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Abstract

We study Veronese and Segre morphisms between non-commutative projective spaces.
We compute finite reduced Grobner bases for their kernels, and compare them with
their analogues in the commutative case.
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1 Introduction

In this work, we describe Veronese and Segre morphisms for a class of non-commuta-
tive quadratic algebras that have permeated the literature under different names. They
made one of their first appearances as quantum affine spaces in [33, Sections 1 and
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4]. There, inspired and motivated by works of Fadeev and collaborators, Drinfeld,
and Jimbo, Manin studied quantum affine spaces in connection to Hopf algebras and
quantum groups. More recently, these very algebras surfaced as non-commutative
projective spaces in the work [5] on mirror symmetry, as well as in the study of
deformations of toric varieties [11, 12].

The study of non-commutative algebras defined by quadratic relations as examples
of quantum non-commutative spaces has undoubtedly received considerable impetus
from the seminal work [17], where the authors considered general deformations of
quantum groups and spaces arising from an R-matrix, and from Manin’s programme
for non-commutative geometry [35]. Quadratic algebras of the kind studied here still
play to this day a central role in non-commutative geometry, as they provide a rich
source of examples of non-commutative spaces.

Our work is motivated by the relevance of those algebras for non-commutative
geometry, especially in relation to the theory of quantum groups, and inspired by the
interpretation of morphisms between non-commutative algebras as “maps between
non-commutative spaces”. We consider here non-commutative analogues of the
Veronese and Segre embeddings, two fundamental maps that play pivotal roles not only
in classical algebraic geometry but also in applications to other fields of mathematics.

The d-Veronese map is the non-degenerate embedding of the projective space P”
via the very ample line bundle O(d). Its image, called the Veronese variety, has a
capital importance in algebraic geometry. Just to mention an example, every projective
variety is isomorphic to the intersection of a Veronese variety and a linear space (see
[27, Exercise 2.9]). The Segre map is the embedding of P x P via the very ample
line bundle O(1, 1). Itis used in projective geometry to endow the Cartesian product of
two projective spaces with the structure of a projective variety. In quantum mechanics
and quantum information theory, it is a natural mapping for describing non-entangled
states (see [7, Sect. 4.3]). Both are studied for the theory of tensor decomposition
[31, Sect. 4.3], as the image of the Segre morphism is the locus of rank 1 tensors,
while the image of the Veronese morphism plays a similar role for symmetric tensors.
Moreover, these constructions are central in the field of algebraic statistics: the variety
of moments of a Gaussian random variable is a Veronese variety (see [1, Sect. 6]),
while independence models are encoded by Segre varieties (see [18]).

The natural problem of finding non-commutative counterparts of those fundamental
constructions has been addressed from different perspectives, for instance in [44] and
[41]. Likewise, the equivalent non-commutative notion of line bundle has been studied
in several works as [6, 10], and more recently [19], also in connections to quantum
group deformations and C*-algebra, as well as in work by the first author [2, 3] on
q-deformations of circle bundles and operator K-theory.

In this work, we study the properties of Segre and Veronese maps and of the corre-
sponding algebras from the point of view of the theory of Grobner bases. In classical
algebraic geometry, a variety V is completely determined by its defining ideal. When
V is the image of a variety morphism f, the ideal of V is the kernel of the algebra
morphism corresponding to f. Computing a Grobner basis for the defining ideal can
provide valuable information about the properties of V. With this motivation in mind,
we are interested in computing Grobner bases for the kernels of the non-commutative
Veronese and Segre morphisms.
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The theory of Grobner bases for ideals bears several similarities with that of canon-
ical subalgebra bases or SAGBI’s—an acronym that stands for subalgebra analogues
of Grobner bases for ideals. A natural question would be to investigate those in our
setting, similar to what is done for instance in [42], where the authors construct and
study an SAGBI basis for the quantum Grassmannian. In some sense, the work pre-
sented here lends itself to generalisation in the directions of studying maps between
more general non-commutative algebras, like deformations of Grassmanians, products
thereof, and other homogeneous spaces. We postpone the investigation of this more
general setting to future work.

The paper is structured as follows. In Sect. 2 we recall some basics of the theory
of Grobner bases for ideals in the free associative algebra. Our Lemma 2.7 gives a
criterion for quadratic Grobner bases, which is crucial for the proof of our main results,
Theorems 5.5 and 6.10. In Sect. 3 we present the quadratic algebras A = A, called
quantum spaces, or non-commutative projective spaces, and we recall some of their
basic properties. In Sect. 4 we analyse their d-Veronese subalgebras. The main result
of the section is Theorem 4.5, which gives a presentation of the d-Veronese subalgebra
in terms of generators and quadratic relations. In Sect. 5 we introduce and study non-
commutative analogues of the Veronese maps for non-commutative projective spaces.
We present a modification of the theory of Grobner bases for ideals in a quantum space
and find explicitly a Grobner basis for the kernel of the Veronese map in Theorem
5.5. Using a similar approach and methods, in Sect. 6 we introduce and study non-
commutative analogues of Segre maps and Segre products. Theorem 6.10 describes
the reduced Grobner basis for the kernel of the Segre map. Finally, in Sect. 7 we
present various examples that illustrate our results.

2 Preliminaries

We start with notation, conventions, and facts which will be used throughout the paper,
and recall some basics on Grobner bases for ideals in the free associative algebra.
Lemma 2.7 gives a criterion for quadratic Grobner bases which is particularly useful
in our settings.

2.1 Basic notations and conventions

Throughout the paper X,, = {xp, ..., x,} denotes a non-empty set of indeterminates.
To simplify notation, we shall often write X instead of X,,. We denote by C(xo, ..., x;)
the complex free associative algebra with unit generated by X,,, while C[X,,] denotes
the commutative polynomial ring in the variables xo, . .., x,. (X,) is the free monoid
generated by X,,, where the unit is the empty word, denoted by 1.

We fix the degree-lexicographic order < on (X, ), where wesetxg < x1 < - -+ < Xj,.
As usual, N denotes the set of all positive integers, and Ny is the set of all non-negative
integers. Given a non-empty set F' C C(X,,), we write (F) for the two-sided ideal of
C(X,) generated by F.

@ Springer
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In more general settings, we shall also consider associative algebras over a field
k. Suppose A = @meNO Ay, is a graded k-algebra such that Ag = Kk, and such
that A is finitely generated by elements of positive degree. Recall that its Hilbert
function is ha(m) = dim A,, and its Hilbert series is the formal series Hx(t) =

>om N, ha(m) ™. In particular, the algebra C[X},] of commutative polynomials sat-
isfies

1

n+d
hC[xn](d)=< i ) and H(C[Xn]:m'

We shall use two well-known gradings on the free associative algebra C(X,): the
natural grading by length and the N8+1-grading.
Let X™ be the set of all words of length m in (X). Then

(X)=] | x™ x°={1}, and Xx*x™c X"
mENo

so the free monoid (X) is naturally graded by length.
Similarly, the free associative algebra C({X) is also graded by length:

C(X) = @ C(X)n. where C(X), =CX".

meNy
A polynomial f € C(X) is homogeneous of degree m if f € CX™. We denote by
T" =T(Xp) = {xg" - x" € (Xn) | a; € No,i €{0,...,n}}

the set of ordered monomials (terms) in (X,,) and by

T]=T4(Xp) = {xgo coexgm e TN

Xn:a,':d}
i=0

the set of ordered monomials of length d. It is well known that the cardinality |T4(X,,)|
is given by the Hilbert function (Hilbert polynomial) ic|x,(d) of the polynomial ring
in the variables X,:

d
1Ta(X,)| = (”: ) = hepx, ().

Definition 2.1 A monomial w € (X) has multi-degree @ = (g, ..., ) € NgT!,
if w, considered as a commutative term, can be written as w = xgox‘lxl R
In this case we write deg(w) = «. Clearly, w has length |w| = ag + --- + .

In particular, the unit 1 € (X) has multi-degree 0 = (0, ...,0), and deg(xg) =
(1,0,...,0),...,deg(x,) = (0,0,...,1). For each ¢ = (cg, @1, ...,0,) € Ng“
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we define
Ty = xp'x{" - xp" € T(X,) and Xo = {w € (X)|deg(w) =a}. (2.1)
The free monoid (X,,) is naturally N8+1-graded:

(X,) = |_| Xo, where Xo = {1}, and XoXpg C Xoip-

n+1
aeNj

In a similar way, the free associative algebra C(X,) is also canonically Ng“-
graded:

(C<Xn) = @ (C<Xn>ot, where C<Xn>ot =CX,.

n+1
aeN

It follows straightforwardly from (2.1) that X, NT(X,,) = {T,}, foreverya € Ng“.
Moreover, every u € Xy \ {7y} satisfies u > Ty, i.e., T, is the minimal element of X,
with respect to the ordering <.

2.2 Grobner bases for ideals in the free associative algebra

In this subsection k is an arbitrary field and X = X,, = {xq, ..., x,}. Suppose [ €
k(X) is anon-zero polynomial. Its leading monomial with respect to < will be denoted
by LM(f).One has LM(f) =uif f = cu + Zlgigm ciuj, where c,c; €k, c #0
andu > u; € (X), foreveryi € {1,...,m}.

Given a set F C K(X) of non-commutative polynomials, LM (F) denotes the set

LM(F) = {LM(f)| f € F}.

A monomial u € (X) is normal modulo F if it does not contain any of the monomials
LM(f), f € F, as asubword. The set of all normal monomials modulo F' is denoted
by N(F).

Let I be a two-sided graded ideal in K(X) and let I, = I N kX™. We shall
consider graded algebras with a minimal presentation. Without loss of generality, we
may assume that I is generated by homogeneous polynomials of degree > 2 and
I = @”@2 I,,,. Then the quotient algebra A = k(X)/I is finitely generated and
inherits its grading A = P Ay, from k(X,,). We shall work with the so-called
normal k-basis of A.

We say that a monomial u € (X,) is normal modulo I if it is normal modulo
LM(7). We set N(I) := N(LM(I)). In particular, the free monoid (X) splits as a
disjoint union

mGNQ

(X) = N(I) uLM(I).
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The free associative algebra k(X) splits as a direct sum of k-vector subspaces k(X) ~
Span, N (/)@ 1, and there is an isomorphism of vector spaces

A >~ Span, N(I).
We define
N()y ={u € N(I)|u has length m}.

Then A, >~ Span N(I),, for every m € Npy.

Definition 2.2 Let / C k(X,,) be a two-sided ideal.

e Asubset G C I of monic polynomials is a Grobner basis of I (with respect to the
ordering <) if

(a) G generates [ as a two-sided ideal, and
(b) forevery f € I there exists g € G such that LM (g) is a subword of LM ( f),
that is LM (f) = aLLM(g)b, for some a, b € (X).

e A Grobner basis G is minimal if the set G\ {f} is not a Grobner basis of 1,
whenever f € G.

e A minimal Grobner basis G of [ is reduced if each f € G is a linear combination
of normal monomials modulo G \ { f}. In this case we say that f is reduced modulo
G\{f}.

e If I has a finite Grobner basis G, then the algebra A = k(X)/(G) is called a
standard finitely presented algebra, or shortly an s.f.p. algebra.

It is well known that every ideal I of k(X) has a unique reduced Grobner basis
Go = Go(I) with respect to <. However, Go may be infinite. For more details, we
refer the reader to [16, 32, 36, 37].

Definition 2.3 Let Ay, ..., hy; € K(X) (h; = 0 is also possible). For every i €
{1,...,s}, letw; € (X) be a monomial of degree at least 2, such that w; > LM (h;),
whenever h; # 0, and let g; = w; — h;. Each g; is a monic polynomial with
LM(g;)) = w;. Let G = {g1..., g5} C k(X) and let I = (G) be the two-sided
ideal of k(X) generated by G. For u, v € (X) and fori € {1, ..., s}, we consider
the k-linear operators r,;, : k(X,) — k(X,) called reductions, defined on the basis
elements ¢ € (X,,) by

uh;jv if ¢ =uw;v,
ruiv(c) = .
c otherwise.

Then the following conditions hold:

(1) ¢ —ryiv(w) € 1.
(2) LM (ryiv(c)) < c.
(3) More precisely, LM (r,iy(c)) < cif and only if ¢ = uw;v.
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More generally, for f € k(X) and for any finite sequence of reductions r = 7y,
O -+ OFy,i,y, ONE has

f=r(f)(modI) and LM(f) > LM((f)).

A polynomial f € k(X,,) is in normal form (mod G) if none of its monomials contains
as a subword any of the w;’s. In particular, the 0 element is in normal form.

The degree-lexicographic ordering < on (X)) satisfies the decreasing chain condi-
tion, and therefore for every f € K(X) one can find a normal form of f by means of
a finite sequence of reductions defined via G. In general, f may have more than one
normal forms (mod G). It follows from Bergman’s Diamond Lemma (see [8, Theorem
1.2]) that G is a Grobner basis of 7 if and only if every f € k(X) has a unique normal
form (mod G), which will be denoted by Nor(f). In this case f € [ if and only if f
can be reduced to 0 via a finite sequence of reductions.

Definition2.4 LetG = {g; = w;—h; |i € {1, ...,s}} C k(X,)beasinDefinition2.3
and let / = (G). Let u = w; and v = w; for some i, j € {l,...,s} and let
a,b,t € (X)\({1}.

e Suppose that u = ab, v = bt and let w = abt = ut = av. The difference
(W, v)y = git —agj =ahj — h;t

is called a composition of overlap. Note that (u, v), € I and LM(git) = o =
LM(ag;), so

LM ((u, v)o) = LM(sh; — hit) < w.

The composition of overlap (u, v),, is solvable if it can be reduced to 0 by means
of a finite sequence of reductions defined via G.

e Suppose that w = w; = aw;b. The composition of inclusion corresponding to the
pair (1, w) is

(4, )y = (agib) — gj = h; —ah;b.

One has (4, w), € I and LM (#, @), = LM(hj —ah;b) < w.The composition of
inclusion (u, w),, is solvable if it can be reduced to 0 by means of a finite sequence
of reductions defined via G.

The lemma below is a modification of the Diamond Lemma and follows easily from
Bergman’s result [8, Theorem 1.2].

Lemma25 Let G = {w; —h; |i € {1,...,s}} C Kk(X},,) be as in Definition 2.3. Let
I = (G) and let A = Kk(X,)/I. Then the following conditions are equivalent:

(1) The set G is a Grobner basis of 1.
(2) All compositions of overlap and all compositions of inclusion are solvable.
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(3) Every element f € K(X,) has a unique normal form modulo G, denoted by

Norg (f).
(4) There is an equality N(G) = N(I), so there is an isomorphism of vector spaces

K(X,) ~ I®KN(G).

(5) Theimage of N(G) in A is a k-basis of A. In this case A can be identified with the
k-vector space KN (G), made a k-algebra by the multiplication a e b := Nor (ab).

Suppose furthermore that G consists of homogeneous polynomials. Then A is graded
by length and each of the above conditions is equivalent to

(6) dim A, = dim(kKN(G),;) = [N(G)n| for every m € Ny.

Corollary2.6 Let G = {w; — h;|i € {1,...,s}} C k(X,) be as above and let
I = (G). Let N(G) and N(I) be the corresponding sets of normal monomials in

k(X,). Then N(G) 2 N(I), where an equality holds if and only if G is a Grobner
basis of 1.

Itis shownin [29, Corollary 6.3] that there exist ideals in the free associative algebra
k(xo, ..., x,) for which the existence of a finite Grobner basis is an undecidable
problem.

In this paper, we focus on a class of quadratic standard finitely presented algebras A
known as non-commutative projective spaces or quantum spaces. Each such algebra
A is strictly ordered in the sense of [20, Definition 1.9], so there is a well-defined
notion of Grobner basis of a two-sided ideal in A (cf. [20, Definition 1.2]). Moreover,
every two-sided ideal in A has a finite reduced Grobner basis.

2.3 Quadratic algebras and quadratic Grobner bases
As usual, let X = X,, = {x0,...,x,}. Let M be a non-empty proper subset of
{0, ..., n}z. For every (j,i) € M, let hj; € K(X) be either 0 or a homogeneous
polynomial of degree 2 with LM (h ;) < x;x;. Let

R={fii=xjxi —hj;|(j,i) € M} Ck(X). (2.2)
Define I = (R) and consider the quadratic algebra A = k(X,,)/I. As in Sect. 2.2, let
Ny, = NU)N(X,)™ and N(R),, = N(R) N (X,,)™ be the corresponding subsets
of normal words of length m. By construction, R is a k-basis for I, so

dim I = |R| = [M| and N(I); = N(R)2 = X2\LM(R).
As vector spaces,
k(X)=10kN({) and AZKkN().

Moreover, for the canonical grading by length one has

KXDm = (Dm @KN (), and Ay =KN (),
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for every m € N.
The following lemma is crucial for the proofs of several results in the paper.

Lemma 2.7 Let R be defined as in (2.2), let A = K(X,,)/(R). The following conditions
are equivalent

(1) The set R is a (quadratic) Grobner basis of the ideal I = (R).

(2) dim A3 = [N(R)3].

(3) All ambiguities of overlap determined by LM(R) = {x;x; | (j,i) € M} are R-
solvable.

In this case A is a PBW algebra in the sense of [39, Sect. 5].

Proof First note that there are no compositions of inclusions. By Corollary 2.6,
N S NR)y and  dim Ay = [N(Dp| < [N R)ml

for every m > 2. The implications (1) < (3) and (1) = (2) follow from Lemma 2.5.

(2) = (3): A composition of overlap is either 0, or it produces only homogeneous
polynomials of degree three. Suppose w = xix;x;, where (k, j), (j,i) € M, so
fij = xkxj—hyj € Rand fj; = xjx; —hj; € R.Then the corresponding composition
of overlap is

(xxj, Xjxi)o = (frj)xi — xx(fji) = — hgjxi +xphji € 1.
By Definition 2.4, a composition is solvable if and only if it can be reduced to O.
Assume by contradiction that the composition (x;x;, x;x;), is not solvable. Then

(xkxj, xjX;)o # 0 and we can reduce it by means of a finite sequence of reductions
to a (not necessarily unique) normal form

t
F == Nor((x;xj, xjXi)w) = cu + Z csity € KN(R),

s=1

where u > u; and ¢ 0. In particular, x;xjx; > LM(F) = u € N(R). However, the
polynomial F is in the ideal 7, hence LM (F) € LM (/3) and LM (F) is notin N (I)3.
Therefore

N3 G NR)s.
Note that we have an isomorphism of vector spaces
A3 =KkN(1)3,
hence dim A3 = [N (I)3] < |N(R)3/, a contradiction. O
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Remark 2.8 Lemma 2.7 is very useful for the case when we want to show that an
algebra A with explicitly given quadratic defining relations R C k(X,,) is PBW (that
is R is a Grobner basis of the ideal I = (R)) and we have precise information about
the dimension dim A3 = d3. In this case, instead of following the standard procedure
(algorithm) of checking whether all compositions are solvable, we suggest a new
simpler procedure:

o find the set N(R)j3 and its order |N (R)3], and
e compare the order |N (R)3| with dim A3.

One has |N(R)3| > dim A3 and an equality holds if and only if R is a Grobner basis
of the ideal I = (R). This method is particularly useful when we work in general
settings—general n and general quadratic relations R. It implies a similar procedure
for ideals in the quantum space Ag/ .

We use this result in Sect. 5, see the proof of Theorem 5.2. In Sect. 3.2 we give
some basics on Grobner bases for ideals in a quantum space Aév . Lemma 3.14 is an
important analogue of Lemma 2.7 designed for quadratic Grobner bases of ideals in a
quantum space.

3 Quantum spaces

In this section, we introduce a class of quadratic algebras that are central to our paper.
We shall refer to them as quantum spaces, following Manin’s terminology.

Various deformations of projective spaces have appeared in the non-commutative
geometry literature over the years. Notable examples are the Vaksman—Soibelman
quantum projective spaces C(C PJ'), obtained as fixed-point algebras under the canon-
ical circle action on the Vaksman—Soibelman odd quantum spheres C (S;”“) [43].
They have been extensively studied in the context of Connes’ non-commutative geom-
etry [14], possess the structure of quantum homogeneous space, and, remarkably, their
algebras of continuous functions can also be realised as graph C*-algebras [28]. Their
weighted counterparts have also been investigated recently in both contexts, see for
instance [15] and [9].

While similar in flavour, the spaces we study here are in some sense a milder form
of deformation, related to so-called theta or isospectral deformations [13], and are
not endowed with a x-algebraic structure nor a norm. They form a special case of the
non-commutative deformations of projective spaces studied by Auroux, Katzarkov,
and Orlov in the context of mirror symmetry [5]. Under mild assumptions on the
deformation parameters, they are examples of non-commutative toric varieties, as
outlined in [12]. These algebras are a particular case of the skew-polynomial rings
with binomial relations studied in [22, 23]. We point out that these objects appear with
different names in the literature: they are sometimes referred to as non-commutative
projective spaces and quantum affine spaces.

We shall now recall their definition and main properties.
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3.1 Basic definitions and results

Definition 3.1 A square matrix q = ||g;; || over the complex numbers is multiplica-
tively anti-symmetric it g;; € C*, q;; = qi;l and ¢g;; = 1 for all i, j. We shall
sometimes refer to q as a deformation matrix.

Definition 3.2 Let q be an (n 4 1) x (n + 1) multiplicatively anti-symmetric matrix.

We denote by Ay the complex quadratic algebra with n + 1 generators xo, ..., Xu

subject to the (";1) quadratic binomial relations

fR:qu::{xjx,-—qj,-xixHOgi<j§n}. (31)

In other words Ag = C(X,)/ (R). We refer to Aq as the quantum space defined by the
multiplicatively anti-symmetric matrix (.

Clearly, the algebra Ay is commutative if and only if all entries of q are 1. In

this case .A:l' is isomorphic to the algebra of commutative polynomials C[xo, .. ., x,].
Although Ag is non-commutative whenever ¢ has at least one entry different from 1,
it preserves all ‘good properties’ of the commutative polynomial ring C[xo, ..., x,],

see Facts 3.7.

Example 3.3 For n = 2 and

1 ¢g7%1
q=|q¢> 1 1
1 11

one obtains the non-commutative variety }P’i o defined in [30, Sect. 3.7]. The quan-

tum space A(zl is an Artin—Schelter regular algebra of global dimension 3, see [4].

Remark 3.4 Itis easy to prove that the set R defined in (3.1) is a reduced Grobner basis
for the ideal 7 = (XR) and this fact is well known, see for example [29, Proposition
5.5]. Therefore

N(I) = N@®R) = T(Xpn).

In other words the set T(X,) of ordered monomials is the normal basis of the C-vector
space Ag. The free monoid (X,) splits as a disjoint union

(Xn) = T(Xn) ULM(),

and C(X,,) >~ SpancT(X,) D 1.

Remark 3.5 (1) Every element f € C(X,)\[ has unique normal form Nor(f) =
Norg (f) = Nor;(f), which satisfies

Nor(f) = Y. T, € CT(X,,

i=1
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S246 F. Ariciet al.

where ¢; e C, T} < Tp < --- < Ty < LM([), and the equality f = Nor(f) holds
in the algebra Afl’. Moreover, Nor(f) = Oif and only if f € I.

(2) The normal form Nor(f) can be found effectively using a finite sequence of
reductions defined via R.

(3) There is an equality Norg (x;x;) = q;;ix;x;, forevery 0 <i < j < n.
When the ideal I, or its generating set R is understood from the context, we shall
denote the normal form of f by Nor(f).

More generally, recall that a quadratic algebra is an associative graded algebra
A = @i}O A; over a ground field k determined by a vector space of generators
V = A and a subspace of homogeneous quadratic relations R = R(A) C V®V.
We assume that A is finitely generated, sodim A; < oo. Thus A = T'(V)/(R) inherits
its grading from the tensor algebra 7 (V). The Koszul dual algebra of A, denoted by
A' is the quadratic algebra T (V*)/(R™), see [33, 34]. The algebra A' is also referred
to as the quadratic dual algebra to a quadratic algebra A, see [38, p.6].

Note that every quantum space A = Ay is a skew-polynomial ring with binomial
relations in the sense of [22, 23], and a quantum binomial algebra in the sense of [25].
Thus the next corollary follows straightforwardly from [24, Theorem A], see also [25,
Lemma 5.3 and Theorem 1.1].

Corollary 3.6 Let A = Ag be a quantum space defined by the multiplicatively anti-
symmetric matrix q. Then

(1) The Koszul dual A" has a presentation A' = C(&, &1, ..., &) /(RT), where R*

consists of (";1) quadratic binomial relations and n + 1 monomials

RE = {88 — q;;'6& 10 <i < j <n}ULEF10< j < n).

(2) The set R+ is a Grobner basis of the ideal (RY) in Cl&y, &1, ...,&,), so A isa
PBW algebra with PBW generators &, &1, ..., &,.
(3) A'is a quantum Grassmann algebra of dimension n + 1.

The following result can be extracted from [23, 26], and [25, Theorem 1.1]. We use

o (nd +d
the well-known equality ("7¢) = ("}9).
Facts 3.7 Let A = Ay be a quantum space.

(1) A is canonically graded by length, it is generated in degree one, and Ay = C.

(2) Aisa PBW-algebra in the sense of Priddy [39, Sect. 5], with a PBW basis T(X},).
For every d € N there is an isomorphism of vector spaces Ay =~ SpancT(X,)q,
o

. n—+d
dlmAdZI‘T(Xn)dIZ( J )

(3) A is Koszul.

(4) A is aleft and a right Noetherian domain.
(5) A is an Artin—Schelter regular algebra, that is
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(a) A has polynomial growth of degree n + 1 (equivalently, GKdim A = n + 1);
(b) A has finite global dimension gldim A = n + 1;
(c) A is Gorenstein.

(6) The Hilbert series of A is Hq (1) = 1/(1 — )"t

Remark 3.8 The algebra A = Ay 18 a quantum projective space in the sense of [40,
Definition 2.1] and it is solvable in the sense of Kandri—Rodi and Weispfenning [29,
Sect. 1].

Suppose a monomial u € (X,) has multi-degree deg(1) = o = (o, @1, ..., Q)
and let T, = x3°x{"---x," be as in Definition 2.1. Since all relations in R are
binomials which preserve the multigrading, there exists a unique ¢, € C* such that

e {, is a monomial in the entries of (,
o Norg(u) = ¢y Ty,
e u = ¢, T, modulo I, i.e., the equality u = ¢, Ty, holds in Ag.

Convention 3.9 Following [8] (see also our Lemma 2.5), we consider the space CT”
endowed with multiplication defined by

feg:=Norx(fg),

forevery f, g € CT". Then (CT”, o) has a well-defined structure of a graded algebra,
and there is an isomorphism of graded algebras

Al = (CT", o).

By convention we shall identify the algebra Ag with (CT", ).

3.2 Some basics of Grobner bases theory for ideals in quantum spaces

In Sects. 5 and 6 we shall introduce analogues of the Veronese map v, 4 and of the
Segre map s, for quantum spaces. A natural problem in this context is to describe
the reduced Grobner bases of ker (v, 4) and ker (s,,,,,). Each of the kernels is an ideal
of an appropriate quantum space Algv , so we need a Grobner bases theory which is

admissible for quantum spaces. Proposition 3.10 shows that each quantum space Algv
is a strictly ordered algebra in the sense of [20, Definition 1.9], and the Grobner bases
theory for ideals in strictly ordered algebras presented by the third author in [20]
and [21] seems natural and convenient for our quantum spaces. Here we follow the
approach of these works. Note that the results of [20] and [21] are independent from
and agree with [29] and [37].

In the sequel we often work simultaneously with two distinct quantum spaces
whose sets of generators X, = {xo,...,x,}and Yy = {yo, ..., yn} are disjoint and
have different cardinalities, N > n. To avoid ambiguity we denote by < the degree-
lexicographic ordering on (Yy) and by < the restriction <|7(y,) of < on the set of
ordered monomials T(Yy) C (Yn).
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Given an arbitrary multiplicatively anti-symmetric (N + 1) x (N + 1) matrix g =
llgijll, let AQ’ = C(Yn)/(Rg) be the associated quantum space, where

Rg = {yjyi — &jiviyj10<i < j< N}
Following Convention 3.9, we identify the two algebras
AY = (CT(Yy). o).

Let Jg = (Rg). We shall write Nor( f) for the normal form of f € C(Yy), keeping
the ideal Jq fixed. The operation e on CT (Y ) induces also an operation x on the set
T(Yy) defined by

u*xv := LM (Nor(uv)) = LM (uev),

for every u, v € T(Yy). It is not difficult to see that (T(Yy), *) is a monoid.

Letu,v € T(Yy), and ¢ = degu + degv. We know that uev = ¢(u, v) T (u, v),
where ¢ = ¢(u,v) € C* and T(u,v) € T(Y,), with deg T (u, v) = «. Similarly,
veu = n(v,u)T (v, u), where n(v,u) € C* and deg T (v, u) = o = deg T (u, v).
The unique ordered monomial in (Y ) with multi-degree « is Ty, therefore

uxv =vxu = T,.

It follows that there is an isomorphism of monoids (T(Y,), x) = [yo, ..., yn], the
free abelian monoid generated by Y. This agrees with [20, Theorems I and II].
Note that identifying Ag with CT(Yy) we also have the degree-lexicographic well-
ordering <¢ on the free abelian monoid (T(Yy), x). Forevery f € CT(Yy), its leading
monomial with respect to < is denoted by LM ., (f). In fact LM () = LM< (f)
and we shall simply write LM (f).
The proposition below follows straightforwardly from [20].

Proposition 3.10 (1) The quantum space Algv = (CT(Yy), ®) is a strictly ordered
algebra in the sense of [20, Definition 1.9], that is, each of the following two
equivalent conditions is satisfied:

SO1 Leta,b,c € T(Yy). Ifa <o b, then axc <o bxc and cxa <y c*xb;
SO2 LM(feh) = LM(LM(f)eLM(h)), forall f,h € .Ajgv.

(2) Every two-sided (respectively, one-sided) ideal R of Algv has a finite reduced Grob-
ner basis with respect to the ordering <o on (J(Yy), ), see Definition 3.12.

The properties SO1 and SO2 allow to define Grobner bases for ideals of a quantum
space Ag’ in a natural way, and to use a standard Grobner bases theory, analogous to
the theory of non-commutative Grobner bases for ideals of the free associative algebra
(Diamond Lemma) proposed by Bergman.
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Definition 3.11 Let P C Ag’ be an arbitrary subset, and let LM (P) = {LM(f)| f €
P}. A monomial T € T(Yy) is normal modulo P if it does not contain as a subword
any u € LM (P). We denote

N<,(P)={T € T(Yn)|T is normal mod P}.

Definition 3.12 Suppose £ is an ideal of Ag’ = CT(Yn). Aset F C Ris a Grobner
basis of R if for any h € R there exists an f € F, and monomials a,b € T(Yy)
such that LM (h) = axLM(f)xb. Due to the commutativity of the operation * this
is equivalent to LM (h) = uxLM(f), for some u € 7J.

An interested reader can find various equivalent definitions of a Grobner basis in
[29, 37], and numerous papers which appeared later. Given an ideal K generated by a
finite set F' one can verify algorithmically whether F is a Grobner basis for the ideal
R, see for example [37].

Lemma3.13 Let R = (F) be an ideal offllgv generated by the set F C CT(Yy). Then
F is a Grobner basis of £ if and only if N(F) = N<,(F) = N, (R). In this case the
vector space Aév splits as a direct sum

Ay =CT(Yy) = ROCN,(F)

and the set No,(F) C T(Yy) projects to a C-basis of the quotient algebra Ag’/ﬁ
Moreover, if F consists of homogeneous polynomials, then

(Ag)j = (CT(YN)); = (R)j® (CN,(F));,

forevery j > 2.

The following is an analogue of Lemma 2.7 for ideals of Algv generated by quadratic
polynomials.

Lemma 3.14 Let R = (F) be an ideal ofﬂg generated by a set of quadratic polyno-

mials F C (CT(Yn))2 and let B = A’gv/ﬁ. We consider the canonical grading of B
induced by the grading of AQ’ . Then F is a Grobner basis of R if and only if

dim B3 = [(N<,(F))3].

4 The d-Veronese subalgebra of Ag, its generators and relations

In this section we study the d-Veronese subalgebra A of the quantum space A = A’fl.
This is an algebraic construction which mirrors the Veronese embedding. First we
recall some basic definitions and facts about Veronese subalgebras of general graded
algebras. Our main reference is [38, Sect. 3.2]. The main result of the section is
Theorem 4.5 which presents the d-Veronese subalgebra A in terms of generators
and explicit quadratic relations.
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Definition 4.1 Let A = P, Ax be a graded algebra. For d € N, the d-Veronese
subalgebra of A is the graded algebra

A@D — @ Akd.

kENo

Remark 4.2 (1) By definition the algebra A® is a subalgebra of A. However, the
embedding is not a graded algebra morphism. The Hilbert function of A4 satisfies

h @ () = dim(AD), = dim(A;q) = ha(1d).

(2) Let A = Ag be the quadratic algebra with relations R introduced in Definition 3.2.

It follows from [38, Proposition 2.2], and Facts 3.7 that its d-Veronese subalgebra A
is one-generated, quadratic and Koszul. Moreover, A@ is left and right Noetherian.

We fix a multiplicatively anti-symmetric matrix q and set A = Aﬁ. By
Convention 3.9, A is identified with the algebra (CT”, e) and

A= @ Ay = EB C(T").

keNp keNy
Hence its d-Veronese subalgebra satisfies

AD = P Awa = P CT M.

keNy keNy

The ordered monomials w € (T")y of length d are degree one generators of A,
hence

. n n+d
dimAg = [(TM)al = ( p >

Weset N = (”Zd) — 1 and we order the elements of (T"), lexicographically, so
Ty = {wo = xg <w;= @) X < <wy = xff}.

The d-Veronese A is a quadratic algebra (one)-generated by wq, wi, ..., wy. We
shall find a minimal set of its quadratic relations, each of which is a linear combination
of products w;w; for some i, j € {0,..., N}. The following notation will be used
throughout the paper.

Notation 4.3 Let N = (”Zd) — 1. For every integer j, 1 < j < N, we denote by o/

the multi-degree deg(w ), thus
i

j %jo
ol = (ajy,...,aj,) whenever w; =x,"...x,
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We define

m(j) =min{s € {0,...,n} |, > 1} and M(j) = max {s € {0,...,n}|aj > 1}.

In other words, if w; = x;j‘x?éfz...x;lj" for some 0 < j; < jop < --- < Jjg and
aj,...,aj, = 1, thenm(j) = j; and M(j) = jqy. For example, if w; = x2x2x72,

then m(j) = 2 and M(j) = 7. We further define

P(n,d) ={(, j))10<i<j< Nk
Cn,2,d) ={G, j) € P(n,d) | M(i) < m(j)}
={G, j) €Pn,d) | wiw; € (T")24};
Cn,3,d)={Gj,00<i<j<k<N, () (k) eCn 2 d}
MV(n,d) ={(, j) € P(n,d) [ M) > m(j)}
= {0, j) €P(n,d) | wiw; ¢ (T")24}.

Lemma4.4 Let (T7"), = (T(X,))p be the set of all ordered monomials w € (X,) of
length \w| = p.
(1) The maps

®: C(n,2,d) — (T and V: Cn,3,d) = (T34

@i, j) > wiw; i, j, k) — wjw;jwg

are bijective. Therefore

2d
G, 2, d)) = |(T")2] = (’”n )

3d
1C(n, 3, d)| = [(T")3q] = ("*n )

(2) The set P(n, d) is a disjoint union P(n,d) = C(n, 2, d)u MV (n, d). Moreover

\P(n, d)| = <N+2> and MV (n,d)| = <N+2> — ("+2d>.
2 2 n

Proof (1) Given w;, w; € (T")4, their product w = w;w; belongs to (T")4 if and
only if (i, j) € C(n, 2, d), hence @ is well-defined. Observe that every w € (T")a4
can be written uniquely as
W =X ...Xj;Xj ...Xj;, where 0<i; < ---<ig<j1 << Jg.
It follows that w has a unique presentation w = w;w, where
Wi =Xj; ... Xj; € (Tn)d9 wj =Xj...Xj, € (‘T")d,

M@) =ig <m(j)=j1 and (i, j) € Cn,?2,d).
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This implies that @ is a bijection.

Consider now the map V. Given w;, w;, wi € (T7")g4, their product = w;w;wy
(considered as an element in (X,)) belongs to (T7")34 if and only if (i, j, k) €
C(n, 3,d), hence W is well-defined. The proof that W is bijective is similar to the
case of ®.

(2) It is clear that

wm4n=<N;v+N+1:<N;ﬁ.

By definition P(n, d) = C(n, 2, d) UMV (n, d) is a disjoint union of sets, hence

N+2 2d
|MV(n,d)|=|P(n,d)|—|C(n,2,d)|=( ;—)_(n—; )

The following result describes the d-Veronese subalgebra (A’&)(d) of the quantum
space Ag in terms of generators and quadratic relations.

Theorem 4.5 Letq bean (n+ 1) x (n + 1) multiplicatively anti-symmetric matrix and
let A = Ay. The d-Veronese subalgebra A C Ais a quadratic algebra with (n';d)
generators, namely the elements of (T™)y, subject to (N + 1)% — (n'tfd) independent
quadratic relations which split into two disjoint sets Ry and Ry given below.

(1) The set R contains exactly (N ; l) relations

y 0<i<j<N, wh
={fi=wiw —Q;wywj , (4
P T TR iy € e, 2, d), i € CF

where for each pair j > i the product w jw; occurs exactly once in Ry, and there
is unique pair (i, j') € C(n,2,d) such that Nor(w;w;) = @jiwywj = ¢;;Tp,
with B = deg(w;w;) = deg(w; w;). One has

LM(fji) = wjw; > wypwj =Tp € (T"24.

Moreover, for every pair (i, j) € C(n, 2, d) such thati < j, the product wiw; =
Tg € (T")2q occurs in a relation wjw; — ¢jiw;w; € Ry. Each coefficient ¢j; is
a non-zero complex number, uniquely determined by q.

(2) The set Ry consists of exactly (N ; 2) - ("';2”1) relations

i, j) € MV(n, d),
@))€ (n,d) 42

POUED PR
Jiy = Wiy =GR | i ¢ Cn,2.d), gy € CF

where for each pair (i, j) € MV (n,d) the word wjw; occurs exactly once in
Ry, and determines uniquely a pair (i', j') € C(n,2,d) with i’ < j', and a non-
zero complex number @;; such that Nor(w;w;) = @jjwyw; = ¢;;Tg, with B =

@ Springer



Veronese and Segre morphisms between non-commutative... S253

deg(w;wj) = deg(w;rw /). In particular,
LM(fij) = wiw; > wywj =Tg € (T")2q.
(3) The relations Ry U Ry imply a set R of (N;l) additional relations:
Ry ={wj-wi —gjiwi-w;j [ gji € C*, 0<i < j <N}, 4.3)

where for eachi < j the coefficient g j; = % is uniquely determined by the matrix
q. We set ¢;j = 1 whenever (i, j) € C(n,2,d).

(4) Conversely, the relations R' = R U Ry imply the relations R. Moreover, R' is
also a complete set of independent relations for the d-Veronese algebra A@.

Proof (1) Suppose that 0 < i < j < N. Then w; > w;, and it is not difficult to see
that M (j) > m(i), so w;wj; is not in normal form. By Remark 3.5, its normal form
has the shape Nor(w;w;) = ¢;; Tg, where B = deg(w;w;) = &' +a/,and ¢;; € C*
is uniquely determined by the entries of q. By Lemma 4.4, Tg = w;sw j» for a unique
pair (i, j/) € C(n, 2, d) of ordered monomials w; < w;: of length d. We claim that
Wi < wjr.

Assume by contradiction that w;s = wj» = x;, Xj, . . . Xj,, Where x;; < x;, < -+ <
Xi,. This implies that w; w;» = wl.z, = Xj Xiy . XigXiy Xis - - - Xiy € (T")24. But this is

possible if and only if x;, = x;, forevery k € {2,...,d}, thatis wy = wj = (x,,)d
for some p € {0,...,n},s0 Tg = (x,,)Zd In other words B = (Po,...,Bn), where
Bp = 2d and B; = O for every i # p. One has B = deg(w;w;) = deg(w;) +
deg(w;) = a/ + o, which together with |w;| = lwj| = d imply o' = = o/ and

w =w; = (xp) which is impossible, since by assumption i < j. Hence w;r < w
and i’ < j. We know that the equality w;w; = Nor(w;w;) holds in A, hence it is
an equality in A This implies that the equality (w; jwi) = @jiwywj holds in AD
forall0 < i < j < N. It follows that A satisfies the relations f], = 0, for all
fji € Ry, see (4.1). Moreover, the relations satisfy the properties given in part (1). It
is clear that the order of R is exactly (N +1).

(2) Suppose that (i, j) € MV (n, d). Then the following are equalities in A:
wijw; = Nor(w;w;) = ¢;;jTg, where Tg < w;w;, B = of +Olj,

and ¢;; € C* is uniquely determined by the entries of q. By Lemma 4.4, Ty =
wyrwjr for a unique pair (i, j') € C(n,2,d). We claim that wy < wj. As in part
(1), assuming that w;; = w;» we obtain that w; = w; = (xp)d, but then w;w; =
(x;l)(xi) € (T™), which contradicts our assumption (i, j) € MV(n, d). The equality
w;w; = Nor(w;w;) holds in A, therefore it is an equality in A@D We have shown
that for every pair (i, j) € MV(n, d) there is unique pair (i’, j') € C(n, 2, d) such that
i’ < j"and w;w; = @;;w;rwjr holds in A@ _Therefore A@ satisfies the relations (4.2)
from Ry. It is clear that all properties listed in part (2) hold and |R;| = MV (n, d)| =
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(N ; 2) - (”J;M). Note that

LM(Ry) = {wjw; |w; > w;},
LM(R,) = {wiwj | w; < wj, (i, j) e MV(n,d)}.

It follows that LM (R{) N LM (R,) = @& and therefore R; N Ry = &. Hence the set
of relations R is a disjoint union R = R; 1 R, and

|az|=|9z1|+|:}zz|=(N“)+<N+2)—(”“d)

2 2 n
B , (n+2d\ _ (n+d 2_<n+2d)
=D < n )‘( n) n )

(3) Assume now that 0 < i < j < N. Two cases are possible.

4.4)

(@) (i,j) € C(n,2,d). In this case (', j)) = (i,j) and wjw; = @ww; =
@jiwiwjr, SO gji = Qjj.

(b) (i, j) € MV (n, d). Then the two relations
wiw; = @jwywy and wiw; = @;jwyw;
imply
;) 'wj-wi = wpwy = (@) wiwj,

and therefore w;-w; = (p—fiwi -w;. It follows that w;w; = g;;w;w, where the non-

Dij
zero coefficient g;; = % is uniquely determined by q.
ij
(4) This is analogous to (3). ]

Observe that Theorem 4.5 contains important numerical data about the d-Veronese
(Ag)(d), which will be used in the sequel, and which we summarise below.

Notation 4.6 Let A’fl be the quantum space defined via a multiplicatively anti-
symmetric (n + 1) x (n + 1) matrix q. Letd > 2and N = (":d) — 1. We associate to
the d-Veronese (AZ)(d) alist D(A’fl)(d) of invariants uniquely determined by q and d.

Let§1 = {g;i |0 <i < j < N}bethesetof coefficients occurringin R (see (4.1))
and let §2 = {gi; | (i, j) € MV(n, d)} be the set of coefficients occurring in R (see
(4.2)). Letg = || g;;l be the multiplicatively anti-symmetric (N + 1) x (N + 1) matrix
whose entries g;;, 0 < i < j < N, are the coefficients occurring in IR’I see (4.3).
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We collect this information about (Ag)(d) in the following data:

DADD - q = llgijll;
$1=1{g;i |0 <i < j < N}, the set of coefficients occurring in (4.1);
T2 ={eijli < j, (i, j) € MV(n,d)}, the set of coefficients
occurring in (4.2);
g = |lgij|l, a multiplicatively anti-symmetric (N + 1) x (N + 1) matrix

with
1 fori = j,

8ji = (@ji)/(@ij) for (i, j) € MV(n,d) andi < j,
©ji for (i, j) e C(n,2,d) andi < j.

5 Veronese maps

Let n,d € Nand N = ("Zd) — 1. In this section, we introduce and study non-
commutative analogues of the Veronese embeddings V,, s: P"* — PV. The main
result of the section is Theorem 5.2, which describes explicitly the reduced Grobner
bases for the kernel of the non-commutative Veronese map.

We keep the notation and conventions from the previous sections, so X, =
{x0,...,xy} and T" = T(X,) C (X,) is the set of ordered monomials (terms) in
the alphabet X,,. The set (T7")y of all degree d terms is enumerated according the
degree-lexicographic order in (X;,):

(THe = {wo = xg <wi =) X< <wy = xff}.
We introduce a second set of variables Yy = {yo, ..., yn}, and given an arbitrary
multiplicatively anti-symmetric (N + 1) x (N + 1) matrix g = [|g;;l, we present the
corresponding quantum space as Aév = C(Yn)/(Rg), where
Re = {yjyi —gjiyiyj 10<i < j<N}L

5.1 Definitions and first results

Lemmab5.1 Letn,d € N and let N = ("Zd) — 1. Let (T")g and Yy be as above.
For every (n+ 1) x (n+ 1) multiplicatively anti-symmetric matrix q, there exists a
unique (N + 1) x (N + 1) multiplicatively anti-symmetric matrix g = ||g;;|| such that
the assignment

Yo —> wo, Y1 FH—> Wi, ..., YN P> WN
extends to an algebra homomorphism

. aN n
Und: Ag — Aq.
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The entries of g are given explicitly in terms of the data D((.Aﬁ)“”) of the d-Veronese

(Ag)(d), see 4.6. The image of the map v, 4 is the d-Veronese subalgebra (Ag)(d).
We call vy, 4 the (1, d)-Veronese map.

Proof Suppose q is an (n + 1) x (n + 1) multiplicatively anti-symmetric matrix, and

let Ag be the corresponding quantum space. Assume that there exists an (N + 1)

x (N + 1) multiplicatively anti-symmetric matrix g such that the map v, 4 is a homo-
morphism of C-algebras. Then

WjwW; = Vg (¥jYi) = Un,a(gjiYiyj) = gjiwiw;,
forevery 0 < i < j < N. By Theorem 4.5,
wiw; =¢;;iTg and w;w; = ¢;;Tg,

forevery 0 < i < j < N, where Tg € (T7")yq4 is the unique ordered monomial of
multi-degree 8 = deg(w;)+deg(w;). In the particular cases when (i, j) € C(n, 2, d),
one has w;w; = Tg, so ¢;; = 1. The nonzero coefficients ¢;; and ¢;; are uniquely
determined by the matrix q, see 4.6. It follows that the equalities

vjiTp =wjw; = gjiwiw; = gjigijTp
hold in Ag, so (gjigij —¢ji)Tg = 0. But Tg is in the C-basis of Ag, and therefore
Qji

gji = o e C*, (5.1
ij

forall 0 < i < j < N, which agrees with 4.6. This determines a unique multiplica-
tively anti-symmetric matrix g with the required properties, and therefore the quantum
space Algv is also uniquely determined. The image of v, 4 is the subalgebra of A’fl gen-
erated by the ordered monomials T, which by Theorem 4.5 is exactly the d-Veronese
( Ag )(d).

Conversely, if g = || g;; |l is an (N + 1) x (N + 1) matrix whose entries satisfy (5.1)
then g is a multiplicatively anti-symmetric matrix which determines a quantum space
Ag’ and the Veronese map v, 4 A]gv — A yi > w;, 0 <i < N,iswell-defined. O

We fix an (n 4 1) x (n + 1) multiplicatively anti-symmetric matrix q defining the
quantum space AZ. Let AQ’ be the quantum space defined via the (N 4+ 1) x (N + 1)
matrix g from Lemma 5.1. To simplify notation, as in the previous subsection, we shall
write A = Ag. We know that there is a standard finite presentation Ajgv =C(Yn)/(Rg),
where

Rg = {yjyi — gjiyivj |0<i < j <N} (5.2)

is the reduced Grobner basis of the ideal J = (Rg) = ker p, where p is the canonical
projection

p: C(YN) — C(Yn)/(Rg) = Ay
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We can lift the Veronese map v, 4: Ag — A to a uniquely determined homomor-
phism V: C(Yy) — A extending the assignment

Yo — wqp, Y1 = Wi, ..., YN > WN.

It is clear that the map V is surjective, since the restriction Vjy, : Yy — (T")q is
bijective, and the set of ordered monomials (T7"),; generates A,

Let K := ker V C C(Yy). We want to find the reduced Grébner basis R of the ideal
K with respect to the degree-lexicographic order < on (Yy), where yp < - -+ < yy.

Heuristically, we use the explicit information on the d-Veronese subalgebra A%
given in terms of generators and relations in Theorem 4.5, (4.1), and (4.2). In each of
these relations we replace w; with y;, 0 < i < N, preserving the remaining data (the
coefficients and the sets of indices), and obtain a polynomial in C(Yx). This yields
two disjoint sets of linearly independent quadratic binomials 91 and %> in C(Yy):

e The set N, corresponding to the set R defined in (4.1), consists of (N ;‘ 1) quadratic

relations:

)

. Oéi<j<N,i/<j/,(i/,j/)eC(n,Z,d)

N =Fji =y;yi —@jiyiryj %
yiyi = yiryj, ¢ji € C

(5.3)

e The set Ny, corresponding to the set R, defined in (4.2), has exactly (N ;‘ 2) — ("';2[1)

relations:

(i,j) eMVn,d),i' < j,{,j) e C(n,2,d)}

No = Fij = yiyj — wijyiryj
{ yiyj > yiryj, ¢ij € C*

54)

There is one more set which is contained in K: the set Rq of defining relations for
AQ’ . Note that Ry corresponds exactly to R} from (4.3). We set it = 9y U 9 and
N = Ry U Ny. It is not difficult to see that there are equalities of ideals in C(Yy):

() = (R, M) = (W) = Ry, Ra)
and that the set of relations i and R’ are equivalent.
It is clear that the set R = M| U N, of quadratic polynomials in C(Yy) and the set

R = R UR; of relations of the d-Veronese subalgebra A from Theorem 4.5 have
the same cardinality. In fact

| +2d
] = 9] = [R| = (N + )% — <" ) ) (5.5)

as computed in (4.4). We shall prove that the set )i = M| U N, is the reduced Grobner
basis of K, while )/ is a minimal Grébner basis of K .
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Theorem 5.2 With notation as above, let V: C(Yy) — A be the algebra homo-
morphism extending the assignment

Yo = wo, y1 = Wi, ..., YN > WN,

let K be the kernel of V. Let i = N1 U Ny be the set of quadratic polynomials given
in (5.3) and (5.4), and let ' = Rg U Ry, where Ry is given in (5.2). Then

(1) M is the reduced Grobner basis of the ideal K.
(2) % is a minimal Grobner basis of the ideal K.

Proof We start with a general observation. The quantum space A = Aﬁ is a quadratic

algebra, therefore its d-Veronese AD = C(Yn)/K is also quadratic, see Remark 4.2.
Hence K is generated by quadratic polynomials and it is graded by length.

Remark 5.3 1t is clear that the sets of leading monomials and the sets of normal mono-
mials satisfy the following equalities in (Yy):

LM(Rg) =LMMR) = {y;» |0 <i < j < NJ,
LM(R2) = {yiy; | (i, j) € MV(n, d)},
LM(R) = LM;) ULM(R,) = LM®),
N(@R) = N(R).

Therefore R is a minimal Grobner basis of the ideal K if and only if % is a reduced
Grobner basis of K.

By Theorem 4.5, the quadratic polynomials Fj; (Y,) in (5.3) and Fj;(Y,) in (5.4)
satisfy

V(Fji(y0,...,yn)) = fji(wo,...,wy) =0, forevery 0<i < j<N,
and
V(Fij(yo, ..., yn)) = fij(wo, ..., wy) =0, forevery (i,j) € MV(n,d).
Thus %} C K and, in a similar way, i’ C K. We shall show that R is a reduced Gribner
basis of K.
As usual, N(K) C C(Yy) denotes the set of normal monomials modulo K, and
N() C C(Yy) denotes the set of normal words modulo 9. In general,

N(K) € N(W),

and by Corollary 2.6 equality holds if and only if )i is a Grobner basis of K. Recall
from Sect. 2.3 that there are isomorphisms of vector spaces

C(Yy) = K®CN(K), and CN(K) = C(Yy)/K =AY,
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The ideal K is graded by length, i.e. K = @j>0 K;, with Kg = K; =0.
For j > 0, let N(K); be the set of normal words of length j, with the convention
that N(K)o = {1}, N(K); = Yy. As vector spaces,

(C(¥n))j = K;®CN(K);, and CN(K); =AY = Ajq, forevery j > 2.
In particular, (C(Yy))2 = K2 ®CN(K)3, so
dim(C(Yy))2 = dim K5 + dim (CN (K)2) = dim K> + dim Ayg.

We know that

dim Ayy = <n _;261) and dim(C(Yn))2 = |(Yn)?| = (N + 1),

where Y 1%, is the set of all words of length two in (Y ). This, together with (5.5),
implies

2d
dim Ky = (N + 1) — (”+ ) — 9.
n

Clearly, the set i consists of linearly independent polynomials, therefore dim K, =
dimCR = |9N|. It follows that CR = K>, and since K is generated by quadratic
polynomials, one has K = ().
We shall use the following remark.
Remark 5.4 The following are equivalent:
(D) yiyjyx € N(R)3;
(2) yiyj € NM)z2and yjyr € N(R)2;
3) (,j, k) eC@n,3,d).
Moreover, there are equalities

, n+3d
INM)3| = |C(n, 3,d)| = ( , ) (5.6)

We know that Ag‘” = Asg, so dim Agd) =dimAsy = (”J:f d), which together with
(5.6) imply

IN(N)3| = dim Aszg.

It follows from Lemma 2.7 that the set )R is a Grobner basis of the ideal K. The set
of leading monomials LM (R) is an antichain of monomials, hence % is a minimal
Grobner basis. For j > i, every Fj; € R defined in (5.3) is in normal form modulo
R\ {F;;}. Similarly, for (i, j) € MV(n, d), every F;; € i defined in (5.4) is in normal
form modulo N\ {F;;}. We have proven that )i is a reduced Grobner basis of the ideal
K.

It follows from Remark 5.3 that )%’ is a minimal Grobner basis of K. ]
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5.2 The Veronese map v, 4 and the reduced Grébner basis of its kernel

Theorem 5.5 Letn,d € Nand N = ("Zd) — 1. Let Ay be a quantum space defined

by an (n+ 1) x (n+ 1) deformation matrix q and let Algv be the quantum space whose
multiplicatively anti-symmetric (N + 1) x (N + 1) matrix g is determined by Lemma
5.1. Let

. gqN n
Und: .Ag — Aq
be the Veronese map extending the assignment
Yo — wqp, y1 — Wi, ..., YN = WN.

(1) The image of vy q is the d-Veronese subalgebra (Ag)(‘” of Ag-
(2) The kernel 8 := ker (v, q) of the Veronese map has a reduced Grobner basis

N +2) . (n+2d

consisting of exactly ( N . ) binomials:

Ry = {yiy; — @ijyiyyl (v ) € MV(n, d), (', j') € C(n, 2, d), gij € C* |,
(5.7)

where Nor (v, q(¥iy;)) = @ijVn.a(Yiryjr), Yiyj > Yy, and g;j € C* are invari-
ants of (Ag)(d) given in Notation 4.6.

Proof Part (1) follows from Lemma 5.1. For part (2), we first prove that the set Ry
generates K. The proof is similar to the argument describing the kernel K = ker V in
Theorem 5.2.

Note that fRa C R. Indeed, by direct computation, one shows that v,,,d(fRa) =Ry,
the set of relations of the d-Veronese (A’(’l)(d) given in (4.2), so Ry C &. Moreover,
it follows from (5.7) that for each pair (i, j) € MV(n, d) the set IR(VI contains exactly
one element, namely y; y; — @;; yiyj/, where Nor (v, 4 (yi yj)) = @ijvn,a(yiry;). Here
we consider the normal form Nor(v,,4(y;y;)) = Nor(w;w;) = ¢;jw;w, see Theo-
rem 4.5(2). Hence

. N+2\ (n+2d

where the last equality follows from Lemma 4.4. By Convention 3.9, we identify
Aév = (CT(Yw), @). Our goal is to show that the two set of normal words N (K) and
N (R;) coincide, where

N@R) = N, (8 c CT(Yy), and N(R‘Vl) = N<O(R;) C CT(Yn),
as in Definition 3.11. There are obvious isomorphisms of vector spaces

A} =CT(Yy) = ROCN(R).
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For simplicity of notation, we set B = Ag’ /8 and consider the canonical grading of
B induced by the grading of A} . Then

B = Ay /ker (v, 4) = im(vy.a) = (Ag)“P,

so there are equalities

A = CTYN)m = (B ® (CN(R)m and By, = (AN = (ADma. (5.8)

for every m > 2. In particular, for m = 2 one has By = (Ag)gd) = (ﬂg)zd and

n—|—2d)

N+2
dim (A})2 = dim (8)2 + dim (A} )24, hence < ; ) = dim(R), + ( )

which implies

N+2 2d
dim<ﬁ>z=< 2*)—(’“; >=|R¥1|.

Itis clear that the set SRE is linearly independent, so it is a basis of the graded component
Ry, and Ry = (CR;. But the ideal R is generated by homogeneous polynomials of
degree 2, therefore

R=(R) = Ry, (5.9

so Ry generates the kernel K.
We are now ready to prove that Ry is a Grobner basis of & We shall provide two
proofs. i

First proof Here we use an analogue of Remark 5.4 in the settings of a quantum space.

Remark 5.6 The following are equivalent:

(M yiyjyk € N(Rys3;
(2) yiyj € N(Ry2 and yjyr € N(Ry)2;
3) G, j, k)eCmn,3,4d).

Moreover there are equalities
n 4+ 3d
IN@Rg3l = ICn,3,d)| = ( i ) (5.10)
By (5.8), dim B3 = dim Az, = ("*>9), which together with (5.10) implies

|N(fR;)3| = dim Bj3.
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Now Lemma 3.14 implies that Ra is a Grobner basis of the ideal & = ker (v, 4). Itis
clear that fR; is the reduced Grobner basis of f. ]

Second proof We shall use Theorem 5.2 and ideas from [37]. By (5.9), we know that
the set fR:’l generates 8. Consider now the ideal Nor ~! (&) in C(Yy). It is easy to see
that

Nor '(R) = Jg + (RY) = (Rg) + (RY) = K.,

where K = ker V is the kernel of the epimorphism V: C(Yy) — A@ from The-
orem 5.2. Indeed, the polynomials in ng and RY, considered as elements of the free
associative algebra C(Yy), satisfy

—m vV _|m
Rg =N] and qu—ihz,

where E)’t’l and N, are the relations given in Theorem 5.2, see (4.3) and (5.4). Hence
by the same theorem, the set %' = iRg U fR:’l is a minimal Grobner basis of the ideal K.
Theorem 5.2 also implies that the disjoint union of quadratic relations it = Ny U Ny
is the reduced Grobner basis of K in C(Yy). It follows from [37, Proposition 9.3 (3)]
that the intersection

G=R"NCNJ) =RNCNRy)

is the reduced Grobner basis of the ideal & = ker (v,,4). Moreover, we have N (Jg) =
CT(Yy). Then the obvious equalities

G=MNCN@Qg) =M UNR) NCT(Yy) =N = fR;

imply that iRXl is the reduced Grobner basis of {. O

We remark that [37, Proposition 9.3 (4)] implies that the set Rg UG = (%/1 U Ny
is the reduced Grobner basis of the ideal K. This fact agrees with Part (3) of our
Theorem 5.2, proven independently.

Corollary 5.7 The set of leading monomials for the Grobner basis Ry does not depend
on the deformation matrix q and equals

LM(Ry) = {yiy; (i, j) € MV(n, d)}.

6 Segre products and Segre maps

In this section we introduce and investigate non-commutative analogues of the Segre
embedding S, ,,: P x P — PO+D0n+D=1 The main result of the section is The-
orem 6.10, which describes explicitly the reduced Grobner basis for the kernel of the
non-commutative Segre map. We first recall the notion of Segre product of graded
algebras, following [38, Sect. 3.2].
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Definition 6.1 Let

R:@Rk and Sz@Sk

keNy keNo

be graded algebras. The Segre product of R and S is the graded algebra

RoS = @ R;® S.
keNy

Clearly, the Segre product R o S is a subalgebra of the tensor product algebra R® S.
Note that the embedding is not a graded algebra morphism, as it doubles grading. The
Hilbert function of Ro S satisfies

hros(t) =dim(RoS); = dim(R; ®S;) = dim(R;)- dim(S;) = hr(t)-hs(t).
Givenn,m € N, let
N=n+1m+1)—1.

Let q and q be two multiplicatively anti-symmetric matrices of sizes (n + 1) x (n + 1)
and (m + 1) x (m + 1), respectively, and let Ag and AZ’, be the corresponding quantum

spaces. We shall construct a quantum space Ag defined via N + 1 (double indexed)
generators

Zum ={zia |1 €1{0,...,n}, @ €{0, ..., m}}

andan (N+1) x (N+1) multiplicatively anti-symmetric matrix g uniquely determined
by qand q'.

Convention 6.2 We order the set Z,,, using the lexicographic ordering on the pairs
of indices (i, @), 0 < i < n,0 < a < m,thatis, z;4 < z;p if and only if either (a)
i <j,or(b)i =j,and o < B. Thus

Znm = {200 < 201 <+ < 20m <210 < *** < Znm—1 < Znm}- 6.1)

When no confusion arises, we write Z for Z,,,. As usual, we consider the free asso-
ciative algebra C(Z) and fix the degree-lexicographic ordering < induced by (6.1) on
the free monoid (Z).

In this section, we shall work simultaneously with three disjoint sets of variables,
X=X, Y=Y, and Z = Z,,,. We shall use notation T(X) = T, T(Y) = T™
and T (Z) for the corresponding sets of ordered terms in variables X, respectively Y,
respectively Z. In particular, the set T(Z) of ordered monomials in Z with respect to
the ordering (6.1) is

koo _k k k .
T(Z) = {zQz) .. 2 -z | ki € No, i €{0, ..., n}, @ € {0, ..., m}}.

@ Springer



S264 F. Ariciet al.

As in Convention 3.9, we identify Ag with (CT(X), e) and Aa", with (CT(Y), o).
Remark 6.3 Consider the free associative algebra C(X; Y) = C(xo, ..., Xy, Y0, - - - »
Ym), generated by the disjoint union X, U Y, and the free monoid (X;Y) =

(X05 - - s Xn, Y0, - - - » ym) With the canonical degree-lexicographic ordering < extend-
ingxp <Xy <-++ <X, <yp <y <--+ =< yp. Let

Rozﬂl(Ag®A$)=RqURq/U{yaxi—xiyo,|iE{O,...,n}, o E{O,...,m}}.

Then Ry is the reduced Grobner basis of the two-sided ideal (Rg) of C(X;Y) and
there is an isomorphism of algebras

C{X;Y)/(Roy) = AZ@A’;’/.
Proposition 6.4 In notation as above, let Ay and A be quantum spaces and let

N := (n+1)(m+1)— 1. Then there exists a unique (N + 1) x (N + 1) multiplicatively
anti-symmetric matrix g = ||giq, jgll such that the assignment

Zia > Xi @Yy, forevery i € {0,...,n}andeverya € {0, ..., m},
extends to a well-defined C-algebra homomorphism
St Ag — Ag @AY (6.2)

Moreover, the following conditions hold:

(1) The quantum space AQ’ is presented as

Ay = C(Z)/(Ry),

where
Rg = {zjpzia — (8jp.ia) Ziazjp | 2jp > Zia: Zjp Zia € Z}
is a reduced Grobner basis for the two-sided ideal (Rg) in C(Z).
(2) There is an isomorphism of algebras Ag = (CT(2), o), where the multiplication

e is defined as uev := Norgqg (uv).
(3) The image sn,m(.A]gV) is the Segre subalgebra .Ag OAZ‘, OfAﬁ ®.AZ’,.

We call the homomorphism s,, ,, the (n, m)-Segre map.

Proof Assume that there exists an (N + 1) x (N + 1) multiplicatively anti-symmetric
matrix g such that s, ,, is a homomorphism of C-algebras. Let Z = Z,,, as above be
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the set of generators of Algv . We compute s, (Ziazjg) in two different ways:

Snm (ZiaZjp) = Sn,m (Zia) Sn.m(Zjp)
=X ®Y)(xj®yp) = (xix;) @ Yayp)-
Snm(ZiaZjp) = Snm(&ia,jp(2jpZia)) = &ia,jp Snm(ZjpZia)
= Zia,jp Snm (Zjg) Snm Zia) = &ia,jp(XjXi ® Y5 Ya)
= 8ia.jf 4ji 9pa (XiXj) ® (YaYp)-

Therefore,

(xix)) ® (Yayp) = (8ie.jp 9ji Ga) XiX ;) ® (Y p)

foreveryi, j € {0,...,n}and every a, B € {0, ..., m}. It follows that g = || gjq, gl
is a multiplicatively anti-symmetric matrix uniquely determined by the equalities

8io.jf = (4jidhe) " = Qijdlp- (6.3)

We remark that the matrix g is equal to the the Kronecker product q ® ¢’ of the matrices
qandq’.

Conversely, if g is the multiplicatively anti-symmetric matrix defined via (6.3),
then the Segre map (6.2) is a well-defined algebra homomorphism. Conditions (1)
and (2) follow straightforwardly from the discussion in Sect. 3, see Remarks 3.4 and
Convention 3.9. The Segre subalgebra AZ oAfl", is generated by the elements x; ® yy
fori € {0,...,n}and o € {0, ..., m}. By construction s, ;, (zis) = X; ® Yo, hence
the image s, (AQ’ ) is the Segre subalgebra Ag oA’;’,, which proves (3). O

As usual, we identify the quantum space AQ’ with (CT(Z), e), see Convention 3.9.

Remark 6.5 Being a Segre product, the algebra AﬁoAgﬁ = sn,m(Ag ) inherits vari-
ous properties from the two algebras Ag and Ay. In particular, since the latter are
one-generated, quadratic, and Koszul, it follows from [38, Proposition 3.2.1] that
the algebra AZoA’”/ is also one-generated, quadratic, and Koszul. Clearly, the set
{(xi®yyli €{0,...,n},a €{0,...,m}} of cardinality N+ 1 =(n+1)(m+1)isa
generating set of Ay oAf]”,.

Lemma 6.6 The following equalities hold in the Segre product .Ag OAZ’,, foralli, j,
a, B, suchthat0 <i < j<nand0 < a < p <m:

(xioyy)(xjoyp) = (xixj)o(YaYp)s
(xjoyp)(xi0Ya) = qjiqp, (xixj) o (Ya¥p) = qjiqpe (Xi0Ya) (X0 ¥p),

6.4
(xjoya) (xi0yp) = qjiqus (xixj) 0 (VpYa) = qjiqys(Xioyp) (X0 Va), ©4)

(xjoypg)(Xjoyy) = XiXjOYpYu

(6.5)
= qpa(xixj) 0 (YaYp) = qpq(Xio Ya) (Xj0Yp),
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(xjoya)(Xioya) = qji (XiXj) 0 (YaYa), = qji(Xi © Yo )(Xj0 yg)

(X0 Y8) (X0 o) = Gy (xix1) 0 (Vo) = @g (Kioy) (xiovp). OO

Remark 6.7 (1) The equalities given in Lemma 6.6 imply the following explicit list of
defining relations R for the quantum space Algv :

Z2jplia — qjidpaZiaZjp € Rg by (6.4),
ZjaZip — qjidypZipZja € Rg Dby (6.4),
ZjaZia — 4jiZiaZja € Rg by (6.6),
ZipZia — qpaliaZip € Rg by (6.6),

forevery0 <i < j<nandevery) <o < f <m.

(2) Equalities (6.5) imply that the following quadratic binomials in Algv are in the
kernel of the Segre map:

ZipZja — ql/gaZiaZjﬁ € kers(n, m),
forevery0 <i < j<nandevery0 <o < < m.
Notation 6.8 We denote by MS(n, m) the following collection of quadruples:
MS(n,m) ={(Gi, j,B.a)|0<i<j<n0<a<p<m}

Lemma 6.9 The cardinality of MS(n, m) is

IMS(n, m)| = (" er 1)(’”; 1).

Proof Clearly, |{(i, j)|0<i < j<n}|= (”;1).Moreover, for each fixed pair (i, j),
0 <i < j < n, the number of quadruples {(i, j, 8,2) |0 < o < B < m} is exactly
(miH), which finishes the proof. ]

We keep the notation and conventions of this section, in particular we identify the
quantum space Algv with (CT(Z), e). Recall that if P C Algv is an arbitrary set, then
LM(P) = LM, (P) denotes the set of leading monomials

LM(P) ={LML, (/)| f € P}.
A monomial T € T(Z) is normal modulo P if it does not contain as a subword any
u € LM(P). The set of all normal mod P monomials in J(Z) is denoted by N, (P),
SO
N4, (P) ={T € T(Z)| T is normal mod P}.
A criterion for a Grobner basis F of anideal 8 = (F) in AQ’ follows straightforwardly

as an analogue of Lemma 3.13, in which we only replace Y with the set of generators
Z, and keep the remaining notation and assumptions.
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Theorem 6.10 The set
R o = {2ip2ja — Qpaziazjp 10<i < j<n, 0 <o <p<m)cAY

consisting of (";1) (m;' 1) quadratic binomials is a reduced Grobner basis for the kernel

of the Segre map
. aN n m
Spm: Ag — Aq®Aq/.

Proof 1t is clear that |fRfl ¢

= IMS(,m)| = ("31) ("3 ). We set

R = ker Sn,m N = N-<()(~R)’

R=R o NR) =Ny(R).

By Remark 6.7 (2), R C K. We claim that R generates R as a two-sided ideal of Ag .

The image sn,m(A]gV ) is the Segre product Ag OAZ?, which is a quadratic algebra,
see Remark 6.5. Therefore the kernel £ is generated by polynomials of degree 2.
Moreover, there is an isomorphism of vector spaces

CN(R) = Al o Am.

In particular,

2 2
dim (CN (£))2 = dim ((Af))2) dim ((A%)) = (n sz )(m ; )

It is clear that (Ag/)z = (CT(2))2 = (R)2®(CN(R))2, hence

dim(R)2 = dim(Ay)> — dim(CN (8))2 = <N ;_ 2) B <n —; 2) (m ;_ 2>

_((n+DHm+1)+1 n+2\[(m+?2
B 2 2 2
n+1\/m+1
= =|R|.
2 2
Now the equality |R| = dim(RK),, together with the obvious linear independence of
the elements of R, imply that R is a C-basis of (K)2, so it spans the space (£)2. But

we know that the kernel R is generated by polynomials of degree 2, hence R = (R).
Next we shall prove that R is a Grobner basis of the ideal &. Let B = A" /&. Then

B = A" /ker (sp,m) = spm(AY) = Ago A
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Hence

3 3
dim B3 = dim (A7 0 A%)3 = dim (A})3 - dim (A3 = (": )(m: ) 6.7)

We claim that dim B3 = |(N(R))3|. Indeed, by the identification AY ~ (CT(Z), )
we have

(AQ)s = (CT(2))3
:(C{Ziazjﬂzky | (iva) g(]sﬂ)é (k,')/), Ogla]»kgna Oga,ﬂ,y gm}

Clearly, a monomial z;4zjgzky € (T(Z))3 is normal modulo R if and only if each of
its subwords of length 2, z;4zjg and z 52k, is normal modulo R. Moreover,

N@R)2 = {ziazjp |1 0<i < j<n, 0<a<B<m},
therefore

N@R)3 = {ziazjptay |10<i <j<k<n, 0<a<B<y <m}. (68)

n+3\/m+3
‘N(w:( 3 )( 3 )

which together with (6.7) give the desired equality dim B3 = |(N (R))3|. Now Lemma
3.14 implies that R is a Grobner basis of the ideal K. It is obvious that R is a reduced
Grobner basis of K. O

It follows from (6.8) that

7 Examples

We present here some examples that illustrate the results of our paper.

Example 7.1 (The non-commutative twisted cubic curve) Letn = 1 and d = 3. Then

1 -1
X ={xo,x1}, q= <q ql ) . Agq = Clxo, x1)/(x1x0 — gx0x1).

In this case N = (1?) — 1 = 3 and the corresponding quantum space Ag is defined

by the following data:

1 g3 ¢°% ¢
3 -3 —6
q 1 gq q
Y ={y0,y1,y2, 3}, &= _
Yo, Y1, Y2, Y g qs qz 13 q 3
@ ¢° q 1
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The kernel ker (v 3) of the Veronese map v 3: Ag — A}l has a reduced Grobner
basis G given below

G = {y} — ¢*y0y2, y1v2 — qyoys. 3 —a*yiy3}.

We have used the fact that in this case MV (1, 3) = {(1, 1), (1, 2), (2, 2)}.

Setting ¢ = 1 we obtain that the defining ideal for the commutative Veronese is
generated by the three polynomials {y% —Y0Y2, Y1Y2— Y03, y% —y1y3}. This is exactly
the set of generators described and discussed in [27, pp. 23, 51].

Example 7.2 (The non-commutative rational normal curves) Generalising the previous
example, we consider n = 1 and d arbitrary. In notation as above, we write

ﬂlll = C(xo, x1)/(x1x0 — gx0X1).

In this case, N = (d;l) — 1 = d and the corresponding quantum space Ag is deter-
mined by the data

1 g g X q_d2
¢4 1 g g—@=n
q2d qd 1 q—d<d—2)
Y ={yo, y1,--.» ya}, g=
qd<d;1) U g
¢4 gd@a-n  gdd-» - d 1
(7.1

Observe that whenever ¢ is a d-th root of unity, the derived (1, d)-quantum space is a
commutative algebra.
The kernel ker (vy 4) of the Veronese map vy 4: A‘gl — .A(ll has a reduced Grobner

basis G given by (%) quadratic relations:

q" =D yoyit, i+j<d,

G={yyj—hjl1<i<j<d—1}, hj=1" .
D13 = ! b By :qt(d_l)yi+jd}’d, i+j>d.

Once again, for ¢ = 1 we obtain that a reduced Grobner basis for the defining ideal
of the commutative rational normal curve (see [27, Example 1.16]).

Example 7.3 (The non-commutative Veronese surface) Let n = d = 2, that is,
-1 -1
I qy ‘1201
X={xo,x1,x2}, q={q0 1| g5 |-
g0 g2 1

2
Agq = Clxo, x1, x2)/(x1X0 — q10X0X1, X2X0 — §20X0X2, X2X] — §21X1X2).
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In this case N = 5 and the corresponding (2, 2)-quantum space Ag is completely
determined by the data

Y = {y0, y1, y2, ¥3, Y4, Y5},

| 0l a5l it a52q gt
a0 1 @0 an'a0  drg (@092092)70 @005
gl | @ a0 1 g e
4o 9o 41410 1 B a1
d3 910920921 6]2_116]106]20 a3 1 6]2_12
43 T30931 a3 a3 a3 1

Observe that inside the matrix g we find as submatrices three occurrences of the
matrix in (7.1) for d = 2 and g equal to one of the three commutation parameters,
namely

2 4 2 4 2 4
L g 4y L gy 4y L gy gy
2 -2 2 -2 2 -2

g0 1 a0 |- a 1 gy |» and g3 1 gy
4 2 4 2 4 2

di0 410 1 40 920 1 41 921 1

The kernel of the Veronese map vy 2: Ag — Aﬁ has a reduced Grobner basis
consisting of six quadratic polynomials

G = (¥1 — q10¥0Y3, Y12 — q10Y0Y4, ¥3 — 2005,
Y2V3 = QI V1V4s Y2V4 — @21Y1V5s V3 — G21V35).-

Example 7.4 (The Segre quadric) Let n = m = 1. Following the above conventions,
we write

Agq = Clxo, x1)/(x1x0 — gxox1) and Ay, = C{yo, y1)/(y1y0 — ¢'yoy1)-

In this case, N = 3 and the quantum space Ag is determined by the data

1 ¢ ¢! @

g 1 q'¢ q!

q q@)! (gH7!
' 1

Z = {z00, 201, 210, 211}, &= 1
99" q q’
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The kernel ker (s1,1) of the Segre map sy 1: .Ag — A}l ®A‘11/ has a reduced Grobner
basis consisting of a single quadratic polynomial

G = {zo1z10 — ¢'z00z11}-

Example 7.5 (The non-commutative Segre threefold) Let n = 2 and m = 1. We con-
sider

2
Ag = Clxo, x1, x2)/(X1X0 — q1,0X0X1, X2X0 — §2,0X0X2, X2X1 — g2,1X1X2)
and

Ay = Cloy1)/ (10 — q'yoy1).

Then N = 5 and the corresponding (2, 1)-derived quantum space is determined by
the following data:

Z = {200, 201, 210, 211, 220, 221},

1 @) g @od)t gy (q20) 7
61/ 1 ql—olq/ ql—ol ‘12_01?/ q2—01
g=| D0 qo@)™" 1 @) a (qug)!
q109’ q10 q’ 1 a1 q a5
a0 g0 g1 gu@)! 1 (g !
g209’ q20 9219’ q21 q 1

The kernel ker (s2,1) of the Segre map s2 1 : Ag — Aé ®‘A(1]’ has a reduced Grobner
basis consisting of three quadratic polynomials

/ /! !/
G= {201210 — ¢ 200211, 201220 — ¢ 200221, 211220 — ¢ Z10Z21}-
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