Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Echolocation-related reversal of information flow in a cortical vocalization network

MPG-Autoren

García-Rosales,  Francisco
Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität ;
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society;

/persons/resource/persons242968

Cabral-Calderin,  Yuranny
Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ner-22-cab-04-echolocation.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

García-Rosales, F., López-Jury, L., González-Palomares, E., Wetekam, J., Cabral-Calderin, Y., Kiai, A., et al. (2022). Echolocation-related reversal of information flow in a cortical vocalization network. Nature Communications, 13: 3642. doi:10.1038/s41467-022-31230-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-A87E-C
Zusammenfassung
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.