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Abstract
WestudyVeronese andSegremorphisms between non-commutative projective spaces.
We compute finite reduced Gröbner bases for their kernels, and compare them with
their analogues in the commutative case.
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1 Introduction

In this work, we describe Veronese and Segre morphisms for a class of non-commuta-
tive quadratic algebras that have permeated the literature under different names. They
made one of their first appearances as quantum affine spaces in [33, Sections 1 and
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4]. There, inspired and motivated by works of Fadeev and collaborators, Drinfeld,
and Jimbo, Manin studied quantum affine spaces in connection to Hopf algebras and
quantum groups. More recently, these very algebras surfaced as non-commutative
projective spaces in the work [5] on mirror symmetry, as well as in the study of
deformations of toric varieties [11, 12].

The study of non-commutative algebras defined by quadratic relations as examples
of quantum non-commutative spaces has undoubtedly received considerable impetus
from the seminal work [17], where the authors considered general deformations of
quantum groups and spaces arising from an R-matrix, and from Manin’s programme
for non-commutative geometry [35]. Quadratic algebras of the kind studied here still
play to this day a central role in non-commutative geometry, as they provide a rich
source of examples of non-commutative spaces.

Our work is motivated by the relevance of those algebras for non-commutative
geometry, especially in relation to the theory of quantum groups, and inspired by the
interpretation of morphisms between non-commutative algebras as “maps between
non-commutative spaces”. We consider here non-commutative analogues of the
Veronese andSegre embeddings, two fundamentalmaps that play pivotal roles not only
in classical algebraic geometry but also in applications to other fields of mathematics.

The d-Veronese map is the non-degenerate embedding of the projective space P
n

via the very ample line bundle O(d). Its image, called the Veronese variety, has a
capital importance in algebraic geometry. Just to mention an example, every projective
variety is isomorphic to the intersection of a Veronese variety and a linear space (see
[27, Exercise 2.9]). The Segre map is the embedding of P

m×P
n via the very ample

line bundleO(1, 1). It is used in projective geometry to endow the Cartesian product of
two projective spaces with the structure of a projective variety. In quantum mechanics
and quantum information theory, it is a natural mapping for describing non-entangled
states (see [7, Sect. 4.3]). Both are studied for the theory of tensor decomposition
[31, Sect. 4.3], as the image of the Segre morphism is the locus of rank 1 tensors,
while the image of the Veronese morphism plays a similar role for symmetric tensors.
Moreover, these constructions are central in the field of algebraic statistics: the variety
of moments of a Gaussian random variable is a Veronese variety (see [1, Sect. 6]),
while independence models are encoded by Segre varieties (see [18]).

The natural problem of finding non-commutative counterparts of those fundamental
constructions has been addressed from different perspectives, for instance in [44] and
[41]. Likewise, the equivalent non-commutative notion of line bundle has been studied
in several works as [6, 10], and more recently [19], also in connections to quantum
group deformations and C∗-algebra, as well as in work by the first author [2, 3] on
q-deformations of circle bundles and operator K-theory.

In this work, we study the properties of Segre and Veronese maps and of the corre-
sponding algebras from the point of view of the theory of Gröbner bases. In classical
algebraic geometry, a variety V is completely determined by its defining ideal. When
V is the image of a variety morphism f , the ideal of V is the kernel of the algebra
morphism corresponding to f . Computing a Gröbner basis for the defining ideal can
provide valuable information about the properties of V . With this motivation in mind,
we are interested in computing Gröbner bases for the kernels of the non-commutative
Veronese and Segre morphisms.
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The theory of Gröbner bases for ideals bears several similarities with that of canon-
ical subalgebra bases or SAGBI’s—an acronym that stands for subalgebra analogues
of Gröbner bases for ideals. A natural question would be to investigate those in our
setting, similar to what is done for instance in [42], where the authors construct and
study an SAGBI basis for the quantum Grassmannian. In some sense, the work pre-
sented here lends itself to generalisation in the directions of studying maps between
more general non-commutative algebras, like deformations of Grassmanians, products
thereof, and other homogeneous spaces. We postpone the investigation of this more
general setting to future work.

The paper is structured as follows. In Sect. 2 we recall some basics of the theory
of Gröbner bases for ideals in the free associative algebra. Our Lemma 2.7 gives a
criterion for quadratic Gröbner bases, which is crucial for the proof of ourmain results,
Theorems 5.5 and 6.10. In Sect. 3 we present the quadratic algebras A = An

q, called
quantum spaces, or non-commutative projective spaces, and we recall some of their
basic properties. In Sect. 4 we analyse their d-Veronese subalgebras. The main result
of the section is Theorem 4.5, which gives a presentation of the d-Veronese subalgebra
in terms of generators and quadratic relations. In Sect. 5 we introduce and study non-
commutative analogues of the Veronese maps for non-commutative projective spaces.
We present a modification of the theory of Gröbner bases for ideals in a quantum space
and find explicitly a Gröbner basis for the kernel of the Veronese map in Theorem
5.5. Using a similar approach and methods, in Sect. 6 we introduce and study non-
commutative analogues of Segre maps and Segre products. Theorem 6.10 describes
the reduced Gröbner basis for the kernel of the Segre map. Finally, in Sect. 7 we
present various examples that illustrate our results.

2 Preliminaries

We start with notation, conventions, and facts which will be used throughout the paper,
and recall some basics on Gröbner bases for ideals in the free associative algebra.
Lemma 2.7 gives a criterion for quadratic Gröbner bases which is particularly useful
in our settings.

2.1 Basic notations and conventions

Throughout the paper Xn = {x0, . . . , xn} denotes a non-empty set of indeterminates.
To simplify notation,we shall oftenwrite X instead of Xn .We denote byC〈x0, . . . , xn〉
the complex free associative algebra with unit generated by Xn , while C[Xn] denotes
the commutative polynomial ring in the variables x0, . . . , xn . 〈Xn〉 is the free monoid
generated by Xn , where the unit is the empty word, denoted by 1.

Wefix the degree-lexicographic order<on 〈Xn〉, wherewe set x0 < x1 < · · · < xn .
As usual,N denotes the set of all positive integers, andN0 is the set of all non-negative
integers. Given a non-empty set F ⊂ C〈Xn〉, we write (F) for the two-sided ideal of
C〈Xn〉 generated by F .
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In more general settings, we shall also consider associative algebras over a field
k. Suppose A = ⊕

m∈N0
Am is a graded k-algebra such that A0 = k, and such

that A is finitely generated by elements of positive degree. Recall that its Hilbert
function is hA(m) = dim Am and its Hilbert series is the formal series HA(t) =∑

m∈N0
hA(m) tm . In particular, the algebra C[Xn] of commutative polynomials sat-

isfies

hC[Xn ](d) =
(
n + d

n

)

and HC[Xn ] = 1

(1 − t)n+1 .

We shall use two well-known gradings on the free associative algebra C〈Xn〉: the
natural grading by length and the N

n+1
0 -grading.

Let Xm be the set of all words of length m in 〈X〉. Then

〈X〉 =
⊔

m∈N0

Xm, X0 = {1}, and Xk Xm ⊆ Xk+m,

so the free monoid 〈X〉 is naturally graded by length.
Similarly, the free associative algebra C〈X〉 is also graded by length:

C〈X〉 =
⊕

m∈N0

C〈X〉m, where C〈X〉m = CXm .

A polynomial f ∈ C〈X〉 is homogeneous of degree m if f ∈ CXm . We denote by

T n = T(Xn)
..= {

xα0
0 · · · xαn

n ∈ 〈Xn〉 | αi ∈ N0, i ∈ {0, . . . , n}}

the set of ordered monomials (terms) in 〈Xn〉 and by

T n
d = Td(Xn)

..=
{

xα0
0 · · · xαn

n ∈ Tn
∣
∣
∣

n∑

i=0

αi = d

}

the set of orderedmonomials of length d. It is well known that the cardinality |Td(Xn)|
is given by the Hilbert function (Hilbert polynomial) hC[Xn ](d) of the polynomial ring
in the variables Xn :

|Td(Xn)| =
(
n + d

n

)

= hC[Xn ](d).

Definition 2.1 A monomial w ∈ 〈X〉 has multi-degree α = (α0, . . . , αn) ∈ N
n+1
0 ,

if w, considered as a commutative term, can be written as w = xα0
0 xα1

1 · · · xαn
n .

In this case we write deg(w) = α. Clearly, w has length |w| = α0 + · · · + αn .
In particular, the unit 1 ∈ 〈X〉 has multi-degree 0 = (0, . . . , 0), and deg(x0) =
(1, 0, . . . , 0), . . . , deg(xn) = (0, 0, . . . , 1). For each α = (α0, α1, . . . , αn) ∈ N

n+1
0
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we define

Tα
..= xα0

0 xα1
1 · · · xαn

n ∈ T(Xn) and Xα
..= {w ∈ 〈X〉 | deg(w) = α}. (2.1)

The free monoid 〈Xn〉 is naturally N
n+1
0 -graded:

〈Xn〉 =
⊔

α∈N
n+1
0

Xα, where X0 = {1}, and XαXβ ⊆ Xα+β.

In a similar way, the free associative algebra C〈Xn〉 is also canonically N
n+1
0 -

graded:

C〈Xn〉 =
⊕

α∈N
n+1
0

C〈Xn〉α, where C〈Xn〉α = CXα.

It follows straightforwardly from (2.1) that Xα∩T(Xn) = {Tα}, for everyα ∈ N
n+1
0 .

Moreover, every u ∈ Xα\{Tα} satisfies u > Tα , i.e., Tα is the minimal element of Xα

with respect to the ordering <.

2.2 Gröbner bases for ideals in the free associative algebra

In this subsection k is an arbitrary field and X = Xn = {x0, . . . , xn}. Suppose f ∈
k〈X〉 is a non-zero polynomial. Its leadingmonomial with respect to<will be denoted
by LM( f ). One has LM( f ) = u if f = cu + ∑

1�i�m ciui , where c, ci ∈ k, c 	= 0
and u > ui ∈ 〈X〉, for every i ∈ {1, . . . ,m}.

Given a set F ⊆ k〈X〉 of non-commutative polynomials, LM(F) denotes the set

LM(F) = {LM( f ) | f ∈ F}.

Amonomial u ∈ 〈X〉 is normal modulo F if it does not contain any of the monomials
LM( f ), f ∈ F, as a subword. The set of all normal monomials modulo F is denoted
by N (F).

Let I be a two-sided graded ideal in K 〈X〉 and let Im = I ∩ kXm . We shall
consider graded algebras with a minimal presentation. Without loss of generality, we
may assume that I is generated by homogeneous polynomials of degree � 2 and
I = ⊕

m�2 Im . Then the quotient algebra A = k〈X〉/I is finitely generated and
inherits its grading A = ⊕

m∈N0
Am from k〈Xn〉. We shall work with the so-called

normal k-basis of A.
We say that a monomial u ∈ 〈Xn〉 is normal modulo I if it is normal modulo

LM(I ). We set N (I ) ..= N (LM(I )). In particular, the free monoid 〈X〉 splits as a
disjoint union

〈X〉 = N (I ) 
 LM(I ).
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The free associative algebra k〈X〉 splits as a direct sum of k-vector subspaces k〈X〉 �
Span kN (I )⊕ I , and there is an isomorphism of vector spaces

A � Span kN (I ).

We define

N (I )m = {u ∈ N (I ) | u has length m}.

Then Am � Span kN (I )m for every m ∈ N0.

Definition 2.2 Let I ⊂ k〈Xn〉 be a two-sided ideal.

• A subset G ⊆ I of monic polynomials is a Gröbner basis of I (with respect to the
ordering <) if

(a) G generates I as a two-sided ideal, and
(b) for every f ∈ I there exists g ∈ G such that LM(g) is a subword of LM( f ),

that is LM( f ) = aLM(g)b, for some a, b ∈ 〈X〉.
• A Gröbner basis G is minimal if the set G \{ f } is not a Gröbner basis of I ,
whenever f ∈ G.

• Aminimal Gröbner basis G of I is reduced if each f ∈ G is a linear combination
of normalmonomials moduloG \{ f }. In this case we say that f is reducedmodulo
G \{ f }.

• If I has a finite Gröbner basis G, then the algebra A = k〈X〉/(G) is called a
standard finitely presented algebra, or shortly an s.f.p. algebra.

It is well known that every ideal I of k〈X〉 has a unique reduced Gröbner basis
G0 = G0(I ) with respect to <. However, G0 may be infinite. For more details, we
refer the reader to [16, 32, 36, 37].

Definition 2.3 Let h1, . . . , hs ∈ k〈X〉 (hi = 0 is also possible). For every i ∈
{1, . . . , s}, let wi ∈ 〈X〉 be a monomial of degree at least 2, such that wi > LM(hi ),
whenever hi 	= 0, and let gi = wi − hi . Each gi is a monic polynomial with
LM(gi ) = wi . Let G = {g1 . . . , gs} ⊂ k〈X〉 and let I = (G) be the two-sided
ideal of k〈X〉 generated by G. For u, v ∈ 〈X〉 and for i ∈ {1, . . . , s}, we consider
the k-linear operators ruiv : k〈Xn〉 → k〈Xn〉 called reductions, defined on the basis
elements c ∈ 〈Xn〉 by

ruiv(c) =
{
uhiv if c = uwiv,

c otherwise.

Then the following conditions hold:

(1) c − ruiv(ω) ∈ I .
(2) LM(ruiv(c)) � c.
(3) More precisely, LM(ruiv(c)) < c if and only if c = uwiv.
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More generally, for f ∈ k〈X〉 and for any finite sequence of reductions r = ru1i1v1
◦ · · · ◦rut itvt one has

f ≡ r( f ) (mod I ) and LM( f ) � LM(r( f )).

A polynomial f ∈ k〈Xn〉 is in normal form (modG) if none of its monomials contains
as a subword any of the wi ’s. In particular, the 0 element is in normal form.

The degree-lexicographic ordering < on 〈Xn〉 satisfies the decreasing chain condi-
tion, and therefore for every f ∈ k〈X〉 one can find a normal form of f by means of
a finite sequence of reductions defined via G. In general, f may have more than one
normal forms (modG). It follows fromBergman’s Diamond Lemma (see [8, Theorem
1.2]) that G is a Gröbner basis of I if and only if every f ∈ k〈X〉 has a unique normal
form (mod G), which will be denoted by Nor( f ). In this case f ∈ I if and only if f
can be reduced to 0 via a finite sequence of reductions.

Definition 2.4 LetG = {gi = wi−hi | i ∈ {1, . . . , s}} ⊂ k〈Xn〉be as inDefinition 2.3
and let I = (G). Let u = wi and v = w j for some i, j ∈ {1, . . . , s} and let
a, b, t ∈ 〈X〉\{1}.
• Suppose that u = ab, v = bt and let ω = abt = ut = av. The difference

(u, v)ω = gi t − ag j = ah j − hi t

is called a composition of overlap. Note that (u, v)ω ∈ I and LM(gi t) = ω =
LM(ag j ), so

LM((u, v)ω) = LM(sh j − hi t) < ω.

The composition of overlap (u, v)ω is solvable if it can be reduced to 0 by means
of a finite sequence of reductions defined via G.

• Suppose that ω = w j = awi b. The composition of inclusion corresponding to the
pair (u, ω) is

(u, ω)ω
..= (agib) − g j = h j − ahib.

One has (u, ω)ω ∈ I andLM(u, ω)ω = LM(h j −ahib) < ω. The composition of
inclusion (u, ω)ω is solvable if it can be reduced to 0 by means of a finite sequence
of reductions defined via G.

The lemma below is amodification of the Diamond Lemma and follows easily from
Bergman’s result [8, Theorem 1.2].

Lemma 2.5 Let G = {wi − hi | i ∈ {1, . . . , s}} ⊂ k〈Xn〉 be as in Definition 2.3. Let
I = (G) and let A = k〈Xn〉/I . Then the following conditions are equivalent:

(1) The set G is a Gröbner basis of I .
(2) All compositions of overlap and all compositions of inclusion are solvable.
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(3) Every element f ∈ k〈Xn〉 has a unique normal form modulo G, denoted by
NorG( f ).

(4) There is an equality N (G) = N (I ), so there is an isomorphism of vector spaces

k〈Xn〉 � I⊕kN (G).

(5) The image of N (G) in A is a k-basis of A. In this case A can be identified with the
k-vector space kN (G), made a k-algebra by the multiplication a •b ..= Nor (ab).

Suppose furthermore that G consists of homogeneous polynomials. Then A is graded
by length and each of the above conditions is equivalent to

(6) dim Am = dim(kN (G)m) = |N (G)m | for every m ∈ N0.

Corollary 2.6 Let G = {wi − hi | i ∈ {1, . . . , s}} ⊂ k〈Xn〉 be as above and let
I = (G). Let N (G) and N (I ) be the corresponding sets of normal monomials in
k〈Xn〉. Then N (G) ⊇ N (I ), where an equality holds if and only if G is a Gröbner
basis of I .

It is shown in [29, Corollary 6.3] that there exist ideals in the free associative algebra
k〈x0, . . . , xn〉 for which the existence of a finite Gröbner basis is an undecidable
problem.

In this paper, we focus on a class of quadratic standard finitely presented algebrasA
known as non-commutative projective spaces or quantum spaces. Each such algebra
A is strictly ordered in the sense of [20, Definition 1.9], so there is a well-defined
notion of Gröbner basis of a two-sided ideal inA (cf. [20, Definition 1.2]). Moreover,
every two-sided ideal in A has a finite reduced Gröbner basis.

2.3 Quadratic algebras and quadratic Gröbner bases

As usual, let X = Xn = {x0, . . . , xn}. Let M be a non-empty proper subset of
{0, . . . , n}2. For every ( j, i) ∈ M , let h ji ∈ k〈X〉 be either 0 or a homogeneous
polynomial of degree 2 with LM(h ji ) < x j xi . Let

R = { f j i = x j xi − h ji | ( j, i) ∈ M} ⊂ k〈X〉. (2.2)

Define I = (R) and consider the quadratic algebra A = k〈Xn〉/I . As in Sect. 2.2, let
N (I )m = N (I ) ∩ (Xn)

m and N (R)m = N (R) ∩ (Xn)
m be the corresponding subsets

of normal words of length m. By construction, R is a k-basis for I2, so

dim I2 = |R| = |M | and N (I )2 = N (R)2 = X2
n \LM(R).

As vector spaces,

k〈X〉 = I⊕kN (I ) and A ∼= kN (I ).

Moreover, for the canonical grading by length one has

(k〈X〉)m = (I )m ⊕kN (I )m and Am ∼= kN (I )m,
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for every m ∈ N.
The following lemma is crucial for the proofs of several results in the paper.

Lemma 2.7 LetR be defined as in (2.2), let A = k〈Xn〉/(R). The following conditions
are equivalent

(1) The set R is a (quadratic) Gröbner basis of the ideal I = (R).
(2) dim A3 = |N (R)3|.
(3) All ambiguities of overlap determined by LM(R) = {x j xi | ( j, i) ∈ M} are R-

solvable.

In this case A is a PBW algebra in the sense of [39, Sect. 5].

Proof First note that there are no compositions of inclusions. By Corollary 2.6,

N (I )m ⊆ N (R)m and dim Am = |N (I )m | � |N (R)m |

for every m � 2. The implications (1)⇔ (3) and (1)⇒ (2) follow from Lemma 2.5.

(2)⇒ (3): A composition of overlap is either 0, or it produces only homogeneous
polynomials of degree three. Suppose ω = xkx j xi , where (k, j), ( j, i) ∈ M , so
fk j = xkx j −hkj ∈ R and f j i = x j xi −h ji ∈ R. Then the corresponding composition
of overlap is

(xkx j , x j xi )ω = ( fk j )xi − xk( f j i ) = − hkj xi + xkh ji ∈ I .

By Definition 2.4, a composition is solvable if and only if it can be reduced to 0.
Assume by contradiction that the composition (xkx j , x j xi )ω is not solvable. Then
(xkx j , x j xi )ω 	= 0 and we can reduce it by means of a finite sequence of reductions
to a (not necessarily unique) normal form

F ..= Nor((xkx j , x j xi )ω) = cu +
t∑

s=1

csus ∈ kN (R),

where u > us and c 	= 0. In particular, xkx j xi > LM(F) = u ∈ N (R). However, the
polynomial F is in the ideal I , hence LM(F) ∈ LM(I3) and LM(F) is not in N (I )3.
Therefore

N (I )3 � N (R)3.

Note that we have an isomorphism of vector spaces

A3 ∼= kN (I )3,

hence dim A3 = |N (I )3| < |N (R)3|, a contradiction.
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Remark 2.8 Lemma 2.7 is very useful for the case when we want to show that an
algebra A with explicitly given quadratic defining relations R ⊂ k〈Xn〉 is PBW (that
is R is a Gröbner basis of the ideal I = (R)) and we have precise information about
the dimension dim A3 = d3. In this case, instead of following the standard procedure
(algorithm) of checking whether all compositions are solvable, we suggest a new
simpler procedure:

• find the set N (R)3 and its order |N (R)3|, and
• compare the order |N (R)3| with dim A3.

One has |N (R)3| � dim A3 and an equality holds if and only if R is a Gröbner basis
of the ideal I = (R). This method is particularly useful when we work in general
settings—general n and general quadratic relations R. It implies a similar procedure
for ideals in the quantum space AN

g .
We use this result in Sect. 5, see the proof of Theorem 5.2. In Sect. 3.2 we give

some basics on Gröbner bases for ideals in a quantum space AN
g . Lemma 3.14 is an

important analogue of Lemma 2.7 designed for quadratic Gröbner bases of ideals in a
quantum space.

3 Quantum spaces

In this section, we introduce a class of quadratic algebras that are central to our paper.
We shall refer to them as quantum spaces, following Manin’s terminology.

Various deformations of projective spaces have appeared in the non-commutative
geometry literature over the years. Notable examples are the Vaksman–Soibelman
quantum projective spacesC(CPn

q ), obtained as fixed-point algebras under the canon-
ical circle action on the Vaksman–Soibelman odd quantum spheres C(S2n+1

q ) [43].
They have been extensively studied in the context of Connes’ non-commutative geom-
etry [14], possess the structure of quantum homogeneous space, and, remarkably, their
algebras of continuous functions can also be realised as graph C∗-algebras [28]. Their
weighted counterparts have also been investigated recently in both contexts, see for
instance [15] and [9].

While similar in flavour, the spaces we study here are in some sense a milder form
of deformation, related to so-called theta or isospectral deformations [13], and are
not endowed with a ∗-algebraic structure nor a norm. They form a special case of the
non-commutative deformations of projective spaces studied by Auroux, Katzarkov,
and Orlov in the context of mirror symmetry [5]. Under mild assumptions on the
deformation parameters, they are examples of non-commutative toric varieties, as
outlined in [12]. These algebras are a particular case of the skew-polynomial rings
with binomial relations studied in [22, 23]. We point out that these objects appear with
different names in the literature: they are sometimes referred to as non-commutative
projective spaces and quantum affine spaces.

We shall now recall their definition and main properties.
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3.1 Basic definitions and results

Definition 3.1 A square matrix q = ‖qi j‖ over the complex numbers is multiplica-
tively anti-symmetric if qi j ∈ C

×, q ji = q−1
i j and qii = 1 for all i, j . We shall

sometimes refer to q as a deformation matrix.

Definition 3.2 Let q be an (n + 1)×(n + 1) multiplicatively anti-symmetric matrix.
We denote by An

q the complex quadratic algebra with n + 1 generators x0, . . . , xn
subject to the

(n+1
2

)
quadratic binomial relations

R = Rq
..= {x j xi − q ji xi x j | 0 � i < j � n}. (3.1)

In other wordsAn
q = C〈Xn〉/(R). We refer toAn

q as the quantum space defined by the
multiplicatively anti-symmetric matrix q.

Clearly, the algebra An
q is commutative if and only if all entries of q are 1. In

this caseAn
q is isomorphic to the algebra of commutative polynomials C[x0, . . . , xn].

Although An
q is non-commutative whenever q has at least one entry different from 1,

it preserves all ‘good properties’ of the commutative polynomial ring C[x0, . . . , xn],
see Facts 3.7.

Example 3.3 For n = 2 and

q =
⎛

⎝
1 q−2 1
q2 1 1
1 1 1

⎞

⎠

one obtains the non-commutative variety P
2
q,�=0 defined in [30, Sect. 3.7]. The quan-

tum space A2
q is an Artin–Schelter regular algebra of global dimension 3, see [4].

Remark 3.4 It is easy to prove that the setR defined in (3.1) is a reduced Gröbner basis
for the ideal I = (R) and this fact is well known, see for example [29, Proposition
5.5]. Therefore

N (I ) = N (R) = T(Xn).

In other words the set T(Xn) of ordered monomials is the normal basis of theC-vector
space An

q. The free monoid 〈Xn〉 splits as a disjoint union

〈Xn〉 = T(Xn) 
 LM(I ),

and C〈Xn〉 � SpanCT(Xn)⊕ I .

Remark 3.5 (1) Every element f ∈ C〈Xn〉\ I has unique normal form Nor( f ) =
NorR( f ) = Nor I ( f ), which satisfies

Nor( f ) =
s∑

i=1

ci Ti ∈ CT(Xn),
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where ci ∈ C
×, T1 < T2 < · · · < Ts � LM( f ), and the equality f = Nor( f ) holds

in the algebra An
q. Moreover, Nor( f ) = 0 if and only if f ∈ I .

(2) The normal form Nor( f ) can be found effectively using a finite sequence of
reductions defined via R.

(3) There is an equality NorR(x j xi ) = q ji xi x j , for every 0 � i < j � n.

When the ideal I , or its generating set R is understood from the context, we shall
denote the normal form of f by Nor( f ).

More generally, recall that a quadratic algebra is an associative graded algebra
A = ⊕

i�0 Ai over a ground field k determined by a vector space of generators
V = A1 and a subspace of homogeneous quadratic relations R = R(A) ⊂ V ⊗V .

We assume that A is finitely generated, so dim A1 < ∞. Thus A = T (V )/(R) inherits
its grading from the tensor algebra T (V ). The Koszul dual algebra of A, denoted by
A! is the quadratic algebra T (V ∗)/(R⊥), see [33, 34]. The algebra A! is also referred
to as the quadratic dual algebra to a quadratic algebra A, see [38, p. 6].

Note that every quantum space A = An
q is a skew-polynomial ring with binomial

relations in the sense of [22, 23], and a quantum binomial algebra in the sense of [25].
Thus the next corollary follows straightforwardly from [24, Theorem A], see also [25,
Lemma 5.3 and Theorem 1.1].

Corollary 3.6 Let A = An
q be a quantum space defined by the multiplicatively anti-

symmetric matrix q. Then

(1) The Koszul dual A! has a presentation A! = C〈ξ0, ξ1, . . . , ξn〉/(R⊥), where R⊥
consists of

(n+1
2

)
quadratic binomial relations and n + 1 monomials

R⊥ = {ξ jξi − q−1
j i ξiξ j | 0 � i < j � n} ∪ {ξ2j | 0 � j � n}.

(2) The set R⊥ is a Gröbner basis of the ideal (R⊥) in C〈ξ0, ξ1, . . . , ξn〉, so A! is a
PBW algebra with PBW generators ξ0, ξ1, . . . , ξn.

(3) A! is a quantum Grassmann algebra of dimension n + 1.

The following result can be extracted from [23, 26], and [25, Theorem 1.1]. We use
the well-known equality

(n+d
n

) = (n+d
d

)
.

Facts 3.7 Let A = An
q be a quantum space.

(1) A is canonically graded by length, it is generated in degree one, and A0 = C.
(2) A is a PBW -algebra in the sense of Priddy [39, Sect. 5], with a PBW basis T(Xn).

For every d ∈ N there is an isomorphism of vector spaces Ad � SpanCT(Xn)d ,
so

dimAd = |T(Xn)d | =
(
n + d

d

)

.

(3) A is Koszul.
(4) A is a left and a right Noetherian domain.
(5) A is an Artin–Schelter regular algebra, that is
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(a) A has polynomial growth of degree n + 1 (equivalently, GKdimA = n + 1);
(b) A has finite global dimension gl dimA = n + 1;
(c) A is Gorenstein.

(6) The Hilbert series of A is HA(t) = 1/(1 − t)n+1.

Remark 3.8 The algebra A = An
q is a quantum projective space in the sense of [40,

Definition 2.1] and it is solvable in the sense of Kandri–Rodi and Weispfenning [29,
Sect. 1].

Suppose a monomial u ∈ 〈Xn〉 has multi-degree deg(u) = α = (α0, α1, . . . , αn)

and let Tα = xα0
0 xα1

1 · · · xαn
n be as in Definition 2.1. Since all relations in R are

binomials which preserve the multigrading, there exists a unique ζu ∈ C
× such that

• ζu is a monomial in the entries of q,
• NorR(u) = ζuTα ,
• u ≡ ζuTα modulo I , i.e., the equality u = ζuTα holds in An

q.

Convention 3.9 Following [8] (see also our Lemma 2.5), we consider the space CTn

endowed with multiplication defined by

f •g ..= NorR( f g),

for every f , g ∈ CT n. Then (CT n, •) has a well-defined structure of a graded algebra,
and there is an isomorphism of graded algebras

An
q

∼= (CT n, •).

By convention we shall identify the algebra An
q with (CT n, •).

3.2 Some basics of Gröbner bases theory for ideals in quantum spaces

In Sects. 5 and 6 we shall introduce analogues of the Veronese map vn,d and of the
Segre map sn,m for quantum spaces. A natural problem in this context is to describe
the reduced Gröbner bases of ker(vn,d) and ker(sn,m). Each of the kernels is an ideal
of an appropriate quantum space AN

g , so we need a Gröbner bases theory which is

admissible for quantum spaces. Proposition 3.10 shows that each quantum space AN
g

is a strictly ordered algebra in the sense of [20, Definition 1.9], and the Gröbner bases
theory for ideals in strictly ordered algebras presented by the third author in [20]
and [21] seems natural and convenient for our quantum spaces. Here we follow the
approach of these works. Note that the results of [20] and [21] are independent from
and agree with [29] and [37].

In the sequel we often work simultaneously with two distinct quantum spaces
whose sets of generators Xn = {x0, . . . , xn} and YN = {y0, . . . , yN } are disjoint and
have different cardinalities, N > n. To avoid ambiguity we denote by ≺ the degree-
lexicographic ordering on 〈YN 〉 and by ≺0 the restriction ≺|T(YN ) of ≺ on the set of
ordered monomials T(YN ) ⊂ 〈YN 〉.
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Given an arbitrary multiplicatively anti-symmetric (N + 1)× (N + 1) matrix g =
‖gi j‖, let AN

g = C〈YN 〉/(Rg) be the associated quantum space, where

Rg
..= {y j yi − g ji yi y j | 0 � i < j � N }.

Following Convention 3.9, we identify the two algebras

AN
g

∼= (CT(YN ), •).

Let Jg = (Rg). We shall write Nor( f ) for the normal form of f ∈ C〈YN 〉, keeping
the ideal Jg fixed. The operation • on CT(YN ) induces also an operation � on the set
T(YN ) defined by

u �v ..= LM(Nor(uv)) = LM(u •v),

for every u, v ∈ T(YN ). It is not difficult to see that (T(YN ), �) is a monoid.
Let u, v ∈ T(YN ), and α = deg u + deg v. We know that u •v = ζ(u, v)T (u, v),

where ζ = ζ(u, v) ∈ C
× and T (u, v) ∈ T(Yn), with deg T (u, v) = α. Similarly,

v •u = η(v, u)T (v, u), where η(v, u) ∈ C
× and deg T (v, u) = α = deg T (u, v).

The unique ordered monomial in 〈YN 〉 with multi-degree α is Tα , therefore

u �v = v �u = Tα.

It follows that there is an isomorphism of monoids (T(Yn), �) ∼= [y0, . . . , yN ], the
free abelian monoid generated by YN . This agrees with [20, Theorems I and II].

Note that identifyingAN
g withCT(YN )we also have the degree-lexicographic well-

ordering≺0 on the free abelianmonoid (T(YN ), �). For every f ∈ CT(YN ), its leading
monomial with respect to ≺0 is denoted by LM≺0( f ). In fact LM≺0( f ) = LM≺( f )
and we shall simply write LM( f ).

The proposition below follows straightforwardly from [20].

Proposition 3.10 (1) The quantum space AN
g = (CT(YN ), •) is a strictly ordered

algebra in the sense of [20, Definition 1.9], that is, each of the following two
equivalent conditions is satisfied:

SO1 Let a, b, c ∈ T(YN ). If a ≺0 b, then a �c ≺0 b�c and c�a ≺0 c�b;
SO2 LM( f •h) = LM(LM( f )•LM(h)), for all f , h ∈ AN

g .

(2) Every two-sided (respectively, one-sided) idealK ofAN
g has a finite reduced Gröb-

ner basis with respect to the ordering ≺0 on (T(YN ), �), see Definition 3.12.

The properties SO1 and SO2 allow to define Gröbner bases for ideals of a quantum
space AN

g in a natural way, and to use a standard Gröbner bases theory, analogous to
the theory of non-commutative Gröbner bases for ideals of the free associative algebra
(Diamond Lemma) proposed by Bergman.
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Definition 3.11 Let P ⊂ AN
g be an arbitrary subset, and let LM(P) = {LM( f ) | f ∈

P}. A monomial T ∈ T(YN ) is normal modulo P if it does not contain as a subword
any u ∈ LM(P). We denote

N≺0(P) = {T ∈ T(YN ) | T is normal mod P}.

Definition 3.12 Suppose K is an ideal of AN
g = CT(YN ). A set F ⊂ K is a Gröbner

basis of K if for any h ∈ K there exists an f ∈ F , and monomials a, b ∈ T(YN )

such that LM(h) = a �LM( f )�b. Due to the commutativity of the operation � this
is equivalent to LM(h) = u �LM( f ), for some u ∈ T.

An interested reader can find various equivalent definitions of a Gröbner basis in
[29, 37], and numerous papers which appeared later. Given an ideal K generated by a
finite set F one can verify algorithmically whether F is a Gröbner basis for the ideal
K, see for example [37].

Lemma 3.13 Let K = (F) be an ideal ofAN
g generated by the set F ⊂ CT(YN ). Then

F is a Gröbner basis of K if and only if N (F) = N≺0(F) = N≺0(K). In this case the
vector space AN

g splits as a direct sum

AN
g = CT(YN ) = K⊕CN≺0(F)

and the set N≺0(F) ⊂ T(YN ) projects to a C-basis of the quotient algebra AN
g /K.

Moreover, if F consists of homogeneous polynomials, then

(AN
g ) j = (CT(YN )) j = (K) j ⊕(CN≺0(F)) j ,

for every j � 2.

The following is an analogue of Lemma 2.7 for ideals ofAN
g generated by quadratic

polynomials.

Lemma 3.14 Let K = (F) be an ideal of AN
g generated by a set of quadratic polyno-

mials F ⊂ (CT(YN ))2 and let B = AN
g /K. We consider the canonical grading of B

induced by the grading of AN
g . Then F is a Gröbner basis of K if and only if

dim B3 = |(N≺0(F))3|.

4 The d-Veronese subalgebra ofAn
q, its generators and relations

In this sectionwe study the d-Veronese subalgebraA(d) of the quantum spaceA = An
q.

This is an algebraic construction which mirrors the Veronese embedding. First we
recall some basic definitions and facts about Veronese subalgebras of general graded
algebras. Our main reference is [38, Sect. 3.2]. The main result of the section is
Theorem 4.5 which presents the d-Veronese subalgebra A(d) in terms of generators
and explicit quadratic relations.
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Definition 4.1 Let A = ⊕
k∈N0

Ak be a graded algebra. For d ∈ N, the d-Veronese
subalgebra of A is the graded algebra

A(d) =
⊕

k∈N0

Akd .

Remark 4.2 (1) By definition the algebra A(d) is a subalgebra of A. However, the
embedding is not a graded algebra morphism. The Hilbert function of A(d) satisfies

hA(d) (t) = dim(A(d))t = dim(Atd) = hA(td).

(2) LetA = An
q be the quadratic algebra with relationsR introduced in Definition 3.2.

It follows from [38, Proposition 2.2], and Facts 3.7 that its d-Veronese subalgebraA(d)

is one-generated, quadratic and Koszul. Moreover, A(d) is left and right Noetherian.

We fix a multiplicatively anti-symmetric matrix q and set A = An
q. By

Convention 3.9, A is identified with the algebra (CT n, •) and

A =
⊕

k∈N0

Ak ∼=
⊕

k∈N0

C(T n)k .

Hence its d-Veronese subalgebra satisfies

A(d) =
⊕

k∈N0

Akd ∼=
⊕

k∈N0

C(T n)kd .

The ordered monomials w ∈ (T n)d of length d are degree one generators of A(d),
hence

dimAd = |(T n)d | =
(
n + d

d

)

.

We set N = (n+d
d

) − 1 and we order the elements of (T n)d lexicographically, so

(T n)d = {
w0 = xd0 < w1 = (x0)

d−1x1 < · · · < wN = xdn
}
.

The d-Veronese A(d) is a quadratic algebra (one)-generated by w0, w1, . . . , wN . We
shall find a minimal set of its quadratic relations, each of which is a linear combination
of products wiw j for some i, j ∈ {0, . . . , N }. The following notation will be used
throughout the paper.

Notation 4.3 Let N = (n+d
d

) − 1. For every integer j , 1 � j � N , we denote by α j

the multi-degree deg(w j ), thus

α j = (α j0 , . . . , α jn ) whenever w j = x
α j0
0 . . . x

α jn
n .
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We define

m( j) = min
{
s ∈ {0, . . . , n} | α js � 1

}
and M( j) = max

{
s ∈ {0, . . . , n} | α js � 1

}
.

In other words, if w j = x
α j1
j1

x
α j2
j2

. . . x
α jd
jd

for some 0 � j1 � j2 � · · · � jd and

α j1, . . . , α jd � 1, then m( j) = j1 and M( j) = jd . For example, if w j = x2x34 x
2
7 ,

then m( j) = 2 and M( j) = 7. We further define

P(n, d) = {(i, j) | 0 � i � j � N };
C(n, 2, d) = {(i, j) ∈ P(n, d) | M(i) � m( j)}

= {(i, j) ∈ P(n, d) | wiw j ∈ (T n)2d};
C(n, 3, d) = {(i, j, k) | 0 � i � j � k � N , (i, j), ( j, k) ∈ C(n, 2, d)};
MV(n, d) = {(i, j) ∈ P(n, d) | M(i) > m( j)}

= {(i, j) ∈ P(n, d) | wiw j /∈ (T n)2d}.

Lemma 4.4 Let (Tn)p = (T(Xn))p be the set of all ordered monomials w ∈ 〈Xn〉 of
length |w| = p.

(1) The maps

	 : C(n, 2, d) → (T n)2d and 
 : C(n, 3, d) → (T n)3d

(i, j) �→ wiw j (i, j, k) �→ wiw jwk

are bijective. Therefore

|C(n, 2, d)| = |(T n)2d | =
(
n + 2d

n

)

,

|C(n, 3, d)| = |(T n)3d | =
(
n + 3d

n

)

.

(2) The set P(n, d) is a disjoint union P(n, d) = C(n, 2, d)
 MV (n, d). Moreover

|P(n, d)| =
(
N + 2

2

)

and |MV(n, d)| =
(
N + 2

2

)

−
(
n + 2d

n

)

.

Proof (1) Given wi , w j ∈ (T n)d , their product w = wiw j belongs to (T n)2d if and
only if (i, j) ∈ C(n, 2, d), hence 	 is well-defined. Observe that every w ∈ (T n)2d
can be written uniquely as

w = xi1 . . . xid x j1 . . . x jd , where 0 � i1 � · · · � id � j1 � · · · � jd .

It follows that w has a unique presentation w = wiw j , where

wi = xi1 . . . xid ∈ (T n)d , w j = x j1 . . . x jd ∈ (T n)d ,

M(i) = id � m( j) = j1 and (i, j) ∈ C(n, 2, d).
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This implies that 	 is a bijection.
Consider now the map 
. Given wi , w j , wk ∈ (T n)d , their product ω = wiw jwk

(considered as an element in 〈Xn〉) belongs to (T n)3d if and only if (i, j, k) ∈
C(n, 3, d), hence 
 is well-defined. The proof that 
 is bijective is similar to the
case of 	.

(2) It is clear that

|P(n, d)| =
(
N + 1

2

)

+ N + 1 =
(
N + 2

2

)

.

By definition P(n, d) = C(n, 2, d) 
 MV(n, d) is a disjoint union of sets, hence

|MV(n, d)| = |P(n, d)| − |C(n, 2, d)| =
(
N + 2

2

)

−
(
n + 2d

n

)

.

The following result describes the d-Veronese subalgebra (An
q)

(d) of the quantum
space An

q in terms of generators and quadratic relations.

Theorem 4.5 Let q be an (n + 1)×(n + 1)multiplicatively anti-symmetric matrix and
let A = An

q. The d-Veronese subalgebra A(d) ⊆ A is a quadratic algebra with
(n+d

d

)

generators, namely the elements of (T n)d , subject to (N + 1)2 − (n+2d
n

)
independent

quadratic relations which split into two disjoint sets R1 and R2 given below.

(1) The set R1 contains exactly
(N+1

2

)
relations

R1 =
{

f j i = w jwi − ϕ j iwi ′w j ′

∣
∣
∣
∣
0 � i < j � N ,

(i ′, j ′) ∈ C(n, 2, d), ϕ j i ∈ C
×

}

, (4.1)

where for each pair j > i the product w jwi occurs exactly once in R1, and there
is unique pair (i ′, j ′) ∈ C(n, 2, d) such that Nor(w jwi ) = ϕ j iwi ′w j ′ = ϕ j i Tβ ,
with β = deg(w jwi ) = deg(wi ′w j ′). One has

LM( f j i ) = w jwi > wi ′w j ′ = Tβ ∈ (T n)2d .

Moreover, for every pair (i, j) ∈ C(n, 2, d) such that i < j , the product wiw j =
Tβ ∈ (T n)2d occurs in a relation w jwi − ϕ j iwiw j ∈ R1. Each coefficient ϕ j i is
a non-zero complex number, uniquely determined by q.

(2) The set R2 consists of exactly
(N+2

2

) − (n+2d
n

)
relations

R2 =
{

fi j = wiw j − ϕi jwi ′w j ′

∣
∣
∣
∣

(i, j) ∈ MV(n, d),

(i ′, j ′) ∈ C(n, 2, d), ϕi j ∈ C
×

}

, (4.2)

where for each pair (i, j) ∈ MV(n, d) the word wiw j occurs exactly once in
R2, and determines uniquely a pair (i ′, j ′) ∈ C(n, 2, d) with i ′ < j ′, and a non-
zero complex number ϕi j such that Nor(wiw j ) = ϕi jwi ′w j ′ = ϕi j Tβ , with β =
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deg(wiw j ) = deg(wi ′w j ′). In particular,

LM( fi j ) = wiw j > wi ′w j ′ = Tβ ∈ (T n)2d .

(3) The relations R1 ∪ R2 imply a set R′
1 of

(N+1
2

)
additional relations:

R′
1 = {

w j ·wi − g jiwi ·w j | g ji ∈ C
×, 0 � i < j � N

}
, (4.3)

where for each i < j the coefficient g ji = ϕ j i
ϕi j

is uniquely determined by the matrix

q. We set ϕi j = 1 whenever (i, j) ∈ C(n, 2, d).
(4) Conversely, the relations R′ = R′

1 ∪ R2 imply the relations R1. Moreover, R′ is
also a complete set of independent relations for the d-Veronese algebra A(d).

Proof (1) Suppose that 0 � i < j � N . Then w j > wi , and it is not difficult to see
that M( j) > m(i), so w jwi is not in normal form. By Remark 3.5, its normal form
has the shape Nor(w jwi ) = ϕ j i Tβ, where β = deg(w jwi ) = αi +α j , and ϕ j i ∈ C

×
is uniquely determined by the entries of q. By Lemma 4.4, Tβ = wi ′w j ′ for a unique
pair (i ′, j ′) ∈ C(n, 2, d) of ordered monomials wi ′ � w j ′ of length d. We claim that
wi ′ < w j ′ .

Assume by contradiction that wi ′ = w j ′ = xi1xi2 . . . xid , where xi1 � xi2 � · · · �
xid . This implies that wi ′w j ′ = w2

i ′ = xi1xi2 . . . xid xi1xi2 . . . xid ∈ (T n)2d . But this is
possible if and only if xik = xi1 for every k ∈ {2, . . . , d}, that is wi ′ = w j ′ = (xp)d,
for some p ∈ {0, . . . , n}, so Tβ = (xp)2d . In other words β = (β0, . . . , βn), where
βp = 2d and βi = 0 for every i 	= p. One has β = deg(w jwi ) = deg(w j ) +
deg(wi ) = α j + αi, which together with |wi | = |w j | = d imply αi = α j and
wi = w j = (xp)d, which is impossible, since by assumption i < j . Hence wi ′ < w j ′
and i ′ < j ′. We know that the equality w jwi = Nor(w jwi ) holds in A, hence it is
an equality in A(d). This implies that the equality (w jwi ) = ϕ j iwi ′w j ′ holds in A(d),
for all 0 � i < j � N . It follows that A(d) satisfies the relations f j i = 0, for all
f j i ∈ R1, see (4.1). Moreover, the relations satisfy the properties given in part (1). It
is clear that the order of R1 is exactly

(N+1
2

)
.

(2) Suppose that (i, j) ∈ MV(n, d). Then the following are equalities in A:

wiw j = Nor(wiw j ) = ϕi j Tβ, where Tβ < wiw j , β = αi + α j ,

and ϕi j ∈ C
× is uniquely determined by the entries of q. By Lemma 4.4, Tβ =

wi ′w j ′ for a unique pair (i ′, j ′) ∈ C(n, 2, d). We claim that wi ′ < w j ′ . As in part
(1), assuming that wi ′ = w j ′ we obtain that wi = w j = (xp)d, but then wiw j =
(xdp)(x

d
p) ∈ (T n), which contradicts our assumption (i, j) ∈ MV(n, d). The equality

wiw j = Nor(wiw j ) holds in A, therefore it is an equality in A(d). We have shown
that for every pair (i, j) ∈ MV(n, d) there is unique pair (i ′, j ′) ∈ C(n, 2, d) such that
i ′ < j ′ andw jwi = ϕi iwi ′w j ′ holds inA(d). ThereforeA(d) satisfies the relations (4.2)
from R2. It is clear that all properties listed in part (2) hold and |R2| = |MV(n, d)| =
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(N+2
2

) − (n+2d
n

)
. Note that

LM(R1) = {w jwi | w j > wi },
LM(R2) = {wiw j | wi � w j , (i, j) ∈ MV(n, d)}.

It follows that LM(R1) ∩ LM(R2) = ∅ and therefore R1 ∩ R2 = ∅. Hence the set
of relations R is a disjoint union R = R1 
 R2 and

|R| = |R1| + |R2| =
(
N + 1

2

)

+
(
N + 2

2

)

−
(
n + 2d

n

)

= (N + 1)2 −
(
n + 2d

n

)

=
(
n + d

n

)2

−
(
n + 2d

n

)

.

(4.4)

(3) Assume now that 0 � i < j � N . Two cases are possible.

(a) (i, j) ∈ C(n, 2, d). In this case (i ′, j ′) = (i, j) and w jwi = ϕ j iwiw j =
ϕ j iwi ′w j ′ , so g ji = ϕ j i .

(b) (i, j) ∈ MV(n, d). Then the two relations

w jwi = ϕ j iwi ′w j ′ and wiw j = ϕi jwi ′w j ′

imply

(ϕ j i )
−1w j ·wi = wi ′w j ′ = (ϕi j )

−1wi ·w j ,

and therefore w j ·wi = ϕ j i
ϕi j

wi ·w j . It follows that w jwi = g jiwiw j , where the non-

zero coefficient g ji = ϕ j i
ϕi j

is uniquely determined by q.

(4) This is analogous to (3).

Observe that Theorem 4.5 contains important numerical data about the d-Veronese
(An

q)
(d), which will be used in the sequel, and which we summarise below.

Notation 4.6 Let An
q be the quantum space defined via a multiplicatively anti-

symmetric (n + 1)×(n + 1) matrix q. Let d � 2 and N = (n+d
n

)− 1. We associate to
the d-Veronese (An

q)
(d) a list D(An

q)
(d) of invariants uniquely determined by q and d.

LetF1 = {ϕ j i | 0 � i < j � N } be the set of coefficients occurring inR1 (see (4.1))
and let F2 = {ϕi j | (i, j) ∈ MV(n, d)} be the set of coefficients occurring in R2 (see
(4.2)). Let g = ‖gi j‖ be themultiplicatively anti-symmetric (N + 1)×(N + 1)matrix
whose entries gi j , 0 � i < j � N , are the coefficients occurring in R′

1 see (4.3).
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We collect this information about (An
q)

(d) in the following data:

D(An
q)

(d) : q = ‖qi j‖;
F1 = {ϕ j i | 0 � i < j � N }, the set of coefficients occurring in (4.1);
F2 = {ϕi j | i � j, (i, j) ∈ MV(n, d)}, the set of coefficients
occurring in (4.2);
g = ‖gi j‖, a multiplicatively anti-symmetric (N + 1)×(N + 1)matrix
with

g ji =

⎧
⎪⎨

⎪⎩

1 for i = j,

(ϕ j i )/(ϕi j ) for (i, j) ∈ MV(n, d) and i < j,

ϕ j i for (i, j) ∈ C(n, 2, d) and i < j .

5 Veronesemaps

Let n, d ∈ N and N = (n+d
d

) − 1. In this section, we introduce and study non-
commutative analogues of the Veronese embeddings Vn,d : P

n → P
N . The main

result of the section is Theorem 5.2, which describes explicitly the reduced Gröbner
bases for the kernel of the non-commutative Veronese map.

We keep the notation and conventions from the previous sections, so Xn =
{x0, . . . , xn} and T n = T(Xn) ⊂ 〈Xn〉 is the set of ordered monomials (terms) in
the alphabet Xn . The set (T n)d of all degree d terms is enumerated according the
degree-lexicographic order in 〈Xn〉:

(T n)d = {
w0 = xd0 < w1 = (x0)

d−1x1 < · · · < wN = xdn
}
.

We introduce a second set of variables YN = {y0, . . . , yN }, and given an arbitrary
multiplicatively anti-symmetric (N + 1)×(N + 1) matrix g = ‖gi j‖, we present the
corresponding quantum space as AN

g = C〈YN 〉/(Rg), where

Rg
..= {y j yi − g ji yi y j | 0 � i < j � N }.

5.1 Definitions and first results

Lemma 5.1 Let n, d ∈ N and let N = (n+d
d

) − 1. Let (T n)d and YN be as above.
For every (n + 1)×(n + 1) multiplicatively anti-symmetric matrix q, there exists a
unique (N + 1)×(N + 1) multiplicatively anti-symmetric matrix g = ‖gi j‖ such that
the assignment

y0 �→ w0, y1 �→ w1, . . . , yN �→ wN

extends to an algebra homomorphism

vn,d : AN
g → An

q.
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The entries of g are given explicitly in terms of the data D((An
q)

(d)) of the d-Veronese

(An
q)

(d), see 4.6. The image of the map vn,d is the d-Veronese subalgebra (An
q)

(d).

We call vn,d the (n, d)-Veronese map.

Proof Suppose q is an (n + 1)×(n + 1) multiplicatively anti-symmetric matrix, and
let An

q be the corresponding quantum space. Assume that there exists an (N + 1)
×(N + 1) multiplicatively anti-symmetric matrix g such that the map vn,d is a homo-
morphism of C-algebras. Then

w jwi = vn,d(y j yi ) = vn,d(g ji yi y j ) = g jiwiw j ,

for every 0 � i � j � N . By Theorem 4.5,

w jwi = ϕ j i Tβ and wiw j = ϕi j Tβ,

for every 0 � i < j � N , where Tβ ∈ (T n)2d is the unique ordered monomial of
multi-degreeβ = deg(w j )+deg(wi ). In the particular caseswhen (i, j) ∈ C(n, 2, d),
one has wiw j = Tβ , so ϕi j = 1. The nonzero coefficients ϕ j i and ϕi j are uniquely
determined by the matrix q, see 4.6. It follows that the equalities

ϕ j i Tβ = w jwi = g jiwiw j = g jiϕi j Tβ

hold in An
q, so (g jiϕi j − ϕ j i )Tβ = 0. But Tβ is in the C-basis of An

q, and therefore

g ji = ϕ j i

ϕi j
∈ C

×, (5.1)

for all 0 � i � j � N , which agrees with 4.6. This determines a unique multiplica-
tively anti-symmetric matrix gwith the required properties, and therefore the quantum
spaceAN

g is also uniquely determined. The image of vn,d is the subalgebra ofAn
q gen-

erated by the ordered monomials Td , which by Theorem 4.5 is exactly the d-Veronese
(An

q)
(d).

Conversely, if g = ‖gi j‖ is an (N + 1)×(N + 1)matrix whose entries satisfy (5.1)
then g is a multiplicatively anti-symmetric matrix which determines a quantum space
AN

g and theVeronesemap vn,d : AN
g → An

q, yi �→ wi , 0 � i � N , is well-defined.

We fix an (n + 1)×(n + 1) multiplicatively anti-symmetric matrix q defining the
quantum space An

q. Let A
N
g be the quantum space defined via the (N + 1)×(N + 1)

matrix g from Lemma 5.1. To simplify notation, as in the previous subsection, we shall
writeA = An

q.Weknow that there is a standardfinite presentationAN
g = C〈YN 〉/(Rg),

where

Rg
..= {y j yi − g ji yi y j | 0 � i < j � N } (5.2)

is the reduced Gröbner basis of the ideal J = (Rg) = ker ρ, where ρ is the canonical
projection

ρ : C〈YN 〉 → C〈YN 〉/(Rg) = AN
g .
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We can lift the Veronese map vn,d : AN
g → A to a uniquely determined homomor-

phism V : C〈YN 〉 → A(d) extending the assignment

y0 �→ w0, y1 �→ w1, . . . , yN �→ wN .

It is clear that the map V is surjective, since the restriction V|YN : YN → (T n)d is
bijective, and the set of ordered monomials (T n)d generates A(d).

Let K ..= ker V ⊂ C〈YN 〉.Wewant to find the reducedGröbner basisR0 of the ideal
K with respect to the degree-lexicographic order ≺ on 〈YN 〉, where y0 ≺ · · · ≺ yN .

Heuristically, we use the explicit information on the d-Veronese subalgebra A(d)

given in terms of generators and relations in Theorem 4.5, (4.1), and (4.2). In each of
these relations we replace wi with yi , 0 � i � N , preserving the remaining data (the
coefficients and the sets of indices), and obtain a polynomial in C〈YN 〉. This yields
two disjoint sets of linearly independent quadratic binomials �1 and �2 in C〈YN 〉:
• The set�1, corresponding to the setR1 defined in (4.1), consists of

(N+1
2

)
quadratic

relations:

�1 =
{

Fji = y j yi − ϕ j i yi ′ y j ′

∣
∣
∣
∣
0 � i < j � N , i ′ < j ′, (i ′, j ′) ∈ C(n, 2, d)

y j yi � yi ′ y j ′ , ϕ j i ∈ C
×

}

;

(5.3)

• The set�2, corresponding to the setR2 defined in (4.2), has exactly
(N+2

2

)−(n+2d
n

)

relations:

�2 =
{

Fi j = yi y j − ϕi j yi ′ y j ′

∣
∣
∣
∣

(i, j) ∈ MV(n, d), i ′ < j ′, (i ′, j ′) ∈ C(n, 2, d)

yi y j � yi ′ y j ′ , ϕi j ∈ C
×

}

.

(5.4)

There is one more set which is contained in K : the set Rg of defining relations for
AN

g . Note that Rg corresponds exactly to R′
1 from (4.3). We set � = �1 ∪ �2 and

�′ = Rg ∪ �2. It is not difficult to see that there are equalities of ideals in C〈YN 〉:

(�) = (�1,�2) = (�′) = (Rg,�2)

and that the set of relations � and �′ are equivalent.
It is clear that the set � = �1 ∪ �2 of quadratic polynomials in C〈YN 〉 and the set

R = R1 ∪ R2 of relations of the d-Veronese subalgebra A(d) from Theorem 4.5 have
the same cardinality. In fact

|�′| = |�| = |R| = (N + 1)2 −
(
n + 2d

n

)

, (5.5)

as computed in (4.4). We shall prove that the set � = �1 ∪�2 is the reduced Gröbner
basis of K , while �′ is a minimal Gröbner basis of K .
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Theorem 5.2 With notation as above, let V : C〈YN 〉 → A(d) be the algebra homo-
morphism extending the assignment

y0 �→ w0, y1 �→ w1, . . . , yN �→ wN ,

let K be the kernel of V . Let � = �1 ∪ �2 be the set of quadratic polynomials given
in (5.3) and (5.4), and let �′ = Rg ∪ �2, where Rg is given in (5.2). Then

(1) � is the reduced Gröbner basis of the ideal K .
(2) �′ is a minimal Gröbner basis of the ideal K .

Proof We start with a general observation. The quantum spaceA = An
q is a quadratic

algebra, therefore its d-VeroneseA(d) ∼= C〈YN 〉/K is also quadratic, see Remark 4.2.
Hence K is generated by quadratic polynomials and it is graded by length.

Remark 5.3 It is clear that the sets of leading monomials and the sets of normal mono-
mials satisfy the following equalities in 〈YN 〉:

LM(Rg) = LM(�1) = {y j yi | 0 � i < j � N },
LM(�2) = {yi y j | (i, j) ∈ MV(n, d)},
LM(�) = LM(�1) ∪ LM(�2) = LM(�′),
N (�) = N (�′).

Therefore �′ is a minimal Gröbner basis of the ideal K if and only if � is a reduced
Gröbner basis of K .

By Theorem 4.5, the quadratic polynomials Fji (Yn) in (5.3) and Fi j (Yn) in (5.4)
satisfy

V (Fji (y0, . . . , yN )) = f j i (w0, . . . , wN ) = 0, for every 0 � i < j � N ,

and

V (Fi j (y0, . . . , yN )) = fi j (w0, . . . , wN ) = 0, for every (i, j) ∈ MV(n, d).

Thus� ⊂ K and, in a similar way,�′ ⊂ K . We shall show that� is a reduced Gröbner
basis of K .

As usual, N (K ) ⊂ C〈YN 〉 denotes the set of normal monomials modulo K , and
N (�) ⊂ C〈YN 〉 denotes the set of normal words modulo �. In general,

N (K ) ⊆ N (�),

and by Corollary 2.6 equality holds if and only if � is a Gröbner basis of K . Recall
from Sect. 2.3 that there are isomorphisms of vector spaces

C〈YN 〉 = K ⊕CN (K ), and CN (K ) ∼= C〈YN 〉/K ∼= A(d).
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The ideal K is graded by length, i.e. K = ⊕
j�0 K j , with K0 = K1 = 0.

For j � 0, let N (K ) j be the set of normal words of length j , with the convention
that N (K )0 = {1}, N (K )1 = YN . As vector spaces,

(C〈YN 〉) j = K j ⊕CN (K ) j , and CN (K ) j ∼= A
(d)
j = A jd , for every j � 2.

In particular, (C〈YN 〉)2 = K2⊕CN (K )2, so

dim(C〈YN 〉)2 = dim K2 + dim(CN (K )2) = dim K2 + dimA2d .

We know that

dimA2d =
(
n + 2d

n

)

and dim(C〈YN 〉)2 = |(YN )2| = (N + 1)2,

where Y 2
N is the set of all words of length two in 〈YN 〉. This, together with (5.5),

implies

dim K2 = (N + 1)2 −
(
n + 2d

n

)

= |�|.

Clearly, the set � consists of linearly independent polynomials, therefore dim K2 =
dimC� = |�|. It follows that C� = K2, and since K is generated by quadratic
polynomials, one has K = (�).

We shall use the following remark.

Remark 5.4 The following are equivalent:

(1) yi y j yk ∈ N (�)3;
(2) yi y j ∈ N (�)2 and y j yk ∈ N (�)2;
(3) (i, j, k) ∈ C(n, 3, d).

Moreover, there are equalities

|N (�)3| = |C(n, 3, d)| =
(
n + 3d

n

)

. (5.6)

We know thatA(d)
3 = A3d , so dimA

(d)
3 = dimA3d = (n+3d

n

)
, which together with

(5.6) imply

|N (�)3| = dimA3d .

It follows from Lemma 2.7 that the set � is a Gröbner basis of the ideal K . The set
of leading monomials LM(�) is an antichain of monomials, hence � is a minimal
Gröbner basis. For j > i , every Fji ∈ � defined in (5.3) is in normal form modulo
�\{Fji }. Similarly, for (i, j) ∈ MV(n, d), every Fi j ∈ � defined in (5.4) is in normal
form modulo �\{Fi j }. We have proven that � is a reduced Gröbner basis of the ideal
K .

It follows from Remark 5.3 that �′ is a minimal Gröbner basis of K .
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5.2 TheVeronesemap vn,d and the reduced Gröbner basis of its kernel

Theorem 5.5 Let n, d ∈ N and N = (n+d
d

) − 1. Let An
q be a quantum space defined

by an (n+1)× (n+1) deformation matrix q and letAN
g be the quantum space whose

multiplicatively anti-symmetric (N + 1)×(N + 1) matrix g is determined by Lemma
5.1. Let

vn,d : AN
g → An

q

be the Veronese map extending the assignment

y0 �→ w0, y1 �→ w1, . . . , yN �→ wN .

(1) The image of vn,d is the d-Veronese subalgebra (An
q)

(d) of An
q.

(2) The kernel K ..= ker(vn,d) of the Veronese map has a reduced Gröbner basis
consisting of exactly

(N+2
2

) − (n+2d
n

)
binomials:

Rv
q

..= {
yi y j − ϕi j yi ′ y j ′ | (i, j) ∈ MV(n, d), (i ′, j ′) ∈ C(n, 2, d), ϕi j ∈ C

×}
,

(5.7)

whereNor(vn,d(yi y j )) = ϕi jvn,d(yi ′ y j ′), yi y j � yi ′ y j ′ , and ϕi j ∈ C
× are invari-

ants of (An
q)

(d) given in Notation 4.6.

Proof Part (1) follows from Lemma 5.1. For part (2), we first prove that the set Rv
q

generates K. The proof is similar to the argument describing the kernel K = ker V in
Theorem 5.2.

Note that Rv
q ⊂ K. Indeed, by direct computation, one shows that vn,d(R

v
q) = R2,

the set of relations of the d-Veronese (An
q)

(d) given in (4.2), so Rv
q ⊂ K. Moreover,

it follows from (5.7) that for each pair (i, j) ∈ MV(n, d) the set Rv
q contains exactly

one element, namely yi y j −ϕi j yi ′ y j ′ , where Nor(vn,d(yi y j )) = ϕi jvn,d(yi ′ y j ′). Here
we consider the normal form Nor(vn,d(yi y j )) = Nor(wiw j ) = ϕi jwi ′w j ′ , see Theo-
rem 4.5 (2). Hence

|Rv
q| = |MV(n, d)| =

(
N + 2

2

)

−
(
n + 2d

n

)

,

where the last equality follows from Lemma 4.4. By Convention 3.9, we identify
AN

g
∼= (CT(YN ), •). Our goal is to show that the two set of normal words N (K) and

N (Rv
q) coincide, where

N (K) = N≺0(K) ⊂ CT(YN ), and N (Rv
q) = N≺0(R

v
q) ⊂ CT(YN ),

as in Definition 3.11. There are obvious isomorphisms of vector spaces

AN
g = CT(YN ) = K⊕CN (K).
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For simplicity of notation, we set B = AN
g /K and consider the canonical grading of

B induced by the grading of AN
g . Then

B = AN
g / ker(vn,d) ∼= im(vn,d) = (An

q)
(d),

so there are equalities

(AN
g )m = (CT(YN ))m = (K)m ⊕(CN (K))m and Bm ∼= (An

q)
(d)
m = (An

q)md , (5.8)

for every m � 2. In particular, for m = 2 one has B2 ∼= (An
q)

(d)
2 = (An

q)2d and

dim(AN
g )2 = dim(K)2 + dim(An

q)2d , hence

(
N + 2

2

)

= dim(K)2 +
(
n + 2d

2

)

,

which implies

dim(K)2 =
(
N + 2

2

)

−
(
n + 2d

2

)

= |Rv
q|.

It is clear that the setRv
q is linearly independent, so it is a basis of the graded component

K2, and K2 = CRv
q. But the ideal K is generated by homogeneous polynomials of

degree 2, therefore

K = (K2) = (Rv
q), (5.9)

so Rv
q generates the kernel K.

We are now ready to prove that Rv
q is a Gröbner basis of K. We shall provide two

proofs.

First proof Here we use an analogue of Remark 5.4 in the settings of a quantum space.

Remark 5.6 The following are equivalent:

(1) yi y j yk ∈ N (Rv
q)3;

(2) yi y j ∈ N (Rv
q)2 and y j yk ∈ N (Rv

q)2;
(3) (i, j, k) ∈ C(n, 3, d).

Moreover there are equalities

|N (Rv
q)3| = |C(n, 3, d)| =

(
n + 3d

n

)

. (5.10)

By (5.8), dim B3 = dimA3d = (n+3d
n

)
, which together with (5.10) implies

|N (Rv
q)3| = dim B3.
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Now Lemma 3.14 implies that Rv
q is a Gröbner basis of the ideal K = ker(vn,d). It is

clear that Rv
q is the reduced Gröbner basis of K.

Second proof We shall use Theorem 5.2 and ideas from [37]. By (5.9), we know that
the set Rv

q generates K. Consider now the ideal Nor−1(K) in C〈YN 〉. It is easy to see
that

Nor−1(K) = Jg + (Rv
q) = (Rg) + (Rv

q) = K ,

where K = ker V is the kernel of the epimorphism V : C〈YN 〉 → A(d) from The-
orem 5.2. Indeed, the polynomials in Rg and Rv

q, considered as elements of the free
associative algebra C〈YN 〉, satisfy

Rg = �′
1 and Rv

q = �2,

where �′
1 and �2 are the relations given in Theorem 5.2, see (4.3) and (5.4). Hence

by the same theorem, the set �′ = Rg ∪Rv
q is a minimal Gröbner basis of the ideal K .

Theorem 5.2 also implies that the disjoint union of quadratic relations � = �1 ∪ �2
is the reduced Gröbner basis of K in C〈YN 〉. It follows from [37, Proposition 9.3 (3)]
that the intersection

G = � ∩ CN (Jg) = � ∩ CN (Rg)

is the reduced Gröbner basis of the ideal K = ker(vn,d). Moreover, we have N (Jg) =
CT(YN ). Then the obvious equalities

G = � ∩ CN (Jg) = (�1 ∪ �2) ∩ CT(YN ) = �2 = Rv
q

imply that Rv
q is the reduced Gröbner basis of K.

We remark that [37, Proposition 9.3 (4)] implies that the set Rg ∪ G = �′
1 ∪ �2

is the reduced Gröbner basis of the ideal K . This fact agrees with Part (3) of our
Theorem 5.2, proven independently.

Corollary 5.7 The set of leading monomials for the Gröbner basisRv
q does not depend

on the deformation matrix q and equals

LM(Rv
q) = {yi y j | (i, j) ∈ MV(n, d)}.

6 Segre products and Segremaps

In this section we introduce and investigate non-commutative analogues of the Segre
embedding Sn,m : P

n× P
m → P

(n+1)(m+1)−1. The main result of the section is The-
orem 6.10, which describes explicitly the reduced Gröbner basis for the kernel of the
non-commutative Segre map. We first recall the notion of Segre product of graded
algebras, following [38, Sect. 3.2].
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Definition 6.1 Let

R =
⊕

k∈N0

Rk and S =
⊕

k∈N0

Sk

be graded algebras. The Segre product of R and S is the graded algebra

R ◦ S ..=
⊕

k∈N0

Rk⊗ Sk .

Clearly, the Segre product R ◦ S is a subalgebra of the tensor product algebra R⊗ S.
Note that the embedding is not a graded algebra morphism, as it doubles grading. The
Hilbert function of R ◦ S satisfies

hR ◦ S(t) = dim(R ◦ S)t = dim(Rt ⊗ St ) = dim(Rt ) · dim(St ) = hR(t) ·hS(t).

Given n,m ∈ N, let

N ..= (n + 1)(m + 1) − 1.

Let q and q′ be twomultiplicatively anti-symmetric matrices of sizes (n + 1)×(n + 1)
and (m + 1)×(m + 1), respectively, and letAn

q andA
m
q′ be the corresponding quantum

spaces. We shall construct a quantum space AN
g defined via N + 1 (double indexed)

generators

Znm = {
ziα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}

and an (N+1)× (N+1)multiplicatively anti-symmetricmatrixg uniquely determined
by q and q′.

Convention 6.2 We order the set Znm using the lexicographic ordering on the pairs
of indices (i, α), 0 � i � n, 0 � α � m, that is, ziα ≺ z jβ if and only if either (a)
i < j , or (b) i = j, and α < β. Thus

Znm = {z00 ≺ z01 ≺ · · · ≺ z0m ≺ z10 ≺ · · · ≺ znm−1 ≺ znm}. (6.1)

When no confusion arises, we write Z for Znm . As usual, we consider the free asso-
ciative algebra C〈Z〉 and fix the degree-lexicographic ordering ≺ induced by (6.1) on
the free monoid 〈Z〉.

In this section, we shall work simultaneously with three disjoint sets of variables,
X = Xn , Y = Ym , and Z = Znm . We shall use notation T(X) = T n, T(Y ) = T m

and T(Z) for the corresponding sets of ordered terms in variables X , respectively Y ,
respectively Z . In particular, the set T(Z) of ordered monomials in Z with respect to
the ordering (6.1) is

T(Z) = {
zk0000 z

k01
01 . . . zk1010 . . . zknmnm | kiα ∈ N0, i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}.
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As in Convention 3.9, we identify An
q with (CT(X), •) and Am

q′ with (CT(Y ), •).

Remark 6.3 Consider the free associative algebra C〈X; Y 〉 = C〈x0, . . . , xn, y0, . . . ,
ym〉, generated by the disjoint union Xn 
 Ym , and the free monoid 〈X; Y 〉 =
〈x0, . . . , xn, y0, . . . , ym〉 with the canonical degree-lexicographic ordering ≺ extend-
ing x0 ≺ x1 ≺ · · · ≺ xn ≺ y0 ≺ y1 ≺ · · · ≺ ym . Let

R0 = R(An
q⊗Am

q′) = Rq ∪ Rq′ ∪ {
yαxi − xi yα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}.

Then R0 is the reduced Gröbner basis of the two-sided ideal (R0) of C〈X; Y 〉 and
there is an isomorphism of algebras

C〈X; Y 〉/(R0) ∼= An
q⊗Am

q′ .

Proposition 6.4 In notation as above, let An
q and Am

q′ be quantum spaces and let
N ..= (n+1)(m+1)−1. Then there exists a unique (N+1)× (N+1)multiplicatively
anti-symmetric matrix g = ‖giα, jβ‖ such that the assignment

ziα �→ xi ⊗ yα, for every i ∈ {0, . . . , n} and every α ∈ {0, . . . ,m},

extends to a well-defined C-algebra homomorphism

sn,m : AN
g → An

q⊗Am
q′ . (6.2)

Moreover, the following conditions hold:

(1) The quantum space AN
g is presented as

AN
g = C〈Z〉/(Rg),

where

Rg
..= {

z jβ ziα − (g jβ,iα) ziαz jβ | z jβ � ziα, z jβ, ziα ∈ Z
}

is a reduced Gröbner basis for the two-sided ideal (Rg) in C〈Z〉.
(2) There is an isomorphism of algebras AN

g
∼= (CT(Z), •), where the multiplication

• is defined as u •v ..= NorRg(uv).
(3) The image sn,m(AN

g ) is the Segre subalgebra An
q ◦Am

q′ of An
q⊗Am

q′ .

We call the homomorphism sn,m the (n,m)-Segre map.

Proof Assume that there exists an (N + 1)×(N + 1) multiplicatively anti-symmetric
matrix g such that sn,m is a homomorphism of C-algebras. Let Z = Znm as above be
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the set of generators of AN
g . We compute sn,m(ziαz jβ) in two different ways:

sn,m(ziαz jβ) = sn,m(ziα)sn,m(z jβ)

= (xi ⊗ yα)(x j ⊗ yβ) = (xi x j )⊗(yα yβ),

sn,m(ziαz jβ) = sn,m(giα, jβ(z jβ ziα)) = giα, jβ sn,m(z jβ ziα)

= giα, jβ sn,m(z jβ) sn,m(ziα) = giα, jβ(x j xi ⊗ yβ yα)

= giα, jβ q ji q
′
βα(xi x j )⊗(yα yβ).

Therefore,

(xi x j )⊗(yα yβ) = (giα, jβ q ji q
′
βα)(xi x j )⊗(yα yβ)

for every i, j ∈ {0, . . . , n} and every α, β ∈ {0, . . . ,m}. It follows that g = ‖giα, jβ‖
is a multiplicatively anti-symmetric matrix uniquely determined by the equalities

giα, jβ = (q ji q
′
βα)−1 = qi j q

′
αβ. (6.3)

We remark that thematrix g is equal to the theKronecker product q⊗q′ of thematrices
q and q′.

Conversely, if g is the multiplicatively anti-symmetric matrix defined via (6.3),
then the Segre map (6.2) is a well-defined algebra homomorphism. Conditions (1)
and (2) follow straightforwardly from the discussion in Sect. 3, see Remarks 3.4 and
Convention 3.9. The Segre subalgebra An

q ◦Am
q′ is generated by the elements xi ⊗ yα

for i ∈ {0, . . . , n} and α ∈ {0, . . . ,m}. By construction sn,m(ziα) = xi ⊗ yα , hence
the image sn,m(AN

g ) is the Segre subalgebra An
q ◦Am

q′ , which proves (3).

As usual, we identify the quantum spaceAN
g with (CT(Z), •), see Convention 3.9.

Remark 6.5 Being a Segre product, the algebra An
q ◦Am

q′ = sn,m(AN
g ) inherits vari-

ous properties from the two algebras An
q and Am

q′ . In particular, since the latter are
one-generated, quadratic, and Koszul, it follows from [38, Proposition 3.2.1] that
the algebra An

q ◦Am
q′ is also one-generated, quadratic, and Koszul. Clearly, the set

{xi ⊗ yα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}} of cardinality N + 1 = (n + 1)(m + 1) is a
generating set of An

q ◦Am
q′ .

Lemma 6.6 The following equalities hold in the Segre product An
q ◦Am

q′ , for all i, j ,
α, β, such that 0 � i < j � n and 0 � α < β � m:

(xi ◦ yα)(x j ◦ yβ) = (xi x j )◦(yα yβ),

(x j ◦ yβ)(xi ◦ yα) = q ji q ′
βα(xi x j )◦(yα yβ) = q ji q ′

βα(xi ◦ yα)(x j ◦ yβ),

(x j ◦ yα)(xi ◦ yβ) = q ji q ′
αβ(xi x j )◦(yβ yα) = q ji q ′

αβ(xi ◦ yβ)(x j ◦ yα),
(6.4)

(xi ◦ yβ)(x j ◦ yα) = xi x j ◦ yβ yα
= q ′

βα(xi x j )◦(yα yβ) = q ′
βα(xi ◦ yα)(x j ◦ yβ),

(6.5)
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(x j ◦ yα)(xi ◦ yα) = q ji (xi x j )◦(yα yα),= q ji (xi ◦ yα)(x j ◦ yα)

(xi ◦ yβ)(xi ◦ yα) = q ′
βα(xi xi )◦(yα yβ) = q ′

βα(xi ◦ yα)(xi ◦ yβ).
(6.6)

Remark 6.7 (1) The equalities given in Lemma 6.6 imply the following explicit list of
defining relations Rg for the quantum space AN

g :

z jβ ziα − q ji q ′
βαziαz jβ ∈ Rg by (6.4),

z jαziβ − q ji q ′
αβ ziβ z jα ∈ Rg by (6.4),

z jαziα − q ji ziαz jα ∈ Rg by (6.6),
ziβ ziα − q ′

βαziαziβ ∈ Rg by (6.6),

for every 0 � i < j � n and every 0 � α < β � m.

(2) Equalities (6.5) imply that the following quadratic binomials in AN
g are in the

kernel of the Segre map:

ziβ z jα − q ′
βαziαz jβ ∈ ker s(n,m),

for every 0 � i < j � n and every 0 � α < β � m.

Notation 6.8 We denote by MS(n,m) the following collection of quadruples:

MS(n,m) = {
(i, j, β, α) | 0 � i < j � n, 0 � α < β � m

}
.

Lemma 6.9 The cardinality of MS(n,m) is

|MS(n,m)| =
(
n + 1

2

)(
m + 1

2

)

.

Proof Clearly, |{(i, j) | 0 � i < j � n}| = (n+1
2

)
. Moreover, for each fixed pair (i, j),

0 � i < j � n, the number of quadruples {(i, j, β, α) | 0 � α < β � m} is exactly(m+1
2

)
, which finishes the proof.

We keep the notation and conventions of this section, in particular we identify the
quantum space AN

g with (CT(Z), •). Recall that if P ⊂ AN
g is an arbitrary set, then

LM(P) = LM≺0(P) denotes the set of leading monomials

LM(P) = {LM≺0( f ) | f ∈ P}.

A monomial T ∈ T(Z) is normal modulo P if it does not contain as a subword any
u ∈ LM(P). The set of all normal mod P monomials in T(Z) is denoted by N≺0(P),
so

N≺0(P) = {T ∈ T(Z) | T is normal mod P}.

A criterion for a Gröbner basis F of an idealK = (F) inAN
g follows straightforwardly

as an analogue of Lemma 3.13, in which we only replace YN with the set of generators
Z , and keep the remaining notation and assumptions.
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Theorem 6.10 The set

Rs
q,q′ ..= {

ziβ z jα − q′
βαziαz jβ | 0 � i < j � n, 0 < α < β � m

} ⊂ AN
g

consisting of
(n+1

2

)(m+1
2

)
quadratic binomials is a reducedGröbner basis for the kernel

of the Segre map

sn,m : AN
g → An

q⊗Am
q′ .

Proof It is clear that
∣
∣Rs

q,q′
∣
∣ = |MS(n,m)| = (n+1

2

)(m+1
2

)
. We set

K = ker sn,m, N (K) = N≺0(K),

R = Rs
q,q′ , N (R) = N≺0(R).

By Remark 6.7 (2), R ⊂ K. We claim that R generates K as a two-sided ideal of AN
g .

The image sn,m(AN
g ) is the Segre product An

q ◦Am
q′ , which is a quadratic algebra,

see Remark 6.5. Therefore the kernel K is generated by polynomials of degree 2.
Moreover, there is an isomorphism of vector spaces

CN (K) ∼= An
q ◦Am

q′ .

In particular,

dim(CN (K))2 = dim((An
q)2) dim((Am

q′)2) =
(
n + 2

2

)(
m + 2

2

)

.

It is clear that (AN
g )2 = (CT(Z))2 = (K)2⊕(CN (K))2, hence

dim(K)2 = dim(AN
g )2 − dim(CN (K))2 =

(
N + 2

2

)

−
(
n + 2

2

)(
m + 2

2

)

=
(

(n + 1)(m + 1) + 1

2

)

−
(
n + 2

2

)(
m + 2

2

)

=
(
n + 1

2

)(
m + 1

2

)

= |R|.

Now the equality |R| = dim(K)2, together with the obvious linear independence of
the elements of R, imply that R is a C-basis of (K)2, so it spans the space (K)2. But
we know that the kernel K is generated by polynomials of degree 2, hence K = (R).

Next we shall prove thatR is a Gröbner basis of the ideal K. Let B = AN/K. Then

B = AN/ ker(sn,m) ∼= sn,m(AN ) = An
q ◦Am

q′ .
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Hence

dim B3 = dim(An
q ◦Am

q′)3 = dim(An
q)3 · dim(Am

q′)3 =
(
n + 3

3

)(
m + 3

3

)

. (6.7)

We claim that dim B3 = |(N (R))3|. Indeed, by the identification AN
g � (CT(Z), •)

we have

(AN
g )3 = (CT(Z))3

= C
{
ziαz jβ zkγ | (i, α) � ( j, β) � (k, γ ), 0 � i, j, k � n, 0 � α, β, γ � m

}
.

Clearly, a monomial ziαz jβ zkγ ∈ (T(Z))3 is normal modulo R if and only if each of
its subwords of length 2, ziαz jβ and z jβ zkγ , is normal modulo R. Moreover,

N (R)2 = {
ziαz jβ | 0 � i � j � n, 0 � α � β � m

}
,

therefore

N (R)3 = {
ziαz jβ zkγ | 0 � i � j � k � n, 0 � α � β � γ � m

}
. (6.8)

It follows from (6.8) that

∣
∣N (R)3

∣
∣ =

(
n + 3

3

)(
m + 3

3

)

,

which together with (6.7) give the desired equality dim B3 = |(N (R))3|. Now Lemma
3.14 implies that R is a Gröbner basis of the ideal K. It is obvious that R is a reduced
Gröbner basis of K.

7 Examples

We present here some examples that illustrate the results of our paper.

Example 7.1 (The non-commutative twisted cubic curve) Let n = 1 and d = 3. Then

X = {x0, x1}, q =
(
1 q−1

q 1

)

, A1
q = C〈x0, x1〉/(x1x0 − qx0x1).

In this case N = (1+3
3

) − 1 = 3 and the corresponding quantum space A3
g is defined

by the following data:

Y = {y0, y1, y2, y3}, g =

⎛

⎜
⎜
⎝

1 q−3 q−6 q−9

q3 1 q−3 q−6

q6 q3 1 q−3

q9 q6 q3 1

⎞

⎟
⎟
⎠ .
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The kernel ker(v1,3) of the Veronese map v1,3 : A3
g → A1

q has a reduced Gröbner
basis G given below

G = {
y21 − q2y0y2, y1y2 − qy0y3, y22 − q2y1y3

}
.

We have used the fact that in this case MV(1, 3) = {(1, 1), (1, 2), (2, 2)}.
Setting q = 1 we obtain that the defining ideal for the commutative Veronese is

generated by the three polynomials {y21−y0y2, y1y2−y0y3, y22−y1y3}. This is exactly
the set of generators described and discussed in [27, pp. 23, 51].

Example 7.2 (The non-commutative rational normal curves)Generalising the previous
example, we consider n = 1 and d arbitrary. In notation as above, we write

A1
q = C〈x0, x1〉/(x1x0 − qx0x1).

In this case, N = (d+1
d

) − 1 = d and the corresponding quantum space Ad
g is deter-

mined by the data

Y = {y0, y1, . . . , yd }, g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 q−d q−2d . . . . . . . . . q−d2

qd 1 q−d q−d(d−1)

q2d qd 1
. . . q−d(d−2)

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

qd(d−1) . . . 1 q−d

qd
2

qd(d−1) qd(d−2) . . . . . . qd 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(7.1)

Observe that whenever q is a d-th root of unity, the derived (1, d)-quantum space is a
commutative algebra.

The kernel ker(v1,d) of the Veronese map v1,d : Ad
g → A1

q has a reduced Gröbner

basis G given by
(d
2

)
quadratic relations:

G = {yi y j − hi j | 1 � i � j � d − 1}, hi j =
{
qi(d− j)y0yi+1, i + j � d,

qi(d− j)yi+ j−d yd , i + j > d.

Once again, for q = 1 we obtain that a reduced Gröbner basis for the defining ideal
of the commutative rational normal curve (see [27, Example 1.16]).

Example 7.3 (The non-commutative Veronese surface) Let n = d = 2, that is,

X = {x0, x1, x2}, q =
⎛

⎝
1 q−1

10 q−1
20

q10 1 q−1
21

q20 q21 1

⎞

⎠ ,

A2
q = C〈x0, x1, x2〉/(x1x0 − q10x0x1, x2x0 − q20x0x2, x2x1 − q21x1x2).
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In this case N = 5 and the corresponding (2, 2)-quantum space A5
g is completely

determined by the data

Y = {y0, y1, y2, y3, y4, y5},

g ..=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 q−2
10 q−2

20 q−4
10 q−2

20 q
−2
10 q−4

20

q210 1 q−1
20 q

−1
21 q10 q−2

10 (q10q20q21)−1 q−2
20 q

−2
21

q220 q20q21q
−1
10 1 q221q

−2
10 q21q

−1
10 q

−1
20 q−2

20

q410 q210 q−2
21 q

2
10 1 q−2

21 q−4
21

q220q
2
10 q10q20q21 q−1

21 q10q20 q221 1 q−2
21

q420 q220q
2
21 q220 q421 q221 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Observe that inside the matrix g we find as submatrices three occurrences of the
matrix in (7.1) for d = 2 and q equal to one of the three commutation parameters,
namely

⎛

⎜
⎜
⎝

1 q−2
10 q−4

10

q210 1 q−2
10

q410 q210 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 q−2
20 q−4

20

q220 1 q−2
20

q420 q220 1

⎞

⎟
⎟
⎠ , and

⎛

⎜
⎜
⎝

1 q−2
21 q−4

21

q221 1 q−2
21

q421 q221 1

⎞

⎟
⎟
⎠ .

The kernel of the Veronese map v2,2 : A5
g → A2

q has a reduced Gröbner basis
consisting of six quadratic polynomials

G = (
y21 − q10y0y3, y1y2 − q10y0y4, y22 − q20y0y5,

y2y3 − q221y1y4, y2y4 − q21y1y5, y24 − q21y3y5
)
.

Example 7.4 (The Segre quadric) Let n = m = 1. Following the above conventions,
we write

A1
q = C〈x0, x1〉/(x1x0 − qx0x1) and A1

q′ = C〈y0, y1〉/(y1y0 − q ′y0y1).

In this case, N = 3 and the quantum space A3
g is determined by the data

Z = {z00, z01, z10, z11}, g =

⎛

⎜
⎜
⎝

1 q ′−1 q−1 (q ′q)−1

q ′ 1 q−1q ′ q−1

q q(q ′)−1 1 (q ′)−1

qq ′ q q ′ 1

⎞

⎟
⎟
⎠ .
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The kernel ker(s1,1) of the Segre map s1,1 : A3
g → A1

q⊗A1
q′ has a reduced Gröbner

basis consisting of a single quadratic polynomial

G = {z01z10 − q ′z00z11}.

Example 7.5 (The non-commutative Segre threefold) Let n = 2 and m = 1. We con-
sider

A2
q = C〈x0, x1, x2〉/(x1x0 − q1,0x0x1, x2x0 − q2,0x0x2, x2x1 − q2,1x1x2)

and

A1
q′ = C〈y0y1〉/(y1y0 − q ′y0y1).

Then N = 5 and the corresponding (2, 1)-derived quantum space is determined by
the following data:

Z = {z00, z01, z10, z11, z20, z21},

g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 (q ′)−1 q−1
10 (q10q ′)−1 q−1

20 (q20q ′)−1

q ′ 1 q−1
10 q

′ q−1
10 q−1

20 q
′ q−1

20
q10 q10(q ′)−1 1 (q ′)−1 q−1

21 (q21q ′)−1

q10q ′ q10 q ′ 1 q−1
21 q

′ q−1
21

q20 q20(q ′)−1 q21 q21(q ′)−1 1 (q ′)−1

q20q ′ q20 q21q ′ q21 q ′ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The kernel ker(s2,1) of the Segre map s2,1 : A5
g → A2

q⊗A1
q′ has a reduced Gröbner

basis consisting of three quadratic polynomials

G = {
z01z10 − q ′z00z11, z01z20 − q ′z00z21, z11z20 − q ′z10z21

}
.
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9. Brzeziński, T., Szymański, W.: The C∗-algebras of quantum lens and weighted projective spaces. J.

Noncommut. Geom. 12(1), 195–215 (2018)
10. Ciccoli, N., Fioresi, R., Gavarini, F.: Quantization of projective homogeneous spaces and duality

principle. J. Noncommut. Geom. 2(4), 449–496 (2008)
11. Cirio, L., Landi, G., Szabo, R.J.: Algebraic deformations of toric varieties II: noncommutative instan-

tons. Adv. Theor. Math. Phys. 15(6), 1817–1907 (2011)
12. Cirio, L.S., Landi, G., Szabo, R.J.: Algebraic deformations of toric varieties I. General constructions.

Adv. Math. 246, 33–88 (2013)
13. Connes, A., Landi, G.: Noncommutativemanifolds, the instanton algebra and isospectral deformations.

Comm. Math. Phys. 221(1), 141–159 (2001)
14. D’Andrea, F., Landi, G.: Bounded and unbounded Fredholm modules for quantum projective spaces.

J. K-Theory 6(2), 231–240 (2010)
15. D’Andrea, F., Landi, G.: Quantum weighted projective and lens spaces. Comm. Math. Phys. 340(1),

325–353 (2015)
16. Eisenbud, D., Peeva, I., Sturmfels, B.: Non-commutative Gröbner bases for commutative algebras.

Proc. Amer. Math. Soc. 126(3), 687–691 (1998)
17. Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. In:

Algebraic Analysis, vol. I, pp. 129–139. Academic Press, Boston (1988)
18. Garcia, L.D., Stillman, M., Sturmfels, B.: Algebraic geometry of Bayesian networks. J. Symbolic

Comput. 39(3–4), 331–355 (2005)
19. García, F.D., Krutov, A., Buachalla, R.O., Somberg, P., Strung, K.R.: Positive line bundles over the

irreducible quantum flag manifolds (2019). arXiv:abs/1912.08802
20. Gateva-Ivanova, T.: On the Noetherianity of some associative finitely presented algebras. J. Algebra

138(1), 13–35 (1991)
21. Gateva-Ivanova, T.: Noetherian properties and growth of some associative algebras. In: Mora, T.,

Traverso, C. (eds.) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp.
143–158. Birkhäuser, Boston (1991)

22. Gateva-Ivanova, T.: Noetherian properties of skew polynomial rings with binomial relations. Trans.
Amer. Math. Soc. 343(1), 203–219 (1994)

23. Gateva-Ivanova, T.: Skew polynomial rings with binomial relations. J. Algebra 185(3), 710–753 (1996)
24. Gateva-Ivanova, T.: Binomial skew-polynomial rings, Artin–Schelter regular rings, and binomial solu-

tions of the Yang–Baxter equation. Serdica Math. J. 30(2–3), 431–470 (2004)
25. Gateva-Ivanova, T.: Quadratic algebras, Yang–Baxter equation, and Artin–Schelter regularity. Adv.

Math. 230(4–6), 2152–2175 (2012)
26. Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of I -type. J. Algebra 206(1), 97–112 (1998)
27. Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)
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