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1 Introduction

Entanglement entropy, a physical observable stemming from quantum information, has now
pervaded many branches of theoretical physics such as quantum many-body physics [1–3],
high energy physics [4–8], gravitational physics [9–13], and so on. It is worth mentioning
that recently, its quantum corrected holographic version [9, 10], a.k.a. quantum extremal
surface [14], in the AdS/CFT correspondence [15–17] has played a crucial role in solving
problems such as black hole information loss [18, 19], providing a reliable way to further
understand quantum gravity.

Also recently, a new quantity associated with a bulk minimal area surface, called
pseudo-entropy, has been introduced in [20] under the framework of AdS/CFT correspon-
dence. Given a total system S, one can define the pseudo-entropy associated with a sub-
system A in terms of the corresponding pseudo-Rényi entropy

S
(n)
A ≡ 1

1− n logTr
[
(T 1|2
A )n

]
, (n > 1, n ∈ Z), (1.1)
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where the matrix T 1|2
A involved two nonorthogonal quantum states |ψ1〉, |ψ2〉 ∈ HS , named

reduced transition matrix, is the partial trace of the transition matrix T 1|2,1

T 1|2 ≡ |ψ1〉〈ψ2|
〈ψ2|ψ1〉

, T 1|2
A ≡ TrAc

[
T 1|2]. (1.2)

The pseudo-entropy of subsystem A

SA ≡ −Tr
[
T 1|2
A log T 1|2

A

]
(1.3)

is obtained by taking the limit of n → 1 for S(n)
A . The reduced transition matrix is not

Hermitian in general; hence the pseudo-entropy usually takes complex values. However,
the results in the qubit system suggest that the real part of pseudo-entropy can be used
to characterize the number of distillable Bell pairs averaged over the histories between the
initial and final state [20]. More intriguingly, it was recently found in [21] that the real-
time evolution of the real part of pseudo entropy follows the Page curve [22] under some
field-theoretic settings based on the black hole final state proposal [23].2 Hence pseudo-
entropy, like entanglement entropy, can reflect certain underlying correlation structures.
Refer to [25–32] for other related developments of pseudo-entropy.

The main purpose of this paper is to study the real-time evolution of the real part of
pseudo-entropy for locally excited state generated by a single primary operator or linear
combination of a bunch of them in various 2d CFTs. Unlike the case in [21], our inves-
tigation can be regarded as a pseudo-entropy extension of the real-time evolution of the
entanglement entropy after such local operator excitations [33]. In recent years, the time
evolution of entanglement entropy for locally excited states has been widely studied, includ-
ing rational CFTs [34–36], irrational CFTs [37], large-c CFTs [38, 39], boundary CFTs [40],
warped CFTs [41], CFTs at finite temperature [42], multiple local excitations [43], and
holographic duals of the local excitations [44–47]. In 2d rational CFTs (RCFTs), it was
found that the variation of nth Rényi entropy for locally primary excited states saturates
to a constant equal to the logarithm of the quantum dimension of the local operator’s con-
formal family [34–36]. Such saturation get well interpreted in the picture of propagation of
quasiparticles pairs [33, 48]. On the other hand, it was found in large-c CFTs [38, 39] that a
characteristic feature called scrambling of entanglement would scramble the information of
non-perturbative constants like quantum dimensions and lead to a logarithmically diverged
Rényi entropy [38, 49].

Since pseudo-entropy is a straightforward generalized concept of entanglement entropy,
we shall study the time evolution behavior of pseudo-entropy for locally excited states in
various 2d CFTs. We set up various situations to calculate the pseudo-entropy of locally
excited states in 2d rational CFTs and large-c CFTs and to explore universal properties of
pseudo entropy of locally excited states.

1Ac refer to the complement of A and we have assumed that the Hilbert space of total system HS can
be divided into HA

⊗
HAc .

2More recently, the authors of [24] reproduce the Page curve in another purely field-theoretic way called
moving mirror.
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This paper is organized as follows. Section 2 outlines the standard replica method to
compute the nth pseudo-Rényi entropy for locally excited states. In section 3 we mainly
focus on the case of n = 2. We first study the limiting behaviors of real-time evolution
of 2nd pseudo-Rényi entropy in rational CFTs and large-c CFTs. We then numerically
analyze the full-time evolutions of 2nd pseudo-Rényi entropy in some specific interacting
theories. In section 4, we extend the above analysis to the nth pseudo-Rényi entropy. We
end in section 5 with conclusions and prospects. Some useful formulae and calculation
details are presented in the appendices.

2 General calculations of pseudo-Rényi entropy

2.1 Setup for local excitations and S(n)
A from replica method

In this section, we review the replica calculation for the pseudo-Rényi entropy [20], which
is almost same with that for the ordinary Rényi entropy [6]. Consider a 2d CFT dwells on
a plane Σ1 with coordinates {τ, x} (ds2 = dτ2 + dx2). We are primarily interested in the
cases that |ψ1〉, |ψ2〉 are states defined by acting various operators on the ground state |Ω〉,

|ψj〉 = 1√
Nj
Oj,1(−τj,1, xj,1)Oj,2(−τj,2, xj,2) . . .Oj,nj (−τj,nj , xj,nj )|Ω〉, (2.1)

(τj,i+1 ≥ τj,i > 0, i = 1, 2, . . . , nj − 1; j = 1, 2),

where Nj is normalization factor and Oj,i(−τj,i, xj,i) ≡ e−Hτj,iOj,i(xj,i)eHτj,i is operator lo-
cated at (τ = −τj,i, x = xj,i). We can write down the corresponding transition matrix (1.2)
in terms of the path integral language as follows

T 1|2 =
O1,1(−τ1,1, x1,1) . . .O1,n1(−τ1,n1 , x1,n1)|Ω〉〈Ω|O†2,n2(τ2,n2 , x2,n2) . . .O†2,1(τ2,1, x2,1)
〈Ω|O†2,n2(τ2,n2 , x2,n2) . . .O†2,1(τ2,1, x2,1)O1,1(−τ1,1, x1,1) . . .O1,n1(−τ1,n1 , x1,n1)|Ω〉

=


O†

2,1

O1,n1

O†
2,n2

O1,1

τ

x

0

+∞

−∞

+∞



−1

×

x

τ

x

0+
0−

+∞

−∞

O†
2,1

O1,n1

O†
2,n2

O1,1
. (2.2)

Here the dashed lines represent the free boundaries, and the stars denote the insertion
points of the operators. The reduced transition matrix of the subsystem A is obtained by
“stitching up” the upper and lower edges of Ac

T 1|2
A = TrAc

[
T 1|2] =


O†

2,1

O1,n1

O†
2,n2

O1,1

+

−∞



−1

×
A

O†
2,1

O1,n1

O†
2,n2

O1,1

. (2.3)

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
4

Substituting (2.3) into (1.1), the path integral representation of S(n)
A is given by

S
(n)
A = 1

1−n log




O†

2,1

O1,n1

O†
2,n2

O1,1

+

−∞



−n

×

Σn

A A A

n n− 1 1


=S

(n)
A;vac + 1

1−n
(
log
〈
(O†(n)

2,n2 . . .O
(n)
1,n1) . . .(O†(1)

2,n2 . . .O
(1)
1,n1)

〉
Σn−n log

〈
O†2,n2 . . .O1,n1

〉
Σ1

)
.

(2.4)

In the above, S(n)
A;vac stands for the nth Rényi entropy of A when the total system is in

vacuum state, and Σn is a n-sheeted Riemann surface constructed by gluing n sheets Σ1
together at subsystem A. The subscript of O(k) denotes that the operator O is living on
the kth sheet of Σn. Since S(n)

A;vac does not carry any information about excitations, we
shall focus on the excess ∆S(n)

A ≡ S(n)
A − S(n)

A;vac hereafter.

2.2 The excess of second pseudo-Rényi entropy ∆S(2)
A

Let us first concentrate on the simplest case that n1 = n2 = 1, n = 2. In the meantime,
we are mainly interested in the case where two inserted operators are the same. Now (2.1)
can be reduced to

|ψj〉 = 1√
Nj
O(−τj , xj)|Ω〉, (j = 1, 2), (2.5)

and the corresponding excess of pseudo-Rényi entropy is given by

∆S(2)
A = − log

〈
O†(2)(τ2, x2)O(2)(−τ1, x1)O†(1)(τ2, x2)O(1)(−τ1, x1)

〉
Σ2〈

O†(τ2, x2)O(−τ1, x1)
〉2

Σ1

. (2.6)

The above expression is reduced to two- and four-point functions that we know for precisely
solvable CFTs. It coincides with the excess of the second Rényi entropy when the insertion
points are symmetric about the x-axis, i.e., τ1 = τ2 and x1 = x2. Owing to the conformal
symmetry, when O is a primary operator with chiral and antichiral conformal dimension
∆O, the two-point and four-point function of O on Σ1 are given by3

〈O†(z2, z̄2)O(z1, z̄1)〉Σ1 = c12
|z12|4∆O

, (2.7)

〈O†(z4, z̄4)O(z3, z̄3)O†(z2, z̄2)O(z1, z̄1)〉Σ1 = |z13z24|−4∆OG(η, η̄), (2.8)

respectively, where (η, η̄) ≡
(
z12z34/(z13z24), z̄12z̄34/(z̄13z̄24)

)
are cross ratios and c12 is

normalization factor. Since we can apply the conformal transformation

z =
(

w

w − L

)1/n
, (A = [0, L]), (2.9)

z = w1/n, (A = [0,+∞)), (2.10)
3{z, z̄} := {x + iτ, x − iτ} are complex coordinates on Σ1, likewise for complex coordinates {w, w̄} on

Σn. zij ≡ zi − zj .

– 4 –
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1
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O(w1 )

O †(w2 )

O(w3 )

O †(w4 )

Figure 1. The 2-sheeted space Σ2. The dashed box represents the subsystem A.

to map Σn to Σ1, we obtain the four-point function on Σ2 by applying the above conformal
maps with n = 2

〈O†(w4, w̄4)O(w3, w̄3)O†(w2, w̄2)O(w1, w̄1)〉Σ2 =


∣∣ 16L2z2

1z
2
2

(z2
1−1)2(z2

2−1)2

∣∣−4∆O
G(η, η̄) (A = [0, L]),

∣∣16z2
1z

2
2
∣∣−4∆O

G(η, η̄) (A = [0,+∞)),
(2.11)

where we have set

(w3, w̄3)sheet 2 = (w1, w̄1)sheet 1 = (x1 − iτ1, x1 + iτ1),
(w4, w̄4)sheet 2 = (w2, w̄2)sheet 1 = (x2 + iτ2, x2 − iτ2), (2.12)

as shown in figure 1. Combining (2.11) with (2.7), the excess of the second pseudo-Rényi
entropy (2.6) is expressed as a function which depends only on η and η̄

∆S(2)
A = log c2

12∣∣η(1− η)
∣∣4∆O ·G(η, η̄)

. (2.13)

3 Real-time evolution of Re[∆S(2)
A ]

The real-time evolution of the pseudo-Rényi entropy for locally excited states can be re-
garded as a generalization of that of the Rényi entropy for locally excited states [33–
38, 40, 42, 50]. In rational CFTs, it is known that the excess of the Rényi entropy saturates
to a constant equal to the logarithm of the quantum dimension of the inserted primary
operator [33, 34]. A similar result for pseudo-Rényi entropy is found in free CFT in [20].
However, [20] only consider the real-time evolution of pseudo-Rényi entropy with different
insertion time and the same insertion spatial coordinates. Richer evolutionary structures
seem to lie in another insertion configuration of operators — two operators with different
spatial coordinates and the same insertion time. In this section, we mainly explore this
insertion configuration and give a general argument in the light of [34].

– 5 –
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(η, η̄) x1x2 > 0 x1x2 < 0

Late time (t→∞) (1, 0) (1, 0)

Early time (t→ 0)
x1 > 0 > x2 x2 > 0 > x1(1

2 + a, 1
2 + a)

a = x1+x2
4√x1x2

(1
2 + a, 1

2 − a
) (1

2 − a,
1
2 + a

)
Table 1. Early time and late time behaviors of (η, η̄) for the subsystem A = [0,∞).

3.1 ∆S(2)
A for two primary operators with different spatial coordinates

In the following, we explore the case where the time coordinates of the two inserted oper-
ators are the same, but the spatial coordinates are different. That is, we are considering
the following real-time dependent transition matrix

T 1|2(t) ≡ e−iHte−εHO(x1)|Ω〉〈Ω|O†(x2)e−εHeiHt

〈Ω|O†(x2)e−2εHO(x1)|Ω〉 , T 1|2
A (t) ≡ TrAc [T 1|2(t)]. (3.1)

It amounts to perform the following analytic continuation for τ1, τ2 in (2.5):

τ1 = ε+ it, τ2 = ε− it, (3.2)

wherein ε > 0 is an infinitesimally small regularization parameter to suppress the high
energy modes [48].

3.1.1 Early time, middle time, and late time behaviors

Let us first study some limiting behaviors of the pseudo-Rényi entropy to obtain some
generic conclusions. The procedure is similar to that of entanglement entropy [34, 38]. For
the subsystem A of infinite length, we are mainly interested in the early time and late
time limits of pseudo-Rényi entropy, while for the subsystem A of finite length, we are also
interested in the middle time limit.4

The subsystem A = [0,∞). Consider the case of A = [0,∞), in which we are mainly
interested in the early (t→ 0) and late (t→ +∞) time limits. According to the expression
of the 2nd pseudo-Rényi entropy (2.13), it’s helpful to study the early and late time be-
haviors of η and η̄ firstly, which we summarize in the table 1.5 We can see from the table
that for general space configurations of the two inserted points, the late time behaviors of
cross ratios are uniform. Still, the early time behavior is somewhat intricate. One can,
however, obtain concise results by thinking about the situations where two operators are

4Based on the result of entanglement entropy in finite scales [34], the middle time may be defined as the
interval [u, v], where u = min

[
|x1|, |x2|, |L− x1|, |L− x2|

]
, v = max

[
|x1|, |x2|, |L− x1|, |L− x2|

]
.

5The details of derivation can be found in appendix A.1.
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very close together. Intuitively, we may expect the results to degenerate into the case of
Rényi entropy. The quadratic limit of cross ratios is given by

lim
x1→x2

lim
t→0

(η, η̄) '

(0, 0), x2 < 0
(1, 1), x2 > 0

, (3.3)

These coincide with the second Rényi entropy results in [36]. Another intriguing case is to
set x2 = −x1 6= 0, where the early time limit of cross ratios is reduced to

lim
t→0

(η, η̄) '
(1

2 ,
1
2

)
. (3.4)

We next follow the arguments in [34, 38] to cope with the function G(η, η̄) in (2.13). In
general CFTs, G(η, η̄) can be expressed as follows using the conformal blocks [51]

G(η, η̄) =
∑
p

(CpO†O)2FO(p|η)F̄O(p|η̄), (3.5)

where CpO†O is the coefficient of the three-point function 〈O†Oφp〉 and the index p corre-
sponds to each φp of all Virasoro primary fields. We can normalize G(η, η̄) such that the
two-point function (2.7) has a unit normalization c12 = 1, and it leads to the following
behavior of FO(p|η) in η → 0 limit6

lim
η→0

FO(p|η) = η∆p−2∆O(1 +O(η)). (3.6)

The above behavior indicates that as η goes to zero, the identity operator dominates the
contribution in the summation of (3.5). Moreover, with the bootstrap relation

G(η, η̄) = G(1− η, 1− η̄), (3.7)

we obtain behaviors of G(η, η̄) in two limits for general 2d CFTs

lim
η→0
η̄→0

G(η, η̄) ' |η|−4∆O , lim
η→1
η̄→1

G(η, η̄) ' |1− η|−4∆O . (3.8)

The above results correspond precisely to the early time behavior of the G(η, η̄) function
when the spatial positions of the two inserted operators tend to coincide.

The late time behavior of G(η, η̄), according to the table 1, requires some knowledge
of the behavior of conformal block in the limit η → 1. For rational CFTs, the fusion
transformation [52, 53]

FO(p|1− η) =
∑
q

Fpq[O] · FO(q|η) (3.9)

can be exploited to give the expression of FO(p|η) in η → 1 limit and thus fix the leading-
order of the late time behavior of G

lim
η→1
η̄→0

G(η, η̄) ' d−1
O (1− η)−2∆O η̄2∆O , (3.10)

6Note we set φ0 to be equal to the identity operator, which means ∆0 = 0.

– 7 –
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where dO = 1/F00[O] is the quantum dimension [53] of O. Combine (2.6) with (3.8)
and (3.10), we find the following expression for the second pseudo-Rényi entropy

∆S(2)
A '

0, t→ 0 && x1 ∼ x2,

log dO, t→∞.
(3.11)

It is noted that the late limit of both 2nd pseudo-Rényi entropy and Rényi entropy saturates
to log dO, which indicates that the quasiparticle pair picture seems to be preserved in the
pseudo-entropy.

We next move to analyse large-c CFTs. For large-c CFTs, in the limit ∆p/c� 1, the
conformal block has the following universal form [54, 55]

FO(p, η) ' η∆p−2∆O · 2F1(∆p,∆p, 2∆p; η), (3.12)

where 2F1(a, b, c; z) is the hypergeometric function. Whereas, the authors in [38] argued
that the above approximation fails when η is very close to 1 such as |1− η| ∼ (Dp

O)−
1

2∆O ,
where Dp

O ∼ exp(cα) (α is a certain positive constant) is exponentially large and in RCFTs
D0
O coincides with the quantum dimension dO. When η is very close to 1, the leading order

of FO(p, η) is given by [38]

FO(p, η) ' 1
Dp
O
· (1− η)−2∆O ,

(
|1− η| . (Dp

O)−
1

2∆O
)
. (3.13)

Furthermore, following the arguments in [38], the summation in eq. (3.5) can be approxi-
mated by counting the contribution of the conformal vacuum block

G(η, η̄) ' FO(0, η)F̄O(0, η̄) (3.14)

when we are considering large-c theroies with gravity duals. Eq. (3.6) with eq. (3.12)–(3.14)
together lead to another type of the late time limit of G(η, η̄)

G(η, η̄) '

η̄
−2∆O , |1− η| & (Dp

O)−
1

2∆O ,

1
D0
O
· (1− η)−2∆O η̄−2∆O , |1− η| . (Dp

O)−
1

2∆O .
(3.15)

Substituting (3.8) and (3.15) into (2.13) respectively, We obtain three distinct stages of
evolution of the second pseudo-Rényi entropy.

∆S(2)
A '


0, t→ 0 and x1 ∼ x2,

log
[(
− (x1−x2+2iε

4t )2)−2∆O]
, max

[
|x1|, |x2|, ε

]
� t . 1

4 (D0
O)

1
4∆O

√
(x1 − x2)2 + 4ε2,

logD0
O, t & 1

4 (D0
O)

1
4∆O

√
(x1 − x2)2 + 4ε2.

(3.16)
Like Rényi entropy [38], the second pseudo-Rényi entropy has an intermediate process of
logarithmic time evolution. If we take the real part of ∆S(2)

A , as we are interested in, the
corresponding logarithm evolves as follows

Re
[
∆S(2)

A

]
= 4∆O log 4t√

(x1 − x2)2 + 4ε2
, (3.17)

which matches the result in [38] when two space points coincide. It’s rewarding to mention
that when we take the large-c limit first, like in holography, D0

O will go to infinity, and
∆S(2)

A is left with logarithmical growth.

– 8 –
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The subsystem A = [0, L]. In the case of finite scale, the early time and late time be-
haviors of the cross ratios can be readily obtained from the expressions of cross ratios (A.13)
after the analytic continuation,

lim
t→0

(η, η̄)'



(1
2 +b, 1

2 +b), x1,x2< 0||0<x1,x2<L||L<x1,x2,

(1
2 +b, 1

2−b), x1>L>x2> 0||L>x1> 0>x2,

(1
2−b,

1
2 +b), x2>L>x1> 0||L>x2> 0>x1,

(1
2−b,

1
2−b), x1>L> 0>x2||x2>L> 0>x1,

(
b= L(x1+x2)−2x1x2

4
√
x1x2(L−x1)(L−x2)

)
,

(3.18)

lim
t→∞

(η, η̄)'
(
− L

2(x2−x1 +2iε)2

16t4 ,−L
2(x2−x1−2iε)2

16t4
)
' (0,0). (3.19)

Once again, we encounter a complicated early time behavior, and it can be simplified by
taking quadratic limit (x1 ∼ x2 and t ∼ 0)

lim
x1→x2

lim
t→0

(η, η̄) '

(0, 0), x2 < 0||L < x2,

(1, 1), 0 < x2 < L.
(3.20)

Furthermore, we find that another interesting class of space configurations, |x1|, |x2| � L,
can also reduce the early time results (3.18),

lim
t→0

(η, η̄) ' (0, 0), (|x1|, |x2| � L). (3.21)

To analytically extract the middle time
(
t ∈ [u, v], u = min

[
|x1|, |x2|, |L−x1|, |L−x2|

]
,

v = max
[
|x1|, |x2|, |L − x1|, |L − x2|

])
behavior of cross ratios, let us consider the large L

limit, that is, L � |x1 − x2|. This is because one can expect that when L � |x1 − x2|,
the middle time behavior of ∆S(2)

A will tend to the late time behavior of ∆S(2)
A of the

infinite subsystem. Consider two special spatial configurations that satisfy the constraint:
i. L � max

[
|x1|, |x2|

]
; ii. L � max

[
|L − x1|, |L − x2|

]
. The above two configurations

correspond to the situation where operators live concentratedly near the left and right
boundaries of A, respectively.7 In these cases, the value of the cross ratios at a typical
middle time, t = L/2, can be calculated analytically

lim
t→L

2

(η, η̄) '


(
1 + (x2−x1+2iε)2

L2 ,− (x2−x1−2iε)2

9L2

)
' (1, 0), L� max

[
|x1|, |x2|

]
,

(
− (x2−x1+2iε)2

9L2 , 1 + (x2−x1−2iε)2

L2

)
' (0, 1), L� max

[
|L− x1|, |L− x2|

]
.

(3.23)
7One may also interested in the opposing situation that the operators are scattered at both ends of A.

The middle time behavior of cross ratios in this case is found to be

lim
t→

√
2L
2

(η, η̄) '
(1

2 +O(1/L), 1
2 +O(1/L)

)
, L� max

[
|x1|, |L− x2|

]
. (3.22)
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We obtain a middle-time behavior similar to the late-time behavior (A.7) for the infinite
subsystem. For more general cases, the numerical calculation shows that

(η, η̄)
∣∣∣
t∈[u′,v′]

'

(1, 0), L� |x1 − x2| && xmin <
L−|x1−x2|

2 ,

(0, 1), L� |x1 − x2| && xmin >
L−|x1−x2|

2 , (xmin ≡ min
[
x1, x2

]
),

(3.24)
where u′ = min

[{
|x1|, |x2|, |L − x1|, |L − x2|

}
\ {u}

]
, v′ = max

[{
|x1|, |x2|, |L − x1|, |L −

x2|
}
\ {v}

]
for x1 6= x2 and [u′, v′] = [u, v] for x1 = x2.

Combining with the previous discussion of G(η, η̄), according to eqs. (3.20), (3.24),
and (3.19), we get the picture of the evolution of ∆S(2)

A under some constraints in RCFTs8

∆S(2)
A '



0, t ∼ 0 &&
(
|x1 − x2| ∼ 0 || L� |x1|, |x2|

)
,

log dO, t ∈ [u′, v′] && L� |x1 − x2| && xmin <
L−|x1−x2|

2 ,

log d̄O, t ∈ [u′, v′] && L� |x1 − x2| && xmin >
L−|x1−x2|

2 ,

0, t→∞.

(3.25)

3.1.2 Examples in 2d CFTs

In the previous subsection, we have studied several limiting behaviors of the second pseudo-
Rényi entropy. However, there are still some mysteries about the evolution of ∆S(2)

A that
limit analysis is infeasible to solve:

1. The intermediate process of the evolution of Re[∆S(2)
A ] from an initial value to log dO

in RCFTs.

2. Is there anything special about Re[∆S(2)
A ] evolution in certain symmetric spatial

configurations (such as x1 = −x2 for A = [0,∞))?

In this subsection, we will resort to numerical analysis to uncover the whole time
evolution picture of ∆S(2)

A under several specific 2d CFT models. We expect that the
above problems will be answered to some extent in these concrete models. Before entering
into the numerical study, we first point out some model-independent symmetries of the
second pseudo-Rényi entropy, which are reflected in the following examples.

Symmetries for ∆S(2)
A . Re-examining the cross ratios of finite and infinite subsystem

((A.13) and (A.6),respectively), one can find some hidden symmetries of them,

η(x2, x1, t) =
[
η(x1, x2, t)

]∗
, η̄(x2, x1, t) =

[
η̄(x1, x2, t)

]∗
, (3.26)

η(−x1,−x2, t) = 1− η̄(x1, x2, t),
(
A = [0,∞)

)
, (3.27)

η(L− x1, L− x2, t) = η̄(x1, x2, t),
(
A = [0, L]

)
, (3.28)

where “∗” denotes complex conjugate. Further, it’s easy to show that the above symmetries
may be extended to ∆S(2)

A when the G(η, η̄) function has the following properties

G(η, η̄) = G(η̄, η), (3.29)
G(η∗, η̄∗) = [G(η, η̄)]∗. (3.30)

8Note that normally the quantum dimension dO is real, and this is true in all the models considered in
this paper (i.e. we have d̄O = dO in this paper).
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Combining (2.13), (3.26), and (3.30), one obtains the first symmetry of ∆S(2)
A ,

∆S(2)
A (x2, x1, t) =

∆S(2)
A (x1, x2, t), Tr

[(
T 1|2
A (t)

)2] ∈ R−,[
∆S(2)

A (x1, x2, t)
]∗
, Tr

[(
T 1|2
A (t)

)2] ∈ C \ R−.
(3.31)

Combining (2.13), (3.7), and (3.27)–(3.29), the second symmetry of ∆S(2)
A reads

∆S(2)
[0,L](x1, x2, t) = ∆S(2)

[0,L](L− x1, L− x2, t), (3.32)

∆S(2)
[0,∞)(x1, x2, t) = ∆S(2)

[0,∞)(−x1,−x2, t). (3.33)

There are some physical or mathematical understandings that may explain the appearance
of the above symmetries. For A = [0, L], both A and Ac are invariant under reflection
with respect to x = L/2, which implies two sets of space configurations are symmet-
ric. Thus pseudo-Rényi entropy should be equal with the inserted points (x1, x2) and
(L − x1, L − x2), hence we obtain (3.32); for A = [0,∞), we may have the equality
S

(n)
A (x1, x2, t) = S

(n)
Ac (−x1,−x2, t) in terms of the symmetry of the system. In addition

to the basic property S(n)(T 1|2
Ac ) = S(n)(T 1|2

A ) of the nth pseudo-Rényi entropy [20], we
obtain (3.33); eq. (3.31) can be interpreted by the fact that exchanging x1 with x2 is equiv-
alent to let T 1|2(t) →

(
T 1|2(t)

)†. The above argument suggests that these symmetries
hold not only for the 2nd pseudo-Rényi entropy, but also for any order. We shall make a
numerical examination on them in section 4.

On the other hand, one can see that there are two special space configurations —
x1 = L − x2 for A = [0, L] and x1 = −x2 for A = [0,∞), that are screened out
by these symmetries. Taking x1 = −x2, A = [0,∞) as an example, the operation of
swapping x1 and x2 is equivalent to the spatial reflection operation, which means that
∆S(2)

[0,∞)(x1,−x1, t) is real when Tr
[(
T 1|2

[0,∞)(t)
)2] ∈ C \ R−. For A = [0, L], simple algebra

shows that ∆S(2)
[0,L](x1, L− x1, t) = log c212

|η(1−η)|4∆OG(η,η∗) .
9 Since one can expect G(η, η∗) to

be greater than 0, we obtain a real second pseudo-Rényi entropy evolution in this insertion
configuration, whose correctness is verified in subsequent examples.

Finally, when only paying attention to the real part of ∆S(2)
A , the above results show

that the evolution of Re[∆S(2)
A ] may be “4-fold degenerate”,

Re[∆S(2)
[0,L](x1, x2, t)] = Re[∆S(2)

[0,L](L− x1, L− x2, t)]

= Re[∆S(2)
[0,L](x2, x1, t)] = Re[∆S(2)

[0,L](L− x2, L− x1, t)], (3.34)

Re[∆S(2)
[0,∞)(x1, x2, t)] = Re[∆S(2)

[0,∞)(−x1,−x2, t)]

= Re[∆S(2)
[0,∞)(x2, x1, t)] = Re[∆S(2)

[0,∞)(−x2,−x1, t)]. (3.35)

Hence we may choose to label each space configuration with the following parameters

xm ≡
x1 + x2

2 , l ≡ |x1 − x2|. (3.36)
9The absolute value here is |η| ≡

√
η · η∗.
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Figure 2. The real-time evolution of Re[∆S(2)
A ] in c = 1 free scalar, where the insertion operator

is chosen to be 1√
2 (eiφ + e−iφ) and the regulator ε = 10−5. (a): A = [0,∞), l = 2; (b): A =

[0, 20], l = 2; (c): A = [0, 10], xm = −5; (d): A = [0, 20], xm = 10.

Example I — free scalar. Let us warm up with a simple example — the c = 1 free
scalar, and choose the operator O = 1√

2
(
e
i
2φ + e−

i
2φ
)
which has (chiral and antichiral)

conformal dimension ∆O = 1
8 and quantum dimension dO = 2. The corresponding function

G(η, η̄) is found to be G(η, η̄) = 1+|η|+|1−η|
2
√
|η||1−η|

, which apparently satisfies eqs. (3.29), (3.30)

and gives the following concise expression of ∆S(2)
A ,

∆S(2)
A (η, η̄) = log 2

1 + |η|+ |1− η| . (3.37)

On the other hand, utilizing the identity
〈
σ(z1, z̄1) . . . σ(z2n, z̄2n)

〉2
Σ1

=〈
O(z1, z̄1) . . .O(z2n, z̄2n)

〉
Σ1

and ∆O = 2∆σ [56], where σ is the spin operator in
Ising model, it can be found that ∆S(n)

A [O-excitation] = 2∆S(n)
A [σ-excitation]. Thus our

calculations in this part are also applicable to the case of σ-excitation in Ising model.
Now we turn to the numerical component. The first is the simpler case that A = [0,∞).

As shown in figure 2(a), since the relative size between the spacing of two operators and
the scale of the subsystem is not involved in this case, we fix l (l = 2) and adjust xm to
observe the evolution of Re[S(2)

A ]. One can read a common feature from these evolving
curves (except for the case of xm = 0): there is a small hump between the early time
evolution determined by (A.8) and the late time evolution determined by eq. (A.7). We can
explain the appearance of the hump to some extent in terms of the picture of quasiparticle
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propagation. Under the quasiparticle propagation picture, the time nodes at which the
hump shape evolution begins and ends correspond exactly to the time nodes at which two
quasiparticle pairs moving at the speed of light from the insertion points enter or leave the
subsystem A. It can be found that the peak of the hump shape evolution is reached at
t ' |xm|, and the value of the cross ratios at this time is given by

lim
t→|xm|

(η, η̄) =


(

1
2 +O(t− |xm|), 1

2 + xm√
4x2
m− 1

4 l
2+ε2−iεl

+O(t− |xm|)
)
, xm < 0,(

1
2 + xm√

4x2
m− 1

4 l
2+ε2−iεl

+O(t− |xm|), 1
2 +O(t− |xm|)

)
, xm > 0.

(3.38)

Obviously xm√
4x2
m− 1

4 l
2+ε2−iεl

→ ±1
2 when |xm| � l, but the approximation is accurate

enough when |xm| ≥ l. Thus we have

lim
t→|xm|

(η, η̄) '


(1

2 , 0
)
, xm ≤ −l,(

1, 1
2
)
, xm ≥ l.

(3.39)

However, due to the symmetries of G(η, η̄), the above two cases give the same value of
Re[S(2)

A ]. For the most special case of xm = 0, which we have already encountered in the
limit analysis (3.4), Re[S(2)

A ] behaves exactly like the second Rényi entropy [50]. In fact,
we find ∆S(2)

A is real in this case,

∆S(2)
[0,∞)(x,−x, t) =

0, 0 ≤ t < |x|,
log 2, t > |x|,

(3.40)

which is consistent with our previous symmetry analysis. Next, we categorize the case of
A = [0, L] in terms of the relative size between the spacing of two operators and the scale
of the subsystem. When the distance between two operators is much smaller than the
length of the subsystem (i.e. l� L), as depicted in figure 2(b), we reproduce the evolution
pattern described by eq. (3.25). Notice that we lost the middle time behavior of log dO
in the case of xm = 10, since in this case the related time interval (interval in eq. (3.24))
is a null set. Unlike the case of the infinite subsystem, We can see that the small hump
virtually appears twice in the evolving curves in figure 2(b). Again, this coincides with the
picture of quasiparticle pairs propagation in a finite subsystem. The cross ratios for the
peaks of the humps are found to be

lim
t→|xm|

(η, η̄) '



(1
2 , 0
)
, L� l && xm ≤ −l,(

1, 1
2
)
, L� l && l ≤ xm ≤ (L− l)/2,(

0, 1
2
)
, L� l && (L+ l)/2 ≤ xm ≤ L− l,(

0, 1
2
)
, L� l && xm ≥ L+ l.

(3.41)

lim
t→|L−xm|

(η, η̄) '



(1
2 , 0
)
, L� l && xm ≤ −l,(1

2 , 0
)
, L� l && l ≤ xm ≤ (L− l)/2,(1

2 , 1
)
, L� l && (L+ l)/2 ≤ xm ≤ L− l,(

0, 1
2
)
, L� l && xm ≥ L+ l.

(3.42)
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Re[S(2)
A (η, η̄)] is equal in the above cases, on account of the symmetries of G(η, η̄). We

then gradually increase the spacing between operators such that the constraint l � L

no longer holds (see figure 2(c)). We can see that the intermediate behavior of log dO
gradually vanishes as l increases, but the peaks of the humps seem to remain the same.
Another interesting case, as we have discussed in symmetry analysis, is to fix xm = L/2
and then gradually increase l. As shown in figure 2(d), we do obtain a real pseudo-Rényi
entropy. Meanwhile, the result shows that the middle time behavior of S(2)

A tends to zero
instead of log dO, and the time to saturation of middle time behavior also shifts from 1

2L

to
√

2
2 L (3.22) with the increase of l.

Example II — minimal model. Another simple example is the excitation of (2, 1)
operator φ(2,1) in the minimal modelsM(p, p′) with p > p′. The conformal dimension and
quantum dimension of the φ(2,1) are well-known to be ∆(2,1) = 3p

4p′−
1
2 and d(2,1) = −2 cos πpp′ ,

respectively. In addition, it has a relatively simple four-point function [57, 58] that satisfies
eqs. (3.29) and (3.30),

G(η, η̄) = |η|
p
p′ |1− η|

p
p′ ·

sin
(
πp
p′

)
sin
(

3πp
p′

)
sin
(

2πp
p′

) |I1(η)|2 +
sin
(
πp
p′

)
sin
(
πp
p′

)
sin
(

2πp
p′

) |I2(η)|2
 , (3.43)

where the functions I1,2 are defined as follows

I1(η) =
Γ
(

3p
p′ − 1

)
Γ
(
1− p

p′

)
Γ
(

2p
p′

) · 2F1

(
p

p′
,−1 + 3p

p′
,

2p
p′
, η

)
,

I2(η) = η
1− 2p

p′
Γ
(
1− p

p′

)
Γ
(
1− p

p′

)
Γ
(
2− 2p

p′

) · 2F1

(
p

p′
, 1− p

p′
, 2− 2p

p′
, η

)
. (3.44)

The normalization factor c12 in (2.13) can be read off by taking the limit z12 = z34 → 0 of

the four-point function,10 and the result turns out to be c2
12 =

sin
(
πp
p′

)2
sin
(

2πp
p′

) · Γ
(
1− p

p′

)4
Γ
(
2− 2p

p′

)2 . Since the
minimal models are unitary iff p−p′ = ±1, below we consider only these unitary cases and
use critical IsingM(4, 3), tricritical IsingM(5, 4), three-state Potts at criticality M(6, 5)
and so on as prototypical examples.

Now we turn to the numerical part to observe which properties of the evolution of ∆S(2)
A

in the free scalar are retained in the minimal models. Figure 3(a) and 3(c) demonstrate
the full-time evolution of Re[∆S(2)

A ] in the cases of A = [0, L] (L � l) and A = [0,∞),
respectively. In these two cases, it can be found that Re[∆S(2)

A ] saturates to the theoretical
value log d(2,1) in the middle and late time, respectively, which coincides with the case of free
scalar. Whereas, since figure 3(c) is drawn under the first symmetric space configuration
( x1 = −x2 = ±5), a comparison between the corresponding curve (xm = 0) in figure 2(a)
shows that there are significant differences in the behavior of ∆S(2)

A in two theories: i).
10We have 〈φ(2,1)(z1, z̄1)φ(2,1)(z2, z̄2)φ(2,1)(z3, z̄3)φ(2,1)(z4, z̄4)〉 → c212|z12|−8∆(2,1) in the limit of z12 =

z34 → 0.
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Figure 3. (a) and (c): the time evolution of Re[∆S(2)
A ] under the φ(2,1)-excitation in minimal

models. The regulator is chosen to be ε = 10−5. We have A = [0, 20], l = 2, xm = −5 for (a), and
A = [0,∞), xm = 0, l = 10 for (c). The dashed lines correspond to log d(2,1) for different p/p′; (b):
the time evolution of eS

(2)
A;vac · Tr[(T 1|2

A )2] in the case of A = [0,∞), where S(2)
A;vac is the 2nd Rényi

entropy of A when the total system is in the vacuum state. The parameters are selected as ε = 10−5,
xm = 0, l = 10; (d): the time evolution of ∆S(2)

A in the case of A = [0, L]. The parameters are
selected as L = 20, ε = 10−5, xm = 10, l = 2. ∆S(2)

A (η, η̄) = ∆S(2)
A (1/2, 1/2) at the dashed lines.

Except for Ising model M(4, 3), ∆S(2)
A no longer remains real in the full-time evolution,

which is manifest to seen in figure 3(b).11 The trace of (T 1|2
A )2 is negative over an interval

except for the Ising model, which results in a complex ∆S(2)
A ; ii). The evolution of pseudo-

Rényi entropy in the case of xm = 0 no longer behaves like that of Rényi entropy; figure 3(d)
exhibits the evolution of ∆S(2)

A under the second symmetric space configuration xm = L/2
in the case of A = [0, L]. As predicted by the symmetry analysis, we can see that ∆S(2)

A is
real throughout the time evolution. Notice that (η, η̄) takes the value of (1/2, 1/2) at the
peak or valley of the middle time evolution.

Example III — Wess-Zumino-Witten model. The last example we would like to
explore is the excitation of gαβ (z, z̄) operator in a Wess-Zumino-Witten (WZW) model
with affine Lie algebra SU(N)k. The operator gαβ (z, z̄) in the fundamental representation
α = {1, 0, . . . , 0} has the (chiral and antichiral) conformal dimension ∆g = N2−1

2Nκ and
quantum dimension dg = N−1 · Γ(1/κ)Γ(−1/κ)

Γ(N/κ)Γ(−N/κ) , where κ ≡ N+k. The four-point function of

11Note that the complex ∆S(2)
A is not contradictory with the previous symmetry analysis, because by

symmetry analysis we can only prove that Tr[(T 1|2
A )2] is real in the case of A = [0,∞].
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gαβ and its Hermitian conjugates is the solution of the well-known Knizhnik-Zamolodchikov
equations [59]

〈gαβ (z1, z̄1)
(
gαβ (z2, z̄2)

)†
gαβ (z3, z̄3)

(
gαβ (z4, z̄4)

)†
〉Σ1

=
〈
gαβ (z1, z̄1)(g−1)βα(z2, z̄2)gαβ (z3, z̄3)(g−1)βα(z4, z̄4)

〉
Σ1

= |z13z24|−4∆g
∑

i,j,n=1,2
XnnF (n)

i (η)F (n)
j (η̄), (3.45)

where

X11 = 1, X22 =
Γ
(
N+1
κ

)
Γ
(
N−1
κ

)
Γ
(
k
κ

)
Γ
(
k
κ

)
N2 · Γ

(
k+1
κ

)
Γ
(
k−1
κ

)
Γ
(
N
κ

)
Γ
(
N
κ

) ,
F (1)

1 (η) = η−2∆g(1− η)
N
κ
−2∆g · 2F1

(
1/κ,−1/κ, 1−N/κ; η

)
,

F (1)
2 (η) = 1

k
η1−2∆g(1− η)

N
κ
−2∆g · 2F1

(
1 + 1/κ, 1− 1/κ, 2−N/κ; η

)
,

F (2)
1 (η) = η

N
κ
−2∆g(1− η)

N
κ
−2∆g · 2F1

(
(N − 1)/κ, (N + 1)/κ, 1 +N/κ; η

)
,

F (2)
2 (η) = −Nη

N
κ
−2∆g(1− η)

N
κ
−2∆g · 2F1

(
(N − 1)/κ, (N + 1)/κ,N/κ; η

)
. (3.46)

We next explore the full-time evolution behavior of ∆S(2)
A utilizing the above information.

Particularly, we are mainly concerned with the behavior of ∆S(2)
A evolution under the two

symmetric space configurations, i.e. xm = 0 for A = [0,∞) and xm = L/2 for A = [0, L].
As shown in figure 4, we can see that in the case of xm = 0, A = [0,∞), there are three
evolution patterns of Re[∆S(2)

A ] determined by the relative size of the rank N and level k.
When N ≤ k (see figure 4(a) and (b)), we find that Tr[(T 1|2

A (t))2] is always greater than
0, thus ∆S(2)

A remains real in the full-time evolution. A rather fascinating situation is that
N = k, since again we observe a pseudo-Rényi entropy evolution identical to that of Rényi
entropy. When N > k, the 2nd pseudo-Rényi entropy evolution behavior is similar to that
in the minimal model. Since Tr[(T 1|2

A (t))2] is less than 0 near t = l/2, we have a complex
pseudo entropy of in a certain interval. Figure 4(d) depicts the behaviors of S(2)

A under the
second symmetric space configuration xm = L/2 in A = [0, L]. Notice that no matter k
is greater than N or not, we obtain a pseudo-Rényi entropy that remains real throughout
time evolution.

Summaries of the above results. Let us take a short stay to briefly summarize the
above results and try to answer the questions posed at the beginning of the section.

1. In general, there are one or two hump evolutions (for example, figure 2(a), (b))
between the early time and late time evolution of ∆S(2)

A , and the value of ∆S(2)
A at

the peaks of humps is ∆S(2)
A (η, η̄) = ∆S(2)

A (1
2 , 0).

2. We find two special spatial configurations of operators, x1 = −x2 for A = [0,∞)
and x1 = L− x2 for A = [0, L], in which the trace of

(
T 1|2
A (t)

)2 always remains real.
Within them, for the case of x1 = L−x2, we expect Tr

[(
T 1|2
A (t)

)2] to be greater than
0, resulting in a real ∆S(2)

A , which is consistent with all the numerical results.
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Figure 4. The real-time evolution of Re[∆S(2)
A ] or ∆S(2)

A in SU(N)k WZW models with gαβ -
excitation. The regulator is chosen to be ε = 10−5. (a), (b), (c): A = [0,∞), l = 10, xm = 0.
The dashed lines correspond to log dg for different N and k; (d): A = [0, 20], xm = 10, l = 2.
∆S(2)

A (η, η̄) = ∆S(2)
A (1/2, 1/2) at the dashed lines.

3. In the e
i
2φ+e−

i
2φ-excitation of free scalar and gαβ -excitation of SU(N)k WZW models

(N = k), we observe that the 2nd pseudo-Rényi entropy exhibits the same behavior
as Rényi entropy in the case of x1 = −x2, A = [0,∞), i.e.

∆S(2)
[0,∞)(x1,−x1, t) =

0, 0 ≤ t < |x1|,
log d, t > |x1|.

(3.47)

3.2 Linear combination of operators

In the previous subsection, we study the real-time behaviors of ∆S(2)
A for states excited

by the same primary operator. It’s not so straightforward to extend the results to two
different primary operators. Simply substituting one of the operators would probably make
a non-normalizable transition matrix since the two-point function for two different primary
operators is likely to be zero. One feasible way is to consider the linear combinations of
operators.12 Consider a real-time dependent transition matrix T ψ|ψ̃(t) = e−iHt|ψ〉〈ψ̃|eiHt

〈ψ̃|ψ〉

12We thank Tadashi Takayanagi for bringing this idea to our attention.
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consisting of two quantum states |ψ〉 and |ψ̃〉,

|ψ〉:= 1√
〈O†(x,ε)O(x,−ε)〉

O(x,−ε)|Ω〉, |ψ̃〉:= 1√
〈Õ†(x̃,ε)Õ(x̃,−ε)〉

Õ(x̃,−ε)|Ω〉,

O(x,−ε)=
∑
p

CpOp(x,−ε), Õ(x̃,−ε)=
∑
p

C̃pOp(x̃,−ε). (3.48)

In the above, O(x, ε) ≡ eεHO(x)e−εH , Op are primary or descedant operators that are
orthogonal to each other in the sense of the two-point function, Cp(C̃p) are superposition
coefficients used to give a non-zero inner product.

3.2.1 The expected late time limit of ∆S(n)
A

Let’s focus on the case where A = [0,∞), we expect the late time limit of ∆S(n)
A to take

the following form

lim
t→∞

∆S(n)[T ψ|ψ̃A (t)] = 1
1− n log

∑
p

 CpC̃
∗
p〈O†p(w̃, ¯̃w)Op(w, w̄)〉∑

p′ Cp′C̃
∗
p′〈O

†
p′(w̃, ¯̃w)Op′(w, w̄)〉

n e(1−n)S(n)[Op]

 ,
(3.49)

where w = x − iε, w̃ = x̃ + iε, and S(n)[Op] is the late time limit of the difference of
entanglement entropy of Op-excitation (S(n)[Op] = log dp in RCFTs). It is difficult to
utilize replica trick to prove eq. (3.49). Nevertheless, we can provide a quantum mechanical
derivation from another perspective, which as far as we know was first introduced in [43].13

We next numerically examine the correctness of eq. (3.49) using the replica trick in the
concrete model.

3.2.2 Example in critical Ising

We would like to compute ∆S(2)
A of linear combination operators in the critical Ising model

to examine eq. (3.49). There are three primary operators in the Ising model at a critical
point, namely the identity I, the spin σ, and the energy density ε. The fusion rule of them
is well-known,

ε× ε = I, σ × σ = I + ε, σ × ε = σ. (3.50)

For simplicity, below, we consider the combination of σ and I as a typical example.

Example — σ+I. Let us first define two linear combination operators

O(w, w̄) ≡ Cσ · σ(w, w̄) + CI · I, Õ(w̃, ¯̃w) ≡ C̃σ · σ(w̃, ¯̃w) + C̃I · I. (3.51)

13The derivation is presented in appendix B.
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According to the fusion rule and (2.6), only four- and two-point functions of σ are involved
in the calculation,

〈σ(z1, z̄1)σ(z2, z̄2)〉Σ1 = 1
|z12|1/4

,

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉Σ1 =
(

1
2

∣∣∣∣√ z14z23
z12z34z13z24

∣∣∣∣+ 1
2

∣∣∣∣√ z13z24
z12z34z14z23

∣∣∣∣
+ 1

2

∣∣∣∣√ z12z34
z13z24z14z23

∣∣∣∣
) 1

2

. (3.52)

In addition, since in general ∆S(2)
A of the mixed operator cannot be written as a function

of cross ratios, we choose to use the following coordinates mapping between (w, w̄) on Σ2
and (z, z̄) on Σ1 [34] to complete the analytic continuation of time,

z1 =
√
w1 = i

√
−x1 − t+ iε, z̄1 =

√
w̄1 = −i

√
−x1 + t− iε, (3.53)

z2 =
√
w2 = i

√
−x2 − t− iε, z̄2 =

√
w̄2 = −i

√
−x2 + t+ iε. (3.54)

We start with the case of {C̃p} 6= {Cp} and x̃ = x. An efficient way is to set Cσ = q ∈
[0, 1], CI = 1 − q, C̃σ = qk, C̃I = 1 − qk, and obviously what we will obtain when k 6= 1
is pseudo-Rényi entropy rather than Rényi entropy. Figure 5(a) shows the behavior of the
late time limits of ∆S(2)

A when we adjust the mixed coefficient q. We can see that the late
time limits of ∆S(2)

A obtained by replica method numerically (square points) are in good
agreement with the results (solid lines) given by eq. (3.49). With the increase of q, the
contribution of σ operator gradually increases, which leads to the saturation value of 2nd
(pseudo-) Rényi entropy gradually shifting from 0 (log dI) to log

√
2 (log dσ). Except for the

late time limit, it’s also intriguing to depict the full-time evolution of ∆S(2)
A , see figure 5(b).

We find that although ∆S(2)
A saturates to a real value, globally ∆S(2)

A is complex in all cases
except k = 1 (the case of Rényi entropy).

The other interesting case we shall investigate is that {C̃p} = {Cp}, x̃ 6= x. Let us
set C̃σ = Cσ = q, C̃I = CI = 1 − q. According to (3.49), since 〈O†p(w̃, ¯̃w)Op(w, w̄)〉 =(
(x̃−x)2 + 4ε2

)−2∆p , only the information of the distance of two space points l ≡ |x̃−x| is
related. We then plot the change of saturation value of ∆S(2)

A with q under different l, as
depicted in figure 5(c). Once again, we find that the theoretical value (solid lines) given by
eq. (3.49) is consistent with the numerical result (square points) given by replica trick. On
the other hand, when the insertion point is symmetric about the origin, i.e. x̃ = −x, ∆S(2)

A

is found to be real throughout the time evolution (see figure 5(d)), which is consistent with
the previous symmetry analysis.

4 General arguments and examples on ∆S(n)
A

In the previous section, we study the real-time behavior of ∆S(2)
A for two insertion

operators with different spatial coordinates. Meanwhile, we propose a formula to describe
the late time limit of ∆S(n)

A of linear combination operators. However, as shown in
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Figure 5. (a) and (c): the late time limits of ∆S(2)
A with respect to the mixing factor q in σ+I-

excitation. The regulator is chosen to be ε = 10−5; (b): the full-time evolution of Re[∆S(2)
A ] in

σ+I-excitation. Parameters are selected as q = 0.5, x = x̃ = −5, ε = 10−5. The dashed lines are
the theoretical limits derived from eq. (3.49) for the corresponding parameters; (d): the full-time
evolution of ∆S(2)

A in σ+I-excitation. Parameters are selected as x = −x̃ = ±5, ε = 10−5. The
dashed lines are the theoretical limits derived from eq. (3.49) for the corresponding parameters.

appendix B, its rationality also depends on the behavior of nth pseudo-Rényi entropy
of a single primary operator insertion. Therefore, in this section, we shall quest for the
properties of ∆S(n)

A for two operators with different space points in the light of the results
of ∆S(2)

A that we have found before.

Late time limit of ∆S(n)
A . The excess of nth pseudo-Rényi entropy of the reduced

transition matrix T 1|2
A (t) (3.1) can be obtain from eq. (2.4) by computing the 2n-point

function on the replica manifold Σn. Our primary purpose is to explore the existence
of the late time saturation value of log dO in pseudo-Rényi entropy of higher-order when
the subsystem A = [0,∞). Hence we employ the conformal map (2.10) to obtain the
coordinates of 2n operators on Σ1 first,

z2k+1 = e2πi k+1/2
n (−x1− t+ iε)

1
n , z̄2k+1 = e−2πi k+1/2

n (−x1 + t− iε)
1
n , (4.1)

z2k+2 = e2πi k+1/2
n (−x2− t− iε)

1
n , z̄2k+2 = e−2πi k+1/2

n (−x2 + t+ iε)
1
n , (k= 0, . . . ,n−1).

Then we have
〈O†(w2n, w̄2n)O(w2n−1, w̄2n−1) . . .O(w1, w̄1)〉Σn

〈O†(w2, w̄2)O(w1, w̄1)〉nΣ1

= Cn · 〈O†(z2n, z̄2n)O(z2n−1, z̄2n−1) . . .O(z1, z̄1)〉Σ1 ,

(4.2)
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Figure 6. The fusion transformations to obtain ∆S(n)
A .

where

Cn ≡
(

(x1 − x2)2 + 4ε2

n2

)2n∆O
×

2n∏
i=1

(zn−1
i z̄n−1

i )−∆O

'
(

(x2 − x1)2 + 4ε2

n2

)2n∆O
× t4(1−n)∆O + sub-leading order terms (4.3)

' 0 (t→∞).

On the other hand, we find that at the late time (t→∞)

lim
t→∞

(z2(k+1)+2−z2k+1)' x2−x1 +2iε
nt

e2πi k+1
n t

1
n ' 0, (4.4)

lim
t→∞

(z̄2k+2− z̄2k+1)' x1−x2 +2iε
nt

e−2πi k+1/2
n t

1
n ' 0, (k= 0, . . . ,n−1; z2n+2≡ z2n).

The above results enable us to factorize the 2n-point function 〈O†(z2n, z̄2n) . . .O(z1, z̄1)〉Σ1

into n-point functions by using the fusion transformation (3.9) n− 1 times (see figure 6),

〈O†(z2n, z̄2n) . . .O(z1, z̄1)〉Σ1

' (F00[O])n−1 ×
(
n−1∏
k=0

(z2k+4 − z2k+1)(z̄2k+2 − z̄2k+1)
)−2∆O

+ sub-leading order terms

' (F00[O])n−1 ×
(

(x2 − x1)2 + 4ε2

n2

)−2n∆O
× t4(n−1)∆O + sub-leading order terms (4.5)

Substituting (4.3) and (4.5) into the r.h.s. of eq. (4.2), it’s easy to find that the leading-
order contribution at late time is (F00[O])n−1 = d1−n

O . In this way, we obtain the late time
value of ∆S(n)

A

lim
t→∞

∆S(n)
A = log dO. (4.6)

Symmetries of ∆S(n)
A . The second intention in this section is to investigate whether

the symmetries found in second pseudo-Rényi entropy, i.e. eq. (3.31)–(3.33), still hold in
higher-order or not. It may be difficult to verify analytically, but the numerical examination
is easy to take. One good object of study is the σ-excitation in the critical Ising model,
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since the 2n-point function of the spin operator σ is well-known [56, 60],

〈σ(z1, z̄1) . . . σ(z2n, z̄2n)〉Σ1 = 1
2n

∑
εi=±1 i=1,...,2n∑

εi=0

∏
i<j

|zi − zj |εiεj/2. (4.7)

With the help of (4.1) and (4.7), we can study the evolution behavior of ∆S(n)
A under the

first symmetric space configuration, i.e. x1 = −x2, A = [0,∞). On the other hand, for the
second symmetric space configuration of x1 = L − x2 in A = [0, L], the coordinates of 2n
operators on Σ1 will change to the following form

z2k+1 = e
2πik
n

(
x1 + t− iε

x1 + t− iε−L

) 1
n

, z̄2k+1 = e−
2πik
n

(
x1− t+ iε

x1− t+ iε−L

) 1
n

, (4.8)

z2k+2 = e
2πik
n

(
x2 + t+ iε

x2 + t+ iε−L

) 1
n

, z̄2k+2 = e−
2πik
n

(
x2− t− iε

x2− t− iε−L

) 1
n

, (k= 0, . . . ,n−1).

Figure 7 demonstrates all situations that we are interested in. We find that the symme-
tries (3.31)–(3.33) also hold in the higher-order pseudo-Rényi entropy. It can be clearly
seen from figure 7(b) and (d). Because we know that the establishment of (3.31)–(3.33)
may bring about a real ∆S(n)

A evolution. Another interesting finding is that (b) shows that
the evolution of higher-order pseudo-Rényi entropy of σ-excitation under the first symmet-
ric space configuration still maintains the evolution pattern described by (3.47).14 We can
also explore the asymmetric cases, as shown in (a) and (c), and there are two points worth
noting: i). The higher-order pseudo-Rényi entropy in asymmetric space configuration still
has hump evolution, and its peak value changes with n; ii). Figure 7(c) suggests that after
the relative sizes of L and l are fixed, the middle time behavior of log d will gradually
disappear with the increase of n.

5 Conclusions and prospect

In this work, we study a generalized version of entanglement entropy and Rényi entropy,
which are so-called pseudo-entropy (PE) and pseudo-Rényi entropy (PRE), respectively, in
2d CFTs. In particular, the real-time evolution of PRE associated with two locally excited
states has been evaluated in various 2d CFTs, e.g., free bosonic field theory, critical Ising
model, WZW model as well as large-c CFTs. These locally excited states are generated by
acting local operators on the vacuum state, and these operators can be a single primary
operator or a linear combination of them. Some fascinating behaviors of PRE evolution are
found as follows: for the reduced transition matrix generated by two primary operators with
different spatial coordinates (3.1), we show that when subsystem A has an infinite length,
the late time value of 2nd PRE is logarithmically divergent in large-c CFTs (take the large
c limit first). The late time value of nth PRE saturates to log d in RCFTs (for Example,
see figure 7(a)), where d is the quantum dimension of the corresponding primary operator.
Whereas, when subsystem A has a finite length, we show that the middle time behavior of

14Due to the increasing computational complexity, we verify this point up to n = 7.
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Figure 7. The real-time evolution of Re[∆S(n)
A ] or ∆S(n)

A for σ-excitation in critical Ising model.
The regulator ε = 10−5. (a): A = [0,∞), xm = ±5, l = 2; (b): A = [0,∞), xm = 0, l = 10; (c):
A = [0, 10], xm = −2 or 12, l = 2; (d): A = [0, 20], xm = 10, l = 22.

log d of PRE in RCFTs gradually disappears as the distance between operators or the order
number n increases (see figure 2(c) and figure 7(c) respectively). Unlike the entanglement
entropy, we find that in general, there is a hump during the evolution between the early
and late time evolution of the nth PRE (for example, see figure (7)(a)), and for n = 2, its
peak value can be found as ∆S(2)

A (η, η̄) = ∆S(2)
A (1/2, 0), where (η, η̄) are cross ratios.

On the other hand, for excitation by a linear combination of operators, using Schmidt
decomposition, we find that the late time limit of the nth pseudo-Rényi entropy is gov-
erned by the formula (3.49). A prominent property that distinguishes linear combination
excitation from single primary operator excitation is that the late limit of PRE under lin-
ear combination excitation is not necessarily the same as that of Rényi entropy (see, for
example, figure 5(c)). This means that for the case of a single primary operator, the initial
information about the positions of the insertion operators is lost in the long-time evolution.
In contrast, for the case of linear combinations, the late limit of the pseudo-Rényi entropy
still contains the initial information of the operator positions. It would be interesting to
explore whether it is possible to recover the initial data by using the late time limit of
pseudo-Rényi entropy.

Finally, building on the analysis of the cross ratios, we uncover three kinds of sym-
metries for the 2nd PRE (3.31)–(3.33), which naturally screen out two kinds of special
space configurations of insertion operators — x1 = −x2 for subsystem A = [0,∞) and
x1 = L− x2 for subsystem A = [0, L]. We show that the trace of

(
T (2)
A (t)

)2 is always real
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in both configurations, and we expect Tr
[(
T (2)
A (t)

)2] to be positive in the second configu-
ration, which gives us a real 2nd PRE evolution. For the first configuration, although the
evolution of PRE under it is not always real, in some theories, the evolution of PRE under
the first configuration in A = [0,∞) shows the same evolutionary pattern as Rényi entropy
(see figure 2(a) in the free scalar theory, figure 4(a) in the WZW models, and figure 7(b)
in the critical Ising model), i.e., we may have

∆S(n)
A=[0,∞)(x,−x, t) =

0, 0 ≤ t < |x|,
log d, t > |x|.

(5.1)

It will be an attractive research direction for us in the future to fully clarify the
condition that PRE remains real in the time evolution process and the condition that PRE
behaves as Rényi entropy in the first symmetric space configuration. Furthermore, it’s
also interesting to make a higher-dimensional generalization of our results and dig out the
possible corresponding holographic counterpart.
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A Several time limits of cross ratios

In this appendix, we will analyze the cross ratios in various limits under two configurations
of the subsystem A.

A.1 A = [0,∞)

For the case of A = [0,∞), the cross ratios in Euclidean signature can be expressed in
polar coordinates on Σ2 as follows

η = 1
2 −

(r1 + r2) cos
( θ1−θ2

2
)

+ i(r1 − r2) sin
( θ1−θ2

2
)

4√r1
√
r2

,

η̄ = 1
2 −

(r1 + r2) cos
( θ1−θ2

2
)
− i(r1 − r2) sin

( θ1−θ2
2
)

4√r1
√
r2

, (A.1)

where (r1 cos θ1, r1 sin θ1) = (x1,−τ1), (r2 cos θ2, r2 sin θ2) = (x2, τ2), (0 ≤ θj < 2π, j =
1, 2), and

cos(θ1 − θ2) = 2 cos2
(
θ1 − θ2

2

)
− 1 = 1− 2 sin2

(
θ1 − θ2

2

)
= x1x2 − τ1τ2√

(x2
1 + τ2

1 )
√

(x2
2 + τ2

2 )
.

(A.2)
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Since the two Euclidean times τ1 and τ2 after analytic continuation are ε + it and ε − it,
respectively, we may set τ1 = τ2 = ε before the analytic continuation. It leads to two ranges
of θ1 − θ2 which depend on x1 + x2: 0 < θ1 − θ2 < π when x1 + x2 < 0; π < θ1 − θ2 < 2π
when x1 + x2 > 0. Thus we have the following expressions of sin(cos)

(
θ1−θ2

2

)
after the

analytic continuation

cos
(
θ1 − θ2

2

)
=

1
2 + x1x2 − ε2 − t2

2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

 1
2

sgn[−(x1 + x2)],

sin
(
θ1 − θ2

2

)
=

1
2 −

x1x2 − ε2 − t2

2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

 1
2

, (A.3)

where we define

sgn[x] ≡

1, x > 0,
−1, x < 0.

(A.4)

Substituting (A.3) into (A.1), and let

r1 =
√
x2

1 + (ε+ it)2, r2 =
√
x2

2 + (ε− it)2, (A.5)

we find that the cross ratios can be expressed as

η(x1, x2, t) = (x1 + x2 + 2t) + 2
√

(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)
4
√

(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)
,

η̄(x1, x2, t) = (x1 + x2 − 2t) + 2
√

(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)
4
√

(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)
. (A.6)

As x1 = x2 = −l < 0, the above result coincides with that of [36]. According to (A.6), one
can evaluate the early time limit and late time limits for cross ratios

lim
t→∞

(η, η̄) '
(

1 + (x2 − x1 + 2iε)2

16t2 ,−(x2 − x1 − 2iε)2

16t2
)
' (1, 0), (A.7)

lim
t→0

(η, η̄) '



(
1
2 + x1+x2

4√x1x2
, 1

2 + x1+x2
4√x1x2

)
, x1x2 > 0,(

1
2 + x1+x2

4√x1x2
, 1

2 −
x1+x2

4√x1x2

)
, x1 > 0 > x2,(

1
2 −

x1+x2
4√x1x2

, 1
2 + x1+x2

4√x1x2

)
, x2 > 0 > x1.

(A.8)

A.2 A = [0, L]

For the case of A = [0, L], we can write the Euclidean cross ratios in polar coordinates

η = 1
2 −

(r1r4 + r2r3) cos
( θ1−θ2−θ3+θ4

2
)

+ i(r1r4 − r2r3) sin
( θ1−θ2−θ3+θ4

2
)

4√r1
√
r2
√
r3
√
r4

,

η̄ = 1
2 −

(r1r4 + r2r3) cos
( θ1−θ2−θ3+θ4

2
)
− i(r1r4 − r2r3) sin

( θ1−θ2−θ3+θ4
2

)
4√r1

√
r2
√
r3
√
r4

, (A.9)
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where (r1 cos θ1, r1 sin θ1) = (x1,−τ1), (r2 cos θ2, r2 sin θ2) = (x2, τ2), (r3 cos θ3, r3 sin θ3) =
(x1 − L,−τ1), (r4 cos θ4, r4 sin θ4) = (x2 − L, τ2) (0 ≤ θj < 2π, j = 1, 2, 3, 4), and

cos(θ1−θ2)=2cos2
(
θ1−θ2

2

)
−1=1−2sin2

(
θ1−θ2

2

)
= x1x2−τ1τ2√

(x2
1+τ2

1 )
√

(x2
2+τ2

2 )
, (A.10)

cos(θ3−θ4)=2cos2
(
θ3−θ4

2

)
−1=1−2sin2

(
θ3−θ4

2

)
= (x1−L)(x2−L)−τ1τ2√

(x1−L)2+τ2
1

√
(x2−L)2+τ2

2

.

Similar to the arguments in appendix A.1 , we obtain the expressions of sin(cos)
(
θ1−θ2

2

)
and sin(cos)

(
θ3−θ4

2

)
after the analytic continuation as follows

cos
(
θ1−θ2

2

)
=

1
2 + x1x2−ε2− t2

2
√

(x2
1 +(ε+ it)2)

√
(x2

2 +(ε− it)2)

 1
2

sgn[−(x1 +x2)],

sin
(
θ1−θ2

2

)
=

1
2−

x1x2−ε2− t2

2
√

(x2
1 +(ε+ it)2)

√
(x2

2 +(ε− it)2)

 1
2

,

cos
(
θ3−θ4

2

)
=
(

1
2 + (x1−L)(x2−L)−ε2− t2

2
√

(x1−L)2 +(ε+ it)2
√

(x2−L)2 +(ε− it)2

) 1
2

sgn[2L−(x1 +x2)],

sin
(
θ3−θ4

2

)
=
(

1
2−

(x1−L)(x2−L)−ε2− t2

2
√

(x1−L)2 +(ε+ it)2
√

(x2−L)2 +(ε− it)2

) 1
2

, (A.11)

where sgn[x] is the sign function (A.4) that we define. Substituting (A.11) into (A.9), and
let

r1 =
√
x2

1 + (ε+ it)2, r2 =
√
x2

2 + (ε− it)2,

r3 =
√

(x1 − L)2 + (ε+ it)2, r4 =
√

(x2 − L)2 + (ε− it)2, (A.12)

we find that the cross ratios can be expressed as

η(x1, x2, t) =
(x1 + x2 + 2t)L

[
(L− x1 − t)(L− x2 − t) + ε2 + iε(x1 − x2)

]− 1
2

4
√

(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)

+ 1
2

(
1−

√
(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)

(L− x1 − t)(L− x2 − t) + ε2 + iε(x1 − x2)

)
,

η̄(x1, x2, t) =
(x1 + x2 − 2t)L

[
(L− x1 + t)(L− x2 + t) + ε2 − iε(x1 − x2)

]− 1
2

4
√

(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)

+ 1
2

(
1−

√
(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)

(L− x1 + t)(L− x2 + t) + ε2 − iε(x1 − x2)

)
. (A.13)

As a self-consistent test, it can be found that (A.13) degenerates to (A.6) as L→∞.
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B Derivation of eq. (3.49)

Let us first define a series of normalized excited states with the help of Op

|Op(x)〉 : = 1√
〈O†p(x, ε)Op(x,−ε)〉

Op(x,−ε)|Ω〉,

(
〈Op′(x′)|Op(x)〉 =

δpp′ · 〈O†p(x′, ε)Op(x,−ε)〉√
〈O†p(x, ε)Op(x,−ε)〉〈O†p(x′, ε)Op(x′,−ε)〉

)
. (B.1)

|ψ〉 and |ψ̃〉 can be written as two superposition states of |Op〉

|ψ〉 =
∑
p

√
λp|Op(x)〉, |ψ̃〉 =

∑
p

√
λ̃p|Op(x̃)〉, (B.2)

where

λp =
(Cp)2〈O†p(x, ε)Op(x,−ε)〉∑
p′ |Cp′ |2〈O

†
p′(x, ε)Op′(x,−ε)〉

,
∑
p

|λp| = 1,

λ̃p =
(C̃p)2〈O†p(x̃, ε)Op(x̃,−ε)〉∑
p′ |C̃p′ |2〈O

†
p′(x̃, ε)Op′(x̃,−ε)〉

,
∑
p

|λ̃p| = 1. (B.3)

Generally speaking, |Op〉 is an entangled state living in the sub-Verma module Hp
⊗
Hp̄.

It can be written in the following form by Schmidt decomposition

|Op(x)〉 =
∑
i

api (x)|pi(x)〉 ⊗ |(p̄i(x)〉, (B.4)

where {|pi(x)〉} and {|p̄i(x)〉} parameterized by x are two orthonormal basises of Hp and
Hp̄ repectively, and api (x) are real coefficients. In these basisies the nth Rényi entropy of
|Op(x)〉 reads

S(n)[Op(x)] = 1
1−n log

{
Tr(⊕pHp)

[(
Tr(⊕pHp̄)|Op(x)〉〈Op(x)|

)n ]}
= 1

1−n log
∑
i

(
api (x)

)2n
,

(B.5)
meanwhile, the transition matrix becomes

T ψ|ψ̃ = 1∑
p

√
λp
√
λ̃∗p〈Op(x̃)|Op(x)〉

∑
p.p′

√
λp
√
λ̃∗p′
∑
i,j

api (x)ap
′

j (x̃)|pi(x)〉|p̄i(x)〉〈p′j(x̃)|〈p̄′j(x̃)|.

(B.6)
The reduce transition matrix is obtained by tracing out the anti-holomorphic part,

T ψ|ψ̃H = Tr⊕p̄Hp̄T ψ|ψ̃

=
∑
p

∑
i,j,k

√
λp
√
λ̃∗pa

p
i (x)apj (x̃)〈p̄j(x̃)|p̄i(x)〉〈pj(x̃)|pk(x)〉∑

p′′
√
λp′′

√
λ̃∗p′′〈Op′′(x̃)|Op′′(x)〉

· |pi(x)〉〈pk(x)|, (B.7)
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which in general is off-diagonal. We can compute the trace of (T ψ|ψ̃H )n,

Tr
[
(T ψ|ψ̃H )n

]
(B.8)

=
∑
p

(√
λp

√
λ̃∗p

)n
(∑

p′′

√
λp′′

√
λ̃∗p′′〈Op′′(x̃)|Op′′(x)〉

)n
×
∑
{i},{j}

api1(x)apj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉...apin(x)apjn
(x̃)〈p̄jn

(x̃)|p̄in(x)〉〈pjn
(x̃)|pi1(x)〉.

To further reduce (B.8), let us turn to consider a more straightforward case that

|φ(t)〉 = e−iHt|Op(x)〉, |φ̃(t)〉 = e−iHt|Op(x̃)〉. (B.9)

According to the analysis in section 4, we know that the late time limit of ∆S(n)[T φ|φ̃A (t)
]

is equal to limt→∞∆S(n)[TrAc |φ(t)〉〈φ(t)|
]
, and the latter we already know is equal

to (B.5) [43]. On the other hand, following the logic in [43], it’s natural to expect that

lim
t→∞

∆S(n)
A

[
T φ|φ̃(t)

]
(B.10)

= 1
1−n logTr⊕pHp

[(
T φ(0)|φ̃(0)
H

)n]
= 1

1−n log
[
〈Op(x̃)|Op(x)〉−n

×
∑
{i},{j}

αpi1(x)αpj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉 . . .αpin(x)αpjn
(x̃)〈p̄jn(x̃)|p̄in(x)〉〈pjn(x̃)|pi1(x)〉

]

Comparing eq. (B.5) with eq. (B.10), we obtain the equality∑
{i},{j}

αpi1(x)αpj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉...αpin(x)αpjn(x̃)〈p̄jn(x̃)|p̄in(x)〉〈pjn(x̃)|pi1(x)〉

=〈Op(x̃)|Op(x)〉n
∑
i

(
api (x)

)2n (B.11)

Substituting eq. (B.11) into eq. (B.8) and taking some algebra, we finally obtain

1
1−n logTr

[
(T ψ|ψ̃H )n

]
= 1

1−n log

∑
p

 CpC̃
∗
p〈O†p(w̃, ¯̃w)Op(w,w̄)〉∑

p′Cp′C̃
∗
p′〈O

†
p′(w̃, ¯̃w)Op′(w,w̄)〉

n e(1−n)S(n)[Op]

 ,
(B.12)

which, in the light of the logic in [43], just corresponds to the late time limit of nth pseudo-
Rényi entropy of A. Let {C̃p} = {Cp} = 1 and x̃ = x, it can be readily found that (B.12)
is reduced to the eq. (2.26) in [43].
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