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1 Calculating Confidence Interval via 14.7% Likelihood Region6

Our model is defined only for contamination within range 0 to 1. Therefore, when the maximum7

likelihood estimate ĉ for the contamination rate c is 0 the first derivative there might not be zero.8

In this case, we approximate the likelihood curve using quadratic interpolation. Specifically, let9

l(x) be the likelihood of the model at contamination rate c = x, then, for x close enough to 0, we10

have11

l(x) = l(0) + xl′(0) +
x2

2
l′′(0) + o(x2)

Using this approximation around 0 and ignoring the second order term o(x2), we then apply12

Newton’s method to find the solution of l(x) − 1.92 = 0. This is the so-called 14.7% likelihood13

region approach. Briefly, a p% likelihood region is defined as the set {θ ∈ Θ : L(θ)
L(θMLE) ≥ p

100}.14

When p = 14.7, then15

P

(
{θ ∈ Θ :

L(θ)

L(θMLE)
≥ 14.7

100
}
)

= P (θ ∈ Θ : −2(l(θ)− l(θMLE)) ≤ 3.835)

≈ P (χ2
1 ≤ 3.835) = 0.9498

The log of likelihood ratio −2(l(θ)− l(θMLE)) asymptotically approaches χ2
1 as a result of Wilk’s16

theorem. Therefore, the 14.7% likelihood region approximates the 95% confidence interval.17
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Note that L(θ)
L(θMLE) >= 0.147 is equivalent to log(L(θ))− log(L(θMLE)) ≥ −1.92. For full details,18

we refer to [Rossi, 2018, Definition 5.11].19

2 Additional Simulations20

Several parameters in our model need to be set, but the ideal values for those can often not21

be exactly determined for each use case. To assess the general robustness of contamination22

estimates, we performed under the model simulations, where we first generate data as assumed23

in our generative HMM model. Single parameters are altered around their default values to test24

our model under a variety of model mis-specifications, as described below.25

2.1 Default Simulation Settings26

Here we describe the default setting for the simulations. To create genotype data, we first27

copy haplotype blocks with miscoyping rate 1e−3 from TSI (Tuscany, Italy) haplotypes in the28

1000Genome Dataset (Phase 3, [Consortium et al., 2015]). A copied haplotype block is chosen29

randomly with equal probability from all reference haplotypes, with each copied segment hav-30

ing length drawn from an exponential distribution with mean length 1/3 centimorgan. At the31

end of each copied block, a new reference haplotype is chosen and copied from. Having sim-32

ulated a mosaic of reference haplotypes, for each marker i in the 1240k panel we then draw33

read counts from a Poisson distribution with mean equal to the target coverage multiplied by34

a weighing factor λi. This weighing factor models that in 1240k capture data some sites are35

systematically more likely to be covered than others. We obtain this weighting factor λi by36

comparing site coverage to genome-wide average coverages in all male samples in Olalde et al.37

[2019]. Contaminant sequences are then drawn according to the global allele frequency in the38

1000Genome dataset. To simulate sequencing genotype error, we flipped the genotype of every39

sequence to the other allele with probability 1e−2. As reference panel for inference, we used all40

1000Genome haplotypes excluding TSI samples.41

Using this above described default simulation scheme, we first simulated average coverage42

20x, 10x, 5x, 2x, 1x, 0.5x, 0.1x and 0.05x with contamination rate up to 25% and analyzed the43

simulated read counts with our implementation of hapCon. Reassuringly, we obtained accurate44
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estimates with little bias for all coverages and contamination rates tested here (Fig. S1), thereby45

confirming the correctness of our implementation in under the model simulations.46
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Figure S1: Performance on Simulated Read Counts Data at Various Coverages and Contami-
nation Rates. Data simulated under the model as described in the text.

2.2 Down-sampling Simulated Read Counts to Pseudohaploid Data47

In this simulation scenario, we randomly sampled one sequence for each marker covered by at48

least one sequence. This procedure simulates how the so-called pseudohaploid data is gener-49

ated from aDNA data. We note that, even though each site is only covered by one sequence, a50

high coverage sample will have more sites covered and therefore still contain more information51

than a low coverage sample. Our results show that our method produces robust contamina-52

tion estimates even for such pseudohaploid data (Fig. S2), which none of the existing male X53

chromosome contamination estimation tools can do. Compared with Fig. S1 where the full read54

counts data is used, the estimates obtained from pseudohaploid data only have minimal up-55

ward bias. In practice, we recommend using our method on read counts directly generated56

from a BAM file to make full use of all information, but this simulation of pseudohaploid data57

demonstrates the power of utilizing haplotype structure for estimating contamination.58
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Figure S2: Performance on Simulated Pseudohaploid Data at Various Coverages

2.3 Model Mis-specification59

2.3.1 Mis-specified Error Rate ϵg60

In practice, we estimate error rate ϵg from discordant sequences at sites flanking to the sites61

contained in the reference panel, as in Rasmussen et al. [2011], Moreno-Mayar et al. [2020].62

These sites are expected to be fixed; therefore, any discordant sequences reflect only sequencing63

error/mis-mappings/aDNA damage and not contamination. Suppose there are a total of L64

non-polymorphic sites in the reference panel and let Ml,ml denote the count of major and minor65

sequences at site l respectively. Then we estimate error ϵg by66

ϵg =

∑L
l=1 ml∑L

l=1 Ml +ml

This implicitly assumes that sites adjacent to markers in the reference panel are fixed, in-67

cluding the contamination source. We use four adjacent sites on either side of the polymorphic68

marker to estimate this error rate.69

When taking read counts from a BAM file, we only count sequences matching either the70

reference or alternative allele in the reference panel. Sequences that match neither of these two71

alleles are discarded. Therefore, we set ϵg
3 as the error parameter in our HMM model since ϵg as72
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estimated above captures the possibility of misreading a base to all three other bases. We note73

that this is an average approximation; for example, post-mortem damage preferentially produce74

C→T and G→A mismatches. However, explicit modeling of biased error rates is complex and75

case-dependent, here we aim for a simple model that empirically approximates a wide range of76

application scenarios.77

To evaluate how mis-specified error rate affects our method, we simulated 10% contamina-78

tion as described in Section 2.1 except that we varied the simulated error ranging from 1e−4
79

to 1e−2, evenly spaced on a log scale. We then estimated contamination rate when setting80

ϵg = 1e−3 for all simulated samples. This value is within the typical range of error rate esti-81

mates from empirical aDNA data.82

We observe moderate upward bias of contamination estimates when the specified error rate83

is substantially below the true error rate (Fig. S3). A plausible intuitive reason for this bias84

is that if the mismatches observed cannot be fully explained by error the method attributes85

mismatches to contamination. Importantly, we observe that bias remains on the same order of86

magnitude as the mis-specification of the error rate. In empirical aDNA studies the error rate87

is usually on the order of 1e−3, whereas one wishes to estimate contamination on the order of88

1e−2 or higher. Therefore, mis-specified error rate should not introduce relevant biases in most89

empirical analyses.90

2.3.2 Mis-specified Haplotype Copying Error Rate ϵr91

Some events such as mutations, gene conversions, or errors in the reference panel can cause92

sporadic genotype mismatches between the copied haplotype and the endogenous haplotype93

of interest. Therefore we use a copying error rate to model such mismatches. Following other94

methods that use Li&Stephens copying model[Rubinacci et al., 2021, Loh et al., 2016], we set95

1e−3 as the default copying error rate. To evaluate the effect of mis-specified copying error rate,96

we simulated 10% contamination as described in Section 2.1 except that we varied the miscopy-97

ing rate from 1e−4 to 1e−2, evenly spaced on a log scale. We then estimated contamination rates98

when setting ϵr = 1e−3 for all simulated samples.99

The results indicate that the contamination estimate is robust to mis-specified copying error100

rate (Fig. S4). Even in cases where the miscopying rate is 1e − 2, one magnitude higher than101
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Figure S3: Effect of Mis-specified Error Rate at Various Coverages

assumed, upward bias remains small. Similar to the case of mis-specified error rate discussed102

above, we observe that bias remains on the same order of magnitude as the mis-specification103

of mis-copying rate. In empirical data the error rate is usually on the order of 1e−3 − 1e−4,104

depending on the genetic distance between the endogenous haplotype and the modern haplo-105

types, whereas one wishes to estimate contamination on the order of 1e−2 or higher. Therefore,106

mis-specified mis-copying rate should not introduce substantial biases in empirical analyses.107

2.3.3 Mis-specified Haplotype Copying Jump Rate108

The haplotype copying jump rate models the rate of jumping to a different haplotype to copy109

from. Following Ringbauer et al. [2021], who described that ρ = 300 yields good performance110

for most modern human ancient DNA data when using Li&Stephens model for inferring ROH,111

we set ρ = 300 as the default value. We then assessed whether our model is robust with respect112

to a mis-specified jump rate. To do so, we simulated 10% contamination as described in Sec-113
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Figure S4: Mis-specified Haplotype Copying Error Rate at Various Coverages.

tion 2.1 except that we varied the jump rate from 100 to 1000, evenly spaced on a log scale. We114

then estimated contamination rate when setting the jump rate to ρ = 300.115

The results show that the estimated contamination remains unbiased for a wide range of116

simulated jump rates when using the default value ρ = 300 (Fig. S5). Only at high jump rates117

close to ρ′ = 1000, we observe some upward bias. This upward bias remains minimal at rela-118

tively high coverage (∼ 1x), only at lower coverage we observe moderate upward bias (∼0.5x or119

lower, Fig. S5b,c,d). That said, previous work showed that the estimated maximum likelihood120

haplotype copying jump rate never exceeds 800 in 344 ancient male X chromosomes examined,121

with the majority of them within range 300-600 [Biddanda et al., 2021, Fig. 7]. Therefore, we122

believe that ρ = 300 is a suitable default setting that performs well on the majority of ancient123

DNA data.124
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Figure S5: Effect of Mis-specified Haplotype Copying Jump Rate at Various Coverages.

2.3.4 Effects of Post-mortem Damage on Contamination Estimation125

Once an organism dies, its DNA begins degrading. In particular, the deamination process turns126

Cytosine into Uracil, which is then read as Thymine by the sequencing machine. This char-127

acteristic C→T damage pattern is widely used to verify the authenticity of aDNA module in128

sequencing libraries. The extent of this post-mortem damage is dependent upon a variety of129

factors, including sample ages, preservation conditions, and library preparations. Half-UDG130

and full-UDG treatment have been developed to turn Uracil back to Cytosine to reduce the131

level of post-mortem damage. Due to this unique deamination process, aDNA has elevated132

level of C→T error rates in the forward strand (and G→A error rates on the reverse strand133

for double-strand libraries); therefore, this constitutes a model mis-specification for our error134

rate where we assumed all twelve possible transitions and transversions are equally likely. In135

this section, we simulated various levels of post-mortem damage to evaluate how it affects our136

method’s contamination estimates.137
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We estimated empirical damage rates along the aDNA sequences using mapDamage2.0138

[Jónsson et al., 2013] on LaBrana (5982-5741 calBCE, double stranded library) [Lazaridis et al.,139

2014], Zlatỳ kůň ( 450,00BP or older, sample age estimated from Neanderthal introgression seg-140

ment length, single stranded library) [Prüfer et al., 2021] and Bacho Kiro CC7-335 (45,930-42,580141

cal BP, single stranded library) [Hajdinjak et al., 2021]. All three samples are non-UDG treated,142

therefore all C→T transitions accumulated over time are preserved during library preparation.143

The estimated misincorporation rates are summarized in Fig. S6. Only LaBrana is prepared us-144

ing the double stranded protocol, therefore only this sample shows the G→A pattern at the 3’145

end; for completeness, however, we visualized 3’ G→A rates for all three samples.146

We used B French-3 as the endogenous source and S French-1 as the contaminant. Both147

samples are from Simons Genome Diversity Project [Mallick et al., 2016]. We used Gargam-148

mel [Renaud et al., 2017] to add post-mortem damage to the sequences from the endogenous149

source using empirical C→T transition rates estimated from the BAM files of the three samples150

described above. We then re-aligned the damaged sequences to the reference genome hs37d5151

with BWA 0.7.17-r1198g using the parameter setting -n 0.01, -o 2, and -l 16500 commonly used152

for aDNA data. We down-sampled the BAM file of B French-3 and S French-1 and mixed them153

to create desired genome wide coverages and contamination rates.154

Our results indicate that, post-mortem damage leads to little bias for our contamination155

estimates (Fig. S7, S8, S9), even for data without any UDG treatment and with 5’ terminal C→T156

transition rate as high as 36.6% (e.g, in Bacho Kiro CC7-335).157

We also examined how different levels of post-mortem damage affect the parameter ϵg ,158

which is the error rate per aligned aDNA sequence base as described in the main text. This er-159

ror rate is intended to model several sources of errors, including sequencing error, post-mortem160

damage and mismappings. Therefore, the ϵg inferred from sites adjacent to the polymorphic161

sites increase with increasing levels of aDNA damage. Indeed, as shown in Fig.S10,S11 and162

S12, the estimated ϵg increases as the damage level increases. We note that in general the av-163

erage ϵg estimated at low coverage is the same as the average ϵg estimated at higher coverage.164

Specifically, we use a short red horizontal line to indicate the ϵg averaged over 100 replicates at165

5x coverage for each of the damage levels, and at low coverage we observe that the blue dots166

center around the horizontal red bar, but with higher variance at low coverages as expected.167
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Comparing the estimated ϵg at different contamination rates for each of the damage levels, we168

observe that it remains stable across contamination rates (see Table.S1), indicating that our as-169

sumption that the sites adjacent to the polymorphic sites are fixed (and thus also not altered by170

contamination) is reasonably valid.171
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Figure S6: Estimated post-mortem damage on LaBrana, Zlatỳ kůň and Bacho Kiro CC7-335
Estimated C→T and G→A substitution rates along the aDNA sequences of LaBrana, Zlatỳ kůň
and Bacho Kiro CC7-335.

Table S1: Estimated ϵg (average over 100 replicates) at Different Contamination Rate for Dif-
ferent Damage Patterns at 5x coverage

Damage Pattern
Contamination Rate 0% 5% 10%

No Damage 0.000190 0.000214 0.000238
LaBrana 0.00318 0.00306 0.00294
Zlatỳ kůň 0.00868 0.00831 0.00793
Bacho Kiro CC7-335 0.0105 0.010 0.00960
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ỳ ků
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Figure S7: Effects of Post-mortem Damage on Contamination Estimation for Simulated 0%
Contamination We simulated damaged sequences as described above and visualized results of
ANGSD and hapCon with 1240k panel.
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ỳ ků
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Figure S8: Effects of Post-mortem Damage on Contamination Estimation for Simulated 5%
Contamination Same as Fig.S7 but with 5% simulated contamination.
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Figure S9: Effects of Post-mortem Damage on Contamination Estimation for Simulated 10%
ContaminationSame as Fig.S7 but with 10% simulated contamination.
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ỳ ků
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Figure S10: Effects of Post-mortem Damage on Estimated ϵg for Simulated 0% Contamination
We visualized the effects of different levels of post-mortem damage on the estimated ϵg . The
red horizontal bar represents the estimated ϵg at simulated 5x coverage for each of the damage
levels averaged over 100 replicates.
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Figure S11: Effects of Post-mortem Damage on Estimated ϵg for Simulated 5% Contamination
Same as Fig.S10, but with 5% simulated contamination.
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Figure S12: Effects of Post-mortem Damage on Estimated ϵg for Simulated 10% Contamina-
tion Same as Fig.S10, but with 10% simulated contamination.
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3 A List of Software&Python Packages Used in This Work172

• ANGSD 0.934173

• samtools 1.13174

• Python 3.8.10175

• Numpy 1.17.4176

• Scipy 1.4.1177

• Numdifftools 0.9.39178

• h5py 3.6.0179

• bwa 0.7.17-r1198180

• Gargammel181

• mapDamage2.0182

• contamLD183

4 Testing on empirical Hunter-gatherer aDNA184

Our model relies on the assumption that most ancient genomes can be modeled by a mosaic of185

modern haplotypes, and hunter-gatherer groups represent some of the most diverged genetic186

ancestry currently available for modern human aDNA research. Therefore, we performed ad-187

ditional test using a variety of hunter-gatherer samples to show that hapCon works well on188

Eurasia and African hunter-gatherer ancestry (except for central and southern African forager189

ancestry).190

4.1 Eurasian Hunter-gatherer191

First, we compiled a set of 66 male Eurasian hunter-gatherer samples, 6 of which were previ-192

ously published in Fu et al. [2016], and the remaining 60 samples are as of this writing unpub-193

lished (a manuscript for these samples are in preparation, Yu et al.). We compared hapCon194
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and ANGSD on these samples and found that contamination estimates obtained from the two195

methods are highly concordant (r2=0.8347, Fig.S13). Additionally, we investigated the differ-196

ence between the estimates of our method and that of ANGSD for various sample ages (the197

mean of the posterior interval of the C14 date or the mean of the archaeological context range).198

A regression line with slope equal to 0 would indicate that the bias of our method does not sys-199

tematically change with sample age. Our results indicate that, while nominally the regression200

line has non-zero negative slope (-1.22e-6), the p value is not significant (0.059). If we restrict201

fitting the regression to samples with coverages greater than 0.1x (51 out of 66 samples), the202

p value becomes 0.25. Therefore, there is no significant evidence that the performance of our203

method is more biased for older Eurasian samples, which aligns with our previous results.204

Second, we performed mixed-BAM simulation on three of the higher coverage samples in Fu205

et al. [2016]; namely, GoyetQ116-1, Kostenki14 and Vestonice16. We used the three samples as206

the endogenous source and B French-3 from SGDP as the contamination source. We simulated207

contamination rates from 0% to 25% and various coverages. We found that hapCon’s results208

are comparable to ANGSD at high coverage and low contamination regime, and much better at209

low coverage and high contamination regime, showing no systematic bias despite the fact that210

these samples contain highly divergent genetic ancestries (Fig.S15, S16, S17).211

4.2 Ancient African Foragers212

In the main text we tested hapCon on Mota, an ancient African genome from present-day213

Ethiopia that predates the Eurasian genetic backflow. We observed a small amount of over-214

estimation (∼0.7%) compared with ANGSD. Here we conducted further tests on African for-215

ager genomes known to harbor the most divergent lineages of all living peoples. We used ten216

male ancient African foragers from Lipson et al. [2022], among which I8930, I13983 and I19529217

do not have sufficient coverage for estimating contamination by ANGSD. For the remaining218

seven male samples, we summarized the results in Tab.S2.219

For four samples out of the seven samples with sufficient coverages, we obtained consis-220

tent contamination estimates for hapCon and ANGSD. For the three samples from present-day221

Malawi (I4427, I4468, I19528, corresponding rows highlighted in grey), we observe that hapCon222
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Figure S13: Comparing hapCon and ANGSD on 66 Eurasian Hunter-gatherers Same as Fig.5d,
but this figure includes the Eurasian hunter-gatherers only.

Table S2: Comparing ANGSD and hapCon on Ancient African Foragers
Sample ID Site Age(years BP) Coverage(1240k target on chrX) ANGSD Method1 hapCon

I10871 Shum Laka 7975-7795 10.33x 0.008(0.007-0.008) 0.006(0.005-0.006)
I10872 Shum Laka 7920-7700 1.85x 0.016(0.014-0.019) 0.016(0.015-0.018)
I10873 Shum Laka 3160-2970 9.14x 0.007(0.006-0.007) 0.004(0.004-0.005)
I8821 Kisese II RS 7240-6985 1.44x 0.006(0.004-0.008) 0.007(0.005-0.008)
I4427 Fingira 6175-5930 0.11x 0.01(-0.007-0.028) 0.052(0.035-0.069)
I4468 Fingira 6180-5935 0.063x -0.016(-0.034-0.003) 0.064(0.035-0.093)

I19528 Hora 1 16424-14029 0.075x 0.01(-0.009-0.029) 0.062(0.039-0.086)

flags these samples as being moderately contaminated while ANGSD’s estimates suggest that223

they are at most minimally contaminated. Aside from the relatively low coverage of I4468 and224

I19528, which is at the boundary of ANGSD’s working coverage, we believe the inconsistency is225

at least partially due to some of the deeply diverged ancestry of these central-south African for-226

agers not being represented well in the 1000Genome reference panel. Based on qpAdm analysis,227

the three samples (I4427, I4468, I19528) from present-day Malawi trace 20-30% of their ancestry228

to Mota-related, 5-10% to central-African related and 60-70% to southern-African related ances-229

16



5000 10000 15000 20000 25000 30000 35000
Sample Age (calBP)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

Di
ffe

re
nc

e 
be

tw
ee

n 
AN

GS
D 

an
d 

ha
pC

on
 E

st
im

at
es

slope: -1.22e-6 
(95% CI: -2.49e-6 - 5.0e-8)
p_value: 0.059

0.5x

1.0x

1.5x

>2.0x

av
er

ag
e 

co
ve

ra
ge

 o
n 

ch
rX

 1
24

0k

Figure S14: Comparison of hapCon and ANGSD for varying sample age We plotted the dif-
ference between hapCon and ANGSD contamination estimates for the 66 Eurasian Hunter-
gatherer samples (see also Fig.S13), with the x axis denoting the age of each sample. We fit
a linear regression to the data. The p value corresponds to the null hypothesis of the slope be-
ing 0.

try [Lipson et al., 2022]. As southern-African ancestry are not represented in 1000Genome ref-230

erence panel and the three African ancestries (southern Africa, central Africa and northeastern231

Africa) form three distinct clusters on a PCA plot (Fig 1b, Lipson et al. [2022]), it is not surprising232

that a haplotype copying model does not work well on these ancient forager genomes. In addi-233

tion, the three samples for which hapCon’s results are not consistent with those of ANGSD are234

the three with the lowest coverage of the seven samples. A potential explanation is that hapCon235

is more reliant on the haplotpye copying model in the low coverage regime. In higher coverage236

regimes there are more sites covered by more than one sequences and the information from the237

majority sequences can compensate for the endogenous haplotpye not being well-modeled as a238

haplotype mosaic of the reference panel.239

To provide further support (aside from Mota) that our method can work for African aDNA240
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Figure S15: Simulating Contamination Using GoyetQ116-1 as the Endogenous Source
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Figure S16: Simulating Contamination Using Kostenki14 as the Endogenous Source

data (except for the southern forager ancestry highlighted above), we additionally performed241

mixing BAM simulation using the sample with the highest coverage from Lipson et al. [2022].242

We used I10871 as the endogenous source and B French-3 from SGDP as the contamination243

source, and we visualized the results in Fig.S18. We observe that hapCon’s performance on244
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Figure S17: Simulating Contamination Using Vestonice16 as the Endogenous Source

I10871 is as good as for Eurasian samples and generally outperforms ANGSD.245
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Figure S18: Simulating Contamination Using I10871 as the Endogenous Source

Overall, these analyses suggest that caution is warranted for interpreting hapCon contami-246

nation estimates if the sample derive substantial ancestry from deeply divergent lineages (prior247

to the out-of-Africa event) that are not represented in the 1000G reference dataset. In that case,248
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we advise caution and suggest to use ANGSD or the two-consensus method (if coverage suf-249

fices).250

5 Performance on Medium-to-high Coverage Data251

We observe that, for the same contamination level and sample, contamination estimates with252

hapCon tend to increase for higher coverage. Here we explore whether this phenomenon lead253

to substantial biases in the high coverage regimes and whether it would affect the qualitative254

assessment of a sample being highly contaminated or not.255

We used Ust Ishim as the endogenous source and B French-3 from SGDP as the contaminant256

sources. We simulated contamination rate ranging from 0% to 25% in steps of 5% at coverages257

1x, 2x, 5x, 10x, 15x. As throughout, coverages always refer to average coverage on male chrX.258

We note that the full data of UstIshim on chrX is 18x (after quality filtering), thus the replicates259

are not fully independent anymore in the high coverage regime.260

We applied hapCon with both the 1240k and 1000G panel on these simulated data, and vi-261

sualized the results in Fig.S19,S20,S21. We observe that both hapCon (Fig.S19,S20) and ANGSD262

(Fig.S21) display some degree of varying biases associated with coverage. In most cases the263

biases decrease as the coverages increases, but also generally do not seem to converge to 0,264

possibly due to deviations from the model assumptions (e.g. read counts being modeled by265

the binomial distribution, or contamination coming from an average and perfectly specified al-266

lele frequency). However, the biases remain small for both methods and would not affect the267

qualitative assessment of whether a sample is contaminated or not.268
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Figure S19: Performance of hapCon with 1240k Panel at High Coverage. Note the changing Y
axis scale (adapted to the range of estimates). The red horizontal line represents the simulated
contamination rate plus the ANGSD estimate of background contamination in the Ust Ishim
BAM file (0.675%, 95% CI: 0.637%-0.713%). We also visualized trend of estimated contamination
as a function of coverage by connecting the dots that represent the mean value of estimated
contamination (averaged across 100 replicates).
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Figure S20: Performance of hapCon with 1000G Panel at High Coverage. Note the changing
Y scale (adapted to the estimates).
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Figure S21: Performance of ANGSD at High Coverage. Note the changing Y scale (adapted to
the estimates).
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Figure S22: Zoom-in for Fig.2 in main text This is a zoom-in into simulated contamination in
the range of 0%-10% for the Fig.2 in the main text.
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Figure S23: Testing hapCon on Various Contamination and Endogenous Sources This figure
has the same structure as Fig.2 in the main text, but with 5 different contamination sources that
are less well-represented in the 1000Genome Project.

24



0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Us
t_

Ish
im

(4
39

80
-4

09
54

 c
al

BC
E,

 R
us

sia
)

hapCon
ANGSD Method 1
95% CI

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Su
ng

hi
r3

(3
23

26
-3

00
80

 c
al

BC
E,

 R
us

sia
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
sc

hb
ou

r
(6

22
1-

59
86

 c
al

BC
E,

 L
ux

em
bo

ur
g)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ot

a
(2

57
6-

24
65

 c
al

BC
E,

 E
th

io
pi

a)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I1
58

3
(6

42
4-

62
33

 c
al

BC
E,

 T
ur

ke
y)

0.000 0.025 0.050 0.075 0.100

S_Armenian-1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I1
19

74
(1

04
20

-9
45

0 
ca

lB
CE

,
 C

hi
le

)

0.000 0.025 0.050 0.075 0.100

S_Georgian-2
0.000 0.025 0.050 0.075 0.100

S_Iranian-2
0.000 0.025 0.050 0.075 0.100

S_Yemenite_Jew-2
0.000 0.025 0.050 0.075 0.100

S_Thai-1

Contamination Source

En
do

ge
no

us
 S

ou
rc

e

Figure S24: Zoom-in for Fig.S23
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Figure S25: Comparing hapCon on 1000G Panel with Different MAF Cutoff at Various Con-
tamination Level. We performed mixed BAM simulation (use Loschbour as the endogenous
source and B French-3 as the contaminant source) at coverage 0.1x as described in the main
article. We compared hapCon’s performance on the 1000G panel with varying minor allele fre-
quency cutoffs.
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Figure S26: Comparing hapCon, the two-consensus method and ANGSD on Downsampled
Sardinia aDNA data. Downsampling was performed as described in the main article. We com-
pare the performance of our method, the two-consensus method and ANGSD. a Comparison
on individual SUA001. b Comparison on individual SUA002.
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Figure S27: Comparing hapCon and contamLD on Downsampled Sardinia aDNA data.
Downsampling was performed as described in the main article. We compare the performance
of hapCon and contamLD. CEU is used as the reference panel for contamLD. a Comparison on
individual SUA001. b Comparison on individual SUA002.
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Figure S28: Comparing contamLD and hapCon on simulated Data. We simulated different lev-
els of contamination by mixing BAM files of I1583(6424-6233 calBEC, Turkey) and B French 3
and then downsampling to desired genome-wide coverage. Note that the x-axis refers to av-
erage coverage on autosomes, unlike the other figures in this manuscript where the coverage
always refers to coverage on male X chromosome. For each simulated scenario, we made 50
independent replicates and then applied contamLD (using CEU as the reference panel) and
hapCon to the data.
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Figure S29: Effects of Genetic Similarity between the Endogenous and Contaminant Source
on Contamination Estimation for Simulated 0% Contamination We used B French-3 as the
endogenous source and used as contamination source S Sardinian-1, S French-1, S Hungarian-
2, S Georgian-2, S Spanish-1, S Korean-1, which are indicated on the x-axis. The percentage
number in the parenthesis of x-labels are genetic distances between the endogenous and con-
taminant sources, calculated as described in the main article. We mixed the BAM files of the
endogenous and contaminant source and downsampled to desired genome-wide coverage. We
then analyzed the mixed BAM files using hapCon with 1240k panel. For S Korean-1 we used
CHB allele frequency as a proxy, and for all the others we used CEU allele frequency. This figure
visualized the results for simulated 0% contamination.
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Figure S30: Effects of Genetic Similarity between the Endogenous and Contaminant Source
for Simulated 5% Contamination Same as Fig.S29, but with 5% simulated contamination.
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Figure S31: Effects of Genetic Similarity between the Endogenous and Contaminant Source
for Simulated 10% Contamination Same as Fig.S29, but with 10% simulated contamination.
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Figure S32: Japanese contaminated with Japanese at vaiours levels of Contamination and
Coverages S Japanese-1 is contaminated with S Japaneses-3, both samples are from SGDP. We
simulated contamination levels from 0% to 25% at various coverages from 0.05x to 5x, and
compared results from hapCon and ANGSD.
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Figure S33: Karitiana contaminated with Karitiana at various levels of Contamination and
Coverages B Karitiana-3 is contaminated with S Karitiana-1, both samples are from SGDP. We
simulated contamination levels from 0% to 25% at various coverages from 0.05x to 5x, and
compared results from hapCon and ANGSD.
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Figure S34: Visualizing long IBD on chrX between Two Karitiana Samples We downsampled
the BAM files of B Karitiana-3 and S Karitiana-1 both to 15x and merged them together. As the
two Karitiana samples are both males, this results in a synthetic diploid X chromosome. We
then applied hapROH [Ringbauer et al., 2021] to detect ROH blocks in this synthetic diploid X
chromosome, which is equivalent to IBD between the two haploid X chromosome of the two
male Karitiana samples. We found a 19.98cM(163.79cM-183.77cM) long IBD block and visual-
ized it here. The brown curve depicts the posterior probability of being in non-IBD state at each
of the 1240 target SNPs, and the blue dots at the bottom depicts the marker density along the
chromosome. The blue dots at the top represent potentially heterozygote sites. Each site that
have at least one sequence supporting both the reference and alternative alleles is represented
by a blue dot at the top. Due to several sources of errors (e.g, sequencing error, mismappings),
there are several apparent ”heterozygous” sites in the IBD region; however, such ”heterozy-
gous” sites in IBD region are much more sparse than that in the non-IBD region. The horizontal
blue bar at the very top of the figure is the inferred IBD block.
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Figure S35: Attraction to Contaminant Allele Frequency when the Contaminant and Global
Allele Frequencies in the Reference Panel are different. We performed the simulation using
the default setting as described in Section 2.1 except that we used the CEU as the contamination
source (rather than the global allele frequencies). Panels a-c show the results for no simulated
contamination and panels d-f for simulated 10% contamination. We explored several different
settings for inference by removing divergent haplotypes (AFR) from the reference panel and
by using different allele frequencies as the proxy of the contamination source (CEU vs. OOA,
where OOA denotes the allele frequencies of all populations in the 1000Genome except for
AFR). Settings are indicated in the upper right corner of each subpanel.
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Simulated Contamination Rate: 0%

Figure S36: Misspecified Contamination Ancestry in Mixed BAM Simulation with 0% Simu-
lated Contamination. We used the same mixed BAM simulation as described in section ”Simu-
lated whole genome sequencing data” in the main article (using Loshcbour as the endogenous
source and B French-3 as the contaminant source). For each coverage, we used the 1240k refer-
ence panel with CEU, FIN, GBR, IBS, TSI, YRI, CHB, PEL as the contamination ancestry to test
the robustness of our method with respect to mis-specified contamination ancestry.
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Figure S37: Misspecified Contamination Ancestry in Mixed BAM Simulation with 10% Sim-
ulated Contamination. Same as Fig.S36, but with 10% simulated contamination.
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Figure S38: Comparing runtime of hapCon and ANGSD. We measured runtime of hapCon
and ANGSD on BAM files of individual I1496(5211-4958 calBCE, Hungary, obtained from Allen
Genome Diversity Project), down-sampled to eight target coverages. For hapCon, we used two
different reference panels (1240k and 1000G panel). Each point represents the runtime averaged
over 10 independent runs.
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Iñigo Olalde, Swapan Mallick, Nick Patterson, Nadin Rohland, Vanessa Villalba-Mouco, Marina Silva, Katharina Dulias, Ceiridwen J296

Edwards, Francesca Gandini, Maria Pala, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science, 363297

(6432):1230–1234, 2019.298
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