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Quantum correlation measurement of laser
power noise below shot noise
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Abstract: In this article, the quantum correlation measurement technique as a method of power
noise monitoring is investigated. Its principal idea of correlating two photodetector signals is
introduced and contrasted to the conventional approach, which uses only a single photodetector.
We discuss how this scheme can be used to obtain power noise information below the shot noise
of the detected beam and also below the electronic dark noise of the individual photodetectors,
both of which is not possible with the conventional approach. Furthermore, experimental results
are presented, that demonstrate a detection of technical laser power noise one order of magnitude
below the shot noise of the detected beam.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Many high precision experiments, such as gravitational wave detectors (GWDs), employ intricate
optical readout schemes. These commonly rely on lasers with high power stability, as laser
power noise can couple to the readout channel and limit the experiment’s sensitivity. Usually,
active noise suppression has to be applied and in order to ensure that the stability demand is
met, power noise monitoring is necessary. Both require high precision power noise sensing, as
the noise of the detector used for stabilization (in-loop sensor) dictates the achievable power
stability and the detectors used for monitoring (out-of-loop sensors) must be at least as sensitive
as the in-loop sensor to verify the control loop performance. The conventional approach of
measuring power noise via a photodetector is fundamentally limited by the shot noise of the
detected beam. Thus, power stabilization using conventional photodetection can only achieve a
stability equal to the relative shot noise (RSN) of the in-loop beam, which scales proportionally
to P~'/2 (detected power P). For applications such as the aLIGO GWDs [1], which need a
power stability of 2 x 10~ Hz~!/2 at 10 Hz, this means a detected power of more than 100 mW,
which is beyond the power tolerance of suitable photodetectors. For the current generation
of GWDs this is solved by splitting the light onto an array of photodetectors [2], but as the
requirements for future generations are likely to be roughly an order of magnitude more stringent,
this approach would result in massive technical effort. Therefore, alternative approaches of power
noise sensing have been investigated, including carrier attenuation by measuring the power noise
in reflection of an optical resonator [3], injecting squeezed light into the detection port [4] and
detecting power noise via radiation pressure [5]. While these methods are promising for in-loop
detection, they still require considerable effort, and as the out-of-loop detectors have to match the
in-loop detector’s sensitivity, such an implementation for all detectors would overall result in an
enormous technical challenge. In this article we propose an alternative for out-of-loop detection
at a reduced technical effort.

The idea elaborated here, called quantum correlation measurement (QCM), is an approach to
significantly reduce the complexity of out-of-loop sensors as less power needs to be detected
compared to the in-loop detector. Also, the QCM method is superior in applications where only
a limited amount of laser power can be spared for monitoring. It can as well be used in the
characterization of bright squeezed light, where standard homodyne detection is limited by local
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oscillator power noise that beats with the strong carrier of the bright squeezed light field. In the
QCM technique, a single photodetector is substituted by a pair of photodetectors, which allows to
deduce the power noise from correlating the two detectors’ signals. By cancellation of quantum
noise contributions in a cross spectral density measurement this enables measurements below the
RSN of the detected power, which is impossible with the conventional method. Additionally, the
QCM scheme is less sensitive to the electronic dark noise of the detectors, as the individual dark
noise contributions are uncorrelated to one another. In this article, a comprehensive, quantum
mechanical description of the QCM technique is given and its advantages over the conventional
concept are discussed. Finally, this theory is confirmed by experimental results from a test
experiment, in which we demonstrate a power noise measurement with a sensitivity of one order
of magnitude below the RSN of the total detected power.

2. Theoretical description

Without loss of generality, the laser light will be described as a plane, quasi-monochromatic,
linearly-polarized electromagnetic wave in vacuum and represented by its electric field Heisenberg
operator £(r) [6], which can be described in the quadrature picture. There it is decomposed into
two orthogonal components: the amplitude quadrature (¢ subscript; ’cosine quadrature’) and the
phase quadrature (s subscript; ’sine quadrature’):

E(t) = Ep[(Ac + ac(2)) cos wot + (A + as(1)) sin wot]. (1)

Ey = ; < Tepresents the electric field amplitude where A is the effective beam cross-section

and wy is the optical carrier frequency. A, and A denote the stationary components of each
respective quadrature, while d.(¢) and as(¢) are the variations with time. The sine and cosine
function together can be interpreted as the base vectors of a two-dimensional coordinate system
(optical phase space), where the amplitude and phase quadrature form the two axes. This
allows for a convenient description, as most optical devices linearly transform the quadrature
components, and a superposition of fields is represented as the sum of vectors in optical phase
space. Hence, in this article, light fields will be represented by their quadrature vectors, e.g. field
a = (ac, as).

The laser power can be defined as the mean energy per time interval carried by the electric
field, which can be derived from an integral of the time-averaged Poynting vector [7] over the
effective beam cross-section:

P = / ceol B2 dA, )
A

where the bar represents the time average over the optical period. As is conventional, the
carrier field will be defined as solely in the amplitude quadrature, so Ag = 0. Furthermore, it
is assumed that the fluctuations with time are small compared to the carrier amplitude, i.e.,
(ac(t)?), {as(t)*) < A2. This yields:

Py ="2 (

(A +ac(0) + a,(1?)
3)

ha)o
2
So the mean power is the stationary term Py := @A% and 6P(1) := hwoAcdc(r) represents

changes with time. For the following, a description in frequency domain is practical, which can
be obtained via a Fourier transform. This results in:

SP(Q) := \2hw Py ac(Q), 4)

where a.(Q) is the two-photon amplitude quadrature operator in frequency domain [6]. As
photodiodes generate a photocurrent proportional to their incident power, this shows that the

(A2 + 2Acac(t))



Research Article Continuum 1079 |

OPTICS CONT'NUUM : g = " _r

description of the respective amplitude quadrature is equivalent to the photodetector signal. In
order to quantify fluctuations, the frequency domain equivalent to the variance, the (single-sided)
cross power spectral density (CSD) S’l.’f(Q) of two quadratures p; and g;, i,j = ¢, s, can be defined
as [6]:

5 1
n5(Q+ Q)71 (Q) = E@i(ﬂ)@j(ﬂ') +q;(Qpi(Q)), (5)

where § denotes the Dirac distribution. Its magnitude represents the power of the coherent
components in the two quadratures p; and g; while its phase describes the relative phase at each
given frequency Q. Put simply, it is a frequency domain measure of how similar or ’correlated’
the two signals are. A special case of the CSD is the commonly used auto power spectral density
(usually called power spectral density; PSD), in which both quadratures are identical, rendering
the phase information obsolete. As such, the PSD describes the magnitude of fluctuations in a
single quadrature and can be used to define the relative power noise RPN of the field a via Eq. (4)

as
RPN(Q) = /z—h‘”"sﬁc(m ©6)
Py

Here, this formalism shall be applied to determine the limitations of the conventional power
noise detection scheme and compare it to the QCM technique. Consider Fig. 1. A strong laser
field f of power Py is incident on a lossless, partly transmissive mirror, which will be treated
here as a beamsplitter in quantum mechanical context [8]. Only a small fraction of the light is
transmitted into the detection field fl, which is incident on a photodetector. This field has the
power Py = y>Py, where y denotes the amplitude transmission coefficient of the beamsplitter. y
is chosen to be small due to the detector’s limited power tolerance and to not waste much power
for monitoring purposes. The second input of the beamsplitter is an open port and therefore a
coupling path for the so called vacuum fluctuations, which represent the minimum excitation of
the quantum mechanical electromagnetic field. These random changes of amplitude and phase
are present with a finite size even in light states with no coherent amplitude (vacuum states) and
are treated here as the vacuum field §. Since y is small, § is mostly reflected into d. Together
with the transmitted field f one finds

d=yf++/1-v2%. @)

vacuum fluctuations
|

31,

laser f |

d
1
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Fig. 1. Schematic of a conventional RPN measurement comprising a laser pick-off port via
a low-transmission beamsplitter and a single photodetector (PD).

f represents the input laser field and thus can contain both technical and quantum noise
contributions. § only carries quantum noise originating from the vacuum fluctuations, which
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are independent from the carrier field. They appear as a constant contribution to the PSD of the
detection field’s amplitude quadrature. In this formalism, one finds for a field & in a vacuum state
that S‘;’C(Q) = S‘;‘S(Q) =1 [6]. Thus, one can define the relative shot noise RSN for a power of P
in analogy to Eq. (6) as:

2hw0
Py

RSN =

, ®)

The RPN of d can then be calculated using Egs. (6) and (7):

2h 2h N
RPN, = “’0 S{C (1—y2) =205
Py ©9)

~ /RPN; +RSN}, > RSNp,.

Here, Sic =l and 1 — y? ~ 1 for small beamsplitter transmission was applied. The cross-term

containing S’:Cs vanishes, as f and § are uncorrelated, since the latter emerges from vacuum
fluctuations. This equation shows that RPN} is limited by the fluctuations of §, which means
that the detection cannot be more sensitive than the RSN of the detected power P,;. Equation (8)
suggests that this limit can be lowered by increasing y and thus P, but this can only be done up
to the detector’s power tolerance.

The QCM technique can circumvent this limitation. Similar approaches have been used
before, for example for residual noise characterization of the LIGO Livingston detector [9],
measurements of liquid surface fluctuations [10], or spectroscopy of atomic vapors [11]. Here,
this method shall be used in a power noise monitoring scheme, which surpasses the shot-noise
limit of the conventional scheme for the same detected power. Consider Fig. 2. The first part
of this setup is identical to the conventional approach. But instead of sending field d to one
photodetector, the light is split by a beamsplitter (amplitude reflectivity p and transmissivity 7)
into two beams, that each are incident on a photodetector (PD; and PD, respectively). In the
open port, vacuum fluctuations enter in form of the field #. Together this results in the output

fields:
P =puf +py1 -y + 10,
g =1yf + 11 — 28 — p,

where the asymmetric beamsplitter convention was applied as denoted in Fig. 2.

(10)

vacuum I
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Fig. 2. Schematic of the QCM configuration where a beamsplitter and two photodetectors
are placed in the detection path.
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This creates the opportunity to measure the CSD of the two photodetectors’ signals, which are
proportional to the amplitude quadratures of the two fields p and § respectively. Equations (5)
and (10) yield

A = pr (728’; +(1—-y?)ss, - Sﬁc) 1D

where again all cross-terms vanish, as f, § and # are pairwise uncorrelated. Due to the 180° phase
difference between transmitted and reflected fields at the beamsplitter, the vacuum fluctuation
terms Sﬁc and Sgc have opposing signs. This effect is independent of the used beamsplitter
convention and shall be particularly highlighted here, as this phase difference is crucial for
inferring the technical power noise from the CSD. In this application, the normalized measured
cross spectral density (MCSD) can be defined in an analogous way to the square of the RPN:

5.4 2hwo (7
MCSD; 4 = P cc = T'}’ZP (S{c - 1)
M QCM (12)
_ 2 2
= RPNf —RSNp .

Here, S%, = S%. = 1 was used. The effective QCM power was defined as Pocm = p1y*Po =

o1 —p?P,; = +/Ppp, Ppp, and can be interpreted as the equivalently detected power for this

method. Furthermore, it will be assumed that the field f contains technical noise in addition to
quantum noise of a coherent state, which has the same quantum noise properties as a vacuum

2
state, i.e., RPNf? = (RPN}CCh) + RSNIZJO. In this case, one finds

JMCSD; 4 = RPN}“}‘. (13)

This remarkable result can be understood as follows. For a quantum noise limited laser beam S’:C
corresponds to the noise of a coherent state and is equal to the quantum noise of the vacuum
state SS.. In this case the sum of the first two terms in Eq. (11) associated to f and to § add up
to the PSD of a vacuum state. This means that d has the noise of a coherent state. Due to the
180° phase difference introduced by the second beamsplitter the quantum noise contributions in
the photocurrents of PD1 and PD2 associated to d and § have 180° phase shift with respect to
each other and cancel in the CSD calculation (see Eq. (11)). If the incoming beam also carries
technical noise, the quantum noise cancels as described and the only remaining contribution is the
technical laser noise of the input field f. It should be mentioned that the individual vacuum fields
are fundamentally uncorrelated to each other. Therefore, they do not compensate one another in
time domain, but their spectral contributions do. Thus, this method differs conceptually from
homodyne detection, in which local oscillator contributions cancel also in time domain. As
such, the QCM technique is not applicable to reduce shot noise on an in-loop sensor of a power
stabilization loop, however it can ease spectral power noise monitoring, e.g. for out-of-loop
sensing, substantially.

In summary, this means that the QCM technique is ideally only sensitive to the technical power
noise of the input laser field. As such it is advantageous to the conventional method which is
limited by the detected beam’s RSN. Furthermore, this alternative can be implemented with
minimal technical effort by adding a beamsplitter and a second photodetector. Another benefit
can be found considering incoherent noise in the two photodetector signals, like the individual
electronic dark noise. As these noise components only add uncorrelated crossterms to Eq. (11),
which average out to zero, they theoretically have no influence on the CSD. In a regular PSD
measurement, however, dark noise poses a lower limit of the detection sensitivity.
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3. Experimental results

So far in this article the QCM technique was analyzed theoretically. To demonstrate it in
practice, a test experiment was set up to compare the RPN of a laser beam measured by the
conventional scheme (Fig. 1) and by the QCM technique (Fig. 2). A Nd:YAG solid-state laser in
a non-planar ring oscillator configuration with an operating wavelength of 1064 nm and a full
beam power (representing field #) of 770 mW fabricated by the company Coherent was used. In
both configurations this power was attenuated at the first beamsplitter to 4 mW in the detection
field d in order to demonstrate a shot noise limited detection for the conventional scheme. For
the QCM method d further was incident on a 50:50 beamsplitter. This resulted in an effective
QCM power of 2mW, which was sufficient for this setup. In general a higher Pocwm increases the
signal-to-noise ratio, when considering noise sources that couple coherently in both signals (like
electronic interference). Therefore the best results should be found for a beamsplitter with equal
transmitted and reflected power, as it is used here.

With both methods, the free running power noise of the laser was measured in a frequency
band from 200kHz to 100 MHz. The PSD for the conventional measurement was recorded
with a spectrum analyzer (Agilent/Keysight 4395A). For the QCM method, the analog signals
of both photodetectors were digitized and recorded simultaneously with a digital oscilloscope
(Agilent/Keysight MSOX4054A) with a sampling rate of 2.5 x 10° samples/s and then processed
via the MATLAB function "cpsd’. This function is based on Welch’s method for power spectral
density estimation [12] and calculates the CSD for two signals by first segmenting the respective
time series and determining the fast Fourier transforms (FFTs) for both signals in each segment.
The CSD estimate is then obtained by multiplying the FFT of one signal with the complex
conjugated FFT of the other signal and averaging this product over all segments. Given sufficient
measurement time, this estimate approaches the theoretical CSD well. As such, this method is
analogous to the way spectrum analyzers like the one used here perform PSD measurements.

Figure 3 illustrates the results of these measurements calibrated to RPN. In red the conventional
RPN measurement is depicted. The blue curve shows the square root of the MCSD obtained from
the QCM technique, which according to Eq. (13) should coincide with the technical power noise
of the laser. In the black dashed curve, the RSN of the detection beam at 4 mW is given. This
measurement band was chosen since the technical power noise follows a distinct and well-known
behavior dictated by the relaxation oscillation of the laser source, which results in a sharp
resonant peak (in this case at roughly 540 kHz) followed by an approximate 1/f> decline for
larger frequencies [13,14]. Both the red and blue curve portray this well up to 4 MHz where they
closely agree. The difference at the resonance peak stems from different resolution bandwidths
(1.25 kHz for the conventional and 5 kHz for the QCM technique) and is irrelevant here.

After the steep decline, the red curve levels on a value of 108 Hz"'/2 from about 10 MHz
to 30 MHz. This directly corresponds to the RSN of the detection beam and indicates that the
conventional method is shot noise limited in this frequency range. For higher frequencies, the
electronic noise of the photodetector becomes larger than the shot noise, which results in the
rising noise towards the end of the measurement band. This illustrates the typical limitation of
the conventional method both due to shot noise and electronic dark noise as discussed above.

For the QCM technique, this is different. Like the red curve, the QCM result in blue shows
the expected technical laser noise for lower frequencies, but it continues the 1/f2 behavior even
below the shot noise level of the detection beam, which it meets at around 7 MHz. At roughly
50 MHz it finally reaches the lowest point at a sensitivity of about 10~ Hz~'/2, which is one
order of magnitude below the RSN. For frequencies above 50 MHz, the QCM curve is limited by
the projected dark noise equivalent for this measurement, which is illustrated in green. This dark
noise measurement was obtained by performing a measurement without laser power incident on
the detectors, while all other circumstances (such as position of the detectors and the measurement
electronics, background lighting of the laboratory, etc.) were identical. The term ’equivalent’ is
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Fig. 3. Comparison of the RPN of the free running laser noise obtained from a conventional
power noise measurement and from the QCM scheme.

used in order to emphasize that this differs from a conventional dark noise measurement (i.e. a
PSD for a single photodetector), as this curve is also obtained from an MCSD.

4. Summary and conclusion

Overall, the QCM technique provides a power noise measurement significantly below the detection
beam’s RSN. The RPN obtained this way matches the behavior expected from the laser source,
which supports the above derived formalism. Furthermore, it indicates the feasibility of the
QCM technique as a sub shot noise power noise monitor under realistic circumstances. The
limitation of the measurement shown here is the QCM dark noise equivalent. In an infinitely
long measurement, this dark noise contribution should tend to zero due to the uncorrelated nature
of the sources. However, for realistic measurement times, the contribution to the CSD is finite
and expected to scale inversely with the measurement time (due to the derivation of the CSD
from Welch’s method). With longer measurements this could be reduced to an arbitrarily low
level, as long as the corresponding noise in both photodetectors is truly uncorrelated. The setup
used here was limited by the processing speed of the available recording and evaluation hardware.
A future implementation of an FFT algorithm via a field programmable gate array could result in
quasi real-time measurements.

In this article the quantum correlation measurement technique was investigated as an alternative
to conventional power noise monitoring, which is both powerful and easily implemented. Its
theoretical basis was laid and compared to the conventional concept. Subsequently, a test
experiment was described and its results were presented, which support the established theory.
In conclusion, the QCM scheme was demonstrated to allow for a sub shot noise measurement of
power fluctuations, which could be beneficial for applications with extremely high power stability
demands or with limited light power available for monitoring purposes. Another promising
application of this technique could be as a bright squeezed light detector, which becomes apparent
when considering Eq. (12) for an input field f with non-classical noise properties like (anti-)
squeezed light.
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