日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension

MPS-Authors
/persons/resource/persons275094

Lo,  Chiawen
Max Planck Research Group Language Cycles, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Lo_2022.pdf
(出版社版), 905KB

付随資料 (公開)
There is no public supplementary material available
引用

Lo, C., Tung, T.-Y., Ke, A. H., & Brennan, J. (2022). Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension. Neurobiology of Language, 3(4), 538-555. doi:10.1162/nol_a_00077.


引用: https://hdl.handle.net/21.11116/0000-000A-A6FC-F
要旨
Neural responses appear to synchronize with sentence structure. However,
researchers have debated whether this response in the delta band (0.5 - 3 Hz) really reflects hierarchical information, or simply lexical regularities. Computational simulations in which sentences are represented simply as sequences of high-dimensional numeric vectors that encode lexical information seem to give rise to power spectra similar to those observed for sentence synchronization, suggesting that sentence-level cortical tracking findings may reflect sequential lexical or part-of-speech information, and not necessarily hierarchical syntactic information. Using electroencephalography (EEG) data and the frequency-tagging paradigm, we develop a novel experimental condition to tease apart the predictions of the lexical and the
hierarchical accounts of the attested low-frequency synchronization. Under a lexical model, synchronization should be observed even when words are reversed within their phrases (e.g. "sheep white grass eat" instead of "white sheep eat grass"), because the same lexical items are preserved at the same regular intervals. Critically, such stimuli are not syntactically well-formed, thus a hierarchical model does not predict synchronization of phrase- and sentence-level structure in the reversed phrase condition. Computational simulations confirm these diverging predictions. EEG data
from N = 31 native speakers of Mandarin show robust delta synchronization to syntactically well-formed isochronous speech. Importantly, no such pattern is observed for reversed phrases, consistent with the hierarchical, but not the lexical, accounts.