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We investigate the appearance of resonances in three-body systems using pionless effective field
theory at leading order. The Faddeev equation is analytically continued to the unphysical sheet
adjacent to the positive real energy axis using a contour rotation. We consider both, the three-boson
system and the three-neutron system. For the former, we calculate the trajectory of Borromean
three-body Efimov states turning into resonances as they cross the three-body threshold. For the
latter, we find no sign of three-body resonances or virtual states at leading order. This result is
validated by exploring the level structure of three-body states in a finite volume approach.

I. INTRODUCTION

The search for few-neutron resonances and bound
states has a long history with ambiguous results [1, 2].
In this work we focus on the topic of three-neutron res-
onances, motivated by a controversial discussion of this
topic in the recent literature [3–10].

The first theoretical studies based on the analytical
continuation of the Faddeev equation in the 1970s us-
ing a Yamaguchi-type two-neutron (nn) interaction in
the 1S0 channel found no evidence for a three-neutron
resonance [11, 12]. Further experiments [13–16] and the-
oretical investigations [17, 18] did not satisfactorily re-
solve the situation. Theoretical studies using the com-
plex scaling method (CSM) in the 1990s indicated a pos-
sible three-neutron resonance with an unphysically large
width [19, 20]. These results were supported by Ref. [21],
extending Glöckle’s earlier work [11] to more partial-wave
channels for the nn interaction. However, subsequent
theoretical investigations based on the CSM and analyt-
ical continuation in the coupling constant (ACC), again
excluded a possible three-neutron resonance [22].

The interest in three-neutron resonances was revived
in 2016, when experimental evidence for a four-neutron
resonance was presented by Kisamori et al. [23]. A new
theoretical study of 3n and 4n systems suggested that a
three-neutron resonance might exist below a four-neutron
resonance [3], which was subsequently supported by other
work [7]. However, these results were criticized and led
to a controversial discussion [4, 6, 24]. Further studies
based on the Alt-Grassberger-Sandhas (AGS) equations
for transition operators [5] and response functions [8]
found no evidence of a three-neutron resonance. Hig-
gins et al. [9, 10] confirmed this further with calculations
in a hyperspherical framework. They pointed out that
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there is significant attraction compared to free neutrons.
However, because of the Pauli repulsion it does not lead
to a resonance but shows up as a clear enhancement in
the Wigner-Smith time delay. An overview of the theo-
retical and experimental situation was recently given in
Ref. [25].

This overall situation is our motivation to investigate
here the problem of three-neutron resonances using pi-
onless effective field theory (EFT) [26–29]. Because of
the relevance for Efimov states in ultracold atomic gases
[30, 31], we also apply our method to three-boson res-
onances. Pionless EFT provides a controlled, model-
independent description of few-body systems with large
two-body S-wave scattering length, based on an expan-
sion in the ratio of short- and long-distance scales (see
Refs. [32–35] for reviews). This description breaks down
for momenta of the order of the pion mass, but is ideally
suited to investigate the properties of low-energy neutron
systems. It allows for a model-independent assessment of
the resonance question which can be systematically im-
proved by calculating higher orders. In the scope of pio-
nless EFT, all higher-order corrections, including attrac-
tive P -wave channels, are perturbative. Thus we do not
expect higher-order corrections to alter the low-energy
resonance structure of the system.

In addition to an EFT framework, we need a method to
investigate the resonance spectrum in this theory. The
various methods for studying few-body resonances can
be separated into two classes: approaches which perform
calculations on the physical sheet for some form of un-
physical modification of the system (altered interaction
strength, adding an artificial trap), and approaches which
perform calculations directly on the unphysical sheet.
Both types of approaches have advantages as well as dis-
advantages. While the calculation on the physical sheet
is simpler, the analytical continuation to the unphysi-
cal sheet can be delicate or even questionable. Direct
searches of resonance poles on the unphysical sheet are
much more complex, both numerically and conceptually,
but generally lead to more robust results. This work uses
a combination of both approaches, with a primary focus
on direct calculations.
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For the latter, we use the well-known Faddeev formal-
ism [36], formulated in momentum space. Already 1964,
Lovelace proposed the method of contour rotation to ana-
lytically continue the Faddeev equation to the unphysical
sheets [37]. This formalism was extended independently
to general integration contours by Glöckle [11], as well as
by Möller [38–42]. Furthermore, these works introduced
a modified equation structure that is simpler to use. The
basic idea by Lovelace of a rotated contour was extended
by Pearce and Afnan and applied to several systems [43–
47]. We apply this formalism in this work and note that
it is conceptually equivalent to the CSM [48–52], which
performs a rotation in coordinate space.1

We complement our direct searches for complex reso-
nance energies by an alternative approach that falls some-
where in between the two classes of methods mentioned
above. Expanding upon early work for two-body sys-
tems [55–58], Ref. [59] established that energy spectra in
a periodic finite volume can be used to identify few-body
resonance states as avoided crossings of energy levels as
the size of the volume is varied. This method is based on
the Lüscher formalism [60–62], the key insight of which is
that the infinite volume S-matrix governs the spectrum
of a system in finite volume. An attractive feature of this
method is that it does not require any contour rotation or
modification of the interaction (although the finite vol-
ume bears some similarity to adding an artificial trap to
confine the system). It is therefore straightforward to ap-
ply, and Ref. [59] developed an efficient discrete variable
representation (DVR) to numerically calculate few-body
systems in periodic boxes. A drawback of the method is
that currently only resonance energies can be readily in-
ferred from the finite-volume spectrum, while extracting
information about widths requires further formal work.
For our use of the method here, this is however not a
concern.

This work is structured in the following way. In Sec. II,
we derive a Faddeev equation in partial-wave basis for the
three-boson and three-neutron system in pionless EFT at
leading order. The equation is then analytically contin-
ued to the unphysical sheet adjacent to the positive real
axis in Sec. III, using a rotation of the contour of integra-
tion. Sec. IV applies this formalism to the three-boson
and three-neutron system. For the three-boson system,
we calculate the resonance energy and width for a broad
range of negative scattering length and compare to re-
sults in the literature. We show that no three-neutron
bound state is possible and calculate the pole trajectory
on the unphysical sheet for a bound two-neutron sub-
system. Searching for resonance poles and virtual states
for an unbound subsystem up to the physical nn scatter-
ing length no indications for resonances or virtual states
are present. In Sec. V, we discuss the complementary

1 An alternative formulation of resonances is given by the Berggren
basis, which includes discretized resonance states explicitly in the
completeness relation [53, 54].

finite-volume formalism to extract resonance properties
from avoided level crossings in finite volume energy spec-
tra. No evidence of avoided level crossings is found, con-
firming the results from the previous section. Finally, a
summary and outlook are given in Sec. VI.

II. FADDEEV FORMALISM

Since we work in the Faddeev formalism, we follow
Refs. [63, 64] and use pionless EFT [26–29] to construct
an effective interaction potential,

Veff =

∞∑

n=2

Vn , (1)

where the index n specifies a n-body potential. In gen-
eral, interaction terms up to n = N contribute in a N -
body problem, but at low energies higher-body terms are
typically suppressed. The potentials Vn are constrained
by Galileian invariance and thus depend only on the rel-
ative momenta. They can be expressed in a momentum
expansion, e.g.,

〈k′|V2|k〉 = C0 + C2(k′
2

+ k2)/2 + . . . (2)

for S-wave two-body interactions, where k and k′ are
the relative momenta in the initial and final state and
regulator functions have been suppressed. Similar ex-
pressions can be derived for three- and higher-body in-
teractions. At leading order in pionless EFT, only a
momentum-independent two-body contact interaction in
the 1S0 channel contributes for the three-neutron system
[65, 66]. In the three-boson system, in contrast, both a
momentum-independent two-body and three-body con-
tact interaction have to be included to properly renor-
malize the system [67, 68]. Assuming typical momenta
of order 1/a, the uncertainty of a leading-order pion-
less EFT calculation can be estimated as |r/a|, where
r is the effective range and a the scattering length. For
the three-neutron system, we have a ≈ −18.9 fm and
r ≈ 2.7 fm [69], such that a leading-order calculation has
an uncertainty of about 15%. Thus the higher-order cor-
rections are not expected to change the resonance struc-
ture of the system. The exact form of the effective poten-
tial depends on the specific regularization scheme used.
The low-energy observables, however, are independent
of the regularization scheme (up to higher-order correc-
tions) and one can choose a convenient scheme for prac-
tical calculations. Explicit forms for the effective poten-
tials will be given below. (For a more detailed discussion
of pionless EFT including a more formal discussion of the
power counting, we refer to the reviews [32–35].)

Our starting point for deriving the Faddeev equations
is the full relative three-body wave function |Ψ〉, defined
as a solution of the stationary Schrödinger equation. This
wave function is decomposed into the three so-called Fad-
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deev components |ψi〉 according to

|Ψ〉 =

3∑

i=1

|ψi〉 ≡ G0

(
3∑

i=1

V
(i)
2 + V3

)
|Ψ〉 , (3)

where i = 1, 2, 3 labels the three different pairs in the
three-body system. The above definition includes the
free Green’s function

G0(z) =
1

z −H0
, (4)

where z is an arbitrary (in principle complex) energy. H0

represents the relative kinetic part of the Hamiltonian

and the two-body pair interactions are given by V
(i)
2 .

Moreover, a three-body force V3 is included here as well
to keep the equation sufficiently general for the three-
boson and three-neutron systems.

Introducing the permutation operator

P = P12P23 + P13P23 , (5)

we are able to express the full state by only one compo-
nent

|Ψ〉 = (1 + P ) |ψ1〉 . (6)

The index 1 is dropped in the following.
Altogether, the leading-order representation of the

Faddeev equation is given by [70]

|ψ〉 = G0tP |ψ〉+
1

3
(G0 +G0tG0)V3 (1 + P ) |ψ〉 . (7)

The S-wave two-body interaction V2 is chosen as

〈k′|V2|k〉 = C0 〈k′|g〉 〈g|k〉 , (8)

with strength C0, k = |k| and k′ = |k′|. It is included via
the two-body T -matrix t which satisfies the Lippmann-
Schwinger equation. We use a Gaussian type regulator
function

〈p|g〉 = g(p) = exp
(
−p2/Λ2

)
, (9)

where Λ is the cutoff scale. This form is particularly
convenient for the analytic continuation of the formalism
into the complex plane. For the finite-volume calcula-
tions discussed in Sec. V, we will also consider super-
Gaussian regulators, which fall off faster at large mo-
menta, to improve the convergence.

The three-body potential is parameterized as

V3 = D0 |ξ〉 〈ξ| , (10)

with the interaction strength D0 and the three-body reg-
ulator |ξ〉. We again choose a (separable) Gaussian reg-
ulator function, connected to the two-body regulator by

〈u1u2|ξ〉 = ξ(u1, u2) = g(u1)g

(√
3

2
u2

)
, (11)

where

u1 =
1

2
(k1 − k2) ,

u2 =
2

3

[
k3 −

1

2
(k1 + k2)

]
,

(12)

are three-body Jacobi momenta. Here, u1 represents the
relative momentum between the first two particles, while
the relative momentum between the third particle and
the center of mass of the first two particles is given by
u2. The relative kinetic energy of the three-body system
is given by

H0 |u1u2〉 =

(
u2

1 +
3

4
u2

2

)
|u1u2〉 . (13)

Here and in the following, we set m = 1 such that en-
ergy and momentum squared have the same units. To-
gether with the appropriate angular momentum, spin,
and isospin quantum numbers, which are summarized in
the multi-index |i〉, we define our basis as |u1u2i〉.

This work uses a LS coupling scheme, for which the
set of quantum numbers is given by

|i〉 = |(ls)j(λs3)IJ〉 , (14)

with the relative orbital angular momentum l between
the first two particles and the orbital angular momentum
λ relative to the third particle. s is the coupled spin of the
first two particles, which couples with l to j. Similarly,
the spin of the third particle s3 couples with λ to I, which
itself is coupled with j to the total angular momentum J .

We now derive the equations for both the three-
neutron and three-boson systems in parallel. For defi-
niteness, we consider a system of three spinless bosons,
where

|i〉 = |(00)0(00)00〉 . (15)

In the case of the three-neutron system, we suppress
the isospin quantum number 3/2, while the three-body
force is absent because the Pauli principle precludes
a momentum-independent contact three-neutron force.2

To leading order in pionless EFT, only S-wave two-body
interactions contribute. We consider the basis states

|i〉 =

∣∣∣∣(00)0(1
1

2
)
3

2

3

2

〉
, (16)

and

|i〉 =

∣∣∣∣(00)0(λ
1

2
)
1

2

1

2

〉
, (17)

for the cases λ = 0, 1. As will be shown below, the Fad-
deev equations for λ = 1 are the same and will be investi-
gated simultaneously. In all cases, the Faddeev equations

2 Three-neutron forces including derivatives would be permitted,
but they only enter at higher orders in the EFT power counting.
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reduce to a single channel, and consequently the index i
will be dropped in the following.

Now we are able to derive the three-body partial-wave
projected Faddeev equation by projecting (7) onto the
single-channel basis. We exploit that the free Green’s
function G0 is diagonal in all variables,

〈u′1u′2|G0(E)|u1u2〉

= G0 (E;u1, u2)
δ (u′1 − u1)

u′1u1

δ (u′2 − u2)

u′2u2
,

(18)

with

G0(E;u1, u2) =

(
E − u2

1 −
3

4
u2

2

)−1

. (19)

The two-body t-matrix can be written as

〈u′1u′2|t(E)|u1u2〉

= g(u′1)τ (z) g(u1)
δ(u′2 − u2)

u′2u2
,

(20)

with the energy of the first pair of particles z = E− 3
4u
′2
2 .

Within the EFT formalism τ describes the propagation
of an interacting two-particle state, commonly called a
“dimer.” Following this convention, we refer to τ as the
dimer propagator. Together with the explicit represen-
tation of the three-body interaction (10), the Faddeev
equation can be written as

ψ (u1u2) = G0 (E;u1, u2)

[∫ +1

−1

dx

∫
du′2u

′2
2 g(u1)τ

(
E − 3

4
u2

2

)
g(π1)G(u2u

′
2x) 〈π2u

′
2|ψ〉

+D0

∫
du′1u

′2
1

∫
du′2u

′2
2 ξ(u′1, u

′
2) 〈u′1u′2|ψ〉

{
ξ(u1, u2) + g(u1)τ

(
E − 3

4
u2

2

)

×
∫

du′′1u
′′2
1 ξ(u′′1 , u2)G0 (E;u′′1 , u2) g(u′′1)

}]
.

(21)

Note that the factor 1 +P within Eq. (7) cancels against
the factor 1/3. Here we have used the matrix element of
the permutation operator

〈u′1u2|P |u′′1u′′2〉

=

∫ +1

−1

dx
δ(u′1 − π1)

u′21

δ(u′′1 − π2)

u′′21

G(u2u
′′
2x) ,

(22)

with

π1 =

√
u′′22 +

1

4
u2

2 + u2u′′2x , (23)

π2 =

√
1

4
u′′22 + u2

2 + u2u′′2x . (24)

In general, the recoupling function G(u2u
′′
2x) depends on

both momenta and angular quantum numbers. Besides
the two-body t-matrix, it is this term that mainly incor-
porates the information about the quantum numbers of

the system. It reduces to the Legendre polynomial P0 for
the three-boson system,

G3b(u2u
′′
2x) = P0(x) = 1 , (25)

and to a constant times a Legendre polynomial for the
three-neutron system,

Gλ3n(u2u
′′
2x) = −1

2
Pλ(x) , (26)

for λ = 0, 1. Finally, the dimer propagator τ can be
written as

τ(z) =

[
1

C0
− I(z)

]−1

, with

I(z) = 〈g|G0(z)|g〉 =

∫ ∞

0

dq q2 g(q)g(q)

z + iε− q2
.

(27)

Solving the integral I(z) analytically results in

τ(z) =
2

π

[
γ exp

(
2
γ2

Λ2

)
erfc

(√
2|γ|
Λ

)
+ i
√
z exp

(
−2

z2

Λ2

)
erfc

(
∓i
√

2z

Λ

)]−1

=
2

π

[
γ + i

√
z +O

(
Λ−1

)
]−1

.

(28)

The upper (lower) sign corresponds to the case Im z > 0 (Im z < 0), while erfc(z) represents the complementary
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error function,

erfc(z) = 1− erf(z) =
2√
π

∫ ∞

z

dt e−t
2

. (29)

The representation in the first line of Eq. (28) includes
finite-range contributions induced by the finite cutoff Λ.
The expressions in the first and second line are equivalent
in the limit Λ −→∞. Within this work we use the repre-
sentation in the second line because it provides a simpler
analytic continuation to complex resonance energies. We
renormalize the dimer propagator by choosing C0 to re-
produce a pole in the two-body subsystem at

√
z = iγ.

For positive γ, we reproduce a two-body bound state at
E2 = −γ2 = −1/a2, with the two-body binding momen-
tum γ and the scattering length a. For negative γ, we
reproduce the corresponding virtual state.

Finally, since we are working with separable interac-
tions, it is convenient to transform the Faddeev equations
by defining

ψ(u1, u2) = G0(E;u1, u2)g(u1)τ

(
E − 3

4
u2

2

)
F (u2) ,

(30)
where F (u2) is the so-called reduced Faddeev compo-
nent. Instead of the full Faddeev component the reduced
component only depends on one momentum variable re-
ducing the numerical effort to solve the problem.

A. Three-boson equation

Combining all contributions presented above, the Fad-
deev equation representing the three-boson system is
given by

F (u2) =

∫
du′2 u

′2
2 τ (z) (Z2 + Z3)F (u′2) . (31)

In analogy to the Lippmann-Schwinger equation, we de-
fine a two-body interaction kernel

Z2 =

∫ +1

−1

dx g(π1)G0(E;π2, u
′
2)g(π2) (32)

with z = E − 3
4u
′2
2 and three-body interaction kernel

Z3 =
D0

C0
g

(√
3

2
u2

)
g

(√
3

2
u′2

)
I

(
E − 3

4
u′22

)
. (33)

While Z3 arises from the three-body force, Z2 is the con-
tribution from the one-particle exchange.

B. Three-neutron equation

Finally, we adapt the equation to the three-neutron
system. Due to the Pauli principle only an S-wave nn
interaction in the 1S0 channel is possible. The exact value

of the nn scattering length is still debated, but the cur-
rently accepted value is (−18.9± 0.4) fm [69]. The third
neutron is to be assumed in a relative P -wave in accor-
dance with previous studies. This results in the possible

states Jπ = 1
2

−
and 3

2

−
, which are degenerate in leading-

order pionless EFT. The corresponding Faddeev equation
reads

F (u2) = −1

2

∫
du′2u

′2
2

∫ +1

−1

dx g(π1)G0(E;π2, u
′
2)

g(π2)P1(x)τ

(
E − 3

4
u′22

)
F (u′2) .

(34)

In contrast to the three-boson system, the three-neutron
system features no three-body force at leading order.
This is taken into account by setting D0 to zero.

III. ANALYTICAL CONTINUATION: METHOD

Due to the square root connection between the energy
and the momentum variables, two points in the complex
momentum plane are mapped onto a single point in the
complex energy plane. This mapping is made unique
by introducing a two-sheet structure for the energy vari-
able. Solving the Faddeev equations for the three-body
system, it is straightforward to search for bound states
located on the first (or “physical”) sheet of the complex
energy plane. In this work, however, we are interested in
resonances and virtual states, which live on the second
(“unphysical”) sheet.

The procedure described in the following assumes a
three-body system of identical particles, for which the
two-body subsystems are not bound. It can easily be ex-
tended to bound subsystems by considering the complex
energy and momentum planes relative to the two-body
threshold. We note that the formalism can also be ap-
plied to systems of non-identical particles. This leads to
a more complicated sheet structure due to further thresh-
olds. In this work, however, we need not deal with this
complication.

We start at a three-body bound state E(0) for an (un-
physical) scattering length a(0) > 0 and investigate the
pole trajectory in the complex momentum plane as a
function of the scattering length. In systems of ultracold
atoms, these trajectories can be followed experimentally
using Feshbach resonances [71]. Figure 1 shows a sketch
of such a trajectory in the relevant region of the complex
momentum plane.

A characteristic point of this trajectory is the origin,
which corresponds to a so-called branch point. Two
sheets are connected by a branch cut, which is spanned
between two branch points. The first method used in this
paper to search for resonances is to analytically continue
the Faddeev equations derived in the previous chapter
through this cut onto the adjacent unphysical sheet.

In the Faddeev equations a cut can originate from ei-
ther of two characteristic structures in the kernel: On the
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Re(k)

Im(k)

2 2-body sheet

3 3-body sheet

Re(E)

Im(E)

Re(E)

Im(E)

2 + 3

3

2

3
2

physical sheet

unphysical sheetsp̄
virtual
states

Ē

virtual
states

−B2

bound
states

−B2

bound
states

Figure 1. The structure of the complex momentum and energy plane for three particles defined by the energy-momentum
relation E = 3

4
k2 − B2, where B2 is the two-body binding energy. Energies on the physical sheet (upper right plot) translate

to momenta on the physical part of the momentum plane with Im(k) > 0 (shading ). Energies on the unphysical sheets
(lower right plot) are mapped to the region of the complex momentum plane with Im(k) < 0 (shading ). The physical
and unphysical sheets are connected by two branch cuts; the three-body cut starting at the origin and following the positive
real axis and the two-body cut starting at the two-body binding energy B2 ( ) and following the real axis, too. The complex
energy plane shows two unphysical sheets, the one accessible through the cut starting at the two-body threshold (2-body sheet,
darker shaded) and the one accessible through the three-body threshold (3-body sheet, lighter shaded). Both unphysical sheets
extend further than sketched here. While bound states are located on the physical sheet, virtual states and resonances p̄/Ē live
on the unphysical sheets. This is also true for the corresponding areas on the complex momentum plane. The pole trajectories
as a function of the two-body interaction strength of the three-boson system (a < 0, dashed lines) and three-neutron system
using the Yamaguchi model (solid lines) are sketched. Starting at a given bound state and decreasing the two-body interaction
strength the three-boson system moves through the three-body branch point, as the two-boson system is unbound, and evolves
into a resonance. The Yamaguchi model allows to create a bound two-neutron subsystem, of which the binding energy decreases
slower than the three-neutron binding energy. At some point both values are equivalent and the pole trajectory moves through
the two-body cut onto the unphysical sheet. Finally, the two as well as the three-neutron pole trajectory meet again at the
origin. Note that the position of the two-body branch point depends on the two-body interaction strength. So its position is
different for every point along the pole trajectory.

one hand, there is the dimer propagator, Eq. (28). This
square-root branch cut is not relevant for this work as it
is only present for bound two-body subsystems. On the
other hand, the kernel includes the one-particle exchange
contribution given in Eq. (32). The relevant structure is
the free Green’s function

G0(E;π2, u
′
2) =

[
E − u2

2 − u′22 − u2u
′
2x
]−1

. (35)

It generates a branch cut, the so-called three-body cut,
between the branch point at the origin (u2 = u′2 = 0)
and the second branch point at infinity in the limit
u2, u

′
2 −→ ∞. Applying the partial-wave projection by

integrating over x results in a logarithmic structure. Sim-
ilar to the square root, the complex logarithm is a mul-
tivalued function: it does not change if an integer mul-

tiple of 2πi is added to its argument. Therefore, this
branch cut leads to an infinite number of unphysical
sheets. Physically, only the one adjacent to the lower
rim of the physical sheet is relevant as it affects measur-
able quantities such as the cross section.3

Assuming the pole moves through the cut onto the
physically relevant unphysical sheet, we have to analyt-
ically continue the Faddeev equations to momenta with
a negative imaginary part and a positive real part, i.e.,
to complex momenta in the lower right quadrant of the

3 Note that the regulator can generate also an artificial cut. How-
ever, the contact interaction with separable Gaussian regulator
used here does not generate any singularities.
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Re(k)

Im(k)

p̄

Re p̄

Im p̄

Φ ϕ

Figure 2. The part of the unphysical region adjacent to the
three-body cut, which is available if the angle of rotation is
chosen to be ϕ. The angle has to be larger than the angle Φ
of a possible state p̄ on that sheet.

complex plane. The analytical continuation is based on
the general idea of writing down a Faddeev-like equation
with a contour of integration on the unphysical sheet.
This procedure moves the location of the cut and thereby
makes part of the second sheet accessible via the stan-
dard Faddeev equation, i.e., an equation that is formally
the same as before except that the integral runs along
the contour in the complex plane. Using this equation,
all poles, which are located between the rotated contour
(which coincides with the rotated branch cut) and the
positive real axis can be identified. Generally, there are
an infinite number of possible contours. However, it is
sufficient in practice (and convenient) to use just one
particular type of contour, which was first applied to this
problem by Pearce and Afnan [43]. The contour is con-
structed by rotating the integral from the positive real
axis, [0,∞), into the lower right quadrant,

u′2 −→ u′2 e
−iϕ, ϕ > 0. (36)

The benefit of this contour is that it is rather simple
and characterized by only one parameter, the rotation
angle ϕ.4 This angle has to be chosen such that the
cut is rotated beyond the position of the state of interest
(c.f. Fig. 2). This statement is equivalent to the condition

ϕ > Φ = arctan

∣∣∣∣∣
Im p̄

Re p̄

∣∣∣∣∣. (37)

The key requirement of this formalism is that the ker-
nel of the Faddeev equation is analytic within the mo-
mentum region covered by the contour rotation. First,
we have to show that these type of contours can be used
without encountering a singularity. As explained be-
fore, we here need only take into account poles of the

4 In principle this contour should be constructed by rotating a
finite interval (say, [0,Λ]) and then closing it towards the real axis
at the end point. However, we assume here that the contribution
from the arc becomes irrelevant in the limit Λ → ∞.

one-particle exchange contribution. Considering the mo-
mentum plane of the integration variable u′2, we choose
momenta u2 along the contour of integration for a fixed
energy E. This results in two areas the kernel is not an-
alytic in [11]. The general procedure is to start with an
energy on the physical sheet and show that the contour
of integration can be deformed in such a way that eventu-
ally the interesting part of the unphysical sheet becomes
accessible without hitting any one of the singular areas.
This process takes place in repeated steps. First, the
contour is rotated as far as possible. Then, the energy is
moved as far as possible, too. These steps are repeated
as often as necessary.

Further, we have to require that the momentum of the
first pair of particles k is continuous within the momen-
tum plane. Again, we start at a bound state E(0) < 0 on
the physical sheet. So, we apply the three-boson or three-
neutron Faddeev equation with the integration contour
along the positive real axis (u′22 ∈ R+). Here, k is defined
by

k =
√
z =

√
E − 3

4
u′22 + iε

= i

√
−E +

3

4
u′22 − iε .

(38)

Both representations of the square root are equivalent
and the iε term is explicitly needed to determine the
correct branch.

Now, we move to the unphysical sheet of interest with
E, u′22 ∈ C and ImE, Imu′2 < 0. Here, the iε is not
necessary anymore and we drop it. So, also the two rep-
resentations are not equivalent anymore. Choosing u′2
along the contour of integration and E within the fourth
quadrant of the complex energy plane where the reso-
nances live, we have to check that k does not cross any
cut. This is only the case for one of the two represen-
tations. Choosing ϕ = Φ the argument of both repre-
sentations crosses the real axis at the origin. As men-
tioned above, we choose ϕ > Φ. So, the argument of the
first representation crosses the real axis at positive real
parts, while the second representation crosses the axis at
negative imaginary parts. The complex square root is
a two-branched function. Both branches are connect at
the negative real axis. The second representation would
cross the square-root branch cut, while the first does not.
So, for energies in the fourth quadrant we have to use the
first representation. A similar investigation shows that
also for energies in the third quadrant the first repre-
sentation is the one to use. Note, that these statements
are only correct for an unbound two-body subsystem. If
the subsystem is bound we have to consider the energy
plane which is shifted by the two-body binding energy.
This results in a dependence of the rotation angle on the
two-body binding energy.

Altogether, the analytically-continued Faddeev equa-
tion for the three-boson system is given by Eq. (31) with
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τ given by Eq. (28) and the contour rotation Eq. (36),

F (u2e
−iϕ) =

∫
du′2 u

′2
2 e
−3iϕ τ (z)

(Z2 + Z3)F
(
u′2e
−iϕ) .

(39)

Applying the same modifications to Eq. (34), the
analytically-continued three-neutron equation for λ = 1
is given by

F (u2e
−iϕ)

= −1

2

∫
du′2 u

′2
2 e
−3iϕF (u′2e

−iϕ)

∫ +1

−1

dx g(π1e
−iϕ)g(π2e

−iϕ)P1(x)

G0(E;π2e
−iϕ, u′2e

−iϕ)τ (z) .

(40)

The corresponding equation for λ = 0 is obtained by
substituting P1(x)→ 1 in Eq. (40).

Finally, let us add a remark on the solution of the Fad-
deev equations. The mathematical structure of the inho-
mogeneous Faddeev equation for the T -matrix is given
by a so-called Fredholm equation of the second kind.
On the physical sheet the kernel is hermitian and it can
be shown that the T -matrix can be expanded in a ba-
sis given by the reduced Faddeev components. The co-
efficients of the expansion are proportional to one over
1 − λn, with the eigenvalues of the homogeneous Fad-
deev equation λn. This expansion was extended to non-
hermitian kernels by Afnan [44]. So, to find poles on the
unphysical sheet we have to search for eigenvalues equal
to one of the Faddeev equations for the reduced Faddeev
components along the rotated contour. The first step of
the procedure is now similar to the search for a bound
state on the physical sheet. We expand the kernel in
a momentum space basis derived by a Gauss-Legendre
mesh. Now, these momenta are substituted by the ro-
tated momenta. Here, also the weight in the integral
has to be transformed correctly. Following the expan-
sion, the next step would be to search for eigenvalues
equal to one as a function of the complex energy. How-
ever, mathematically equivalent, but numerically easier
and faster is the search for zeros of the characteristic
polynomial for eigenvalues equal to one. In comparison
to the search for a bound-state pole this corresponds to
a two-dimensional root finding. Mathematically, this is
much more advanced and it cannot be guaranteed that
the corresponding numerical routines will find all poles.
So, before applying the root-finding routines it is recom-
mended to plot the absolute value of the characteristic
polynomial as a function of the complex energy. This plot
largely depends on the numerical parameters used within
the derivation of the kernel matrix. The only physically
relevant part are the zeros, which are used as starting
values for the root-finding routines.

IV. ANALYTICAL CONTINUATION: RESULTS

We now discuss our results from the analytical con-
tinuation. First for the three-boson case, where we can
compare to previous studies of resonances to benchmark
our method, and then for the three-neutron case.

A. Three-boson system

The three-boson system for large scattering length ex-
hibits the so-called Efimov effect [30, 72]. It leads to a
universal spectrum of three-body bound states which is
illustrated in Fig. 3. There is a more general discrete scal-
ing symmetry which relates the trajectory of any three-
body bound state to all other states via the transforma-
tion

a −→ νna ,

E −→ ν−2nE ,
(41)

where n is an integer and ν ≈ 22.7 is the discrete scaling
factor. In the unitary limit (a −→ ±∞) the binding
energies of two consecutive states are connected by

En+1 = ν2En . (42)

Here, the counting starts at the deepest bound state ac-
cessible within the EFT. These discrete scaling symme-
tries are evident in Fig. 3. Similarly, it is possible to
connect the scattering lengths at which the pole trajec-
tory moves from the physical to the unphysical sheet by

a
(n)
− = νa

(n+1)
− . (43)

Further, the symmetry manifests itself in a log-periodic
behavior of the three-body observables. For convenience
we introduce a dimensionless coupling H(Λ) = D0/Λ

4.
We renormalize H(Λ) at γ = 0 such that the energy of
the shallowest three-body bound state keeps fixed when
varying the regulator scale Λ. This work uses two dif-
ferent renormalization prescriptions for H(Λ). On the
one hand, we choose a natural value for Λ and determine
H(Λ) to reproduce some three-body observable. On the
other hand, we choose Λ such that H(Λ) = 0 [73].

The numerical procedure is as described above. Fig-
ure 4 shows a contour plot of the characteristic polyno-
mial for an arbitrary scattering length along the contour.
The resonance is identified by the zero in the fourth quad-
rant. Based on the Efimov structure of the pole trajec-
tories we present our results in units of a−. Beside for
small Λ, where we cut off physically relevant momenta,
or for large Λ, where our theory is not valid anymore, all
Efimov states are located on top of each other using this
unit scheme.

This work is compared to the results by Bringas et
al. [74] and Deltuva [75]. Similar to this work, Bringas et
al. use a Faddeev equation and analytically continue it
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1
a

sign(Re E) ·
√
Re E

a
(2)
−a

(1)
−a

(0)
−

Figure 3. The so-called Efimov plot presenting the Efimov
effect. The x-axis presents the inverse scattering length, while
the y-axis shows the square root of the real part of the energy
multiplied by its sign. The dashed-blue line indicates the
binding energy of the dimer B2 = 1/a2. In the area right to
the dashed blue line the three-body system is unbound, while
the dimer is bound. Crossing the line, the three-body system

becomes bound too until a negative scattering length a
(n)
− is

reached. Here, the pole moves from the physical sheet (light
shaded) to the unphysical sheet adjacent the positive real axis
(dark shaded) becoming a resonance.

applying the rotation of the contour of integration. Del-
tuva solved the Faddeev equations for the transition op-
erators on the physical sheet and matched it to an expan-
sion of the transition operator into a power series near the
resonance pole. The derived pole trajectory is fitted by a
lowest- and a higher-order approximation. The results of
Bringas et al. and Deltuva are shown together with the
pole trajectory derived within this work in Fig. 5. We
only present one pole trajectory as both renormalization
prescriptions result in indistinguishable trajectories. All
results agree very well with each other.

A further comparison is possible to the results by Jon-
sell [76], who investigates the three-boson system using
a hyperspherical formalism together with the CSM. A
qualitative comparison shows a consistent behavior of the
pole trajectory with the results of this work.

B. Three-neutron system

After benchmarking our method for the three-boson
system, we focus on the three-neutron system. The eas-
iest way to analytically continue the Faddeev equation
would be to start with a bound-state pole on the physical
sheet for an unphysical value of the nn scattering length
as for the three-boson system. However, this method can-
not be applied for the three-neutron system in leading-
order pionless EFT because there is no three-body bound
state for any value of the scattering length a.

−0.5 0.0 0.5 1.0 1.5 2.0

Re E [MeV]

−2.0

−1.5

−1.0

−0.5

0.0

Im
E

[M
eV

]

10−4

10−3

10−2

10−1

Figure 4. The absolute value of the characteristic poly-
nomial for a scattering length a = −2.47 fm (chosen arbi-
trarily) on the unphysical sheet adjacent to the three-body
cut. The calculation is performed using a rotation angle
ϕ = 0.8 rad (45.84°). As a consequence the three-body cut
(dashed line) appears at an angle 2ϕ = 1.6 rad (91.67°) close
to the negative imaginary axis. The value where the charac-
teristic polynomial becomes zero is indicated by a star, which
corresponds to a three-boson resonance. Similar plots can be
created for the other scattering length values along the pole
trajectory.

This statement is based on the following argument:
The structure of Eq. (34) in the limit Λ → ∞ implies
that if there is no three-body bound state for a particular
value a of the neutron-neutron scattering length, there is
no bound state for any other value of a with the same
sign. This argument relies on the fact that for Λ→∞, a
is the only dimensionful parameter in the equation and
can be scaled out. The resulting dimensionless equation
then applies for any finite value of a with the same sign.
In the case of finite Λ, one can still exclude all physi-
cal bound states with energies well below the cutoff scale
|E| � Λ2. Finite range or other higher-order effects can-
not change this conclusion as long as they are perturba-
tive as stipulated by the power counting of pionless EFT.
Based on this argument, we have excluded three-neutron
bound states for λ = 1 and λ = 0.5

Since there are no bound states, we use a different
ansatz. Glöckle used the same Faddeev equation together
with a Yamaguchi model V2(p, k) = −κg(p)g(k), where

g(p) =
1

p2 + β2
(44)

is a formfactor [11]. Beside the interaction strength κ,
this formfactor implements a further scale β which in-
duces a finite range. Using both parameters together it

5 Higher values of λ were not considered explicitly, but we do not
expect any bound states there either.
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E
[ a
−

2
−
]

EFT
Bringas et al.
Deltuva (Lowest-order fit)

Deltuva (Higher-order fit)

Figure 5. Trajectories for the real (upper) and imaginary
(lower) part of the three-boson pole energies. The trajectories
are presented in units of a− such that the transition from the
physical to the unphysical sheet takes places at |a−|/a = −1.
The results derived in this work are compared to a calculation
using the formalism by Bringas et al. [74] and two fits by Del-
tuva [75]. The latter ones are only present on the unphysical
sheet. The pole trajectories presented here are equivalent to
the trajectory sketched in Fig. 1 (dashed trajectory) as well
as Fig. 3.

is possible to reproduce not only the scattering length,
but also the effective range re which is included non-
perturbatively. Keeping β fixed and increasing the inter-
action strength κ this allows to create a three-neutron
bound state. Now, we are able to perform a calcula-
tion analogous to the three-boson system. Starting at a
three-neutron bound state and reducing the two-neutron
interaction strength κ while keeping β fixed (increasing
the positive neutron-neutron scattering length) the pole
trajectory moves through the two-body cut onto the un-
physical sheet in the third quadrant of the complex en-
ergy plane. Decreasing κ further, the three- as well as the
two-neutron poles finally arrive at zero. Following the pi-
onless EFT power counting, we are able to reproduce this
trajectory next to the origin for a going to infinity.

Figure 6 shows the part of this trajectory close to the
origin together with LO EFT errors in comparison to the
results derived using the Yamaguchi model.

Now, we arrive at the interesting part of the pole tra-
jectory: an unbound two-neutron subsystem. Within

−10 −8 −6 −4 −2 0

Re(E) [MeV]

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Im
(E

)
[M

eV
]

17.2

7.1

4.9

4.0

17.2

7.1

4.9

4.0

EFT(/π)
Yamaguchi mod.

Figure 6. The pole trajectory of the three-neutron system
for positive scattering length in units of fm (indicated along
the trajectory) for a pionless EFT interaction together with
the LO error bands in comparison to a calculation using the
Yamaguchi model. The pole trajectory calculated using the
Yamaguchi model is equivalent to the trajectory sketched in
Fig. 1 (solid trajectory). While the pionless EFT calculation
only includes the scattering length the Yamaguchi model in-
corporates higher order effective range effects. The results are
presented in the complex energy plane. The lower half-plane
shows the unphysical sheet accessed through the two-body
cut. Within the region where EFT(/π) is valid, both trajecto-
ries agree within the EFT error indicated by the LO circles.

Ref. [11], the pole trajectory continues on an unphysi-
cal sheet which is different from the relevant unphysical
sheet next to the lower rim of the physical sheet. So,
the pole at the physical set of parameters is too far away
from the physical sheet and has no effect to observables.
To see if this is different using the Gaussian regulator, we
follow the explanation above and investigate the absolute
value of the determinant of 1 minus the kernel of Eq. (40)
in the complex momentum plane. A zero within this plot
would indicate a possible pole. This investigation is per-
formed for negative values of a starting at 0 fm up to the
physical value a ≈ −18.9 fm. Figure 7 shows an example
how these contour plots look like. Beside the expected
discretized cut structures resulting from the structure of
the equation no behavior that can be connected to a pole
is visible. So, using a Gaussian regulator we recover the
results of Ref. [11]. This outcome is also supported by
the power counting predicting that we should be able to
recover the results of the Yamaguchi type regulator for
large negative scattering lengths.
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Figure 7. A contour plot presenting the absolute value of
the determinant of one minus the kernel of Eq. (40) on the
unphysical sheet adjacent the three-body cut. This calcula-
tion was performed for a = −18.77 fm and a rotation angle
ϕ = 0.8 rad. Similar to Fig. 4, the three-body cut is visible at
an angle 2ϕ = 1.6 rad (91.67°) next to the negative imaginary
axis. A zero within this plot is equivalent to an eigenvalue
equal to one of Eq. (40), which itself corresponds to a pos-
sible physical state. So, this plot presents no evidence for a
possible three-neutron resonance.

V. FINITE VOLUME

Finite-volume calculations have been established in
Ref. [59] as a tool to identify few-body resonance states.
This approach goes back to the pioneering work of
Lüscher [61, 62], who first showed that properties of the
infinite-volume S-matrix, and therefore observables like
bound states and scattering parameters, are encoded in
how the discrete energy levels in a finite periodic box
change as the size L of the box is varied. Resonance
states are manifest as avoided crossings of energy levels,
which is well established for two-body systems [55–57]
and has been shown in Ref. [59] to carry over to the
few-body sector. We use here these findings, and in par-
ticular the discrete variable representation (DVR) as an
additional, independent tool to search for three-neutron
resonances.

A. Basic setup

The starting point for the DVR construction of states
in a periodic box with edge length L are plane-wave states
φj(x) with j = −n/2, · · ·n/2 − 1 for even n > 2, where
x denotes the relative coordinate describing a two-body
(N = 2) system in one dimension (d = 1). Any periodic
solution of the 1D Schrödinger equation can be expanded
in terms of the states φj(x), yielding a discrete Fourier
transform (DFT). Given a set of equidistant points xk ∈
[−L/2, L/2) and weights wk = L/n (independent of k),

DVR states are constructed as [77]

ψk(x) =

n/2−1∑

i=−n/2
U∗kiφi(x) , (45)

with Uki =
√
wkφi(xk) defining a unitary matrix. The

DVR is convenient for two main reasons:

1. For a local interaction, the potential operator
V reduces (approximately) to a diagonal matrix,
〈ψk|V |ψl〉 ≈ V (xk)δkl, where the quality of this
approximation is determined by the number n of
discretization points. This holds for any number d
of spatial dimensions and N interacting particles.

2. The kinetic energy K is not diagonal, but its form
is known analytically:

〈ψk|K|ψl〉 =





π2N2

6µL2

(
1 +

2

n2

)
, for k = l ,

(−1)k−lπ2

µL2 sin2
(
π(k − l)/n

) , otherwise .

(46)
For d > 1 or N > 2 the DVR representation of
K becomes a sparse matrix that can be calculated
very efficiently based only on the d = 1, N = 2
elements. Alternatively, as pointed out in Ref. [78],
one can exploit the relation of the plane-wave based
DVR to the DFT and evaluate the kinetic energy in
momentum space, but we find the direct calculation
more efficient for large-scale calculations.

The construction is straightforward to generalize to the
case of an arbitrary number of particles N and spatial di-
mensions d, starting from product states of (N − 1) × d
plane waves, one for each relative-coordinate component.
The transformation matrices and DVR basis functions
are defined via tensor products, and DVR states are la-
beled by a collection of (N − 1) × d indices. Using the
short-hand notation |ψk〉 = |k〉, a general state is written
as

|s〉 = |(k1,1, ··k1,d), ··, (kN−1,1, ··kN−1,d); (σ1, ··σN )〉 ,
(47)

where the σi denote the spin degrees of freedom. The
space spanned by all these states |s〉 is denoted by B. For
spinless bosons, σi = 0 for all i, whereas in general, for
particles with spin S, σi = −S, · ·S. Specifically, we have
here S = 1/2, d = 3 and N = 3 for the three-neutron
system we study.

Fore more details regarding the DVR setup we refer to
Refs. [59, 79] and further references cited therein, and
merely recall here that the overall strategy with this
method is to represent the N -body finite-volume Hamil-
tonian H = H0 + V , where H0 = K̂ is the relative ki-
netic energy operator and V denotes the sum of all in-
teractions among the particles, as a matrix in the space
spanned by the DVR states. Energy levels in the box
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are then obtained by calculating the spectrum (or more
specifically the lowest lying states in the spectrum) via
Lanczos/Arnoldi iteration.

B. Separable interactions

The DVR as described above is set up only to work
with local potentials. In order to study in finite volume
the same separable potentials as used for the momentum-
space calculation, we discuss in the following the appro-
priate extension of the DVR formalism. We start from
the definition of a general DVR state, Eq. (47), and ne-
glect for the moment the spin degrees of freedom.

Recall that projected onto coordinate space a state |s〉
is a product of one-dimensional DVR wavefunctions,

ψs(x) = 〈x|s〉 =
∏

i=1,··N−1
c=1,··d

ψki,c(xi,c) , (48)

where x is used to denote the collection of all relative
coordinates. Furthermore, let ψ(x) be a generic state
expanded in the DVR basis B,

ψ(x) =
∑

s∈B
csψs(x) . (49)

This could be an actual eigenstate of the Hamiltonian, or
any intermediate state vector that is encountered during
the Lanczos-based diagonalization of the Hamiltonian.
Either way, the {cs} is a finite vector of coefficients with
entries as introduced in Eq. (47).

Let us now consider a (rank-1) separable two-body po-
tential, generically written in coordinate space as

V2(x, x′) = C g(x)g(x′) , (50)

where C is the strength and |g〉 with 〈x|g〉 = g(x) is
the “form factor”. For simplicity we restrict the follow-
ing discussion to one spatial dimension since everything
carries over to d > 1 in a straightforward way. For a two-
body state, we have x = x1 ≡ x and |s〉 = |k〉 (a single
index describes the spinless 1D state), so that applying
V is straightforward:

〈s|V2|ψ〉 =

∫
dx

∫
dx′ ψ∗s (x′)V2(x, x′)

∑

s′∈B
cs′ψs′(x

′)

= C g(xs)
∑

s′∈B
cs′ g(xs′) .

(51)

We have used here the DVR property of the states, and
xs = xk is the location of the lattice point characterizing
the state |s〉. It follows that for this case, applying a
separable potential to a generic DVR state is very simple,
and the factorization property of the potential is directly
reflected in the end result.

For more than two particles one (in general) needs to
consider the separable potential (50) between all pairs

of particles. Since for each pairwise interaction the po-
tential only involves the relative coordinate of that pair,
appropriate delta functions need to be included for all
“spectator” particles that do not take part in the partic-
ular interaction. The way to do this consistently across
all pairs is to express these delta functions such that they
fix the position of the spectators relative to the center of
mass of the interacting pair (which amounts to a partial
transformation to a particular set of Jacobi coordinates,
similar to what is used in the Faddeev formalism dis-
cussed in the main text).

A minor complication arises from the fact that in a
periodic finite volume the center of mass of a cluster of
particles is not uniquely defined. This can already be
seen for two particles in one dimension: consider these
particles on a periodic interval from 0 to L residing at
positions x = 1 and x = L − 1, then both x = 0 and
x = L/2 are valid candidates for the particle’s center
of mass. Visualizing the periodic interval as a circle,
these two possibilities correspond to the middle points
of the two arcs that connect the particles. With increas-
ing number of dimensions and number of particles, the
set of candidates for the center of mass becomes larger.
Which one is chosen is arbitrary, but the choice has to
be consistent. To that end, for a configuration of A co-
ordinates C = {xi}Ai=1 we define the center of mass to
be that point that minimizes the sum of distances of all
particles measured with respect to the center of mass:

Rcm = arg min
R∈Scm(C)




A∑

j=1

dL(R,xj)
2


 , (52)

where Scm(C) is the set of all possible center-of-mass co-
ordinates for the given configuration C and dL measures
the distance between two points as the shortest path be-
tween them while accounting for the periodic boundary
condition.

Taking into account the spatial lattice nature of the
plane-wave DVR basis and noting that for an A-body
state on a lattice of extent n the center of mass falls onto
a lattice with extent nA [80], it becomes straightforward
to express the center of mass coordinate as an index in
an enlarged DVR space. For each given pair interaction
Vij , denoting a potential of the form (50) acting between
particles i and j, such an index is considered for each
spectator particle in order to include appropriate Kro-
necker deltas. Schematically, Eq. (51) becomes:

〈s|Vij |ψ〉 = N × C g(xs;ij)
∑

s′∈B
rs′;k,ij=rs;k,ij∀k 6=i,j

cs′ g(xs′;ij) . (53)

Here xs;ij denotes the relative distance (modulo the peri-
odic boundary) between particles i and j in configuration
|s〉 and rs;k,ij is the coordinate of particle k relative to the
center of mass of particles i and j as defined in Eq. (52),
for A = 2. The generalization to d > 1 is trivial, and
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only a minor technical complication arises from the fact
that the DVR states are expressed in relative coordinates.
For j = N one can directly work with the xi (or xi,c in
d > 1), whereas for other pairs one considers appropriate
differences of the xi that give the desired coordinate vec-
tor. The factor N = 2d(L/N)d/2 arises as normalization
from the integral over spectator coordinates.

Since the plane-wave DVR states we consider are
closely related to a DFT [78, 79], this is naturally the
tool to use for calculating matrix elements 〈s|Vij |ψ〉 when
the Vij are given in momentum space. To that end, one
considers two-body momentum modes

pj =
2πj

L
(54)

and, for the appropriate coordinate xs;ij as introduced
above, evaluates

〈s|g〉 =

n/2∑

k=−n/2
g(pk) exp(ipkxs;ij) . (55)

This equation is written for the one-dimensional case, but
it straightforwardly generalizes to d > 1. The consider-
ations about including appropriate delta functions to fix
the coordinates of the spectator particles relative to the
interacting pair’s center of mass remain exactly the same
and need not be carried out in momentum space.

The momentum-space implementation also makes it
particularly convenient to consider interactions that act
only in a single partial wave. The following considera-
tions can easily be generalized to arbitrary d, but we con-
sider here only the most relevant case d = 3. For spinless
particles, the projection is achieved by merely including a
factor |pk|lYlm(p̂k) in the three-dimensional generaliza-
tion of Eq. (55), where pk is a momentum mode in 3D
and Ylm denotes the spherical harmonic for angular mo-
mentum l and projection m.6 Note that since the DVR
uses a full three-dimensional model space (not decom-
posed into partial waves), a potential term needs to be
included for each m = −l, · · l. To include spin, one can
directly utilize the projection indices σk included in the
states (47). If the interaction is meant to act in a two-
body channel 2s+1lj , written in spectroscopic notation,
one includes a Clebsch-Gordan coefficient that couples
the individual particles spins to s (where the total pro-
jection is fixed to be σi +σj), and then another Clebsch-
Gordan coefficient that couples l and s to total angu-
lar momentum j. For this case, one has a potential for
each mj = −j, · · j, and all projection quantum numbers
in the Clebsch-Gordan coefficients are fully determined
by this, the spin projection, and the standard Clebsch-
Gordan selection rules. This means that there are no

6 Note that |pk|lYlm(p̂k) really is a solid harmonic in momentum
space.

extra sums required to carry out the partial-wave projec-
tion. In essence, this sum is the one appearing already
in Eq. (53).

For practical implementations it is desirable to avoid
complex arithmetic as much as possible. To achieve that,
it is convenient to work with real spherical harmonics in-
stead of the Ylm and replace in Eq. (55) the exponential
function with a cosine or sine for even and odd l, respec-
tively.

C. Results

For EFT applications it is convenient to express the
separable potential (50) in momentum space as

V2(q, q′) = C g(q)g(q′) , (56)

where g(q) is the Fourier transform of g(r), indicated only
by the argument for simplicity. In typical applications
the potential is often given directly in the form (56). We
pick here specifically a super-Gaussian form:

g(q) = exp
(
−q2n/Λ2n

)
. (57)

The Faddeev calculations discussed in Sec. II use this
form with n = 1. To ensure that our finite-volume
implementation of separable interactions is correct, we
have run bound-state benchmark calculations with such
simple Gaussian form factors for some selected poten-
tials. For the three-neutron results discussed in the fol-
lowing however we chose to work with n = 2 because this
regulator form provides a stronger suppression of high-
momentum modes, which helps to achieve converged cal-
culations in large boxes. We moreover chose a rather soft
cutoff scale Λ = 250 MeV for these calculations.

Results are shown in Figs. 8, 9, and 10 for a set
of different values chosen for the nn scattering length,
a = −18.9 fm, a = +18.9 fm, and a = +10.0 fm. This
is starting with a value at the physical neutron-neutron
scattering length (Fig. 8) and then gradually adjusts the
interaction to become more attractive. In particular, for
a = +18.9 fm (Fig. 9) and a = +10.0 fm (Fig. 10) the
interaction supports shallow dineutron bound states with
energy E2 = 1/(Mna

2). In the three-body spectrum we
can see the effect of the increasing attraction directly re-
flected in the fact that all energy levels get shifted down-
wards in going from Fig. 8 to Fig. 10. The comparison
of different DVR basis size (solid and dashed lines in the
figures) shows that we can achieve sufficiently converged
calculations in the energy range where three-neutron res-
onances have been speculated to exist. However, for none
of the values of the scattering length we consider we
see avoided level crossings in the spectrum or a plateau
shape in an individual energy level, which according to
Ref. [59] would indicate the presence of a resonance state.
Our finite-volume results thus confirm the findings of our
Faddeev calculations and we conclude that even with in-
creased attraction in the neutron-neutron S-wave inter-
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Figure 8. Finite-volume energy levels for three neutrons with
total spin S = 1/2 and negative parity, calculated assuming
a separable n = 2 super-Gaussian interaction tuned to repro-
duce a neutron-neutron scattering length a = −18.9 fm. The
solid (dashed) lines were obtained using N = 26 (28) mesh
points to construct the three-neutron DVR basis.
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Figure 9. Same as Fig. 8, except with the interaction tuned
to a neutron-neutron scattering length a = +18.9 fm.

action there is no support for a three-neutron resonance
state in the most likely channel.

VI. CONCLUSION AND OUTLOOK

In this work, we have presented a rigorous study of the
appearance of resonances in three-body systems. We first
use pionless effective field theory at leading order to write
down an effective interaction potential which may include
a three-body interaction. In the second step, we analyti-
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Figure 10. Same as Fig. 8, except with the interaction tuned
to a neutron-neutron scattering length a = +10.0 fm.

cally continue the Faddeev equation in momentum space
to the unphysical sheet adjacent to the positive real en-
ergy axis using a rotation of the integration contour. On
the unphysical sheet, we search for poles corresponding
to resonances and virtual states. This direct search for
resonance poles is complemented by an alternative finite-
volume method based on identifying avoided crossings of
energy levels as the size of the volume is varied. The
two methods have very different systematics and ideally
complement each other, although the latter method is
not suitable for virtual states.

We apply our framework to two types of systems: (i)
three bosons with large negative scattering length a and
(ii) the three-neutron system. Our study of three-boson
system also serves as a test case of our method. It is well
known that three-body Efimov states for a < 0 turn into
resonances as they cross the three-particle threshold. We
confirm the previous calculations by Bringas et al. [74]
and Deltuva [75] both qualitatively and quantitatively.
Moreover, our results are qualitatively consistent with
the pole trajectory of Jonsell [76]. The trajectories of the
Efimov resonances can be used to explain the behavior
of the three-body recombination rate of three spinless
bosons at low temperatures [76, 81].

The main motivation for our work is the suggestion
of a low-energy resonance or virtual state in the three-
neutron system [3, 7]. We can reproduce earlier calcu-
lations by Glöckle for a three-neutron Yamaguchi model
system with a strong attraction [11]. However, we do
not find any resonances for the physical case in the rele-
vant λ = 0 and λ = 1 orbital angular momentum chan-
nels both in the analytical continuation and finite-volume
framework. Using the analytical continuation method,
we also exclude a three-neutron virtual state. This result
agrees with several other recent theoretical studies [5, 8–
10] and rules out the possibility of a three-neutron reso-
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nance or virtual state at low energy. Although our result
is obtained in pionless EFT at leading order, we expect
it to hold also in the presence of higher-order interac-
tions. The higher-order terms, including the effective
range r0 and P -wave interactions, are purely perturbative
and cannot produce any new poles. Thus the existence
of a low-energy three-neutron resonance would also im-
ply the breakdown of pionless EFT in the three-neutron
system.

Obviously, our study does not address the question of
four-neutron resonances. Experimental evidence for such
a four-neutron resonance was recently presented in [23],
see also Ref. [25] for a current review of the field. We
leave this question for future work.

Finally, we stress that multi-neutron energy spectra
contain much interesting physics, even if multi-neutron
resonances are not observed in experiment. In Ref. [82],
e.g., it was pointed out that the multi-neutron spectra
for center-of-mass energies E in the range 1/(ma2) ≈
0.1 MeV � E � 1/(mr2

0) ≈ 5 MeV are determined by
conformal symmetry up an overall normalization. Con-
formal symmetry implies that the multi-neutron corre-
lation functions have only cuts but no poles, which is

consistent with our results for the three-neutron system.
The neutron spectra show power-law behavior with, in
general, fractional exponents determined by the scaling
dimension of the corresponding conformal field operators.
This is markedly different from weakly interacting par-
ticles. Neutron resonance experiments are ideally suited
to confirm this prediction.
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