝑡). Finally we can compute the relative change in fluorescence,
Δ𝐹/𝐹, using the corrected intensities:

Δ𝐹/𝐹 (𝑡) = 1
2

( 𝐼𝑐𝑜𝑟1 (𝑡) − 𝐹0
1

𝐹0
1

+
𝐼𝑐𝑜𝑟2 (𝑡) − 𝐹0

2

𝐹0
2

)
=

𝐴(𝑡) − 𝐴0

𝐴0 (24)

where 𝐹0
1 and 𝐹0

2 are the baselines of the intensities 𝐼𝑐𝑜𝑟1 (𝑡) and 𝐼𝑐𝑜𝑟2 (𝑡) respectively, corresponding
to the ROI activity baseline, 𝐴0. The baselines 𝐹0

1 and 𝐹0
2 are obtained by computing the mean

value of the lowest 10% values of the corrected intensities, 𝐼𝑐𝑜𝑟1 and 𝐼𝑐𝑜𝑟2 , respectively.

Simulation of a moving single ROI

To demonstrate how this algorithm works for a single ROI, we simulated a single ROI along the
𝑧-axis described by Eq. (11) with an activity density defined as

𝜌(𝑧) =
{

2
3 +

1
3 sin

[
(𝑧 − 𝑧0) 𝜋𝐿

]
if 𝑧0 > 𝑧 > 𝑧0 + 𝐿

0 otherwise,
(25)

where 𝑧0 = −5𝜇𝑚 and 𝐿 = 10𝜇𝑚. The ROI undergoes axial motion over time, as defined by Eq.
(13) and shown in Fig. 2B, described by the following Eq.:

Δ𝑧(𝑡) = 𝑧𝑎𝑚𝑝 sin(2𝜋 𝑓𝑧𝑡) (26)



where 𝑧𝑎𝑚𝑝 = 5𝜇𝑚 and 𝑓𝑧 = 5𝐻𝑧 are the amplitude and frequency of a simulated sinusoidal
axial motion. The activity of the sample, 𝐴(𝑡), is modeled by a differential Eq.:

𝜏𝐴 ¤𝐴(𝑡) = −𝐴(𝑡) + 1 + 𝜖𝐴, (27)

where 𝜏𝐴 = 10𝑚𝑠 is a time constant, and 𝜖𝑒 is a stochastic input to the sample that produces
spikes along the simulation with 0.5% probability and positive amplitude.

To record the activity of the sample, we defined two beams with Gaussians axial profiles,
according to the following equation:

𝑔𝑖 (𝑧) = 𝐶𝑖𝑒
−(𝑧−𝑑𝑖)2/(2𝜎2

𝑖
) for 𝑖 = 1, 2, (28)

where 𝐶1 = 1.25𝑎.𝑢. and 𝐶2 = 1.5𝑎.𝑢. define the maximum beam power and 𝜎1 = 2𝜇𝑚 and
𝜎2 = 3𝜇𝑚 are the widths (standard deviations) along the 𝑧-axis. The two beams are offset in
axial direction, 𝑑1 = −2.5𝜇𝑚 and 𝑑2 = 2.5𝜇𝑚. The shape of the beams is shown at the top of
Fig. 2A, together with the ROI function at time 𝑡 = 0, 𝑒(0, 𝑧).

A 𝑧-stack of the sample at time 𝑡 = 0 is defined in the absence of axial motion, Δ𝑧(0) = 0, and
activity is defined as 𝐴(0) = 1. The stack is simulated by recording the activity of the sample
while moving the beams along the the 𝑧-axis from −25𝜇𝑚 to 25𝜇𝑚 in steps of 0.05𝜇𝑚, resulting
in a convolution between the beams and the sample according to Eq. (16) (Fig. 2A). Only a
single stack without averaging is used for simulations.

Next, combined sample motion and activity are simulated for 1000 milliseconds. The equation
for the activity, 𝐴(𝑡), is solved using forward Euler with a time step of 𝑑𝑡 = 0.001 milliseconds.
The intensity of each beam is given by Eq. (14). The result of the simulation is shown in Fig.
2C, where the first row shows the moving sample and its activity, and the second row shows the
intensities recorded in each beam.

To estimate sample motion, 𝑧(𝑡), at each instant 𝑡, we computed the value of the cost function
(Eq. (19)) at all 𝑧 positions of the stacks (from −25𝜇𝑚 to 25𝜇𝑚 in steps of 0.05𝜇𝑚). Finally,
motion at time 𝑡, Δ𝑧(𝑡), is estimated according to Eq. (21), by finding the position 𝑧 that
minimizes the cost function across all 𝑧 values. The third row in Fig. 2B shows the real versus
the estimated motion of the sample. The error of the optimisation process is calculated using Eq.
(22) and shown in the fourth row of Fig. 2.

Finally, the recorded intensities are corrected using the estimated axial motion and Eq. (23), and
changes in fluorescence intensity, Δ𝐹/𝐹, are computed from the corrected intensities, according
to Eq. (24). The last row in Fig. 2 shows the actual and the corrected changes in fluorescence,
respectively. The actual Δ𝐹/𝐹 is calculated according to the following Eq.:

actual Δ𝐹/𝐹 =
𝐴(𝑡) − 𝐴0

𝐴0 (29)

where 𝐴0 is an activity baseline calculated as the average of the lowest 10% values of 𝐴(𝑡).

Algorithm for motion estimation and correction for several ROIs with noise

We now extend the approach developed above to a sample with multiple ROIs. In addition
we now consider that the measurements are noisy. We assume rigid three-dimensional sample
motion, with negligible elastic deformations or changes in orientation.

We record a total of 𝑇 pair of images, 𝑀1 (𝑡) and 𝑀2 (𝑡), one for each beam, for 𝑡 = 1, ..., 𝑇 and
assume that all images are aligned, that is, corrected for lateral motion. We define 𝑁 ROIs on the
images and each ROI 𝑖 describes an area on the images containing 𝑛𝑖 pixels. The sum of the
values of all the pixels of each image inside this area, 𝑀 (𝑤,ℎ)

1 (𝑡) and 𝑀
(𝑤,ℎ)
1 (𝑡), where (𝑤, ℎ) ∈

ROI 𝑖, provides a pair of intensity measurements of the ROI 𝑖 in each pair of images at time 𝑡:{
𝐼1,𝑖 (𝑡) =

∑
(𝑤,ℎ) ∈𝑅𝑂𝐼𝑖

𝑀
(𝑤,ℎ)
1 (𝑡)

𝐼2,𝑖 (𝑡) =
∑
(𝑤,ℎ) ∈𝑅𝑂𝐼𝑖

𝑀
(𝑤,ℎ)
2 (𝑡).

(30)



The fluorescence signals detected by the PMT are subjected to shot noise and the intensities in
each pixel follow independent Poisson distributions. If the number 𝑛𝑖 of pixels in each ROI 𝑖 is
large, each pair of intensity measurements approaches the following normal distributions:

𝐼1,𝑖 (𝑡) ∼ N
(
𝜇1,𝑖 (𝑡), 𝜇2

1,𝑖 (𝑡)
)

𝐼2,𝑖 (𝑡) ∼ N
(
𝜇2,𝑖 (𝑡), 𝜇2

2,𝑖 (𝑡)
) (31)

where 𝜇1,𝑖 and 𝜇2,𝑖 are the means of the normal distribution for each beam, respectively.
Using the first-order Taylor expansion (Eq. (9)), we can approximate each ROI function 𝑖 by

the following expression:

𝑒𝑖 (𝑡, 𝑧) = 𝐴𝑖 (𝑡)𝜌𝑖 (𝑧 − Δ𝑧(𝑡)) for 𝑖 = 1, ..., 𝑁 (32)

where 𝐴𝑖 (𝑡) and 𝜌𝑖 (𝑧 − Δ𝑧(𝑡)) are the activity and density of each ROI 𝑖, respectively, during the
acquisition 𝑡. We again assume that the ROI moves in the axial direction, given by Δ𝑧(𝑡). Then,
we can approximate the means of the intensity distributions, 𝜇1,𝑖 (𝑡) and 𝜇2,𝑖 (𝑡), as{

𝜇1,𝑖 (𝑡) = 𝐴𝑖 (𝑡)𝐺1,𝑖 (Δ𝑧(𝑡)) for 𝑖 = 1, ..., 𝑁
𝜇2,𝑖 (𝑡) = 𝐴𝑖 (𝑡)𝐺2,𝑖 (Δ𝑧(𝑡))

, (33)

where 𝐺1,𝑖 (Δ𝑧(𝑡)) and 𝐺2,𝑖 (Δ𝑧(𝑡)) are functions defined by the integral of the excitation of each
beam at each ROI density, 𝜌𝑖 (𝑧)𝑖 .

We now take the ratio of the intensities for each ROI 𝑖 at each acquisition 𝑡, 𝐼1,𝑖 (𝑡)/𝐼2,𝑖 (𝑡),
since the ratio of the mean values 𝜇1,𝑖 (𝑡)/𝜇2,𝑖 (𝑡) does not depend on the ROI acivity, 𝐴𝑖 (𝑡).
The ratio of these two normal variables is well approximated by a normal distribution around
the mean of the ratio, 𝜇1,𝑖 (𝑡)/𝜇2,𝑖 (𝑡), if the means are positive and the coefficients of variation,
𝛿1,𝑖 (𝑡) =

√︁
𝜇1,𝑖 (𝑡)/𝜇1,𝑖 (𝑡) and 𝛿2,𝑖 (𝑡) =

√︁
𝜇2,𝑖 (𝑡)/𝜇2,𝑖 (𝑡) are smaller than 0.1 [34].

𝐼1,𝑖 (𝑡)
𝐼2,𝑖 (𝑡)

∼ N
(
𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

, 2𝛿2
2,𝑖 (𝑡)

( 𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

)2
)

(34)

Assuming that all ROIs undergo the same axial motion, Δ𝑧, we can compute the log-likelihood
for the ROIs with respect to their axial position, Δ𝑧, at acquisition 𝑡:

𝐿

(
Δ𝑧 |

𝐼1,1 (𝑡)
𝐼2,1 (𝑡)

, ...
𝐼1,𝑁 (𝑡)
𝐼2,𝑁 (𝑡)

)
=

−𝑁
2

log(2𝜋) − 1
2

𝑁∑︁
𝑖=1

log
(
2𝛿2

2,𝑖 (𝑡)
( 𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

)2)
−

𝑁∑︁
𝑖=1

1
𝛿2

2,𝑖 (𝑡)

( 𝜇2,𝑖 (𝑡)
𝜇1,𝑖 (𝑡)

)2 ( 𝐼1,𝑖 (𝑡)
𝐼2,𝑖 (𝑡)

−
𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

)2
,

(35)

where the mean of the ratio distributions depends only on the axial motion Δ𝑧(𝑡), and not on the
activity of the ROIs:

𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

=
𝐺1,𝑖 (Δ𝑧(𝑡))
𝐺2,𝑖 (Δ𝑧(𝑡))

(36)

To compute the ratio of the means for each ROI 𝑖, we used 𝑧-stacks recorded at the beginning
of the experiment, 𝑡 = 0. Each slice in each stack is aligned to remove lateral motion using phase
correction [27], and the intensity for each ROI 𝑖 in each 𝑧-slice is computed, 𝐼 (𝑠𝑡𝑎𝑐𝑘)1,𝑖 (𝑧) and
𝐼
(𝑠𝑡𝑎𝑐𝑘)
2,𝑖 (𝑧). During the acquisition of the stack, both axial motion and activity of each ROI are



considered constant, while the noise in the intensities of the slices in the stacks are assumed zero.
Therefore, the intensity of each ROI in each slice of the stacks is given by the following equation:{

𝐼
(𝑠𝑡𝑎𝑐𝑘)
1,𝑖 (𝑧) = 𝐴𝑖 (0)𝐺1,𝑖 (𝑧)
𝐼
(𝑠𝑡𝑎𝑐𝑘)
2,𝑖 (𝑧) = 𝐴𝑖 (0)𝐺2,𝑖 (𝑧)

(37)

In practice, the previous assumptions are achieved by averaging several stacks and applying a
median filter (see Results). We can now approximate the mean of the ratio distribution by the
ratio of the intensities in the stacks at the slice Δ𝑧:

𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

=
𝐼
(𝑠𝑡𝑎𝑐𝑘)
1,𝑖 (Δ𝑧(𝑡)))

𝐼
(𝑠𝑡𝑎𝑐𝑘)
2,𝑖 (Δ𝑧(𝑡))

. (38)

Finally, we can write the log-likelihood (Eq. ) using the stacks as a function of 𝑧 at each
acquisition, 𝑡:

Note that 𝐿 (𝑧, 𝑡) has a quadratic difference between the ratio of the stacks and the ratio of
intensities (right side of Eq. (1)), similar to the cost function defined for a single ROI (Eq. (18)),
which was minimized due to the change in sign. The log-likelihood function, however, weights
(left factor on the third term in Eq. (1)) and offsets (second term in Eq. (1)) this quadratic
difference, taking into account more strongly ROIs that are less noisy to estimate the axial motion,
i.e., the intensity of those ROIs with lower values (and therefore lower standard deviation in their
distributions).

Since axial motion is correlated in time, we use a Gaussian filter similar to Eq. (19)) in the
log-likelihood: where the kernel 𝑓 (𝑡 ′ − 𝑡, 𝜎𝑡 ) is defined in Eq. 20. Again, the variable 𝜎𝑡 is
manually set, and defines the size of the time window considered for the sum of log-likelihoods.

Since the 𝑧-stacks have a finite number of slices, we can compute the value of 𝐿 𝑓 (𝑧, 𝑡)
numerically for each slice 𝑧 and then estimate the axial motion of the sample, 𝑧(𝑡), at each time 𝑡,
from the slice 𝑧 that maximizes the log-likelihood function, 𝐿 𝑓 (𝑧, 𝑡):

𝑧(𝑡) = argmax𝑧

[
𝐿 𝑓 (𝑧, 𝑡)

]
. (39)

We provide an estimation error, 𝐸 (𝑡), by computing the standard deviation of the difference
between the ratio of recorded intensities and the ratio of the means:

𝐸 (𝑡) = 1
𝑁

𝑁∑︁
𝑖=0

( 𝐼1,𝑖 (𝑡)
𝐼2,𝑖 (𝑡)

−
𝜇1,𝑖 (𝑡)
𝜇2,𝑖 (𝑡)

)2
(40)

and using Eq. (38), this error can be expressed as:
Next, we correct the measured intensities from each beam using the estimated axial motion

and extending Eq. (23) to 𝑁 ROIs:
This correction eliminates the axial motion contribution from the intensity measurements.

However, note that this correction inherits the noise from the measured intensities 𝐼1,𝑖 (𝑡) and
𝐼2,𝑖 (𝑡). According to Eq. (31), both intensity corrections are obtained according to the following
normal distribution: 

𝐼𝑐𝑜𝑟1,𝑖 (𝑡) ∼ N
(
1, 1

)
𝐼𝑐𝑜𝑟2,𝑖 (𝑡) ∼ N

(
1, 1

) (41)

Finally, we compute the change in fluorescence for each ROI 𝑖 as follows:
where 𝐹0

1,𝑖 and 𝐹0
2,𝑖 are the baselines of the intensities, 𝐼𝑐𝑜𝑟1,𝑖 and 𝐼𝑐𝑜𝑟2,𝑖 that correspond to the

activity baseline of each ROI, 𝐴0
𝑖
. As for the case of a single ROI, we compute the baselines 𝐹0

1,𝑖
and 𝐹0

2,𝑖 from the average of the 10% lowest values of 𝐼𝑐𝑜𝑟1,𝑖 (𝑡) and 𝐼𝑐𝑜𝑟2,𝑖 (𝑡) respectively, for each
ROI 𝑖.



Simulation of several moving ROIs

We demonstrate how the algorithm works for a simulation of 𝑁 = 32 moving ROIs with noise.
In this simulation it is assumed that lateral motion of a 3D sample is already corrected and the
ROIs are defined. The density of each ROI is defined along the 𝑧-axis according to the following
equation:

𝜌𝑖 (𝑧) =
{

1
𝐶𝑖

(
𝑎0
𝑖
+ 𝑎1

𝑖
𝑠𝑖𝑛

[
(𝑧 − 𝑧0,𝑖) 𝜋𝐿𝑖

] )
if 𝑧0,𝑖 > 𝑧 > 𝑧0,𝑖 + 𝐿𝑖

0 otherwise,
(42)

where 𝑎0
𝑖

and 𝑎1
𝑖

are random coefficients for each ROI obtained from an uniform distribution in
the range [1, 2] and 𝑧0,𝑖 and 𝐿𝑖 are a random origin and random length for each ROI, sampled
from a uniform distribution in the range of [−2,−5] and [10, 15], respectively. The constant 𝐶𝑖

normalizes the density of each ROI so that 𝜌𝑖 (𝑧) is in the range of [0, 1]. Fig. 3A, top, shows the
density of each ROI used in the simulation.

The motion of all ROIs is modeled as in the simulation in section using Eq. (26) with a
frequency of 𝑓𝑧 = 8𝐻𝑧. The activity of each sample is modeled as:

𝜏𝐴 ¤𝐴𝑖 (𝑡) = −𝐴𝑖 (𝑡) + 1 +𝑈 (𝑡, 𝑖), (43)

where 𝜏𝐴 = 10𝑚𝑠 is the time constant and 𝑈 (𝑡, 𝑖) is an input defined as a rotating Gaussian along
the ROIs:

𝑈 (𝑡, 𝑖) = 𝑈𝑚𝑎𝑥 exp

[
−
𝑚𝑖𝑛

[
|𝑖 − 𝑣(𝑡) |, 𝑁 − |𝑖 − 𝑣(𝑡) |

]2

2𝜎2

]
(44)

where 𝑈𝑚𝑎𝑥 = 2 is the amplitude, 𝜎 = 2 is the width of the Gaussian and 𝑣(𝑡) rotates the input
with respect to the ROIs at a frequency of 𝑓𝑢 = 10𝐻𝑧, according to

𝑣(𝑡) = mod ( 𝑓𝑢𝑁𝑡, 𝑁), (45)

where mod (·, ·) indicates the modulo operation. The activity of the ROIs is again solved using
forward Euler with a time step of 𝑑𝑡 = 0.001 millisecond. An example of ROI 1 undergoing
axial motion while receiving the rotating input is shown in Fig. 3A, bottom, while the rotating
input in all the ROIs during the simulation is shown in Fig. 3C, fourth row.

Two beams, defined again by Eq. (28), were used to record the fluorescence change in all ROIs.
At time 𝑡 = 0 we recorded a 𝑧-stack using 1000 slices (from −25𝜇𝑚 to 25𝜇 in steps of 0.05𝜇𝑚),
assuming no axial motion of the sample, Δ𝑧(0) = 0. The recorded 𝑧-stacks are shown in Fig. 3B.
Note that the activity during the 𝑧-stack acquisition is higher around the ROI 16. The algorithm
can estimate and correct the axial motion with arbitrary activity 𝐴𝑖 (0) in the 𝑧-stack.

After defining the stacks, the intensities at time 𝑡 in two simultaneous planes for each ROI 𝑖 are
simulated, 𝐼1,𝑖 (𝑡) and 𝐼1,𝑖 (𝑡), with changing axial position and ROI activity. The intensities in
each plane are sampled from a Gaussian distribution, given by Eq. (31), where the mean values
𝜇1,𝑖 (𝑡) and 𝜇2,𝑖 (𝑡) are computed using Eq. (33).

To estimate axial motion of the sample, Δ𝑧(𝑡), we computed the value of the log-likelihood
function in Eq. (2) at all 1000 𝑧 positions of the stacks, at any time 𝑡, using a time window of
size 𝜎𝑡 = 3. The estimated axial motion is then obtained by the slice in the 𝑧−stacks, 𝑧(𝑡), that
maximizes the log-likelihood function. The first row of Fig. 3C shows the estimated compared
to the actual axial motion during the simulation, while the estimation error, computed by Eq. (3),
is shown in the second row of Fig. 3C.

Next we corrected the measured intensities from each beam and each ROI using the estimated
axial motion and Eq. (4). The change in fluorescence of the corrected intensities, corrected



Δ𝐹/𝐹𝑖 (𝑡), is computed using Eq. (5) and shown in Fig. 3C, fourth row. This is compared with
the actual Δ𝐹/𝐹𝑖 (𝑡) (Fig. 3C, fifth row), which is computed as:

actual Δ𝐹/𝐹𝑖 (𝑡) =
𝐴𝑖 (𝑡) − 𝐴0

𝑖

𝐴0
𝑖

, (46)

where 𝐴0
𝑖

is the baseline activity of each ROI 𝑖, obtained from the average of the 10% lowest
values of 𝐴(𝑡). Fig. 3C, third row, shows the change in fluorescence measured without motion
correction. This measured Δ𝐹/𝐹𝑖 (𝑡) is obtained by the following Eq.:

measured Δ𝐹/𝐹𝑖 (𝑡) =
1
2

( 𝐼1,𝑖 (𝑡) − 𝐼0
1,𝑖

𝐼0
1,𝑖

+
𝐼2,𝑖 (𝑡) − 𝐼0

2,𝑖

𝐼0
2,𝑖

)
, (47)

where 𝐼0
1,𝑖 and 𝐼0

2,𝑖 are the baseline measured intensities for each beam, obtained by the mean
value of the 10% lowest values of 𝐼1,𝑖 (𝑡) and 𝐼2,𝑖 (𝑡), respectively. These baseline values are
affected by axial motion and therefore changes in fluorescence appear much larger (Fig. 3C, third
row) when the sample is out of focus due to the resulting low intensities. Further, the corrected
Δ𝐹/𝐹 is larger than the actual Δ𝐹/𝐹 (Fig. 3, fourth and fifth row). This is due to noise in the
measurements, which produces lower baselines values, 𝐹0

1,𝑖 and 𝐹0
2,𝑖 . These lower values follow

from averaging over the lowest 10% values of the corrected intensities (see for example Fig. S2B)
instead of taking the mean value of the distribution.

Simulation for motion estimation and correction with four simultaneously recorded focal
planes

Here, we extend the motion correction algorithm to four beams using simulations. For simplicity
we consider only a single ROI. The ROI density is defined again by Eq. (25). Four different
Gaussian beams are defined, according to the following equation:

𝑔 𝑗 (𝑧) = 𝐶 𝑗𝑒
−(𝑧−𝑑 𝑗 )2/(2𝜎2

𝑗
) for 𝑗 = 1, 2, 3, 4, (48)

where 𝐶1 = 1, 𝐶2 = 1.5, 𝐶3 = 2 and 𝐶4 = 0.5 are the maximum beam powers, and 𝜎1 = 3,
𝜎2 = 3, 𝜎3 = 2 and 𝜎4 = 3 are the beam widths (standard deviations) along the 𝑧-axis. Each
beam is offset from the previous one by 3.33𝜇𝑚 (𝑑1 = −5, 𝑑2 = −1.67, 𝑑3 = 1.67 and 𝑑4 = 5).
The beam profiles, as well as the ROI densities, are shown in Fig. S4A, first row.

First, a stack is recorded by continuously moving each beam long the 𝑧 axis, from −25𝜇𝑚 to
25𝜇 in steps of 0.05𝜇. The stack obtained for each beam is shown in the second row of S4A. We
assume that the ROI undergoes axial motion over time, defined by Eq. (26), while its activity
changes according to (27). We ran the simulation for a total of 1000 milliseconds using forward
Euler with a time step of 𝑑𝑡 = 0.001. Both activity and axial motion of the ROI are shown in
the first row of Fig. S4B. At each time step 𝑡 each beam recorded intensity from the sample
according to the following equation:

𝐼 𝑗 (𝑡) = 𝐴(𝑡)𝐺 𝑗 (Δ𝑧(𝑡)) for 𝑗 = 1, 2, 3, 4 (49)

where the functions 𝐺 𝑗 (Δ𝑧(𝑡)) represent the integration of the excitation of each beam 𝑗 at the
ROI density. The intensities recorded by each beam are shown in the second row of Fig. S4.

To estimate the axial motion of the ROI, we extended the cost function for two beams (Eq. 19)
and defined the following cost function for four beams:

𝐽
(4)
𝐿2
(𝑧, 𝑡) =∫ ∞

−∞
𝑓 (𝑡 ′ − 𝑡, 𝜎𝑡 )

[
𝛼12

(
𝐼1 (𝑡)
𝐼2 (𝑡)

−
𝐼𝑠𝑡𝑎𝑐𝑘1 (𝑧)
𝐼𝑠𝑡𝑎𝑐𝑘2 (𝑧)

)2

+ 𝛼23

(
𝐼2 (𝑡)
𝐼3 (𝑡)

−
𝐼𝑠𝑡𝑎𝑐𝑘2 (𝑧)
𝐼𝑠𝑡𝑎𝑐𝑘3 (𝑧)

)2

+ 𝛼34

(
𝐼3 (𝑡)
𝐼4 (𝑡)

−
𝐼𝑠𝑡𝑎𝑐𝑘3 (𝑧)
𝐼𝑠𝑡𝑎𝑐𝑘4 (𝑧)

)2]
𝑑𝑡 ′,

(50)



where 𝑓 (𝑡 ′ − 𝑡, 𝜎𝑡 ) is the Gaussian kernel defined by Eq. (20), and the parameters 𝛼12, 𝛼23 and
𝛼34 are computed at each time step 𝑡 defined as:

𝛼 𝑗𝑘 =

{
1 if 𝐼 𝑗 (𝑡), 𝐼𝑘 (𝑡) > 𝐼𝑡ℎ

0 otherwise,
(51)

where 𝐼𝑡ℎ = 0.1 is a minimum intensity threshold. The parameters 𝛼 𝑗𝑘 are used to only take into
account measured intensities at 𝑡 if the ROI is within the field of view of beams 𝑗 and 𝑘 . When
the intensity recorded by one of the beams is lower than 𝐼𝑡ℎ, the ROI is considered outside of
the 𝑧-field of view of the beam and therefore its contribution to the cost function of Eq. () is
discarded by the 𝛼 𝑗𝑘 parameters.

We estimated the axial motion of the single ROI by finding the slice in the stacks, Δ𝑧(𝑡), at any
time step 𝑡, that minimized the cost function (). Both the estimated and actual axial motion are
shown in Fig. S4B, third row. The cost function error, shown Fig. S4B, fourth row, is given by
the value of the cost function evaluated at the estimated axial motion, 𝐽 (4)

𝐿2
(Δ𝑧(𝑡), 𝑡).

Finally, the intensity of each beam is corrected using the following expression:

𝐼𝑐𝑜𝑟𝑗 (𝑡) =
𝐼 𝑗 (𝑡)

𝐼𝑠𝑡𝑎𝑐𝑘
𝑗
(𝑧(𝑡))

for 𝑗 = 1, 2, 3, 4 (52)

and the corrected fluorescence change, Δ𝐹/𝐹 is computed from the corrected intensities:

Δ𝐹/𝐹 (𝑡) = 1
4

4∑︁
𝑗=1

( 𝐼𝑐𝑜𝑟
𝑗
(𝑡) − 𝐹0

𝑗

𝐹0
𝑗

)
for 𝑗 = 1, 2, 3, 4, (53)

where 𝐹0
𝑗

is the baselines of the intensity 𝐼𝑐𝑜𝑟
𝑗

, computed from the average of the 10% lowest
values of 𝐼𝑐𝑜𝑟

𝑗
(𝑡) for beam 𝑗 = 1, ..., 4. The last row of Fig. S4B shows the corrected, actual, and

measured Δ𝐹/𝐹. The actual Δ𝐹/𝐹 is computed according to Eq. 29. The measured Δ𝐹/𝐹 is
the fluorescence change that would be measured assuming no motion correction, given by:

measured Δ𝐹/𝐹 =
1
4

4∑︁
𝑗=1

𝐼 𝑗 (𝑡) − 𝐼0
𝑗

𝐼0
𝑗

, (54)

where 𝐼0
𝑗

is the baseline measured intensity, obtained by the mean value of the 10% lowest values
of 𝐼 𝑗 (𝑡) for each beam 𝑗 = 1, ..., 4.



Fig. S1. Example of two different ROI functions. A ROI function defined by Eq. 8,
where the activity 𝐴 modulates heterogeneously the function along the 𝑧-axis. Such
modulation can not be corrected with the developed algorithm. B ROI function defined
by Eq. 12, where the activity 𝐴 homogeneously modifies the ROI function along the
𝑧-axis. An underlying assumption of the algorithm is that activity is modulated in such
a homogeneous fashion from baseline.

Fig. S2. Distributions of fluorescence changes for ROI 1 in the experiment shown in
Fig. 4. A Distribution of the measured Δ𝐹/𝐹 for ROI 1. This distribution is affected
by axial motion. The distribution of the measured Δ𝐹/𝐹 for ROI 1 is not Gaussian due
to the axial motion B Gaussian distribution of the corrected Δ𝐹/𝐹 for ROI 1. Since the
fluorescence baseline is calculated from the average of 10% lowest values, the mean of
the distribution of corrected Δ𝐹/𝐹 is not centered around 0, as one would expect for
GFP (no fluorescence changes).



Fig. S3. Simulation of a single moving voxel stacks which have a flat axial profile. A
Top row, defined flat and elongated ROI densities at time 𝑡 = 0 as well as the profiles of
the beams along the 𝑧-axis. Bottom row, stack of the sample at time 𝑡 = 0 obtained for
each beam. B First row, left side: profile of the two beams along the 𝑧-axis. Right side:
activity and axial motion of the ROI over time. Second row: intensity measured with
each beam over time. Third row: estimated and actual axial motion of the ROI over
time. Fourth row: cost function error evaluated at the estimated axial position. Bottom
row: measured, corrected and actual activity of the ROI over time.



Fig. S4. Simulation of a single moving voxel for a configuration with four temporally
mulitplexed beams. A Top row, ROI density at time 𝑡 = 0 as well as the profiles of the
four beams along the 𝑧-axis. Bottom row, stack of the sample at time 𝑡 = 0 obtained for
each beam. B First row, left side: profile of the four beams along the 𝑧-axis. Right side:
activity and axial motion of the ROI over time. Second row: intensity measured with
each beam over time. Third row: estimated and actual axial motion of the ROI over
time. Fourth row: cost function error evaluated at the estimated axial position. Bottom
row: measured, corrected and actual activity of the ROI over time.


