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ABSTRACT

Two-photon imaging in behaving animals is typically accompanied by brain motion. For functional imaging
experiments, for example with genetically encoded calcium indicators, such brain motion induces changes in
fluorescence intensity. These motion related intensity changes or motion artifacts cannot easily be separated from
neural activity induced signals. While lateral motion within the focal plane can be corrected by computationally
aligning images, axial motion, out of the focal plane, cannot easily be corrected.
Here, we develop an algorithm for axial motion correction for non-ratiometric calcium indicators taking advantage
of simultaneous multi-plane imaging. Using at least two simultaneously recorded focal planes, the algorithm
separates motion related and neural activity induced changes in fluorescence intensity. The developed motion
correction approach allows axial motion estimation and correction at high frame rates for isolated structures in the
imaging volume in vivo, such as sparse expression patterns in the fruit fly brain.

Introduction

Using optical microscopy for the investigating of neural circuits in vivo, and particularly in behaving animals, is
complicated by movement of the brain with respect to the focal plane1–5. In many preparations, such as mice or fruit
flies, movement is reduced by mechanically stabilizing the brain, which however often still leaves residual motion2

and additionally can be invasive6, 7.
In in vivo preparations, the brain moves in all three spatial dimensions, laterally, within the focal plane, as well

as axially, out of the focal plane. Since the lateral resolution of the microscope is higher than the axial resolution,
lateral motion is easier to detect5. Lateral motion can be corrected by post processing with a range of different
methods, resulting in sequences of images aligned to a common field of view1–3, 5, 8, 9.

Motion in axial direction, however, can usually not be corrected using post-processing. Axial motion leads to
variations in the recorded fluorescence intensity due to changes in sample excitation. Generally, such changes cannot
be disentangled from intensity fluctuations of the indicator resulting from neural activity4. Additionally, sample
movement, which for example in mice lies in the range of a few micrometers2, 4, can exceed the focal range of the
two-photon microscope10 and therefore lead to loss of information11.

Algorithms similar to those used for lateral motion correction have also been applied for time series of volume
images (z-stacks). Recording time series of z-stacks with sufficient axial resolution however limits the frame rate in
each focal plane12, 13. Faster axial correction speeds can be achieved by actively tracking moving brain samples.
Taking advantage of a reference signal, for example a reflected beam14, behavioral parameters15, or fluorescent
fiducials such as cell bodies4, 16 or fluorescent beads4, the focal plane or additionally the region of interest (ROI)
can be updated in a closed-loop configuration. Repositioning of the ROI at high frame rates and in fast control
cycles however requires specialized hardware allowing random access scanning4. Additionally, introducing fiducials,
typically fluorescent beads, is often impractical and invasive, for example when imaging in the brain of Drosophila.
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Similarly, naturally occurring fiducials such as cell bodies are often not present in the imaging volume. Further,
often only a single fluorescent dye, for instance a non-ratiometric calcium indicator, is used.

Alternatively to recording volume images in z-stacks, simultaneous multi-plane imaging allows recording a
limited number of focal planes at the same time17–22. Similar to imaging in a single focal plane, multi-plane
recordings are still subject to axial motion artifacts. However, the correlated intensity changes across simultaneously
recorded focal planes that result from sample motion, allow inferring motion information. This has been used for
tracking fluorescent beads using temporally mutliplexed and axially offset beams23–25.

Here, we develop an approach for axial motion estimation and correction in the brain for two-photon functional
imaging with non-ratiometric calcium indicators. The approach does not require fiducials and can be applied
for isolated neural structures inside the imaging volume. The technique relies on an optimization algorithm that
estimates axial brain motion as well as disentangles motion and neural activity related fluorescence changes based
on simultaneous imaging in at least two focal planes. The algorithm is demonstrated using simulations with two and
four simultaneously recorded focal planes, as well as validated using in vivo imaging in behaving fruit flies.

Results

Outline of motion correction approach
In simultaneous multi-plane imaging, motion along the axial direction displaces the sample at the same time in all
focal planes. This correspondingly leads to related intensity changes in the different planes. For functional imaging
with calcium indicators, changes in intensity due to sample motion are additionally confounded with neural activity
related intensity changes. For disentangling these two contributions we developed an optimization based correction
approach.

The experimental setup is shown in Fig. 1B and was previously described22. Simultaneous two-plane imaging
was implemented with two temporally offset beams (by 6 ns) recorded independently using temporal multiplexing17.
The axial profiles of the two beams are shown in Fig. 1C.

The different steps of the correction approach are outlined in Fig. 1A. First, a calibration stack of the sample is
recorded with the two temporally multiplexed beams (Fig. 1A,1)). This stack is averaged over 10 recordings (see
Methods for details) so that intensity variations due to motion are averaged out. For subsequent combined functional
imaging and motion estimation, the sample is then approximately centered between the two beams such that it is
always visible in both focal planes (Fig. 1A, 2)). After recording a time series (Fig. 1A, 3)) and computationally
removing lateral motion, the correction algorithm extracts axial sample motion. Using the estimated axial motion
and the z-stacks, the intensity recorded by each beam at each focal plane is finally corrected for motion (Fig. 1A, 5)).

The algorithm does not require a second activity-independent label for motion estimation, such as a fluorescent
bead of a different color. It however relies on the assumption that neural activity induced fluorescence changes occur
with a constant gain factor from baseline in axial direction (see Supplementary Fig. S1 for an illustrative example).
Additionally, the method requires that the structure of interest is always visible in both focal planes and isolated,
meaning that no other structures move in and out of the imaging volume. Depending on the sample and its typical
motion, the separation between focal planes as well as the axial width of the beams therefore needs to be adjusted.

The algorithm finds and corrects axial motion by optimizing a cost function. The cost function is derived and
explained in detail in Methods in several steps. First an analytical approximation for a one dimensional sample
is developed to illustrate the workings of the algorithm before introducing the general case with multiple ROIs.
Both, the one dimensional as well as the full algorithm are demonstrated in simulations. We then test the algorithm
experimentally. First, we estimate controlled focal plane motion in a sample labeled with green fluorescent protein.
Then, in addition to motion, we also estimate controlled variations in fluorescence intensity. Next, we correct neural
activity recorded with a genetically expressed calcium indicator for controlled motion. Finally, the algorithm is
applied for measuring and correcting actual brain motion.

Motion correction in simulated data for a single voxel
The motion correction algorithm was first verified using simulated data (Fig. 2). For this purpose, we defined an
arbitrary one dimensional sample extended along the optical axis (z-axis, Fig. 2A, top). We additionally defined two
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Figure 1. Approach and setup for motion estimation and correction. A Outline of method: 1) Calibration step: two
stacks of the sample are recorded simultaneously in two different, axially offset focal planes. 2) Fluorescence
intensity of the sample is recorded simultaneously in two planes and the sample moves in axial direction (z-axis). 3)
Changes in intensities over time in each plane have two contributions: axial motion as well as neural activity. 4) The
algorithm uses the recorded stacks to estimate axial motion of the sample from intensities recorded in the two planes.
5) Changes in fluorescence, ∆F/F , are corrected to remove the contribution of axial motion, yielding motion
corrected, neural activity related fluorescence changes. B Optical setup: two Gaussian beams are temporally offset
by 6 ns, allowing simultaneous imaging in two different planes using temporal multiplexing. C Normalized profiles
of the two beams along the z-axis fitted with Gaussian functions.

Gaussian beams with different beam profiles and intensities, similar to the ones used in the experiment (Fig. 2A,
top). The profiles of the beams along the z-axis must cover the axial range of sample motion, keeping the sample
always visible with both beams. At the beginning of the simulated experiment, a z-stack is computed for each beam
(Fig. 2A, bottom, see Methods for details). The sample is assumed to move along the z-axis as well as change its
intensity due to neural activity (Fig. 2B). We assume that activity changes occur homogeneously along the optical
axis, that is, with a multiplicative factor with respect to the fluorescence baseline (see Supplementary Fig. S1).

A simulated time series of sinusoidal axial sample motion combined with stochastic changes in neural activity is
shown in Fig. 2C, top row. The resulting intensity time series, recorded simultaneously in two focal planes, are
shown in Fig. 2C, second row. Based on the recorded intensity time series, the optimization algorithm accurately
estimates both, sample motion as well as motion-corrected, activity related changes in fluorescence intensity (Fig.
2C, third and bottom rows).

Motion correction in simulated data for multiple voxels
The algorithm was further validated with simulated data with multiple one dimensional voxels, representing regions
of interests (ROIs) defined on a three dimensional sample (see next section and Methods for details). For this, neural
activity in a ring attractor was simulated, similar to experimentally observed data22, 26. A random distribution of the
axial position of the different ROIs was assumed, reflecting structural variability (Fig. 3A, top row). Neural activity
in this kind of network is centered in a bump and we here assumed that the bump of activity moves at constant
velocity around the ring attractor. To simulate brain motion, the sample was oscillated with respect to the two focal
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Figure 2. Motion correction in a simulated single ROI. A Top: axial intensity profiles of the two simulated beams
and the simulated sample (ROI) at time t = 0. Bottom: two stacks recorded from the sample at time t = 0 with the
two beams. B Example of axial motion and activity of the ROI. Sample profile along the z-axis at time t = 0 is
shown in green. At time t > 0, the offset of the ROI along the z-axis changes while its activity increases. C
Simulation of ROI activity and motion along the z-axis over time. Top row, left side: beam profiles. Right side:
sample moves along z-axis over time. Color indicates sample neural activity. Second row: resulting intensities
measured by each beam have two different contributions, motion and activity. Third row: comparison of actual and
estimated axial motion. Fourth row: cost function error of the motion estimation algorithm (see Methods for details).
Bottom row: actual and estimated, corrected changes in neural activity induced ∆F/F .

planes along the axial direction (Fig. 3A, bottom). As for the case of a single voxel, a z-stack is computed using
both beams. Intensity measurements from both beams are subjected to noise, similar to experimental recordings
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Figure 3. Motion correction in a simulated ring attractor with 32 ROIs. A Top: normalized intensity profiles of the
ROIs, which are simulated with varying lengths and offsets along the z-axis. B Bottom: ROI 1 moves along the
z-axis over time while its activity (∆F/F) changes (see C for all ROIs). B Top: stacks of the ROIs obtained with
first beam. Bottom: same for second beam. C Simulation of ROIs with axial motion and activity changes over time.
All ROIs move together, while activity changes independently in each ROI. First row: comparison of actual and
estimated axial motion of ROIs. Second row: cost function error of the motion estimation algorithm. Third row:
measured changes in fluorescence with combined activity changes and axial motion. Fourth row: changes in
fluorescence after motion correction. Fifth row: actual changes in fluorescence due to activity. Bottom row:
comparison of the averaged measured, corrected and actual bump amplitudes in the ROIs (see Methods for details
on all steps).

(see Methods for details). The algorithm assumes that all ROIs undergo the same axial motion. Therefore, all ROIs
contribute to estimating motion (Fig. 3C, first row).

The bump of activity traveling with continuous velocity across the different ROIs is shown before correction in
Fig. 3C, third row, as well as after correction in Fig. 3C, fourth row, and compared with the actual bump activity in
Fig. 3C, fifth row. As also seen in the average over all ROIs (Fig. 3C, bottom row), the algorithm accurately corrects
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Figure 4. Axial motion estimation and correction in GFP labeled neurons. A Left side: average over all frames of
the experiment. Right side: 32 ROIs are defined. B Stacks recorded from each ROI with first (top) and second
(bottom) beam, respectively. C Top row: actual and estimated axial motion. Second row: cost function error of
motion estimation (see Methods for details). Third row: measured fluorescence changes in each ROI. Fourth row:
corrected fluorescence changes in each ROI. Fifth row: difference between corrected and measured fluorescence
changes for each ROI. Bottom row: measured, corrected, and expected changes in fluorescence for ROI 1
(representative for all ROIs).

motion artifacts in the estimation of fluorescence changes.
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Figure 5. Axial motion estimation and correction in GFP labeled neurons at different laser powers, simulating
changes in neural activity. The definition of ROIs and the recorded stacks are the same as in Fig. 4A and B,
respectively. Top row: comparison between actual and estimated axial motion. Second row: cost function error of
motion correction algorithm. Third row: measured changes in fluorescence in each ROI. Fourth row: corrected
changes in fluorescence in each ROI. Fifth row: difference between corrected and measured changes in fluorescence
for each ROI. Bottom row: comparison between measured, corrected and expected changes in fluorescence for ROI
1 (see Methods for details).

Estimation and correction of controlled sample motion in vivo
The motion correction algorithm was experimentally tested by controlled variation of the focal plane in neurons
labeled with green fluorescent protein (GFP, Figs. 4 and 5). For this, GFP was expressed in wedge neurons of the
head direction system of the fruit fly26 (R60D05-GAL4, Fig. 4A, left side). The fly’s proboscis was fixed with wax
to prevent brain motion7. To simulate sample motion, the axial position of the microscope objective was modulated
sinusoidally at a range of frequencies using a piezoelectric objective actuator (P-725.4CD, Physik Instrumente) by
up to 10µm at different frequencies (1Hz, 0.5 Hz, 0.2Hz, 0.1Hz, see Methods for details).

The motion correction algorithm was applied for estimating axial motion from data simultaneously recorded in
two focal planes as follows. At the beginning of the experiment a total of 10 z-stacks were recorded with both beams.
Each z-stack contained a total of 400 slices covering 100µm along the z-axis in steps of 0.25µm. The resolution
of each slice was 256× 256 pixels and images were recorded at 60Hz. Even though there was no lateral brain
motion during these experiments, the piezoelectric objective actuator produced lateral displacements at different
z-positions. Therefore, we defined a template, consisting of the 10 first images acquired during the experiment,
and all images, including those of the z-stacks, were aligned with respect to this template using a phase correlation
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Figure 6. Motion estimation and correction in wedge neurons labeled with jGCaMP8f during controlled axial
motion. A Left side: average over all frames. Right side: definition of 32 ROIs. B Z-stacks recorded by the first
beam (top) and second beam (bottom). C First to fifth row: same as Fig. 4C. Bottom row: measured and corrected
fluorescence signals (bump amplitude, see Methods for details).

algorithm (as implemented in Skimage27, see Methods). After alignment, the 10 z-stacks were averaged and a total
of N = 32 ROIs were defined along the dendritic toroidal structure as described previously22 (Fig. 4A, right side).

8/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.462125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462125


Figure 7. Motion estimation and correction in wedge neurons labeled with jGCaMP8f. A Left side: average over
all frames. Right side: definition of 32 ROIs. B Stacks recorded by the first beam (top) and second beam (bottom).
C First to sixth row: same as Fig. 4C, additionally including lateral motion estimated from computationally aligning
frames (second row). Bottom row: measured and corrected fluorescence signals (bump amplitude, see Methods for
details).

The intensities recorded in the z-stacks were further filtered using a median filter with a window size of 20 slices to
remove noise. The filtered intensities for all ROIs are shown in Fig 4B for both beams.

Axial motion in the time series data was estimated by computing the value of the log-likelihood function (Eq.
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(35)) in all 400 slices of the z-stacks with a time window of size σ f = 3. Then, the slice ẑ(t) that maximized the
log-likelihood function was determined. The resolution of the axial motion estimation was given by the stack’s
resolution along the z-axis, i.e., 0.25µm. As seen in Fig. 4C, top row, the algorithm accurately estimates motion.
The cost function error (Fig. 4C, second row, calculated using Eq. (38)) indicates that the accuracy of the estimate is
similar across all positions.

The fluorescence intensities were corrected using Eq. (18), and the corrected ∆F/F was computed using Eq.
(41) (Fig. 4C, fourth row). This was compared to the measured ∆F/F , obtained from Eq. (47) (Fig. 4C, third row).
The strong changes in measured fluorescence intensity, or motion artifacts, across ROIs in Fig. 4C, third row, are
removed after correction and all ROIs show constant fluorescence profiles, as expected for GFP labeled neurons
(Fig. 4C, fourth row). This is also seen in the average intensities for a representative ROI (Fig. 4C, bottom row).
The offset (from 0) in the corrected ∆F/F value is due to an arbitrary definition of the baseline as the fraction of 10
percent lowest intensities (see Supplementary Fig. S2 for details).

Estimation and correction of controlled sample motion and intensity variations
To estimate at the same time motion related as well as activity induced intensity changes, we varied the focal plane
(as described above) together with the laser power, resulting in different levels of fluorescence intensity in a GFP
labeled sample (Fig. 5). Four epochs of sinusoidal focal plane modulations at a frequency of 1Hz were combined
with increasing the laser power in steps, simulating different neural activity levels. Recordings of time series and
z-stacks, image preprocessing as well as motion estimation and correction were performed as described above.

Motion was again estimated accurately (Fig. 5, top row). Additionally the algorithm correctly estimated the
different motion corrected intensity levels (Fig. 5, third to fifth row). This is also seen in the average changes across
all regions of interest (Fig. 5, bottom row). As expected, the cost function error (Fig. 5, second row) decreased with
increased signal-to-noise ratio resulting from the increased fluorescence signal. Motion estimation always occurs on
a single frame basis (smoothed with a Gaussian kernel with a standard deviation of 3 frames, see Methods), so that
faster variations in intensity would result in similar estimates.

Estimation and correction of controlled motion for in vivo two-photon calcium imaging
We next corrected controlled motion of the focal plane in a sample expressing the calcium indicator jGCaMP8f28

in the head direction system of the fly26. The fly walked in a virtual reality setup on an air supported ball22 and
the proboscis of the fly was fixed to prevent uncontrolled sample motion. Controlled focal plane motion was again
generated by actuating the objective by up to 10µm at different frequencies (1Hz, 0.5Hz, 0.2Hz, 0.1Hz). Images
(z-stack and time series) were recorded, corrected for lateral motion, and filtered as described above and motion
correction proceeded along the same steps (Eqs. (35), (18), (41), and (47)). Again, N = 32 ROIs were defined (Fig.
6A, right side) and Fig. 6B shows the intensity profiles of all ROIs for both beams.

The estimated axial motion is compared with the actual motion of the piezoelectric objective actuator in Fig.
6C, first row. The measured ∆F/F as well as the corrected ∆F/F values are shown in Fig. 6C, third and fourth
rows. The difference between the corrected and measured ∆F/F is shown in Fig. 6C, fifth row. The estimation error
(Eq. (38)) indicates that motion was tracked with similar quality across all axial positions. The last row in Figs. 6C
compares corrected and measured bump amplitudes (see Methods), which was smoothed using a Gaussian filter
with a standard deviation in the kernel of 5 frames. Motion correction was able to remove motion artifacts, resulting
in a smooth movement of the bump across the ellipsoid body as expected26.

Estimation and correction of brain motion for in vivo two-photon calcium imaging in behaving
animals
Finally, motion was corrected in a naturally moving brain during in vivo calcium imaging in a fly walking in a
virtual reality setup7, 22, without fixing the fly’s proboscis or removing muscles in the head. Motion estimation and
correction proceeded as described in the previous section.

We measured brain motion of up to 10µm (Fig. 7C, top row) and corrections induced changes in the values of
∆F/F of up to 40%, as seen in the difference (Fig. 7C, sixth row) between uncorrected and corrected ∆F/F (7C,
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fourth and fifth row, respectively). The bump amplitudes of the corrected and measured ∆F/F are shown in Fig. 7,
bottom row, and were computed using Eq. (2) and smoothed using a Gaussian filter with standard deviation of 5
frames.

Algorithm for imaging with four simultaneously recorded focal planes
The developed technique can be extended to more than two focal planes (for example four beams as in18). Fig. S3
shows a simulation with four axially separated beams. A single ROI was simulated for simplicity (Fig. S3A, top)
and the resulting z-stacks for all four beams are shown in Supplementary Fig. S3A, bottom. Using more than two
beams allows for example increasing the axial resolution or axial range.

Discussion

We developed a method for correcting motion artifacts for two-photon calcium imaging that result from axial sample
movement. The method relies on simultaneous multi-plane imaging with at least two axially offset focal planes17.
As verified with simulations (Figs. 2, 3 and S3), by controlled motion of the focal plane (Fig. 4, 5, 6), as well as by
controlled changes in fluorescence intensity (Fig. 5), the developed optimization algorithm can estimate as well as
correct motion with non-ratiometric indicators in isolated structures in the imaging volume.

The method was applied for correcting motion artifacts that are observed when imaging in vivo in the brain of
fruit flies. Since motion can be corrected without additional mechanical stabilization (Fig. 7), such as removing
muscles or immobilizing the proboscis7, the approach simplifies imaging in flies and improves the viability of the
preparation. Since brain motion in the fly as observed here (about 10µm, see Fig. 7) lies in a similar range as
observed in other species4, the technique could also similarly be applied in other animals.

Compared with motion correction that relies on recording time series of z-stacks12, 13, the approach developed
here benefits from high frame rates (for example 60 Hz at 256×256 pixels in each plane). Compared with closed-
loop correction4, 14–16, the microscope does not require custom modifications and is compatible with multi-beam
scanning as implemented in commercially available scanning software (Scanimage13). Further, the developed
method does not use an independent tracking fiducial, such as a fluorescent bead or cell body.

That motion is estimated directly from the sample labeled with calcium indicator, leads however to the following
two conditions: First, changes in fluorescence due to calcium activity need to occur with a constant gain factor
axially along the entire ROI (see Supplementary Fig. S1 for illustration). Given that controlled motion is accurately
corrected in a sample expressing jGCaMP8f (Fig. 6), this is a valid approximation for the sample used here. Second:
the structure of interest needs to be isolated in the imaging volume at all times. This means that no (partial) structures
can move in and out of the imaging volume. Since the algorithm relies on measuring intensity changes along the
optical axis, such appearing or disappearing features would lead to erroneous corrections.

Further, the algorithm requires that each ROI must be visible at all times in both focal planes. This condition
can be satisfied by adjusting the separation and axial extension of the beams such that the moving object is always
within their axial range. Here, beam conditions were optimized for imaging with commonly used GAL4 fly lines
labeling subsets of neurons in the central brain. We used two axially extended beams, since we imaged from a
relatively large structure. However, the technique could equally be applied for smaller structure with diffraction
limited beams. Beam separation and parameters could additionally be adjusted on a sample by sample basis using
for example electrically tunable lenses or spatial light modulators. The method can also be similarly extended to
more simultaneously recorded focal planes as shown in simulations (Fig. S3) which could be used to extend the
axial range or resolution. Additionally, the algorithm requires that lateral motion is corrected first using standard
motion correction algorithms and for reliable image alignment therefore sufficient intensity is needed in each channel.
Similarly, the ROIs must be defined over a sufficient number of pixels so that the intensity distribution in each ROI
is approximately normal.

Overall, the developed method allows correction of lateral and axial brain motion in two-photon calcium imaging
experiments from isolated structures in the imaging volume, such as sparse expression patterns in the brain of
Drosophila, with non-ratiometric indicators.

11/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.462125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462125


Funding
Max Planck Society, caesar.

Acknowledgements
We would like to thank Giacomo Bassetto for helpful discussions and comments on the algorithm and Ivan Vishniakou
for comments on the manuscript.

Disclosures
The authors declare that there are no conflicts of interest related to this article.

References
1. Greenberg, D. S. & Kerr, J. N. Automated correction of fast motion artifacts for two-photon imaging of awake

animals. J. neuroscience methods 176, 1–15 (2009).

2. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural
activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

3. Pnevmatikakis, E. A. & Giovannucci, A. Normcorre: An online algorithm for piecewise rigid motion correction
of calcium imaging data. J. neuroscience methods 291, 83–94 (2017).

4. Griffiths, V. A. et al. Real-time 3d movement correction for two-photon imaging in behaving animals. Nat.
methods 17, 741–748 (2020).

5. Stringer, C. & Pachitariu, M. Computational processing of neural recordings from calcium imaging data. Curr.
opinion neurobiology 55, 22–31 (2019).

6. Jayaraman, V. & Laurent, G. Evaluating a genetically encoded optical sensor of neural activity using electro-
physiology in intact adult fruit flies. Front. neural circuits 1, 3 (2007).

7. Seelig, J. D. et al. Two-photon calcium imaging from head-fixed drosophila during optomotor walking behavior.
Nat. methods 7, 535–540 (2010).

8. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt.
letters 33, 156–158 (2008).

9. Miri, A., Daie, K., Burdine, R. D., Aksay, E. & Tank, D. W. Regression-based identification of behavior-
encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J. neurophysiology
105, 964–980 (2011).

10. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248,
73–76 (1990).

11. Soulet, D., Paré, A., Coste, J. & Lacroix, S. Automated filtering of intrinsic movement artifacts during
two-photon intravital microscopy. PLoS One 8, e53942 (2013).

12. Aghayee, S. et al. Particle tracking facilitates real time capable motion correction in 2d or 3d two-photon
imaging of neuronal activity. Front. neural circuits 11, 56 (2017).

13. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. Scanimage: flexible software for operating laser scanning
microscopes. Biomed. engineering online 2, 1–9 (2003).

14. Laffray, S. et al. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a
moving tissue. PloS one 6, e19928 (2011).

15. Chen, J. L., Pfäffli, O. A., Voigt, F. F., Margolis, D. J. & Helmchen, F. Online correction of licking-induced
brain motion during two-photon imaging with a tunable lens. The J. physiology 591, 4689–4698 (2013).

12/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.462125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462125


16. Karagyozov, D., Skanata, M. M., Lesar, A. & Gershow, M. Recording neural activity in unrestrained animals
with three-dimensional tracking two-photon microscopy. Cell reports 25, 1371–1383 (2018).

17. Amir, W. et al. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt.
letters 32, 1731–1733 (2007).

18. Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium
imaging at different depths with spatiotemporal multiplexing. Nat. methods 8, 139–142 (2011).

19. Weisenburger, S. et al. Volumetric ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light
microscopy. Cell 177, 1050–1066 (2019).

20. Beaulieu, D. R., Davison, I. G., Kılıç, K., Bifano, T. G. & Mertz, J. Simultaneous multiplane imaging with
reverberation two-photon microscopy. Nat. methods 17, 283–286 (2020).

21. Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. methods 17,
287–290 (2020).

22. Valle, A. F., Honnef, R. & Seelig, J. D. Automated long-term two-photon imaging in head-fixed walking
drosophila. bioRxiv (2021).

23. Perillo, E. P. et al. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and
multiplexed illumination. Nat. communications 6, 1–8 (2015).

24. Liu, C. et al. Improving z-tracking accuracy in the two-photon single-particle tracking microscope. Appl.
physics letters 107, 153701 (2015).

25. Hou, S., Johnson, C. & Welsher, K. Real-time 3d single particle tracking: towards active feedback single
molecule spectroscopy in live cells. Molecules 24, 2826 (2019).

26. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature
521, 186–191 (2015).

27. Van der Walt, S. et al. scikit-image: image processing in python. PeerJ 2, e453 (2014).

28. Zhang, Y. et al. jgcamp8 fast genetically encoded calcium indicators. doi:10.25378/janelia.13148243 (2020).

29. Díaz-Francés, E. & Rubio, F. J. On the existence of a normal approximation to the distribution of the ratio of
two independent normal random variables. Stat. Pap. 54, 309–323 (2013).

Methods

Microscope setup
The setup was described in22. Briefly, two axially offset Gaussian beams were used to record in two different focal
planes using temporal multiplexing17. Temporal multiplexing was performed using Scanimage in photon counting
mode13. The diameter and collimation of each beam was adjusted with two lenses (Thorlabs achromatic doublets),
while the two beams were linearly and orthogonality polarized and delayed by 2m, as shown in Fig. 1B. The beams
were focused at the samples with a power of 6mW for each beam by underfilling the objective of the microscope
(16X Nikon CFI LWD Plan Fluorite Objective, 0.80 NA, 3.0 mm WD). This created elongated beam profiles along
the axial direction (Fig. 1). The full width at half maximum was adjusted to 9µm and 16µm (computed from the
standard deviations: FWHM = 2.4σ ), respectively, and the peaks of the two beams were separated by 7µm.

Drosophila preparation
Imaging in behaving flies we performed as described in22. Briefly, We used 7-10 days old female flies, either
expressing GFP or GCaMP8f in wedge neurons (R60D05-GAL4). We performed laser surgery to remove the cuticle
over the brain. The cuticle and underlying tissue were then removed either with a microrobotic arm or manually
under a dissection scope22. Finally, a drop of glue was placed on the opening (DETAX, Freeform, 02204). The
flies expressing GCaMP8f were left to recover over night22, while flies expressing GFP were imaged directly after
surgery.
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For the fly expressing GFP, as well as for the fly in Fig. 6 the proboscis was fixed with wax to prevent brain
motion7. For imaging, flies were glued to a cover slide ((22 mm × 22 mm, thickness No. 1, Cat. No. 631-0124,
see22 for details of the preparation).

Extracting head direction from calcium signals
We computed the trajectory of the bump of activity along the ROIs, b(t), based on the ROI position with maximum
fluorescence value of the corrected ∆F/F :

b(t) = argmaxi

[
corrected ∆F/Fi(t)

]
(1)

We then used this trajectory to compute the bump amplitude in both, measured and corrected ∆F/F , in the ROIs
along the bump trajectory:{

corrected bump amplitude(t) = corrected ∆F/Fb(t)(t)
measured bump amplitude(t) = measured ∆F/Fb(t)(t)

(2)

Motion estimation and correction algorithm
The motion estimation and correction algorithm is shown schematically in Fig. 1A and proceeded along the following
steps:

• 1) First, we recorded a total of 10 z-stacks of the sample with each beam, using the Fast z mode in Scanimage
with a piezoelectric objective actuator. The z-stacks were obtained over 100µm along the z-axis in steps of
0.25µ , at a resolution of 256 x 256 pixels at 60Hz frame rate. Stacks were recorded simultaneously with the
two beams. The time to record the 10 stacks was approximately 67 seconds.

• 2) We recorded time series of the sample simultaneously in two focal planes at 60Hz, with the same resolution
and zoom as the stacks, providing a total of T frames for each beam. Lateral motion correction (i.e., along the
x and y-axis) was performed using the phase correlation algorithm from Skimage27 in Python. We defined
a template consisting of the first 10 frames of the two-plane time series recordings and computed the offset
of each subsequent frame in the time series with respect to this template9, 22. Additionally, all frames in the
recorded stacks were similarly aligned with respect to their respective templates and the aligned 10 stacks for
each beam were finally averaged.

• 3) We defined N = 32 regions of interest (ROIs) corresponding to the structural arrangement of wedge
neurons22. The intensity of each ROI i was computed for each beam, I1,i(t) and I2,i(t), at every recorded
frame, t = 1, ...,T , by summing over all pixels within the ROI. We also computed the intensity of each ROI i
in each averaged z-stack, producing a total of 400 slices of each ROI i profile recorded by each beam along
the z-axis, I(stack)

1,i (z) and I(stack)
2,i (z).

• 4) For each frame t, we estimated axial motion of the sample, ẑ(t), by obtaining the z position in the stacks
that maximized Eq. (35). An estimation error, E(t) was additionally computed using Eq. (38).

• 5) The motion estimation is used to remove axial motion-related changes in the measured intensities I1,i(t)
and I2,i(t), using Eq. (39). Finally, the corrected change in fluorescence in each ROI i, ∆F/Fi, is computed
according to Eq. (41).

The previous steps are also summarized in Algorithm 1.

14/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.462125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462125


Algorithm 1 Motion estimation and correction algorithm
record_stacks() . 1)
record_sample_activity() . 2)
correct_lateral_motion()
define_ROIs(N) . 3)
for t = 1, ...,T do . Loop for time steps

for i = 1, ...,N do . Loop for ROIs
I1,i(t), I2,i(t)← compute_intensity_in_ROI(i)
I(stack)
1,i (z), I(stack)

2,i (z)← compute_stack_intensity_in_ROI(i)
end for
ẑ(t)← argmaxz

[
L f (z, t)

]
. 4) Eq. (35)

E(t)← estimate_error(t) . Eq. (38)
for i = 1, ...,N do . Loop for ROIs

I(cor)
1,i (t)← correct_intensity

(
I1,i(t), I(stack)

1,i (ẑ(t))
)

. 5) Eq. (39)

I(cor)
2,i (t)← correct_intensity

(
I2,i(t), I(stack)

2,i (ẑ(t))
)

∆F/Fi← compute_fluorescence_change
(

I(cor)
1,i (t), I(cor)

1,2 (t)
)

. Eq. (41)
end for

end for

Analytical approximation of motion correction algorithm for a single ROI
While motion correction was performed numerically as described in Algorithm 1, we here first explain the operation
of the algorithm using an analytical approximation, assuming continuous time and z-axis, first for a single ROI
defined on a 3D sample in the absence of noise.

A single ROI is a voxel extended along the z-axis, which is described as a function e(A,z) representing the
number of fluorescent proteins, for example GFP or GCaMP, inside the ROI at a given z position. The function
e(A,z) changes over time depending on a variable A, A = A(t), representing neural activity in each ROI. Generally,
the ROI function, e(A,z), could have any form. As an example, Fig. S1A shows a ROI function defined by the
following Eq.:

e(A, t) = Aexp
[(z+ p1)

2

2σ2

]
+A2 exp

[(z+ p2)
2

2σ2

]
, (3)

where p1 = −5µm and p2 = 5µm represent the center of two Gaussians with standard deviation σ = 2.5µm. In
this case the activity A changes the Gaussian peaks by different amplitudes (Fig. S1A), meaning that fluorescence
changes heterogeneously at different z positions.This could for example be the case if two different dendrites of a
neuron receive inputs with different strengths.

To simplify the problem of motion estimation and correction, we can approximate the ROI function to first order
with a Taylor series around A = 0:

e(A,z)≈ e(0,z)+
∂e(A,z)

∂A

∣∣∣
A=0

A. (4)

The derivative of e(A,z) with respect to A and evaluated at A = 0 is a function that only depends on z, which we
call ρ(z). On the other hand, e(0,z) is the baseline fluorescence indicator distribution along the z-axis which is not
modulated by the activity A of the ROI. We assume for simplicity that e(0,z) is negligible, assuming that there is an
activity baseline, A0, much larger than e(0,z):

A0
ρ(z) >> e(0,z) (5)
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With this approximation, we can write the ROI function as:

e(A,z) = Aρ(z) (6)

The function ρ(z) describes a density of fluorescence proteins along the z-axis, while A increases activity inside the
ROI homogeneously. In the following we refer to ρ(z) as the ROI density while A is called the ROI activity. An
example of Eq. (6) is given in Fig. S1B, where ρ(z) is defined by the following expression:

ρ(z) = exp
[(z+ p1)

2

2σ2

]
+ exp

[(z+ p2)
2

2σ2

]
(7)

In addition, we assume that the ROI undergoes axial (along the z-axis) motion, described with a time-dependent
variable, ∆z(t), which changes the offset of the ROI density along the z-axis. Assuming no distortion in the sample
during axial motion, the ROI density remains constant but moves along the z-axis. Therefore, the ROI function is
finally approximated as:

e(t,z) = A(t)ρ(z−∆z(t)) (8)

Eq. (8) allows us to separate the ROI function, e(t,z), into two parts, one which depends on the activity of the ROI,
A(t), which is independent of the z-axis, and another one that depends on the motion of the sample, ρ(z−∆z(t)).

This first order approximation, which was valid in the biological samples used for the experiments, allows us to
develop an algorithm to estimate and correct the axial motion of the sample The goal of the algorithm is to estimate
axial motion, ∆z(t), as well as to extract the activity, A(t).

The ROI activity is measured using two beams described by two functions, g1(z) and g2(z), which represent the
shape of the beams along the z-axis. For the algorithm to work, these two beams must have different profiles along
the z-axis (to provide unique information about the sample) and must be integrable, meaning that their integral must
be finite. In practice, we assume that these are Gaussian beams centered at different positions along the z-axis, while
their width along the z-axis and power can be different. At each time, t, both beams excite the sample with a time
delay (on the order of the fluorescence lifetime), and produce two independently measured fluorescence signals.

The intensity of each fluorescence signal associated with each beam, I1(t) and I2(t), is the integral of the
excitation of each beam within the ROI along the z-axis:

I1(t) =

∫
∞

−∞
e(t,z)g1(z)dz

I2(t) =

∫
∞

−∞
e(t,z)g2(z)dz.

(9)

Since the ROI activity, A(t), is independent of z (Eq. (8)), we can write the measured intensities as:{
I1(t) = A(t)G1(∆z(t))
I2(t) = A(t)G2(∆z(t)),

(10)

where G1 and G2 are two functions defined by the integral over the excitation of each beam at the ROI density,
ρ(z−∆z(t)), and only depend on the axial motion of the sample, ∆z(t). Eq. (10) describes how changes in the
measured intensities, I1(t) and I2(t), can have two different contributions: the activity of the ROI and the axial
motion of the sample.

For estimating axial motion of the sample, ∆z(t), a calibration step is first performed. At the beginning of the
experiment (t = 0), a z-stack is recorded with each beam by moving the two beams simultaneously and continuously
along the z-axis. We assume that the ROI activity and axial motion of the sample, A(0) and ∆z(0), do not change
when recroding the stack. Moreover, and without loss of generality, we define the origin of the axial motion while
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recording the stacks so that ∆z(0) = 0. In practice, the assumption that A(0) and ∆z(0) do not change is achieved by
averaging over several stacks (see Results with biological samples expressing GFP or GCaAMP8f). The algorithm
however works with arbitrary activity A(0) during z-stack acquisition. Since moving the beams is equivalent to
moving the sample in the opposite direction while leaving the beams fixed, the stacks are defined as follows:

I(stack)
1 (z) = A(0)

∫
∞

−∞
ρ(z′− z)g1(z′)dz′

I(stack)
2 (z) = A(0)

∫
∞

−∞
ρ(z′− z)g2(z′)dz′

(11)

This equation can be expressed as{
I(stack)
1 (z) = A(0)G1(z)

I(stack)
2 (z) = A(0)G2(z)

(12)

The ratios I1(t)/I2(t) and Istack
1 (z)/Istack

2 (z) do not depend on the activity and we use this to define the following cost
function,

JL2(z, t) =

(
I1(t)
I2(t)

−
Istack
1 (z)

Istack
2 (z)

)2

=

(
G1(∆z(t))
G2(∆z(t))

− G1(z)
G2(z))

)2

(13)

The cost function JL2(z) is minimized at time t when z = ∆z(t). This optimization is used to find the axial motion of
the sample, ∆z(t), using the stacks. We will show in the following sections (Eq. (34)) that the shape of this cost
function arises from a expectation–maximization approach. To take into account that the axial motion of the sample
is correlated in time, we modified Eq. (13), with a Gaussian filter over time:

JL2(z, t) =
∫

∞

−∞

f (t ′− t,σt)

(
I1(t)
I2(t)

−
Istack
1 (z)

Istack
2 (z)

)2

dt ′ (14)

where f (t− t ′,σ) is a Gaussian kernel centered at time t with standard deviation σt , defined as:

f (t ′− t,σ) = exp
[
− (t ′− t)2

2σ2
t

]
(15)

Eq. (14) provides a filtered estimate of the axial motion of the sample by weighting contributions from several
intensity measurements. This cost function assumes that changes in axial motion within the Gaussian kernel are
small. The standard deviation, σt , is a manually-set parameter that provides the size of the time window considered
for the axial motion estimation.

To find the axial motion of the sample at any time t, we find the z-position in the stack, ẑ(t), that minimizes the
cost function.

ẑ(t) = argminz

[
J(z, t)

]
(16)

The value of the cost function evaluated at the estimated displacement, ẑ(t), provides a measure for the quality of the
optimisation result at time t.

cost function error(t) = J(ẑ(t), t) (17)
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Once the the motion of the sample is estimated, we correct the measured intensities by dividing the intensity
recorded by each beam by its corresponding stack, evaluated at the estimated slice ẑ(t) at any time t:

Icor
1 (t) = I1(t)

Istack
1 (ẑ(t))

= A(t)
A(0)

G1(∆z(t))
G1(ẑ(t))

Icor
2 (t) = I2(t)

Istack
2 (ẑ(t))

= A(t)
A(0)

G2(∆z(t))
G2(ẑ(t))

(18)

This correction eliminates the contribution of the axial motion of the sample from the measured intensities if the
axial motion estimation is correct, i.e. ẑ(t) = ∆z, leaving only the contributions made by changes in the activity A(t).
Finally we can compute the relative change in fluorescence, ∆F/F , using the corrected intensities:

∆F/F(t) =
1
2

( Icor
1 (t)−F0

1

F0
1

+
Icor
2 (t)−F0

2

F0
2

)
=

A(t)−A0

A0 (19)

where F0
1 and F0

2 are the baselines of the intensities Icor
1 (t) and Icor

2 (t) respectively, corresponding to the ROI activity
baseline, A0. The baselines F0

1 and F0
2 are obtained by computing the mean value of the lowest 10% values of the

corrected intensities, Icor
1 and Icor

2 , respectively.

Simulation of a moving single ROI
To demonstrate how this algorithm works for a single ROI, we simulated a single ROI along the z-axis described by
Eq. (6) with an activity density defined as

ρ(z) =

{
2
3 +

1
3 sin

[
(z− z0)

π

L

]
if z0 > z > z0 +L

0 otherwise,
(20)

where z0 =−5µm and L = 10µm. The ROI undergoes axial motion over time, as defined by Eq. (8) and shown in
Fig. 2B, described by the following Eq.:

∆z(t) = zamp sin(2π fzt) (21)

where zamp = 5µm and fz = 5Hz are the amplitude and frequency of a simulated sinusoidal axial motion. The
activity of the sample, A(t), is modeled by a differential Eq.:

τAȦ(t) =−A(t)+1+ εA, (22)

where τA = 10ms is a time constant, and εe is a stochastic input to the sample that produces spikes along the
simulation with 0.5% probability and positive amplitude.

To record the activity of the sample, we defined two beams with Gaussians axial profiles, according to the
following equation:

gi(z) =Cie−(z−di)
2/(2σ2

i ) for i = 1,2, (23)

where C1 = 1.25a.u. and C2 = 1.5a.u. define the maximum beam power and σ1 = 2µm and σ2 = 3µm are the widths
(standard deviations) along the z-axis. The two beams are offset in axial direction, d1 =−2.5µm and d2 = 2.5µm.
The shape of the beams is shown at the top of Fig. 2A, together with the ROI function at time t = 0, e(0,z).

A z-stack of the sample at time t = 0 is defined in the absence of axial motion, ∆z(0) = 0, and activity is defined
as A(0) = 1. The stack is simulated by recording the activity of the sample while moving the beams along the the
z-axis from −25µm to 25µm in steps of 0.05µm, resulting in a convolution between the beams and the sample
according to Eq. (11) (Fig. 2A). Only a single stack without averaging is used for simulations.

Next, combined sample motion and activity are simulated for 1000 milliseconds. The equation for the activity,
A(t), is solved using forward Euler with a time step of dt = 0.001 milliseconds. The intensity of each beam is given

18/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.462125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462125


by Eq. (9). The result of the simulation is shown in Fig. 2C, where the first row shows the moving sample and its
activity, and the second row shows the intensities recorded in each beam.

To estimate sample motion, ẑ(t), at each instant t, we computed the value of the cost function (Eq. (14)) at
all z positions of the stacks (from −25µ to 25µ in steps of 0.05µ). Finally, motion at time t, ∆z(t), is estimated
according to Eq. (16), by finding the position ẑ that minimizes the cost function across all z values. The third row in
Fig. 2B shows the real versus the estimated motion of the sample. The error of the optimisation process is calculated
using Eq. (17) and shown in the fourth row of Fig. 2.

Finally, the recorded intensities are corrected using the estimated axial motion and Eq. (18), and changes in
fluorescence intensity, ∆F/F , are computed from the corrected intensities, according to Eq. (19). The last row in Fig.
2 shows the actual and the corrected changes in fluorescence, respectively. The actual ∆F/F is calculated according
to the following Eq.:

actual ∆F/F =
A(t)−A0

A0 (24)

where A0 is an activity baseline calculated as the average of the lowest 10% values of A(t).

Algorithm for motion estimation and correction for several ROIs with noise
We now extend the approach developed above to a sample with multiple ROIs. In addition we now consider that the
measurements are noisy. We assume rigid three-dimensional sample motion, with negligible elastic deformations or
changes in orientation.

We record a total of T pair of images, M1(t) and M2(t), one for each beam, for t = 1, ...,T and assume that all
images are aligned, that is, corrected for lateral motion. We define N ROIs on the images and each ROI i describes
an area on the images containing ni pixels. The sum of the values of all the pixels of each image inside this area,
M(w,h)

1 (t) and M(w,h)
1 (t), where (w,h) ∈ ROI i, provides a pair of intensity measurements of the ROI i in each pair of

images at time t:{
I1,i(t) = ∑(w,h)∈ROIi M(w,h)

1 (t)

I2,i(t) = ∑(w,h)∈ROIi M(w,h)
2 (t).

(25)

The fluorescence signals detected by the PMT are subjected to shot noise and the intensities in each pixel
follow independent Poisson distributions. If the number ni of pixels in each ROI i is large, each pair of intensity
measurements approaches the following normal distributions:I1,i(t)∼N

(
µ1,i(t),µ2

1,i(t)
)

I2,i(t)∼N
(

µ2,i(t),µ2
1,i(t)

) (26)

where µ1,i and µ2,i are the means of the normal distribution for each beam, respectively.
Using the first-order Taylor expansion (Eq. (4)), we can approximate each ROI function i by the following

expression:

ei(t,z) = Ai(t)ρi(z−∆z(t)) for i = 1, ...,N (27)

where Ai(t) and ρi(z−∆z(t)) are the activity and density of each ROI i, respectively, during the acquisition t. We
again assume that the ROI moves in the axial direction, given by ∆z(t). Then, we can approximate the means of the
intensity distributions, µ1,i(t) and µ2,i(t), as{

µ1,i(t) = Ai(t)G1,i(∆z(t)) for i = 1, ...,N
µ2,i(t) = Ai(t)G2,i(∆z(t))

, (28)
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where G1,i(∆z(t)) and G2,i(∆z(t)) are functions defined by the integral of the excitation of each beam at each ROI
density, ρi(z)i.

We now take the ratio of the intensities for each ROI i at each acquisition t, I1,i(t)/I2,i(t), since the ratio of the
mean values µ1,i(t)/µ2,i(t) does not depend on the ROI acivity, Ai(t). The ratio of these two normal variables is
well approximated by a normal distribution around the mean of the ratio, µ1,i(t)/µ2,i(t), if the means are positive
and the coefficients of variation, δ1,i(t) =

√
µ1,i(t)/µ1,i(t) and δ2,i(t) =

√
µ2,i(t)/µ2,i(t) are smaller than 0.129.

I1,i(t)
I2,i(t)

∼N

(
µ1,i(t)
µ2,i(t)

, 2δ
2
2,i(t)

(
µ1,i(t)
µ2,i(t)

)2
)

(29)

Assuming that all ROIs undergo the same axial motion, ∆z, we can compute the log-likelihood for the ROIs with
respect to their axial position, ∆z, at acquisition t:

L
(

∆z | I1,1(t)
I2,1(t)

, ...
I1,N(t)
I2,N(t)

)
=−N

2
log(2π)− 1

2

N

∑
i=1

log
(

2δ
2
2,i(t)

(
µ1,i(t)
µ2,i(t)

)2)
−

N

∑
i=1

1
δ 2

2,i(t)

(
µ2,i(t)
µ1,i(t)

)2( I1,i(t)
I2,i(t)

− µ1,i(t)
µ2,i(t)

)2
,

(30)

where the mean of the ratio distributions depends only on the axial motion ∆z(t), and not on the activity of the ROIs:

µ1,i(t)
µ2,i(t)

=
G1,i(∆z(t))
G2,i(∆z(t))

(31)

To compute the ratio of the means for each ROI i, we used z-stacks recorded at the beginning of the experiment,
t = 0. Each slice in each stack is aligned to remove lateral motion using phase correction27, and the intensity for
each ROI i in each z-slice is computed, I(stack)

1,i (z) and I(stack)
2,i (z). During the acquisition of the stack, both axial

motion and activity of each ROI are considered constant, while the noise in the intensities of the slices in the stacks
are assumed zero. Therefore, the intensity of each ROI in each slice of the stacks is given by the following equation:{

I(stack)
1,i (z) = Ai(0)G1,i(z)

I(stack)
2,i (z) = Ai(0)G2,i(z)

(32)

In practice, the previous assumptions are achieved by averaging several stacks and applying a median filter (see
Results). We can now approximate the mean of the ratio distribution by the ratio of the intensities in the stacks at the
slice ∆z:

µ1,i(t)
µ2,i(t)

=
I(stack)
1,i (∆z(t)))

I(stack)
2,i (∆z(t))

. (33)

Finally, we can write the log-likelihood (Eq. 30) using the stacks as a function of z at each acquisition, t:

L(z, t) =−N
2

log(2π)− 1
2

N

∑
i=1

log
(

2
(I(stack)

1,i (z))2

(I(stack)
2,i (z))3

)
−

N

∑
i=1

(I(stack)
2,i (z))3

(I(stack)
1,i (z))2

( I1,i(t)
I2,i(t)

−
I(stack)
1,i (z)

I(stack)
2,i (z)

)2
. (34)

Note that L(z, t) has a quadratic difference between the ratio of the stacks and the ratio of intensities (right side of
Eq. (34)), similar to the cost function defined for a single ROI (Eq. (13)), which was minimized due to the change in
sign. The log-likelihood function, however, weights (left factor on the third term in Eq. (34)) and offsets (second
term in Eq. (34)) this quadratic difference, taking into account more strongly ROIs that are less noisy to estimate
the axial motion, i.e., the intensity of those ROIs with lower values (and therefore lower standard deviation in their
distributions).
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Since axial motion is correlated in time, we use a Gaussian filter similar to Eq. (14)) in the log-likelihood:

L f (z, t) =
T

∑
t ′=0

f (t ′− t,σt)L(z, t ′), (35)

where the kernel f (t ′− t,σt) is defined in Eq. 15. Again, the variable σt is manually set, and defines the size of the
time window considered for the sum of log-likelihoods.

Since the z-stacks have a finite number of slices, we can compute the value of L f (z, t) numerically for each
slice z and then estimate the axial motion of the sample, ẑ(t), at each time t, from the slice z that maximizes the
log-likelihood function, L f (z, t):

ẑ(t) = argmaxz

[
L f (z, t)

]
. (36)

We provide an estimation error, E(t), by computing the standard deviation of the difference between the ratio of
recorded intensities and the ratio of the means:

E(t) =
1
N

N

∑
i=0

( I1,i(t)
I2,i(t)

− µ1,i(t)
µ2,i(t)

)2
(37)

and using Eq. (33), this error can be expressed as:

E(t) =
1
N

N

∑
i=0

( I1,i(t)
I2,i(t)

−
I(stack)
1,i (ẑ(t))

I(stack)
2,i (ẑ(t))

)2
. (38)

Next, we correct the measured intensities from each beam using the estimated axial motion and extending Eq.
(18) to N ROIs:

Icor
1,i (t) =

I1,i(t)
Istack
1,i (ẑ(t))

Icor
2,i (t) =

I2,i(t)
Istack
2,i (ẑ(t))

.

(39)

This correction eliminates the axial motion contribution from the intensity measurements. However, note that this
correction inherits the noise from the measured intensities I1,i(t) and I2,i(t). According to Eq. (26), both intensity
corrections are obtained according to the following normal distribution:Îcor

1,i (t)∼N
(

1,1
)

Îcor
2,i (t)∼N

(
1,1
) (40)

Finally, we compute the change in fluorescence for each ROI i as follows:

corrected ∆F/Fi(t) =
1
2

( Icor
1,i (t)−F0

1,i

F0
1,i

+
Icor
2,i (t)−F0

2,i

F0
2,i

)
for i = 1, ...,N, (41)

where F0
1,i and F0

2,i are the baselines of the intensities, Icor
1,i and Icor

2,i that correspond to the activity baseline of each
ROI, A0

i . As for the case of a single ROI, we compute the baselines F0
1,i and F0

2,i from the average of the 10% lowest
values of Icor

1,i (t) and Icor
2,i (t) respectively, for each ROI i.
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Simulation of several moving ROIs
We demonstrate how the algorithm works for a simulation of N = 32 moving ROIs with noise. In this simulation it
is assumed that lateral motion of a 3D sample is already corrected and the ROIs are defined. The density of each
ROI is defined along the z-axis according to the following equation:

ρi(z) =

{
1
Ci

(
a0

i +a1
i sin
[
(z− z0,i)

π

Li

])
if z0,i > z > z0,i +Li

0 otherwise,
(42)

where a0
i and a1

i are random coefficients for each ROI obtained from an uniform distribution in the range [1,2] and
z0,i and Li are a random origin and random length for each ROI, sampled from a uniform distribution in the range of
[−2,−5] and [10,15], respectively. The constant Ci normalizes the density of each ROI so that ρi(z) is in the range
of [0,1]. Fig. 3A, top, shows the density of each ROI used in the simulation.

The motion of all ROIs is modeled as in the simulation in section using Eq. (21) with a frequency of fz = 8Hz.
The activity of each sample is modeled as:

τAȦi(t) =−Ai(t)+1+U(t, i), (43)

where τA = 10ms is the time constant and U(t, i) is an input defined as a rotating Gaussian along the ROIs:

U(t, i) =Umax exp

[
−

min
[
|i− v(t)|, N−|i− v(t)|

]2

2σ2

]
(44)

where Umax = 2 is the amplitude, σ = 2 is the width of the Gaussian and v(t) rotates the input with respect to the
ROIs at a frequency of fu = 10Hz, according to

v(t) = mod ( fuNt,N), (45)

where mod (·, ·) indicates the modulo operation. The activity of the ROIs is again solved using forward Euler with
a time step of dt = 0.001 millisecond. An example of ROI 1 undergoing axial motion while receiving the rotating
input is shown in Fig. 3A, bottom, while the rotating input in all the ROIs during the simulation is shown in Fig. 3C,
fourth row.

Two beams, defined again by Eq. (23), were used to record the fluorescence change in all ROIs. At time t = 0
we recorded a z-stack using 1000 slices (from −25µm to 25µ in steps of 0.05µm), assuming no axial motion of the
sample, ∆z(0) = 0. The recorded z-stacks are shown in Fig. 3B. Note that the activity during the z-stack acquisition
is higher around the ROI 16. The algorithm can estimate and correct the axial motion with arbitrary activity Ai(0) in
the z-stack.

After defining the stacks, the intensities at time t in two simultaneous planes for each ROI i are simulated, I1,i(t)
and I1,i(t), with changing axial position and ROI activity. The intensities in each plane are sampled from a Gaussian
distribution, given by Eq. (26), where the mean values µ1,i(t) and µ2,i(t) are computed using Eq. (28).

To estimate axial motion of the sample, ∆z(t), we computed the value of the log-likelihood function in Eq. (35)
at all 1000 z positions of the stacks, at any time t, using a time window of size σt = 3. The estimated axial motion is
then obtained by the slice in the z−stacks, ẑ(t), that maximizes the log-likelihood function. The first row of Fig. 3C
shows the estimated compared to the actual axial motion during the simulation, while the estimation error, computed
by Eq. (38), is shown in the second row of Fig. 3C.

Next we corrected the measured intensities from each beam and each ROI using the estimated axial motion
and Eq. (39). The change in fluorescence of the corrected intensities, corrected ∆F/Fi(t), is computed using Eq.
(41) and shown in Fig. 3C, fourth row. This is compared with the actual ∆F/Fi(t) (Fig. 3C, fifth row), which is
computed as:

actual ∆F/Fi(t) =
Ai(t)−A0

i

A0
i

, (46)
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where A0
i is the baseline activity of each ROI i, obtained from the average of the 10% lowest values of A(t). Fig.

3C, third row, shows the change in fluorescence measured without motion correction. This measured ∆F/Fi(t) is
obtained by the following Eq.:

measured ∆F/Fi(t) =
1
2

( I1,i(t)− I0
1,i

I0
1,i

+
I2,i(t)− I0

2,i

I0
2,i

)
, (47)

where I0
1,i and I0

2,i are the baseline measured intensities for each beam, obtained by the mean value of the 10% lowest
values of I1,i(t) and I2,i(t), respectively. These baseline values are affected by axial motion and therefore changes
in fluorescence appear much larger (Fig. 3C, third row) when the sample is out of focus due to the resulting low
intensities. Further, the corrected ∆F/F is larger than the actual ∆F/F (Fig. 3, fourth and fifth row). This is due to
noise in the measurements, which produces lower baselines values, F0

1,i and F0
2,i. These lower values follow from

averaging over the lowest 10% values of the corrected intensities (see for example Fig. S2B) instead of taking the
mean value of the distribution.

Simulation for motion estimation and correction with four simultaneously recorded focal planes
Here, we extend the motion correction algorithm to four beams using simulations. For simplicity we consider only a
single ROI. The ROI density is defined again by Eq. (20). Four different Gaussian beams are defined, according to
the following equation:

g j(z) =C je−(z−d j)
2/(2σ2

j ) for j = 1,2,3,4, (48)

where C1 = 1,C2 = 1.5,C3 = 2 and C4 = 0.5 are the maximum beam powers, and σ1 = 3, σ2 = 3, σ3 = 2 and σ4 = 3
are the beam widths (standard deviations) along the z-axis. Each beam is offset from the previous one by 3.33µm
(d1 =−5, d2 =−1.67, d3 = 1.67 and d4 = 5). The beam profiles, as well as the ROI densities, are shown in Fig.
S3A, first row.

First, a stack is recorded by continuously moving each beam long the z axis, from −25µm to 25µ in steps of
0.05µ . The stack obtained for each beam is shown in the second row of S3A. We assume that the ROI undergoes
axial motion over time, defined by Eq. (21), while its activity changes according to (22). We ran the simulation for a
total of 1000 milliseconds using forward Euler with a time step of dt = 0.001. Both activity and axial motion of
the ROI are shown in the first row of Fig. S3B. At each time step t each beam recorded intensity from the sample
according to the following equation:

I j(t) = A(t)G j(∆z(t)) for j = 1,2,3,4 (49)

where the functions G j(∆z(t)) represent the integration of the excitation of each beam j at the ROI density. The
intensities recorded by each beam are shown in the second row of Fig. S3.

To estimate the axial motion of the ROI, we extended the cost function for two beams (Eq. 14) and defined the
following cost function for four beams:

J(4)L2
(z, t) =

∫
∞

−∞

f (t ′−t,σt)

[
α12

(
I1(t)
I2(t)

−
Istack
1 (z)

Istack
2 (z)

)2

+α23

(
I2(t)
I3(t)

−
Istack
2 (z)

Istack
3 (z)

)2

+α34

(
I3(t)
I4(t)

−
Istack
3 (z)

Istack
4 (z)

)2]
dt ′,

(50)

where f (t ′− t,σt) is the Gaussian kernel defined by Eq. (15), and the parameters α12, α23 and α34 are computed at
each time step t defined as:

α jk =

{
1 if I j(t), Ik(t)> Ith
0 otherwise,

(51)
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Figure S1. Example of two different ROI functions. A ROI function defined by Eq. 3, where the activity A
modulates heterogeneously the function along the z-axis. Such modulation can not be corrected with the developed
algorithm. B ROI function defined by Eq. 7, where the activity A homogeneously modifies the ROI function along
the z-axis. An underlying assumption of the algorithm is that activity is modulated in such a homogeneous fashion
from baseline.

where Ith = 0.1 is a minimum intensity threshold. The parameters α jk are used to only take into account measured
intensities at t if the ROI is within the field of view of beams j and k. When the intensity recorded by one of the
beams is lower than Ith, the ROI is considered outside of the z-field of view of the beam and therefore its contribution
to the cost function of Eq. (50) is discarded by the α jk parameters.

We estimated the axial motion of the single ROI by finding the slice in the stacks, ∆z(t), at any time step t, that
minimized the cost function (50). Both the estimated and actual axial motion are shown in Fig. S3B, third row. The
cost function error, shown Fig. S3B, fourth row, is given by the value of the cost function evaluated at the estimated
axial motion, J(4)L2

(∆z(t), t).
Finally, the intensity of each beam is corrected using the following expression:

Icor
j (t) =

I j(t)
Istack

j (ẑ(t))
for j = 1,2,3,4 (52)

and the corrected fluorescence change, ∆F/F is computed from the corrected intensities:

∆F/F(t) =
1
4

4

∑
j=1

( Icor
j (t)−F0

j

F0
j

)
for j = 1,2,3,4, (53)

where F0
j is the baselines of the intensity Icor

j , computed from the average of the 10% lowest values of Icor
j (t) for

beam j = 1, ...,4. The last row of Fig. S3B shows the corrected, actual, and measured ∆F/F . The actual ∆F/F is
computed according to Eq. 24. The measured ∆F/F is the fluorescence change that would be measured assuming
no motion correction, given by:

measured ∆F/F =
1
4

4

∑
j=1

I j(t)− I0
j

I0
j

, (54)

where I0
j is the baseline measured intensity, obtained by the mean value of the 10% lowest values of I j(t) for each

beam j = 1, ...,4.
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Figure S2. Distributions of fluorescence changes for ROI 1 in the experiment shown in Fig. 4. A Distribution of
the measured ∆F/F for ROI 1. This distribution is affected by axial motion. The distribution of the measured ∆F/F
for ROI 1 is not Gaussian due to the axial motion B Gaussian distribution of the corrected ∆F/F for ROI 1. Since
the fluorescence baseline is calculated from the average of 10% lowest values, the mean of the distribution of
corrected ∆F/F is not centered around 0, as one would expect for GFP (no fluorescence changes).
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Figure S3. Simulation of a single moving voxel for a configuration with four temporally mulitplexed beams. A
Top row, ROI density at time t = 0 as well as the profiles of the four beams along the z-axis. Bottom row, stack of
the sample at time t = 0 obtained for each beam. B First row, left side: profile of the four beams along the z-axis.
Right side: activity and axial motion of the ROI over time. Second row: intensity measured with each beam over
time. Third row: estimated and actual axial motion of the ROI over time. Fourth row: cost function error evaluated
at the estimated axial position. Bottom row: measured, corrected and actual activity of the ROI over time.
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