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We develop and analyze a method for simulating quantum circuits on classical computers by
representing quantum states as rooted tree tensor networks. Our algorithm first determines a
suitable, fixed tree structure adapted to the expected entanglement generated by the quantum
circuit. The gates are sequentially applied to the tree by absorbing single-qubit gates into leaf
nodes, and splitting two-qubit gates via singular value decomposition and threading the resulting
virtual bond through the tree. We theoretically analyze the applicability of the method as well
as its computational cost and memory requirements, and identify advantageous scenarios in terms
of required bond dimensions as compared to a matrix product state representation. The study is
complemented by numerical experiments for different quantum circuit layouts up to 37 qubits.

I. INTRODUCTION

Tensor networks provide a well-established framework
and method for analyzing and simulating strongly cor-
related quantum systems [1–3]. Recently, these meth-
ods have been adapted to circuit-based (digital) quan-
tum computers, either by representing the statevector as
a matrix product state (MPS) [4], or interpreting the
overall quantum circuit as a tensor network. Such net-
works are contracted with the aid of heuristics to obtain
a good contraction order and “Feynman-simulator”-type
delayed contractions [5–10].

In this work, we aim to combine the advantages of
both approaches by representing statevectors as tree ten-
sor networks (TTNs). The properties and capabilities of
such tree-type tensor networks have been studied in de-
tail in the past. In particular, the “multi-scale entangle-
ment renormalization ansatz” (MERA) [11, 12] can effi-
ciently describe critical ground states of one-dimensional
systems. The use of TTNs to simulate strongly corre-
lated chemistry systems [13–16], two-dimensional quan-
tum systems [17], and tensor differential equations [18]
has been investigated, but a dedicated study and anal-
ysis in the domain of digital quantum computers is still
missing. A similar study on hybrid tensor networks (in-
cluding classical and quantum tensors) is done in [19]
which includes some aspects for hybrid TTNs. Ref. [20]
studies the entanglement properties for Shor’s algorithm
on tree tensor networks specifically.

In general, TTNs share important advantages with
MPSs [21]: TTNs are efficiently contractable, incurring
only polynomial cost on a classical computer for tensor
nodes with bounded dimensions. As a consequence, one
can extract many quantities of physical interest from a
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Figure 1. Principal algorithmic paradigm in this work: an
initial N -qubit quantum state |ψ〉 represented as tree tensor
network, to which the gates of a quantum circuit are applied
while preserving the tree structure.

quantum state in a TTN representation, for example,
two-point (static) correlation functions, and one can draw
unbiased (Born) probability samples from them [22]. We
note, however, that the distance between any pair of leaf
nodes in a TTN, defined as the number of nodes tra-
versed along the shortest path between the two chosen
nodes, scales as O(log(N)), where N denotes the over-
all number of lattice sites or qubits in the circuit. This
compares favorably to the MPS representation, where
the distance between leaf nodes scales as O(N). Since
connected correlation functions (i.e., covariances) typi-
cally decay exponentially with path length within a ten-
sor network, TTNs can capture longer-range correlations
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Figure 2. Orthonormalization property of a tree node; the
tree tensor network is of canonical form if all nodes in the
tree have this property.

as compared to MPS [13]. This property becomes rele-
vant for quantum circuits with multi-qubit gates acting
on “distant” qubits, or, in other words, in cases where
one cannot devise a canonical linear ordering of qubits
in which gates act solely in local neighborhoods. More
concretely, we will identify scenarios where a tree rep-
resentation provides a genuine advantage over an MPS
in terms of the scaling of required internal bond dimen-
sions, see Sect. III D below. In terms of tensor networks,
reduced bond dimensions directly translate to improved
contraction and simulation efficiency.

The method studied in this work can be classified as a
statevector-based quantum circuit simulator and is sum-
marized in Fig. 1: a quantum state |ψ〉 (typically starting

as a product state, e.g., |0〉⊗n) is represented as a TTN
with an advantageous tree structure. The gates of the
circuit are applied to |ψ〉 sequentially by absorbing them
into the tree, as described in Sect. II B.

Definitions and conventions. We consider qubits
throughout to simplify the exposition, but the methods
presented here are generalizable to “qudits”. We also
assume that the circuit contains solely single- and two-
qubit gates, with the remark that our algorithm can be
extended to handle higher-order gates as well.

We say that a tree tensor network is of canonical form
(i.e., orthonormalized) if each node in the tree obeys the
condition in Fig. 2, i.e., contracting a node tensor with
its complex conjugate along its downstream legs gives the
identity map. Regarding the root node of the tree, one
can formally attach a dummy upward leg with dimen-
sion 1 to enforce this requirement. With this property, a
quantum state represented as a TTN is then normalized.

II. ALGORITHM

Our principal algorithm takes a quantum circuit de-
scription and a specification of the initial quantum state
as inputs. The algorithm consists of two phases, as illus-
trated in Fig. 1:

1. Expressing the initial quantum state as a TTN by
mapping logical qubits to leaf nodes and identifying
an advantageous rooted tree graph (i.e., connectiv-
ity of nodes) based on the given circuit.

2. Sequentially applying quantum circuit gates to the
tree while preserving its graph structure, inter-
leaved with re-orthonormalization of the tree tensor
network.

To ensure that the tree tensor network can be simu-
lated on a classical computer, we require that each edge
dimension is bounded by a chosen constant Dmax. Natu-
rally, this restricts the set of quantum circuits that can be
simulated by our approach. We will study how the Dmax

restriction is reflected in the feasible pattern of two-qubit
gates in more detail in Sect. III, and define the algorithm
to determine a tree structure in the upcoming section.

A. Tree structure search

In the first phase, the initial quantum state is con-
verted to a TTN. Each logical qubit is mapped to a leaf
node, which we group into subtrees, generating the tree-
like structure.

The structure search is based on the insight that the
maximal required dimension of internal edges can be
upper-bounded a priori based on the to-be applied circuit
gates. Single-qubit gates can be applied without increas-
ing edge dimensions, hence, we focus solely on the effect
of two-qubit gates.

Similar to the case in an MPS, the application of a two-
qubit gate increases the edge dimension between the cor-
responding leaf nodes and each intermediate node along
the path that connects them, which we refer to as thread-
ing the bond wire through the TTN. As visualized in
Fig. 3, edge dimensions are increased by a factor of k,
which can be determined by a singular value decomposi-
tion (SVD). For the CNOT gate, k = 2, while in general
k = 4, as in the case of the fSIM gate [23].

Thus, selecting subtrees of qubits that are highly
entangled by the simulated circuit reduces the num-
ber of two-qubit gates spanning different subtrees, ef-
fectively increasing admissible circuit depth under the
Dmax restriction [24]. Additionally, threading connec-
tions through the tree incurs the overhead of renormal-
ization all nodes on the connecting path.

We identify such subtrees of qubits via the custom sim-
ilarity function

sqc(qi, qj) = |G(qi) ∩G(qj)|+
1

|G(qi)|+ |G(qj)|
(1)

for i 6= j and |G(qi)| = ](2-qubit gates) on qubit qi,
where the first summand ranks qubit pairs with their en-
tanglement and the second summand acts as a tie breaker
as it is < 1. A generic clustering algorithm uses sqc to
find similar sized cluster over all qubits. For simplicity,
subtrees are constructed bottom-up for each identified
cluster, putting all qubit pairs with the same similarity
value under a common node. Instead one could recur-
sively cluster all subtrees to a certain level and fall back
to the bottom-up construction as a basis case.
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Figure 3. Splitting of a two-qubit gate via SVD. The diagonal
matrix S contains the singular values. For the last step, one
may absorb

√
S both into U and V . k denotes the number

of non-zero singular values, and the factor 1/
√
k serves as

normalization when incorporating the connecting bond into
the tree tensor network (see Fig. 4 below).

One insight from early prototypes is the advantage of
similar-sized subtrees under the root node, compared to
skewed structures. Favoring this pattern leads to similar
subtree heights, and, consequently, ensures that the final
tree structure is (almost) balanced. Thus, this is enforced
in Algorithm 1, which shows the pseudocode for the first
phase of our algorithm.

B. Gate application procedure

Once the structure has been fixed, the tree tensor net-
work has to represent the initial quantum state. Typi-
cally this is a computational basis state, e.g., all qubits
starting from |0〉. For a computational basis state, one
can set the dimensions of all internal edges to 1 and ini-
tialize the internal tensors with the single entry 1, while
the two entries of a leaf tensor (of dimension 2×1) are the
basis state entries of the corresponding qubit. In other
words, the initial tree can be regarded as a scaffolding to
which gates are applied.

Fig. 4 uses tensor diagram notation to illustrate in-
corporating (or “absorbing”) a two-qubit gate into the
tree, utilizing the decomposition step detailed in Fig. 3.
After decomposing the gate, the connecting bond wire
(red) is threaded through the tree structure. The items
enclosed in dotted lines define the updated tensors. Note
that the new non-leaf tensors (P ′, Q′, R′ in the figure)
essentially result from an outer product with the identity
matrix, which can be recorded symbolically at first. In
other words, one may “lazy-update” these tensors. The
gate application procedure also preserves the orthonor-
mality of non-leaf nodes – this point is illustrated in

Algorithm 1: Tree structure search

1 Function find tree structure(qc, c):
Data: qc = Quantum Circuit, c

= Number of clusters
Result: Tree structure

2 similarity ← similarity matrix(qc.gates) // sqc
3 cluster labels ← cluster(similarity, c)

// any clustering, e.g., SpectralClustering

4 cluster roots ← ∅
5 foreach label in cluster labels do
6 cluster roots ← cluster roots ∪

create subtree(qc(label))

7 end
/* Node(children) creates a new subtree and

builds the tree bottom up. */

8 return Node(cluster roots)

9 Function create subtree(qubits):
Data: qubits = Qubits
Result: Cluster

10 seen ← ∅
11 children ← ∅
12 pairs ← sort(Pair(qubits), most similar)
13 sim ← similarity(pairs[0][0], pairs[0][1])

// similarity is based on Eq. (1)
14 foreach q0, q1 in pairs do
15 if q0 /∈ seen then
16 seen ← seen ∪ {q0}
17 children ← children ∪ {q0}
18 if q1 /∈ seen then
19 seen ← seen ∪ {q1}
20 children ← children ∪ {q1}
21 if sim > similarity(q0, q1) then
22 children ← {Node(children)}
23 sim ← similarity(q0, q1)

24 end
25 return Node(children)

Fig. 5. Nevertheless, to return to canonical form, a re-
orthonormalization sweep through the tree is necessary
since the leaf nodes are no longer orthonormal.

Re-orthonormalization proceeds from the leaf nodes
upwards through the tree, using QR-decompositions or
SVDs, as shown in Fig. 6. By using “economical” SVDs
(explained later), the edge dimensions can only decrease
or remain the same.

A variant of our algorithm is an approximation of the
true output quantum state by retaining only the leading
Dmax singular values during the SVD-orthonormalization
procedure.

III. TREE TENSOR NETWORK CAPABILITY
AND ALGORITHMIC ANALYSIS

In this section, we analyze the algorithmic complexity
and identify the required properties of the quantum cir-
cuit such that it can still be simulated efficiently using
our approach. For specificity, our analysis refers to m-
ary trees (see below), but note that the tree layout found
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Figure 4. Applying a two-qubit gate to a quantum state rep-
resented as tree tensor network, preserving the tree structure
and orthonormalization of the non-leaf nodes. The dashed
circles and rectangles define the updated tensors by the en-
closed items.

by the tree structure search might result in more general
architectures. These are mostly explored via numerical
experiments in Sect. IV.
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Figure 5. The canonical orthonormalization of a node tensor
(see Fig. 2) is preserved when updating internal nodes of the
tree during gate application (Fig. 4).
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Figure 6. Orthonormalization of a node A in the tree via
SVD: the A tensor is replaced by the isometry U from the
SVD, and the diagonal matrix of singular values as well as
V † are absorbed in the parent tensor P .

A. Overall architecture and assumptions

We impose the restriction that each edge dimension in
the tree (i.e., dimension of any tensor leg) is bounded by
a given number Dmax. To simplify the analysis, let us
assume a perfect m-ary tree, i.e., each non-leaf node has
m children, and that the tree is balanced. For example,
a binary tree corresponds to m = 2. But note that the
algorithm works for general rooted trees as well. Dmax

should be chosen such that storing and working with such
tensors is still possible given the available computational
resources, memory, and hardware architecture.

For the following, we first recall that an “economical”
singular value decomposition of a matrix A ∈ Cp×q is
given by A = USV †, with isometries U ∈ Cp×k and
V ∈ Cq×k where k = min(p, q), and a diagonal ma-
trix S of singular values σ1 ≥ · · · ≥ σk ≥ 0. In the
context of Fig. 6, p is the product of the dimensions
of the downward-pointing child connections of A. The
term child connection is used to describe an edge be-
tween nodes from level ` to ` − 1. Assuming that these
are all equal to some integer D with D ≤ Dmax, p = Dm.
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Figure 7. Maximally required edge dimensions up to level
3 for a binary tree, see Eq. (2). Assuming Dmax = 16, an
arbitrary sequence of gates acting on the highlighted subtrees
separately is feasible, while the number of two-qubit gates
targeting one qubit from either subtree is restricted.

After the update, the connecting edge between A and P
has dimension k ≤ p = Dm. After an orthonormaliza-
tion sweep through the tree starting from the leaf nodes,
the dimensions of the child connections at level ` ≥ 1 are
thus bounded by

Dchild,` ≤ 2(m
`−1), (2)

as illustrated in Fig. 7. We count levels starting from 0
at the leaf nodes. The base 2 in Eq. (2) stems from the
dimension of a single qubit at the lowest level.

We define `cluster as the largest integer such that

2(m
`cluster−1) ≤ Dmax. (3)

According to Eq. (2), the edge dimensions will never ex-
ceed Dmax up to level `cluster in the tree. This implies
that any gate sequence within a subtree of height `cluster
is feasible. In the following, we denote these subtrees as
clusters. A cluster thus contains m`cluster qubits (assum-
ing uniform height). From another viewpoint, we can
exactly represent any quantum state vector of the qubits
in a cluster if it is unentangled with outside qubits.

Let us now consider the connecting edges above `cluster
in the tree: we denote the bond dimension of a two-qubit
gate G by kG, see Fig. 3. We say that a gate crosses an
edge e if the gate bond threaded through the tree tra-
verses e; for example, in Fig. 4 the red curve crosses the
edge between nodes P and R. The restriction imposed
by Dmax is thus certainly satisfied if∏

G crossing e

kG ≤ Dmax (4)

for any edge e in the tree between nodes at or above
level `cluster. In other words, the left term in Eq. (4) is
an upper bound on the maximal entanglement accept-
ably generated by the gates crossing e. We used Eq. (4)

as motivation for the similarity function Eq. (1). How-
ever, note that Eq. (4) does not consider possible simpli-
fications in the contracted tensor structure, such as the
(contrived) scenario when an arbitrary two-qubit gate G
is immediately followed by G†, which does not increase
entanglement at all. Thus, Eq. (4) is a “worst case”
bound on the applicable gates.

The level of the root node, `root, denominates the over-
all height of the tree. Thus, it can represent a quantum
state with up to N = m`root qubits.

B. Computational cost and complexity analysis

1. Memory requirements

The number of nodes of the tree is less or equal to the
node count of a perfect m-ary tree:

](nodes) ≤
`root∑
j=0

mj =
m`root+1 − 1

m− 1
. (5)

Each tensor has at most Dm+1
max entries: m connections

to its children and one connection to its parent. Thus
an upper-bound on the overall to-be stored (complex)
numbers for the tree is

](entries)tree ≤ ](nodes) ·Dm+1
max ≤

mN − 1

m− 1
Dm+1

max . (6)

Note that this bound is not reached because the root can
only have up to Dm

max entries, and the leaf nodes have no
children. In summary, ](entries)tree grows linearly with
qubit count N (for fixed m and Dmax).

2. Gate application and orthonormalization

The orthonormalization sweep through the tree is the
most computationally expensive step in the gate ap-
plication procedure. In the worst case, the bond wire
threaded through the tree visits all levels up to the root
node. Thus 2`root tensors along the path need to be re-
orthonormalized. Recalling that the SVD decomposition
of a p × q matrix costs O(min(pq2, p2q)) floating-point
operations, we arrive at the overall cost

](FLOPS)gate ≤ O
(
`root ·Dm+2

max

)
= O

(
logm(N) ·Dm+2

max

)
(7)

for an orthonormalization sweep after applying a gate.

C. Admissible gate patterns

Finally, we identify admissible gate patterns such that
Eq. (4) certainly holds. To simplify the analysis, we do
not take the option for truncation (omitting small singu-
lar values during orthonormalization) into account here,
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which could facilitate the application of additional gates
while respecting the Dmax restriction. Also, for simplic-
ity we throughout set kG = 4, the largest possible bond
dimension of a two-qubit gate.

As described above, applying gates on qubits within
the same cluster is unrestrained, so we only need to con-
sider cases where the two qubits lie within different clus-
ters.

Solving Eq. (4) for the number of gates crossing an
edge e gives

](gates crossing e) ≤ log4(Dmax) =
1

2
log2(Dmax). (8)

If the bond wire of a gate traverses a node above level
`cluster, it multiplies the dimensions of two of its legs by
the factor 4 (without truncation), i.e., a factor of 16 more
entries is now required for this node. This gives an upper
bound on the number of gates with bond wires crossing
a given node A:

](gates crossing A) ≤ 1

4
log2(Dm+1

max ) =
m+ 1

4
log2(Dmax).

(9)
Fig. 8 shows admissible scenarios for m = 3 and Dmax =
16 and Dmax = 64, respectively.

(a) m = 3, Dmax = 16 (b) m = 3, Dmax = 64

Figure 8. Examples of admissible threading of bond wires
through a node with m = 3 children, such that the dimension
of each edge remains bounded by Dmax. The subtrees can be
connected pairwise by a gate, as well as upstream with other
(more distant) qubits.

This pattern can be applied recursively to construct a
tree. Fig. 9 shows examples for the corresponding qubit
connectivity and nested triangles defining the nodes on
higher levels of the tree. For m = 3 and Dmax = 16, 64,
one obtains `cluster = 2, such that each cluster contains
nine qubits. In the scenario of Fig. 9a, the inter-cluster
bonds form a linear path visiting all clusters sequentially,
whereas this is not the case in Fig. 9b.

D. Comparison with matrix product states

In this section, we argue that the tree representation
can provide a genuine asymptotic advantage compared to

(a) m = 3, Dmax = 16

(b) m = 3, Dmax = 64

Figure 9. Top-down view of an admissible quantum gate pat-
tern such that an perfect 3-ary tree representation of the out-
put quantum state is feasible. The circles denote physical
qubits, corresponding to leaf nodes of the tree, and the thick
lines two-qubit gates (ordering in time not relevant). The
nested triangles indicate a partitioning into subtrees, using
nodes of the form shown in Fig. 8. An arbitrary number of
quantum gates can act within the smallest triangles (clusters
with 9 qubits), corresponding to subtrees at level `cluster = 2.

an MPS: for certain circuits, the required virtual bond di-
mension of an MPS will diverge as the number of qubits
N →∞, while the dimensions of a TTN remain bounded.
To explain the argument, consider the connectivity pat-
tern in Fig. 9b. First, note that an MPS imposes a linear
ordering of the qubits, and that a two-qubit gate acting
on qubits i and k (i < k) increases the virtual bonds of
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Figure 10. Pairwise connections between three qubits (or
sites) require a threading of one connection through an in-
termediate tensor in a MPS representation.

all intermediate MPS tensors (sites j with i < j < k).
Fig. 10 provides a simplified illustration of this point: the
bond connecting 1 with 3 needs to be threaded through
2 in a MPS representation. For the connectivity pattern
in Fig. 9b, and given an arbitrary ordering of the qubits,
there exists a qubit playing the role of site 2 at each level
within every triangle. Since this observation can be ap-
plied recursively to all levels, at least one of the virtual
bond dimensions grows as 4`, with ` the number of lev-
els. In contrast, using the TTN approach, a uniformly
bounded bond dimension suffices.

IV. NUMERICAL EXPERIMENTS

To complement the theoretical analysis in Sect. III,
we run and analyze numerical quantum circuit simula-
tions based on the tree representation for the statevec-
tor, and compare them with a basic MPS-based sim-
ulator. For our study, one-qubit gates are not con-
sidered as they do not impact the dimensionality, and
the bond dimension of each gate is assumed to be
kG = 4 unless stated otherwise. Our implementa-
tion is available at https://github.com/Gistbatch/
tree-tensor-network-simulator.

All experiments are performed on a CPU (AMD Ryzen
7 3700) with 32 GB of RAM. We explored both SVDs and
QR decompositions for orthonormalization procedures,
with comparable performance; the shown data uses SVDs
throughout. To test our code, we simulate a locally in-
teracting circuit on an n× n lattice (as in Fig. 11) with
a depth of eight, based on Google Sycamore experiment
[23]. This circuit will be referred to as a lattice circuit.
We also design a tree-like circuit (as in Fig. 12) with a
depth of six, such that the output state perfectly matches
the tree layout, in order to showcase the potential of our
simulator.

We compared the running times of the MPS and TTN
simulators to validate of our idea. Correctness is con-
firmed by contracting the networks to the full statevector
and comparing with a traditional statevector simulator.

One takeaway from this initial trial is the impact of the
relation between the number of clusters and the number
of leaves in a cluster. Too many clusters introduce over-
head in intermediate nodes which have to be normalized
each time a gate is applied. Only a few but bigger clusters
require too much calculation on the individual normal-
ization. For different purposes, these two aspects have to

↓

Figure 11. 4 × 4-qubit lattice with a nearest neighbor gate
pattern, and corresponding tree architecture for representing
the output quantum state.

be fine-tuned to get the best result. Also, compared to
applying gates, the structure search has no real impact
on the performance.

A. Circuits

For our purposes, quantum circuits can be divided into
two different categories, based on how well they can be
clustered into a tree layout. Some circuits are not suit-
able due to their connectivity pattern, for example the
quantum Fourier transform with all-to-all connectivity
or circuits with tight nearest-neighbor connectivity. This
category is represented by the lattice circuit in the simu-
lations. Fig. 11 shows the resulting tree for a 4× 4 qubit
lattice and gate pattern based on the Google Sycamore
experiment [23] for randomized circuits. They specify a
pattern of nearest neighbor gate activations alternating
on each row and column, for an exact specification re-
fer to [23]. All gates are chosen randomly from a set of
predefined gates.

In some circuits, the output state almost perfectly
matches the tree layout. The tree-like circuit showcases
the potential of our simulator without depending on the
recursive nature. A pattern is created from a highly en-
tangled cluster with four qubits, which is repeated any
number of times, similar to the example in Fig. 9. Gates
crossing cluster boundaries are included, but kept under
the Dmax threshold by setting kG = 2, only connecting
to one central location. Fig. 12 shows an instance with
four clusters and 17 qubits, derived from the given tree.

B. Experiments and results

In this section, we discuss the experiments and results
we achieve by running them. We also provide a rationale
for why approximation techniques (based on truncating
singular values) are not useful.

https://github.com/Gistbatch/tree-tensor-network-simulator
https://github.com/Gistbatch/tree-tensor-network-simulator
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Figure 12. Well-structured circuit pattern resulting from a
clusterable tree. The highlighted subtree contains all connec-
tions crossing boundaries.

1. Wall-clock timing

The experiment is conducted for the tree-like circuit
and scaled up to a maximum of 37 qubits which just fits
into 256 GB of swap space. We simply measure the wall-
clock time of simulating the complete circuit. The results
from this experiment, shown in Fig. 13, indicate that the
TTN outperforms the MPS. The memory requirements
described in Sec. III B 1 can be fulfilled for certain tree
structures. For some cluster sizes, the condition from
Eq. (4) holds, which results in a decrease in internal bond
dimensions.

One unexpected outcome is the performance of TTNs
on the lattice circuits. In a further trial on a 5× 5 lattice
the MPS fails to normalize some nodes. The Fortran
BLAS implementation which we use for SVD and QR-
decomposition does not converge due to the high internal
dimensions. Fig. 14 shows the results up to the point of
failure. In comparison, the TTN delivers a result in a
reasonable time. A possible explanation for this could
be the shorter path distance between some leaves, which
means a fewer number of normalizations.

2. Scaling for large number of qubits

To circumvent numerical issues, we also simulate the
gate application and orthonormalization procedure in an
additional experiment. These “dry runs” allow for calcu-
lating the internal bond dimensions without performing
the actual tensor operations. This enables reasoning for

22 24 26 28 30 32 34 36
Qubits

10 1

100

101

102

t a
pp

ly
[s

]

TTN MPS

Figure 13. Wall-clock time of applying gates and re-
orthonormalization, comparing a MPS with a TTN represen-
tation of the quantum state for the tree-like circuit.

0 10 20 30 40 50 60 70 80
(two qubit gates)

10 3

10 2

10 1

100

101

102

103

104
t a

pp
ly

[s
]

TTN MPS

Figure 14. Accumulated wall-clock time of applying gates and
re-orthonormalization, on the lattice circuit (for 25 qubits).
For gate 57 the MPS fails to normalize.

qubit numbers above the classically possible threshold.
For the comparison, we measure two aspects. Firstly,
the time of the circuit calculation which includes finding
the tree structure and applying the gates with a renor-
malization sweep afterward. Secondly, two metrics for
bond dimensions are considered: the maximum internal
bond dimension Dmax = maxT∈TN maxi(dimi(T )), and
as measure of the memory requirements the overall num-
ber of entries, i.e., the sum over all internal tensor sizes:
M =

∑
T∈TN

∏
i dimi(T ). In this notation TN refers to

either the MPS or the TTN. We also used different initial-
ization procedures for individual clusters not mentioned
here. These variations represent restrictions imposed on
the trees.
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Figure 15. Results of the dry runs with different settings for
cluster generation compared to the MPS.

The dry run experiment provides insight into the scal-
ability of the TTN approach. On circuits with a large
number of qubits, MPS and TTN scale similarly in re-
gards to M . Fig. 15 shows the results for sizes up to 100
qubits. By construction, the circuit is shallow to conform
with Eq. (4). Most advantages can only be achieved if the
cluster boundaries are not crossed which will inevitably
happen for deep circuits. In the lattice circuit, the num-
ber of connections already exceeds the threshold and the
performance deteriorates.

Another aspect that arises from the results is the ver-
satility of the approach. The creation and structure of
the clusters can be tuned to fit different metrics. This
can also be extended to include hardware specifications
if necessary.

3. Effect of approximations

Similar to [4], we conduct numerical studies where we
truncate some of the bonds at levels > `cluster via SVD.
The difference between the perfect state and the noisy
state is measured by the overlap error

Eoverlap = 1− 〈ψtree|ψexact〉 (10)

Unfortunately, the error rate is too high to be usable
in our simulation. In our truncation scheme, this can be
explained by two factors:

1. The relative size of the singular values.

2. The number of necessary truncations.

The first aspect is mainly caused by the chosen cluster
size. Smaller clusters perform better, but on smaller ten-
sors truncating even a small number of singular values
introduces significant errors. The second aspect arises
from the normalization procedure which requires renor-
malization after each gate is applied. Once a given Dmax

is reached, each additional gate will need truncation to
keep the dimensionality stable. Since we cannot avoid ei-
ther of the two scenarios, we found the resulting error to
be unacceptably large. It is open to see if other schemes
might be more successful.

V. CONCLUSIONS AND OUTLOOK

In this work, we introduce a novel method to per-
form circuit simulation that exploits circuit structure us-
ing a TTN representation, which can be handled effi-
ciently on a classical computer. A method to generate
an advantageous tree structure for the initial quantum
state which restricts bond dimension growth during cir-
cuit simulation is presented. Numerical simulations were
run, demonstrating an advantage in overall simulation
time (wall clock time) between a naive MPS formulation
and the presented method for specific circuits. Addi-
tionally, a specific circuit layout is presented in which
MPSs would see exponential bond dimension growth,
while states in the TTN representation would retain a
uniformly bounded bond dimension.

A practical use case for the introduced method could
be the Quantum Approximate Optimization Algorithm
(QAOA), a method to solve combinatorial optimization
problems [25]. The gate pattern required to implement
the problem Hamiltonian is usually irregular and can ex-
hibit properties fitting for the TTNs approach, as layers
in the circuit are repeated a number of times. This prop-
erty is reflected in the QAOA classical optimization ex-
ample of Max-Cut, where one could translate the desired
tree structure to a connectivity graph.

Another instance where TTNs might be useful is in
entangled ancilla protocols as in [26]. Depending on the
construction, multiple ancillae are entangled with a low
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number of gates and then only connected to their respec-
tive circuit. The problem remains intractable on classical
computers for large circuit sizes, but the simulator could
be used for confirming correctness on smaller problem
instances.

From an algorithmic perspective, several avenues of fu-
ture work still exist: the current algorithm assumes that
two-qubit gates always introduce the maximum amount
of entanglement, resulting in the restriction Eq. (4). The
introduced method would benefit from a “look-ahead” es-
timation of entanglement generated by two-qubit gates;
which is tractable if we reduce simulated circuits to more
ubiquitous gate-sets. Another promising generalization
would be the dynamically adapting the tree layout, i.e.,
creating or merging subtrees and branches when applying
gates.

While not further explored in this work, an additional
advantage is the possibility of interpretable and quan-
tifiable compression by truncating the singular values of
internal bonds. Namely, the singular values characterize
the entanglement between subsystems, and thus have a
physical interpretation. On the other hand, the effects

of truncating singular values within a general tensor net-
work contraction are typically less predictable, and hence
such contractions are usually avoided.

We hope that our algorithm for the tree structure
search and theoretical analysis is applicable and insight-
ful for other use cases of TTNs as well, e.g., condensed
matter or quantum chemistry simulations.
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