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a b s t r a c t 

Current theories suggest that altering choices requires value modification. To investigate this, normal-weight 
female participants’ food choices and values were tested before and after an approach-avoidance training (AAT), 
while neural activity was recorded during the choice task using functional magnetic resonance imaging (fMRI). 
During AAT, participants consistently approached low- while avoiding high-calorie food cues. AAT facilitated low- 
calorie food choices, leaving food values unchanged. Instead, we observed a shift in indifference points, indicating 
the decreased contribution of food values in food choices. Training-induced choice shifts were associated with 
increased activity in the posterior cingulate cortex (PCC). In contrast, the medial PFC activity was not changed. 
Additionally, PCC gray matter density predicted individual differences in training-induced functional changes, 
suggesting anatomic predispositions to training impact. Our findings demonstrate neural mechanisms underlying 
choice modulation independent of valuation-related processes, which has substantial theoretical significance for 
decision-making frameworks and translational implications for health-related decisions resilient to value shifts. 
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. Introduction 

Optimizing dietary patterns is essential for aiding humans
 Cureau et al., 2018 ; Ebbeling et al., 2004 ; Forouzanfar et al., 2015 ;
omieu et al., 2017 ) and global environmental health ( Clark et al., 2019 ;
ason and Lang, 2015 ; Willett et al., 2019 ). In a recent framework,
angel et al. (2008) categorized computational processes involved in
alue-based decision-making into five stages: representation, valuation,
ction selection, outcome appraisal, and learning. Accordingly, even in
he most straightforward decision, an agent first needs to identify pos-
ible actions, calculate the value of each option, and finally select the
ne with the highest value. Conspicuously, valuation plays a central role
n decision-making (for review, see Balleine et al., 2008 ; Balleine and
’Doherty, 2010 ). Similarly, to choose which food item to consume, one
eavily relies on their existing values (i.e., food preferences). Current
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heories assume that changing choices are accompanied by modifying
alues associated with targeted items ( Balleine et al., 2008 ; Balleine and
ickinson, 1998 ; Balleine and O’Doherty, 2010 ; Rangel et al., 2008 ).
owever, the necessity of shifting values for altering choices has

ecently become a matter of intense debate ( Bakkour et al., 2016 ;
ecker et al., 2015 ; Kakoschke et al., 2017b ; Knudsen and Wallis, 2022 ;
ehl et al., 2018 ; Schonberg et al., 2014 ; Schonberg and Katz, 2020 ;

chumacher et al., 2016 ). Whether choice can be affected regardless of
alue has substantial theoretical significance for understanding the cog-
itive and neural mechanisms of decision-making ( Knudsen and Wal-
is, 2022 ; Rangel et al., 2008 ) and translational implications for strate-
ies used to optimize health-related decisions, such as food choices in
linical and normal populations ( Bongers et al., 2015 ; Guerrieri et al.,
008 ; Nederkoorn et al., 2009 , 2010 ). 
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Choices are simultaneously affected by multiple factors
 Balleine et al., 2008 ; Balleine and Dickinson, 1998 ; Balleine and
’Doherty, 2010 ; Rangel et al., 2008 ). The most intuitive feature

s the expected reward value associated with possible options,
eading to choosing the item with the highest subjective value
 Bradfield and Balleine, 2013 ; Colwill, 1993 ; Colwill and Dela-
ater, 1995 ; Thrailkill et al., 2021 ). Alternatively, choices can also

e affected in the absence of value modification, a procedure that is
argely uninvestigated in terms of underlying cognitive processes and
eural substrates ( Rangel et al., 2008 ). For example, direct training
o approach certain food cues could lead to a higher frequency of
hoosing the targeted item, independent of the value associated with
he response ( Hershberger, 1986 ). Notably, the difference between
alue- and non-value-based mechanisms is not related to their au-
omaticity. That is, once well-trained, both mechanisms can lead
o automatic responses ( Strack and Deutsch, 2004 ; Thrailkill et al.,
021 ) that are not resource-consuming ( Cooper and Shallice, 2000 ;
orman and Shallice, 1986 ). Additionally, if enough cognitive re-

ources are available, both mechanisms can be overridden by using
nhibition ( Diamond, 2013 ). Still, since inhibition, like other forms of
ognitive control, requires an immediate mental effort, it is aversive.
onsequently, we prefer to rely on cognitive control processes as

ittle as feasible ( Botvinick and Braver, 2015 ; Shenhav et al., 2017 ),
ighlighting the importance of regimens that can affect choices without
esorting to inhibition ( Froehlich et al., 2021 ; Guerrieri et al., 2008 ;
ederkoorn et al., 2009 ; Zahedi et al., 2020 ). 

One approach to change choices in the absence of value modifica-
ion is employing approach-avoidance training (AAT; Kakoschke et al.,
017a ; Wiers et al., 2011 ), in which targeted stimuli are con-
istently associated with approach or avoidance. For instance,
iers et al. (2011) showed that a short AAT, associating alcoholic bev-

rages with avoiding response, induced an avoidance bias toward al-
ohol in alcohol-dependent participants. Importantly, this avoidance
ias was accompanied by symptom improvement in these patients. AAT
an be considered a nonreinforced learning procedure ( Schonberg and
atz, 2020 ) since the targeted stimuli are not connected to reward or
unishment contingencies but to specific responses. Consequently, even
hough AAT modifies behavior, it is largely unknown how this is related
o value. Hence, AAT, a canonical training regimen for affecting choices,
s highly appropriate for assessing the necessity of shifting values when
ltering choice behavior. 

Although the neural underpinnings of AAT in the healthy population
emain uninvestigated ( Mehl et al., 2019 ; Wiers et al., 2015 ), the neu-
al substrates of values and choice behavior allow us to draw hypothe-
es. In the last decades, the ventromedial prefrontal cortex (vmPFC),
rbitofrontal cortex (OFC), and posterior cingulate cortex (PCC) have
een shown to be associated with choices ( Bartra et al., 2013 ; Kable and
limcher, 2009 ). Notably, tasks that target final choices seem to strongly
ngage PCC ( Kable and Glimcher, 2007 ; Paulus and Frank, 2003 ), but
alue signals are represented in vmPFC and OFC ( Plassmann et al., 2007 ,
010 ). Additionally, PCC has been discussed as the neural hub that
etects changes in the environment and motivates shifts in behavior
 Pearson et al., 2011 ). For instance, Kable and Glimcher (2007) found
hat PCC activity can predict participants’ final choices in an intertempo-
al choice task. Also, Cousijn et al. (2012) showed that approach bias to-
ard cannabis-related images correlates with increased activity in PCC
hen comparing heavy users and non-users. Further, PCC and precuneus
ave been shown to be more activated in internet-gambling-dependent
articipants than in the control group, and their BOLD activities are cor-
elated with their gaming urge ( Ko et al., 2013 ). Together, these results
uggest that compared to vmPFC and OFC, which encode values and in-
egrate them in decision-making-related networks, PCC activity might
ncode and incorporate internally motivated ( Leech and Sharp, 2014 )
ehavioral tendencies in decision-making processes. 

In the current study, we investigate the necessity of shifting values
or altering choices. Further, we elucidate how such a choice modifi-
2 
ation without value change is potentially incorporated into decision-
aking networks at the neural level. We hypothesize that even though
AT affects choices, it leaves reward value unaffected. These hypothe-
es came from two sources: (1) other forms of behavioral modifica-
ion techniques, such as cue-approach training, have been shown to
hange choices independent of explicit values (e.g., Bakkour et al., 2017 ;
chonberg et al., 2014 ). (2) Previous AAT studies using implicit associa-
ion tasks did not find a significant effect of AAT on implicit values while
hoices were modulated ( Kakoschke et al., 2017 ). Further, we assess
hether the relationship between choices and ratings is modulated by
AT such that the same values would be less critical for final choices af-

er AAT compared to baseline ( McKerchar et al., 2009 ; Scherbaum et al.,
012 ). Accordingly, we expect that at the neural level, mPFC that en-
odes values would not be affected by AAT. In contrast, PCC, which
s the neural hub that incorporates behavioral tendencies in choice be-
avior, would be modulated by AAT. We further explore anatomical
redispositions to behavioral modifications by conducting voxel-based
orphometry. Finally, to test if the AAT training effect can be trans-

erred to real-life food intake, participants underwent a breakfast-buffet
est at the end of each testing session. 

. Method 

.1. Participants and stimuli 

Thirty-four normal-weight (i.e., 18 < BMI < 25) right-handed sub-
ects (mean age = 25.14 years, SD = 4.01 years; mean BMI = 21.46,
D = 1.77) participated in the study. The sample size was cho-
en based on a priori power analysis with 𝛼 = 0 . 05 , 1 − 𝛽 = 0 . 95
 Cohen, 1988 , 2016 ), and expected effect sizes of 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑓 =
 . 35 (equivalent to 𝜂2 

𝑝 
= 0 . 1 ) derived from previous studies( Jones et al.,

018 ; Kakoschke et al., 2017b ; Mehl et al., 2018 ; Schumacher et al.,
016 ). The power analysis indicated that the total sample size 𝑁 ≥

9 were required. Participants did not report any history of mental
llnesses. It has been reported that there are gender differences in
etabolism ( Dionne et al., 1999 ), eating behavior ( Manippa et al., 2017 ;
olls et al., 1991 ; Wardle et al., 2004 ), and neural responses to food cues
 Manippa et al., 2017 ). Therefore, only female subjects were recruited
or the study. Food intolerances or allergies and any diet restriction (i.e.,
eing vegan or vegetarian) were exclusion criteria during recruitment.
rior to the experiment, all subjects were informed about the procedure
nd personal data handling, and their written consent was collected ac-
ording to the declaration of Helsinki. Participation was compensated
ith 8 € per hour. The study was approved by the ethics committee of

he University of Lübeck. One subject was excluded from data analy-
es completely, as she did not show any variance in the data (i.e., no
ccepted response in the food-choice task). Two more participants were
xcluded from analyses that required food ratings as they had more than
0% missed responses in the subjective rating task. 

We selected 80 food images from the database of
lechert et al. (2014) , containing 40 low- (mean = 70.15 kcal/100 g,
D = 44.24 kcal/100 g) and 40 high-calorie food items
 m = 236.59 kcal/100 g, SD = 59.24 kcal/100 g). Since the per-
eption of sugar can interfere with and mask the perception of fat
 Bolhuis et al., 2018 ; Drewnowski and Schwartz, 1990 ), only savory
tems were selected. The selected food stimuli were divided into two
timulus stets, each containing 20 high- and 20 low-calorie items. To
ncrease the training effect’s generalizability, one stimulus set was used
xclusively for the pre- and post-tests and the other for AAT (i.e., the
raining session), making the results independent of the specific food
tems. The assignment of stimulus sets to tasks (i.e., test vs. training)
as counterbalanced across participants. The use of different stimulus

ets for training (i.e., AAT) and test (i.e., the choice and subjective
ating tasks) ensured that the observed training effects are generalized
ver the stimuli, task, and context (i.e., in vs. outside of the MRI
canner). 
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Fig. 1. Schematic representation of the experimental paradigms. As stimuli, 80 food images ( Blechert et al., 2014 ) containing 40 low- and 40 high-calorie food items 
were employed. To test training effect generalizability, two sets of food images, each containing 20 low- and 20 high-calorie food cues, were used; one exclusively 
for the pre- and post-tests and the other for AAT (i.e., the training session). During Days 1 and 3, subjects participated in a food choice task, while neuroimaging 
data were recorded using fMRI, and a food rating task, which took place outside of the scanner. A) In the choice task, participants indicated whether they wanted to 
consume the presented food. The choice task consisted of 160 trials, divided into four blocks of 40 trials. The order of stimuli was pseudorandomized so that in each 
block, each stimulus would be presented once. B) In the rating task, participants were instructed to indicate how appealing they found the presented picture using a 
continuous slider. All images in the test set were rated using a continuous scale. C) For AAT, participants were instructed to consistently pull [toward their body] or 
push [away from their body] the presented food items in response to the color of stimulus frames (i.e., blue or yellow) using a joystick. Notably, low-calorie stimuli 
were consistently cued to be approached and high-calorie stimuli to be avoided. For optimal approach and avoidance resemblance ( Rinck and Becker, 2007 ), the 
employed AAT had an embedded zooming feature. AAT consisted of five blocks of 40 trials (each picture in the training set was presented five times). The order of 
images was pseudorandomized so that each image would be presented once during each block. Additionally, participants were instructed not to drink or eat anything 
besides water for 12 h before each session. At the end of each session, they could choose as many items as they wanted from a breakfast buffet where multiple food 
options were available. 

2

 

p  

(  

a  

p  

t  

1  

e  

e  

N  

t  

(
 

w  

a  

s  

r  

i
a  

s  

i  

i  

f  

o  

a  

y  

a  

i  

o  

(  

g

2

 

b  

u  

F  

t  

B  

p  

a  

i  

p  

p  

i  

i  

a  

(  

t

.2. Choice and subjective rating tasks 

All tasks were programmed in MATLAB (r2020b; MathWorks Com-
any) via Psychtoolbox v3 ( Brainard, 1997 ). In the subjective rating task
 Fig 1 - B ), participants were asked to indicate how appealing they find
 presented item on a continuous scale of 1–7, representing “not ap-
ealing at all ” and “very appealing ”, respectively, using a mouse. Each
rial started with a fixation cross, randomly presented between 500 and
000 msec. Afterward, a food item accompanied by the continuous Lik-
rt scale below the image was presented. Each trial would terminate
ither after the participants’ response or the maximum of 5000 msec.
o response or responses after 5000 msec were considered as missed

rials. Further, the order of images was completely randomized. Images
660 ×660 pixels) were presented against a black background. 

In the food-choice task ( Fig 1 -A), participants indicated whether they
ere willing to consume a presented item or receive the equivalent
mount of money instead. Two options (i.e., Yes and No) could be cho-
en by moving an MRI-compatible joystick (Fiber Optic Joystick, Cur-
ent Designs) to the left or right. In order to avoid motor confounds on
maging data, the position (i.e., being on the left or right) of the “Yes ”
nd “No ” responses were counterbalanced across trials. Each trial was
tarted by a fixation cross, randomly presented for 2, 4, 6, or 8 s (mean
ntertrial intervals = 4 s) to ensure hyperbolically distributed intertrial
ntervals ( Miezin et al., 2000 ). Afterward, each stimulus was presented
or 2000 msec, during which participants could respond. No response
r responses after 2000 msec were considered as missed trials. Each im-
3 
ge in the test set was presented four times during the food-choice task,
ielding 160 trials in total. The task was split into four blocks of 40 tri-
ls, each consisting of 20 low- and 20 high-calorie images. The order of
mages was pseudorandomized so that each image would be presented
nly once during each block. The inter-block interval was 20 s. Images
660 ×660 pixels) were presented in a white frame against a black back-
round. 

.3. Approach-Avoidance training 

For AAT ( Fig 1 - C ), participants were instructed to pull [toward their
ody] or push [away from their body] in response to the color of stim-
lus frames (i.e., blue or yellow) using an MRI-compatible joystick.
rame color to response assignment was counterbalanced across par-
icipants. For optimal approach and avoidance resemblance ( Rinck and
ecker, 2007 ), the employed AAT had an embedded zooming feature:
ulling and pushing the joystick, depending on the approach or avoid-
nce assignment, either increased or decreased the size of the presented
mage. In AAT, all low-and high-calorie stimuli were cued to be ap-
roached and avoided, respectively. Each picture in the training set was
resented five times, yielding 200 trials in total. Further, AAT was split
nto five blocks of 40 trials, consisting of 20 low- and 20 high-calorie
mages. The order of images was pseudorandomized so that each im-
ge would be presented only once during each block. The trial structure
i.e., intertrial, inter-block intervals, and response time) was similar to
he food-choice task. 
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.4. Procedure 

The study consisted of three sessions on three consecutive days
 Fig. 1 ). Prior to the study, participants were instructed to fast (i.e.,
ot eat and drink anything rather than water) and not consume alcohol
r caffeine for at least 12 h before each session. Every session started
etween 08:00 and 9:00 in the lab. In the beginning, participants re-
eived written instructions about the experimental procedure and the
asks of the respective day. On Days 1 and 3 (i.e., the pre- and post-
raining sessions), the food-choice task was administered in the MRI
canner, followed by the subjective rating task, which was completed
utside the scanner. Furthermore, on Day 2 (i.e., the training session),
AT was conducted outside the MRI scanner. Pre- and post-training ses-
ions lasted approximately one hour, and the AAT session took place in
0 min. At the end of each session, participants were offered a breakfast,
here they could choose as many food items as they wanted from multi-
le available low- and high-calorie options. The number of the low- and
igh-calorie items that participants selected in pre- and post-session was
ecorded. All presented results are related to the comparisons of pre- vs.
ost-sessions. 

.5. fMRI acquisition and preprocessing 

Functional and anatomical images were acquired using a 3T Trio
Siemens) scanner equipped with a 12-channel head coil. In each of
he four functional scanning runs, 127 T2 ∗ -weighted echo-planar im-
ges containing 33 slices, with 3 mm thickness and separated by a gap
f 0.75 mm, were acquired. The order of acquisition was descending.
maging parameters, resulting in an isotropic voxel size of 3 mm, were
s follows: repetition time (TR), 2000 msec; echo time (TE), 30 msec;
ip angle, 78°; matrix size, 64 × 64; field of view (FOV), 192 × 192
m 

2 . Further, a high-resolution T1-weighted magnetization prepared
apid gradient-echo image (MPRAGE) was collected for each subject.
he parameters were as follows: TR, 1900 msec; TE, 2.52 msec; matrix
ize, 256 × 256; FOV, 256 × 256 mm 

2 ; 192 slices (1 mm thick); flip
ngle, 9° Preprocessing, first-level, and group-level analysis of the func-
ional data were conducted using SPM12 (The Wellcome Department
f Imaging Neuroscience, Institute of Neurology, London, UK). During
reprocessing, scans were spatially realigned, slice-time corrected, co-
egistered to their structural images, and subsequently normalized to
he standard Montreal Neurological Institute (MNI) EPI template using
eformation fields. Finally, images were smoothed using an 8-mm full-
idth at half-maximum (FWHM) Gaussian kernel. None of the partici-
ants moved more than 3 mm/rad within each run. 

.6. Statistical analysis 

All behavioral statistical analyses were conducted via R program-
ing language ( http://www.R-project.org/ ). Only correct responses

i.e., produced during the designated response time) were used for sta-
istical analyses. The results of the food-choice and subjective rating
asks were analyzed using a 2 × 2 repeated measure ANOVA, with Ses-
ion (pre vs. post) and Calorie (high vs. low) as within-subject fac-
ors. All the behavioral data were checked to conform to ANOVA’s
ssumptions: normal distributions, no extreme outliers [i.e., outside
𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1( 𝑄 1 ) − 3 ∗ 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 ( 𝐼𝑄𝑅 ) , 𝑄 3 + 3 ∗ 𝐼𝑄𝑅 ], and linearity of

elations. Further, indifference points were calculated using logistic re-
ression modeling. Indifference points in binary choices are referred to
stimated positions where agents might accept or reject an item with
imilar probability ( McKerchar et al., 2009 ; Scherbaum et al., 2012 ).
or each participant in each condition, choices were entered into the
odel as a binary input (i.e., yes = 1, no = 0) and subjective ratings as a

ontinuous predictor. The model’s output represents the probability of
hoosing an item giving the subjective rating for that item, as described
4 
n Eq. (1) . 

 𝑗,𝑖,𝑘 ( 𝑌 ) = 

1 
1 + 𝑒𝑥𝑝 ( 𝛽0 + 𝛽1 𝑥 ) 

(1)

In Eq. (1) , 𝑥 designates subjective rating, 𝑌 choice, 𝑗 participant num-
er, 𝑖 session (e.g., pre-training), 𝑘 calorie content (e.g., low-calorie),
nd finally 𝛽0 and 𝛽1 are the parameters of the model. For each of the
articipants at each condition, the indifference points were defined as
he subjective rating that predicts choosing an item with a probabil-
ty of 50%. Notably, indifference points are the prediction of computed
odels and represent a combined picture of choice biases (i.e., 𝛽0 in

he model) and rating values contribution (i.e., 𝛽1 in the model) in fi-
al choices. For five participants, the rating associated with 50% was
utside acceptable boundaries (i.e., [1,7]); therefore, these participants
ere eliminated in the final analysis of indifference points. The cal-

ulated indifference points were entered in a 2 × 2 repeated measure
NOVA similar to the one used for the subjective rating and food-choice

asks. 
For participants’ breakfast choices, the output (i.e., the count of se-

ected low- and high-calorie food items) had a quasi-Poisson instead of
 Gaussian distribution. Therefore, for analyzing the breakfast data, we
tilized a quasi-Poisson mixed model with log as the link function. In
he model, Participants were included as random, and Session (pre vs.
ost) and Calorie (high vs. low) as fixed effects, as follows: 

𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 1 + 𝐶𝑎𝑙𝑜𝑟𝑖𝑒 ∗ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛, 𝑟𝑎𝑛𝑑𝑜𝑚 + (1 | 𝐼𝐷) (2)

For calculating and analyzing the model, the MASS package in R was
sed ( Ripley et al., 2013 ). The statistical inference was made based on
hi-square tests and type II sum of squares. Further, the total calorie con-
umed and ordered for each session was analyzed by using the Wilcoxon
est, as these values were not normally distributed. 

The statistical analyses of fMRI data were conducted using MATLAB
r2020b; MathWorks Company), SPM12 (The Wellcome Department of
maging Neuroscience, Institute of Neurology, London, UK), and R pro-
ramming language ( http://www.R-project.org/ ). The effects of inter-
st were calculated for each participant and session using general linear
odels (GLM), including all four runs. In GLM1, the food-choice task

rials were assigned to four event-related conditions: accepted and re-
ected items of low- ( n = 80) and high-calorie images ( n = 80). The re-
ulting vectors were convolved with a canonical hemodynamic response
unction. Further, we used a high-pass filter with a 180 Hz cutoff and an
xplicit brain mask. For finding functional ROIs, p values were corrected
or multiple comparisons using the family-wise error correction at the
luster level ( 𝐹 𝑊 𝐸 𝑐 ). Based on the suggestions of Woo et al. (2014) ,
e chose a high primary threshold (i.e., 𝑝 ⟨0 . 001 , 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑒𝑜𝑢𝑠 𝑣𝑜𝑥𝑒𝑙𝑠 ⟩40 )

o enhance spatial localization and interpretability. This approach has
een discussed to provide the best balance between the type I and II
rrors in fMRI studies ( Lieberman and Cunningham, 2009 ; Woo et al.,
014 ). Extracted neural activities of selected ROIs were assessed using
 2 × 2 × 2 repeated measure ANOVA, with Session (pre vs. post), Calo-
ie (high vs. low), and Decision (accepted vs. reject) as within-subject
actors. For calculating correlations between neural activities and be-
avioral measures, the repeated-measure correlation package (rmcorr)
n R was used ( Bakdash and Marusich, 2017 ). 

Further, to assess whether there can be a predisposition to AAT, we
onducted voxel-based morphometry (VBM) using the computational
natomy toolbox (CAT12). For VBM, T1 images are spatially normal-
zed using geodesic shooting templates ( Ashburner and Friston, 2011 )
nd segmented into gray matter (GM), white matter (WM), and cere-
rospinal fluid (CSF). Total intracranial volumes (TIV) were calculated
nd used as a nuisance regressor in VBM-GLM. Afterward, images were
moothed using an 8-mm FWHM. Finally, the extracted gray matter den-
ities of the selected regions of interest (ROI) were correlated with the
OLD activity of those same regions. Since we did not assume a linear
elationship between BOLD activity and gray matter density, instead of
earson’s correlation, ranked Spearman’s correlation was assessed. 

http://www.R-project.org/
http://www.R-project.org/
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Fig. 2. The violin diagrams of the behavioral results for (A & B) the food-choice task and (C & D) the subjective rating task. Red dots and lines represent means and 
95% confidence intervals (CI), calculated based on the standard error of the mean (SEM). All p values are Bonferroni-corrected. 
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. Results 

.1. The impact of AAT on choices and values 

In order to investigate whether AAT affected food choices, we tested
he acceptance rates via a 2 × 2 ANOVA with Calorie (low- vs. high-
alorie) and Session (pre- vs. post-test) as within-subject factors. The
nteraction between Session and Calorie was significant ( 𝐹 ( 1 , 32 ) =
 . 22 , 𝒑 = 0 . 017 , 𝜂2 

𝑝 
= 0 . 16 ), suggesting a significant change in choice as

 function of training ( Fig. 2 -A). Notably, after the training, participants
hose low-calorie food items significantly more often ( 𝑡 ( 32 ) = 3 . 56 , 𝒑 =
 . 001 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 62 , Bonferroni-corrected), whereas the high-calorie
tems were not significantly affected by AAT ( 𝑡 ( 32 ) < 1 , 𝑛.𝑠 ) . Further, the
ain effect of Session was marginally significant ( 𝐹 ( 1 , 32 ) = 3 . 66 , 𝑝 =
 . 064 , 𝜂2 

𝑝 
= 0 . 10 ). Also, participants chose significantly more low-calorie

 𝑚𝑒𝑎𝑛 = 0 . 633 , 𝑆𝐷 = 0 . 190 ) than high-calorie ( 𝑚𝑒𝑎𝑛 = 0 . 435 , 𝑆𝐷 =
 . 220 ) food items, as shown in the significant main effect of calorie
 𝐹 ( 1 , 32 ) = 12 . 00 , 𝒑 < 0 . 001 , 𝜂2 

𝑝 
= 0 . 27 ). 

Next, we tested whether the values associated with the food items
hanged after training ( Fig. 2 - B ). Notably, food values were measured
5 
y the subjective rating tasks, where participants indicated how appeal-
ng they found the presented pictures. Importantly, neither the interac-
ion between Session and Calorie was significant ( 𝐹 ( 1 , 30 ) = 1 . 23 , 𝑝 =
 . 27 , 𝜂2 

𝑝 
= 0 . 03 ), nor the main effect of Session ( 𝐹 ( 1 , 30 ) < 1 , n . s . ), show-

ng that AAT did not affect food values. Further, with the Bayesian equiv-
lent of paired t -test, we tested the changes in food values from the pre-
o post-test for high- ( 𝐵 10 = 0 . 2223751 ± 0 . 04% ) and low-calorie items
 𝐵 10 = 0 . 3157722 ± 0 . 03% ), which showed moderate evidence favoring
ull hypotheses (i.e., there was no change in these food values from
re- to post-AAT). In general, participants rated low-calorie food items
 𝑚𝑒𝑎𝑛 = 4 . 53 , 𝑆𝐷 = 0 . 78 ) significantly higher compared to high-calorie
ood items ( 𝑚𝑒𝑎𝑛 = 3 . 55 , 𝑆𝐷 = 0 . 85 ; 𝐹 ( 1 , 30 ) = 21 . 65 , 𝒑 < 0 . 001 , 𝜂2 

𝑝 
=

 . 41 ). 
Afterward, to assess whether AAT effects are transferred to real-

ife food choices, we analyzed the breakfast choices using a quasi-
oisson mixed model with Calorie (low- vs. high-calorie) and Session
pre- vs. post-test) as fixed and Participant as a random effect. We
ould find a marginally significant change in real food choice as a
unction of training, as unveiled by the marginally significant inter-
ction of Session and Calorie ( χ2 ( 1 , 𝑁 = 132 ) = 3 . 28 , 𝑝 = 0 . 069 ). In gen-
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ral, participants chose more low- ( 𝑚𝑒𝑎𝑛 = 6 . 72 , 𝑆𝐷 = 2 . 29 ) than high-
alorie items ( 𝑚𝑒𝑎𝑛 = 4 . 69 , 𝑆𝐷 = 2 . 37 , χ2 ( 1 , 𝑁 = 132 ) = 38 . 57 , 𝒑 < 0 . 001 ).
e did not observe a significant main effect of Session ( χ2 ( 1 , 𝑁 = 132 ) =

 . 31 , 𝑝 = 0 . 576 ). Notably, low-calorie breakfast choices were numeri-
ally increased ( 𝑚𝑒𝑎𝑛 = 0 . 36 , 𝑆𝐷 = 2 . 07 ), and high-calorie ones de-
reased ( 𝑚𝑒𝑎𝑛 = −0 . 72 , 𝑆𝐷 = 2 . 73 ) in post- compared to pre-test. How-
ver, these numerical changes, either for low-calorie ( 𝑊 𝑖𝑙𝑐𝑜𝑥𝑜𝑛 ( 32 ) =
8 , 𝑝 = 0 . 168 , 𝑟 = 0 . 24 , Bonferroni-corrected) or high-calorie breakfast
hoices ( 𝑊 𝑖𝑙𝑐𝑜𝑥𝑜𝑛 ( 32 ) = 258 , 𝑝 = 0 . 211 , 𝑟 = 0 . 20 , Bonferroni-corrected),
ere not significant. Next, we analyzed the calories consumed and or-
ered for each session to investigate whether the effects of AAT were
ranslated to participants’ ecologically valid consumption behavior.
owever, neither ordered calories ( 𝑊 𝑖𝑙𝑐𝑜𝑥𝑜𝑛 ( 32 ) = 222 , 𝑝 = 0 . 304 , 𝑟 =
 . 18 ) nor consumed calories ( 𝑊 𝑖𝑙𝑐𝑜𝑥𝑜𝑛 ( 32 ) = 183 , 𝑝 = 0 . 08 , 𝑟 = 0 . 303 )
ere significantly affected by Session. 

.2. The contribution of values to choice shifts as a function of training 

Next, we tested how food values contribute to choices before and
fter AAT. To do so, we employed individual indifference points, which
ndicate the estimated value at which participants chose food items
ith a 50% probability ( McKerchar et al., 2009 ; Scherbaum et al.,
012 ). Here, we observed a significant interaction between Session
nd Calorie ( 𝐹 ( 1 , 25 ) = 4 . 69 , 𝒑 = 0 . 040 , 𝜂2 

𝑝 
= 0 . 15) , indicating that in-

ifference points were modulated as a function of training. The con-
rast analysis ( Fig. 3 -A, B ) showed that although there was no sig-
ificant difference between low- and high-calorie indifference points
n the pre-training session ( 𝑡 ( 25 ) = 1 . 13 , 𝑝 = 0 . 536 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 22 ,
onferroni-corrected), this difference became significant in the post-
raining session ( 𝑡 ( 25 ) = 3 . 75 , 𝒑 = 0 . 001 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 72 , Bonferroni-
orrected). Further, although high-calorie indifference points were
ot changed after AAT ( 𝑡 ( 25 ) < 1 , n . s . ), the low-calorie indifference
oints decreased significantly ( 𝑡 ( 25 ) = 2 . 47 , 𝒑 = 0 . 040 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 48 ,
onferroni-corrected). These findings suggest that after training, novel
ehavioral tendencies were formed, which resulted in participants’ will-
ngness to accept low-calorie food at a lower value. 

Further, the indifference points were not significantly changed by
ession ( 𝐹 ( 1 , 25 ) = 1 . 52 , 𝑝 = 0 . 229 , 𝜂2 

𝑝 
= 0 . 05 ). However, we observed

ignificantly lower indifference points for low- ( 𝑚𝑒𝑎𝑛 = 3 . 70 , 𝑆𝐷 = 0 . 98 )
s. high-calorie images ( 𝑚𝑒𝑎𝑛 = 4 . 17 , 𝑆𝐷 = 0 . 99 ) in general ( 𝐹 ( 1 , 25 ) =
 . 45 , 𝒑 = 0 . 017 , 𝜂2 

𝑝 
= 0 . 20 ). This result might indicate that participants’

hoices of high-calorie compared to low-calorie food cues were influ-
nced by other factors, such as inhibition. 

To confirm that alterations in acceptance rates were related
o changes in indifference points, we calculated the repeated-
easure correlation coefficient. The results showed a strong corre-

ation between the acceptance rates and indifference points ( 𝑟 ( 77 ) =
0 . 688 , 95% 𝐶𝐼 [ −0 . 790 − 0 . 549 ] , 𝒑 < . 001 ), confirming that alterations

n acceptance rates were indeed associated with changes in indifference
oints. This result clearly shows the validity of indifference point esti-
ations ( Eq. 1 ), which are the logistic regression models’ outputs (i.e.,

he 50/50 probability estimations for a given participant and category).

.3. Identifying brain regions of interest sensitive to calorie and choice 

We first identified brain regions that code the caloric value
 Bongers et al., 2015 ; Meule and Kubler, 2014 ) (i.e., high- vs. low-
alorie) in the pre-test ( Fig. 4 ). The reason for calculating this spe-
ific contrast was that high- compared to low-calorie images are bet-
er detectors of impulsive choices that heavily depend on behavioral
endencies ( Bongers et al., 2015 ; Meule and Kubler, 2014 ). Two areas
howed significant differences: PCC [ 𝑀 𝑁 𝐼 ∶ 𝑥 = −3 , 𝑦 = −16 , 𝑧 = 35 ,
 𝑡 ( 32 ) = 5 . 47 , 𝑭 𝑾 𝑪 𝒄 = 0 . 035)] , and ACC [ 𝑀 𝑁 𝐼 = 𝑥 = 9 , 𝑦 = 26 , 𝑧 = 26 ,
 𝑡 ( 32 ) = 4 . 60 , 𝑭 𝑾 𝑬 𝒄 = 0 . 007 )] . Next, we tested for decision-sensitive re-
ions (i.e., accept versus reject) in the pre-test ( Fig. 4 ). In line with
he previous findings ( Bartra et al., 2013 ; Kable and Glimcher, 2009 ;
6 
lassmann et al., 2007 , 2010 ), mPFC was identified as the only region
eflecting choice [ 𝑀 𝑁 𝐼 = 𝑥 = 6 , 𝑦 = 41 , 𝑧 = −7 , ( 𝑡 ( 32 ) = 6 . 29 , 𝑭 𝑾 𝑬 𝒄 =
 . 015 )]. The following analyses will thus specifically target the activi-
ies within these regions of interest. 

.4. The effects of behavioral modifications on brain activity 

To address whether brain activity was modulated by the experimen-
al manipulations, we analyzed the BOLD activities of the functional
OIs, which were specified in the whole-brain analysis. That is, we
rst conducted a whole brain analysis only for the pre-AAT session (see
ection 3.3 ). Based on this analysis, several functional ROIs were de-
ected. Afterward, the beta values (i.e., BOLD signals) were extracted
rom each of these functional ROIs for both pre- and post-tests. Using
eneral linear models (GLM), we included Decision (Accept vs. Reject),
alorie (high- vs. low-calorie), and Session (pre- vs. post-test) as within-
ubject regressors. To see the results of the parametric modulation anal-
sis regarding value encoding, please see the supplementary materials. 

In the mPFC ROI, the main effect of Decision was significant as ex-
ected ( Bartra et al., 2013 ; Kable and Glimcher, 2009 ; Plassmann et al.,
010 ) ( 𝐹 ( 1 , 32 ) = 22 . 95 , 𝒑 < 0 . 001 , 𝜂2 

𝑝 
= 0 . 41 ), suggesting that mPFC

 Plassmann et al., 2007 , 2010 ) is involved in choice behavior. How-
ver, mPFC activity was not significantly affected by Calorie ( 𝐹 ( 1 , 32 ) =
 . 12 , 𝑝 = 0 . 086 , 𝜂2 

𝑝 
= 0 . 08 ), Session ( 𝐹 ( 1 , 32 ) = 3 . 16 , 𝑝 = 0 . 084 , 𝜂2 

𝑝 
=

 . 08 ), or by interactions between the factors ( 𝐹 𝑠 ( 1 , 32 ) < 1 , 𝑛.𝑠. ). 
Next, we turned to PCC to investigate its role in the decision-making

etwork. In the PCC ROI ( Fig. 5 ), the interaction between Calorie and
ession ( Fig 5 -A, B ) was significant ( 𝐹 ( 1 , 32 ) = 4 . 94 , 𝒑 = 0 . 033 , 𝜂2 

𝑝 
=

 . 13 ), indicating that PCC activity was modulated as a function of AAT.
he contrast analysis showed that although activity in response to low-
ompared to high-calorie food items was significantly lower in the pre-
raining session ( 𝑡 ( 32 ) = 5 . 05 , 𝒑 < 0 . 001 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 87 , Bonferroni-
orrected), there was no significant difference between them after AAT
 𝑡 ( 32 ) < 1 , 𝑛.𝑠. ). Further, even though AAT significantly affected activity
n response to low-calorie images ( 𝑡 ( 32 ) = 2 . 46 , 𝒑 = 0 . 038 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 =
 . 42 , Bonferroni-corrected), it did not significantly affect high-calorie
tems ( 𝑡 ( 32 ) < 1 , 𝑛.𝑠. ). Together, these results suggested that PCC is a
trong candidate for integrating newly formed behavioral tendencies
n choice behavior, which leads to an increase in the frequency of
hoosing low-calorie food items. This result might have been expected
ased on the whole brain analysis conducted only for the pre-test ses-
ion to find the functional ROIs. However, with these functional ROIs,
e searched for the training-dependent effect, which is the compari-

on of pre- and post-AAT. To confirm this postulation, we investigated
hether the activities in response to low-calorie food items were cor-

elated with the acceptance rate of these food images by calculating
 repeated-measure correlation. Notably, the results revealed a signifi-
ant correlation between PCC activity and low-calorie acceptance rates
 𝑟 ( 32 ) = 0 . 352 , 95% 𝐶𝐼 [ 0 . 003 , 0 . 624 ] , 𝒑 = . 041 ; Fig. 5 - C ) . 

Additionally, Calorie significantly affected PCC activity ( 𝐹 ( 1 , 32 ) =
 . 85 , 𝒑 = 0 . 013 , 𝜂2 

𝑝 
= 0 . 17 ), possibly showing that, in general, choos-

ng high-calorie food items relies more on behavioral tendencies than
ow-calorie items ( Bongers et al., 2015 ; Meule and Kubler, 2014 ). No
ther main effect (Session: 𝐹 ( 1 , 32 ) = 1 . 81 , 𝑝 = 0 . 186 , 𝜂2 

𝑝 
= 0 . 05 ; Deci-

ion: 𝐹 ( 1 , 32 ) = 3 . 03 , 𝑝 = 0 . 090 , 𝜂2 
𝑝 
= 0 . 08 ) or interaction (Decision ∗

ession: 𝐹 ( 1 , 32 ) = 2 . 79 , 𝑝 = 0 . 104 , 𝜂2 
𝑝 
= 0 . 08 ; others: 𝐹 𝑠 ( 1 , 32 ) < 1 , 𝑛.𝑠. )

as significant. 
Finally, in the ACC, the interaction between Calorie and Session was

arginally significant ( 𝐹 ( 1 , 32 ) = 3 . 72 , 𝑝 = 0 . 062 , 𝜂2 
𝑝 
= 0 . 10 ), suggest-

ng that AAT possibly affected the activity of ACC. To understand this
arginal interaction, we conducted a series of contrast analyses. The

esults showed that even though BOLD activity in response to low- com-
ared to high-calorie food items was significantly lower before AAT
 𝑡 ( 32 ) = 4 . 66 , 𝒑 < 0 . 001 , 𝐶𝑜ℎ𝑒𝑛 ′𝑠 𝑑 = 0 . 81 , Bonferroni-corrected), there
as no significant difference between low- and high-calorie BOLD activ-

ty after AAT( 𝑡 ( 32 ) < 1 , 𝑛.𝑠. ). However, there was no significant repeated-
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Fig. 3. The violin diagrams of the indifference point analysis, grouped by (A) Calorie and (B) Session. Red dots and lines represent means and 95% CIs, calculated 
based on the standard error of the mean (SEM). All p values are Bonferroni-corrected. (C) The predicted probabilities based on logit regression models. Dashed 
horizontal lines mark 50% predicted probability, used for calculating indifference points for each participant and condition. Solid vertical lines mark indifference 
points, and gray highlighted areas represent 95% CIs, calculated based on the standard error of the mean (SEM). Red arrows in the post-training panels show the 
changes in mean indifference points from pre- to post-AAT sessions. 
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a  
easure correlation between the ACC BOLD activities and acceptance
ates ( 𝑟 ( 32 ) = 0 . 024 , 95% 𝐶𝐼 [ −0 . 327 , 0 . 369 ] , 𝑝 = 0 . 891 ). Further, the
ain effect of Calorie was significant ( 𝐹 ( 1 , 32 ) = 9 . 44 , 𝒑 = 0 . 004 , 𝜂2 

𝑝 
=

 . 22 ). However, no other main effect (Decision: 𝐹 ( 1 , 32 ) = 2 . 96 , 𝑝 =
 . 094 , 𝜂2 

𝑝 
= 0 . 08 ; Session: 𝐹 ( 1 , 32 ) < 1 , 𝑛.𝑠. ) or interaction was signifi-

ant (Session ∗ Decision: 𝐹 ( 1 , 32 ) = 1 . 90 , 𝑝 = 0 . 176 , 𝜂2 
𝑝 
= 0 . 05 , others:

 𝑠 ( 1 , 32 ) < 1 , 𝑛.𝑠. ). 

.5. Understanding individual differences in brain activity alterations 

ased on the anatomical predisposition 

After finding that PCC might play an essential role in in-
egrating behavioral tendencies in choice behavior, we were cu-
7 
ious whether anatomical differences in PCC can potentially ex-
lain individual differences in brain activity changes. VBM re-
ults showed that there is a significant correlation between activ-
ty changes from the pre- to post-test and the gray matter den-
ity of PCC ( 𝑟 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 ( 31 ) = 0 . 353 [ 0 . 011 , 0 . 621 ] , 𝒑 = 0 . 044 ) . Notably,
pplying more conservative outlier criteria ( 𝑖.𝑒., [ 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1( 𝑄 1 ) −
 . 5 ∗ 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 ( 𝐼𝑄𝑅 ) , 𝑄 3 + 1 . 5 ∗ 𝐼𝑄𝑅 ]) did not change the results.
 𝑟 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 ( 28 ) = 0 . 388 [ 0 . 033 , 0 . 656 ] , 𝒑 = 0 . 034 ; Fig. 5 - D ) . 

. Discussion 

Current decision-making theories assume that changing choices
re dependent on modifying values associated with targeted items
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Fig. 4. Functional ROIs derived from high- vs. low-calorie (red) and accept vs. reject (green) contrasts in the pre-training session. A) The 3D rendition of the ROIs. B) 
The multiple-slice rendition of axial slices at 𝑧 = −12 , −8 , 18 , 22 , 𝑎𝑛𝑑 30 . Green: decision-sensitive area (i.e., mPFC); Red: habit-sensitive areas (i.e., ACC and PCC). 
C) The corresponding whole-brain analyses of high- vs. low-calorie (red) and accept vs. reject (yellow). For visualization, the uncorrected images ( 𝑝 ⟨0 . 005 , 𝑘 ⟩10 ) are 
shown ( Lieberman and Cunningham, 2009 ). 
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 Balleine et al., 2008 ; Balleine and Dickinson, 1998 ; Balleine and
’Doherty, 2010 ; Rangel et al., 2008 ; Schonberg and Katz, 2020 ). In the
urrent study, we challenge this assumption by investigating the effects
f AAT on choice behavior, during which low-calorie food items were
onsistently associated with approach and high-calorie food items with
voidance. The behavioral results showed that although after AAT, sub-
ective ratings of food items were not changed, participants chose low-
alorie food items more frequently. Further, logit regression modeling
f indifference points revealed that AAT induced a positive bias toward
ow-calorie food items, making the participants choose these items at a
ower value level. Hence, our behavioral results strongly corroborated
ur hypothesis that AAT modulates choices without value modification.
he fMRI results indicated that the BOLD activity of PCC, but not mPFC,
as modulated as a function of AAT. Notably, PCC activity in response

o low-calorie images during pre- and post-tests was correlated with par-
icipants’ acceptance rates, indicating a fundamental role of PCC in in-
egrating behavioral tendencies in choice behavior. 

The current study builds upon insights from previous studies (e.g.,
akkour et al., 2017 ; Mehl et al., 2019 ; Schonberg et al., 2014 ) to timely
ddress the debate on the relationship between subjective value and
hoice. So far, several studies (e.g., Becker et al., 2015 ; Kakoschke et al.,
017b ; Mehl et al., 2019 , 2018 ) have investigated the applicability of
AT in counteracting obesity and overweight. However, the underlying
ognitive and neural mechanisms of AAT in healthy humans remained
8 
ostly unknown. In some of these studies (e.g., Becker et al., 2015 ;
ehl et al., 2019 , 2018 ; Schumacher et al., 2016 ), subjective food val-

es were unassessed, making the results difficult to interpret beyond
onferring the applicability of AAT. Others investigated obese individu-
ls (e.g., Mehl et al., 2019 , 2018 ) that are shown to cognitively pro-
ess food stimuli differently compared to normal-weight participants
 Nummenmaa et al., 2012 ; Volkow et al., 2011 ). 

Our behavioral findings are in line with replicated findings in
he AAT ( Becker et al., 2015 ; Dickson et al., 2016 ; Jones et al.,
018 ; Kakoschke et al., 2017a , 2017b ; Mehl et al., 2019 , 2018 ;
chumacher et al., 2016 ) and other nonreinforced learning literature
 Aridan et al., 2019 ; Bakkour et al., 2016 , 2017 ; Botvinik-Nezer et al.,
020 ). For instance, Kakoschke et al. (2017b) found that AAT decreases
nhealthy food choices compared to cognitive-control training (where a
o-nogo task was used to increase inhibitory control for unhealthy food
ues) and the control condition. However, in their study, AAT did not
ffect food items’ implicit associations (IAT). Another form of nonrein-
orced learning is cue-approach training. In cue-approach training, tar-
eted stimuli [e.g., low-calorie food images] are consistently associated
ith a cue [e.g., a high-pitch tone], which signals that the presented item

hould be chosen [e.g., pressing a button]. Multiple studies showed cue-
pproach training boosts choices of trained items ( Aridan et al., 2019 ;
akkour et al., 2016 , 2017 ; Botvinik-Nezer et al., 2020 ), although the

ncrease in choices is not accompanied by an increase in subjective rat-
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Fig. 5. The violin diagrams of the BOLD activity of PCC faceted by (A) Calorie and (B) Session. Red dots and lines represent means and 95% CIs, calculated based 
on the standard error of the mean (SEM). All p values are Bonferroni-corrected. (C) Correlation between the BOLD activity of PCC in response to low-calorie food 
items and the acceptance rate of low-calorie food items in the food-choice task. (D) Correlation between gray matter density and BOLD activity of PCC in response 
to low-calorie food items (depicted for 29 participants in the range: 𝑄 1 − 1 . 5 ∗ 𝐼𝑄𝑅, 𝑄 3 + 1 . 5 ∗ 𝐼𝑄𝑅 . Blue lines and gray areas show the fitted curve and 95% CI, 
respectively. The presented curve is computed based on locally estimated scatterplot smoothing (LOESS). Notably, we could not assume a linear relationship between 
gray matter density (related to a three-dimensional volume) and functional activity, and therefore, we used Spearman’s rank correlation coefficient and not Pearson’s 
correlation, which assumes linearity. 
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ngs of the targeted items ( Bakkour et al., 2016 , 2017 ; Schonberg et al.,
014 ). In the cue-approach training, participants are asked to respond
ased on the presence of a cue by pressing a corresponding button
 Schonberg et al., 2014 ), whereas no active avoidance behavior is ex-
rted. Comparing the no-response to the response condition will intro-
uce, among others, motor confounds. In contrast, AAT incorporates
oth approach and avoidant motor responses and therefore is ecologi-
ally valid ( Kakoschke et al., 2017b ; Wiers et al., 2011 ) and controls for
onfounds that are pertinent to cue-approach training. 

Notably, our results showed that alterations in indifference points
ere correlated with choice shifts. When one considers that the indif-

erence points of low-calorie items are the only differentiating variable
etween the pre- and post-AAT, our suggested account becomes even
ore credible. That is, our results indicate that alteration in choices is

he consequence of the formation of novel behavioral tendencies rather
9 
han shifting values associated with the targeted items. This suggestion
s supported by findings in the cue-approach training literature that in-
icate the consciously perceivable association between specific stimuli
nd responses is crucial for the effectiveness of nonreinforced learning
 Bakkour et al., 2016 ; Schonberg et al., 2014 ). 

Secondly, our results indicated that the effects of food-related AAT
n normal-weight participants are restricted to elevating the choices of
ow-calorie items. This finding is in line with other studies; for instance,
ehl et al. (2018) , using a multi-session training design, compared

bese and normal-weight subjects. They observed that in the healthy
roup, AAT only increased the approach bias toward healthy food items;
n contrast, in the obese group, AAT only decreased the approach bias
oward unhealthy food images. Assessing the impact of other nonre-
nforced learnings, such as cue-approach training, offers a similar pat-
ern. For instance, even though cue-approach training can increase the
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requency of choosing liked items, it cannot decrease the frequency of
electing neutrally or positively-valenced items ( Bakkour et al., 2016 ;
otvinik-Nezer et al., 2020 ; Schonberg et al., 2014 ; Schonberg and
atz, 2020 ). These results can be understood if one considers that behav-

oral tendencies are one variable that affects choices and interacts with
ther factors, such as value associations. Although a short AAT session
an increase choices of approach-trained items that are appetitive or
ositively valenced, it would not decrease choices of avoid-trained im-
ges when they are appetitive or liked. It is still feasible that multiple-
ession or longitudinal AAT would negate the effects of other factors,
uch as existing values. In other words, low-calorie items are, on av-
rage, liked, and hence, approach bias is congruent with the existing
alues; therefore, AAT is effective. In contrast, high-calorie items are
ot disgusted, and therefore, avoidance bias is incongruent with exist-
ng values. This might explain why a short AAT training was ineffective
n inducing avoidance bias toward high-calorie items in our study and
thers (e.g., Mehl et al., 2018 ). The distinction between values and be-
avioral tendencies is further corroborated by the effects of evaluative
onditioning ( Levey and Martin, 1975 ), where it is repeatedly shown
hat changes in preferences are not necessarily accompanied by alter-
tions in the choice behavior ( Corneille and Stahl, 2019 ; Hofmann et al.,
010 ; Hutter and Rothermund, 2020 ). 

By assessing participants’ breakfast choices, we investigated the
ranslational effects of AAT on real-life food choices. Our results showed
hat participants’ breakfast choices are modulated by AAT depending
n the calorie content of food items, highlighting a numerical increase
n low-calorie and decrease in high-calorie choices in the post- com-
ared to the pre-test. Considering these results, one might infer the
ranslational effects of AAT on real-life decisions. However, the results
f previous studies investigating AAT effects on real-life food choices
re mixed, as some show that AAT can significantly affect real-life
hoices ( Schumacher et al., 2016 ), but others failed to find these effects
 Becker et al., 2015 ; Dickson et al., 2016 ). Considering the mixed find-
ngs by other groups and our marginally significant results, one should
autiously interpret these results before future studies with larger sam-
les investigate the reliability and stability of these effects. 

Our results also indicated that low-calorie food items were pre-
erred before AAT to high-calorie food items. This finding is in accor-
ance with other studies with mixed-gender and multinational sam-
les ( Blechert et al., 2014 ; Zahedi et al., 2022 ). The reason for this
nitial difference, however, might be related to a multitude of factors
 Scaglioni et al., 2018 ), the discussion of which is outside the scope of
he current study. 

Our fMRI results not only corroborate the behavioral modification
ccount but also provide a new framework for understanding previous
MRI results. Considering that in our results, there is a correlation be-
ween acceptance rates of low-calorie images and the activity of PCC,
ne can suggest PCC as the neural hub that integrates behavioral ten-
encies during decision-making. This proposition is entirely in line with
alue-based decision-making literature, where it is shown that PCC ac-
ivity is especially crucial in tasks that measure choices ( Bartra et al.,
013 ; Kable and Glimcher, 2007 , 2009 ; Paulus and Frank, 2003 ) but
CC might not be engaged in tasks that measure values and preferences
uch as willingness to pay ( Plassmann et al., 2007 , 2010 ). Notably, the
bserved results highlight the significance of PCC activity in behavioral
odifications, as a similar neural pattern can be observed in other non-

einforced learning procedures. The increase in the frequency of choos-
ng an item is correlated with the increase in the activation of poste-
ior parietal areas, including PCC and precuneus ( Cousijn et al., 2012 ;
oigt et al., 2019 ; Zhou and Freedman, 2019 ), and frontal areas such
s ACC ( Mehl et al., 2019 ), which proceeds changes in the values of
he targeted item ( Voigt et al., 2019 ). Even though value-encoding ar-
as, such as vmPFC and orbitofrontal cortices ( Baumgartner et al., 2011 ;
mith et al., 2014 , 2010 ), and cognitive-control-related areas, such as
lPFC ( Wang et al., 2020 ; Yan et al., 2016 ), might be engaged in later
tages ( Cousijn et al., 2012 ; Wiers et al., 2013 ), their role might not
10 
e as essential in initial nonreinforced learning ( Aridan et al., 2019 ;
ehl et al., 2019 ). 

If PCC integrates behavioral tendencies, one should expect that PCC
ould be involved in guiding attention and initiating behavior regard-

ess of external rewards and punishments. Remarkably, PCC, a central
ode in the default mode network, has been discussed as the neural hub
hat detects changes in the environment and motivates shifts in behav-
or ( Pearson et al., 2011 ). Further, Leech and Sharp (2014) argued that
CC plays a vital role in directing the focus of attention and supports
nternally-directed cognition. 

Our VBM results show that PCC gray matter density predicts PCC
OLD activity changes. This finding may explain individual differences

n responsiveness to behavioral modification training. In other words,
articipants who rely more heavily on behavioral tendencies in their
aily life potentially have higher PCC gray matter density and are also
ore susceptible to AAT. This suggestion aligns with the idea that ad-
iction might alter the importance and organization of neural activity
n different brain areas ( Volkow et al., 2010 ). However, this speculation
hould be treated cautiously before future studies replicate these results.

A limitation of the current study was that the utilized version
f AAT did not have a condition where stimuli would be associated
ith approach and avoidance with 50% probability ( Dickson et al.,
016 ; Kakoschke et al., 2017a ). However, three points should be noted
hen considering the impacts of this limitation. First, the stimulus set
 Blechert et al., 2014 ) used in the current study (i.e., low- versus high-
alorie food items) did not allow for forming a readily distinguishable
hird category. This issue is also noticeable in the other comparable stud-
es that used similar stimulus sets (e.g., Mehl et al., 2019 ). Hence, as
ealistic food stimuli were crucial for generalizing the observed effects
o real-life choices, this limitation was partly forced upon the current
tudy. Second, the observed behavioral effects were restricted to the ap-
roach condition, probably showing that the obtained effects cannot be
imply related to demand characteristics. And finally, the correlation
etween behavioral and neuronal results shows that our interpretation
egarding PCC is reasonably independent of the AAT conditions. 

Further, the current study only used female participants due to gen-
er differences in metabolism ( Dionne et al., 1999 ), eating behavior
 Manippa et al., 2017 ; Rolls et al., 1991 ; Wardle et al., 2004 ), and neu-
al responses to food cues ( Manippa et al., 2017 ). Specifically, we were
nterested in whether the behavioral modification training is effective
n female participants, who were shown to apply more cognitive control
hen choosing food ( Wardle et al., 2004 ). However, the current results
eed to be replicated across genders to increase their generalizability. 

In the current study, we used a binary choice task for measuring
articipants’ choice behavior. Alternatively, one could use a between-
wo-item choice task (i.e., a low- versus high-calorie image) for measur-
ng participants’ responses. However, using between-two-item choices
ight lead to an outcome that is not readily interpretable. In other
ords, if participants choose low-calorie more frequently than high-

alorie items after AAT, it might be because they are less willing to
hoose high-calorie items or, alternatively, more willing to choose low-
alorie ones. Nevertheless, in the case that one uses such a paradigm,
e expected to see increased low-calorie food choices after AAT and
 simultaneous decrease in high-calorie choices. The reason for this
peculation is that in our study, low-calorie items were, on average,
ore appealing than high-calorie ones, both in the pre- and post-AAT

essions, and further, AAT induced a behavioral tendency toward low-
alorie items. Therefore, after AAT, all the known factors (i.e., values
nd behavioral tendencies) congruently favor low-calorie choices over
igh-calorie items. 

onclusion 

In the current study, we challenged the assumption that value mod-
fication is necessary for altering choice behavior by investigating the
ffectiveness of AAT in facilitating choices of low-calorie food images.
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n line with other studies ( Kakoschke et al., 2017b ; Mehl et al., 2018 ),
ur results showed that AAT can effectively alter participants’ choice be-
avior. The observed behavioral modulations were related to alterations
n indifference points and not subjective ratings, suggesting behavioral
endencies affected choice behavior while bypassing existing values. Our
MRI data revealed that the acceptance rates of low-calorie food items
ere correlated with PCC activity, which suggests PCC is the neural
ub that integrates behavioral tendencies in decision-making processes.
inally, a correlation between BOLD activity changes and PCC gray mat-
er density suggested a possible anatomical predisposition to behavioral
odifications. Significantly, the current study indicates the possibility

f affecting choice behavior regardless of value modification. This find-
ng calls for a revision of existing frameworks used for understanding
onreinforced learning and value-based decision-making. Finally, our
esults offer a viable approach for improving health-related choices re-
ardless of associated values, which is of great advantage for optimiz-
ng health-related decisions, such as food choices ( Bongers et al., 2015 ;
uerrieri et al., 2008 ; Nederkoorn et al., 2009 , 2010 ). 
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