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Gravitational theories invariant under transverse diffeomorphisms and Weyl transformations have
the same classical solutions as the corresponding fully diffeomorphism invariant theories. However,
they solve some of the problems related to the cosmological constant and in principle allow local
energy non-conservation. In the present work, we obtain the Noether charge formalism for these
theories. We first derive expressions for the Noether currents and charges corresponding to transverse
diffeomorphisms and Weyl transformations, showing that the latter vanish identically. We then use
these results to obtain an expression for a perturbation of a Hamiltonian corresponding to evolution
along a transverse diffeomorphism generator. From this expression, we derive the first law of black
hole mechanics, identifying the total energy, the total angular momentum, the Wald entropy, and
the contributions of the cosmological constant perturbations and energy non-conservation. Lastly,
we extend our formalism to derive the first law of causal diamonds.

I. INTRODUCTION

The Noether charge formalism for gravitational theories offers a systematic way to calculate conserved quantities
without relying on the specifics of the theory [1–5]. In its original form, this method is applicable to any local,
diffeomorphism (Diff) invariant theory of gravity. It has been used to derive the first law of black hole mechanics and
a prescription for black hole entropy (Wald entropy) [2–4], as well as to find the conserved charges corresponding to
the Bondi-Metzner-Sachs symmetry group [5].
We have recently presented an extension of the Noether charge formalism valid for Weyl transverse gravity [6]. This

theory has the same classical solutions as general relativity, but rather than being Diff invariant, its symmetries are
transverse diffeomorphisms and Weyl transformations (WTDiff). It emerged from the observation that constructing a
consistent theory of self-interacting gravitons can lead either to general relativity or Weyl transverse gravity, depending
on the choice of the symmetry group [7–9]. The interest in Weyl transverse gravity comes also from the fact that it
solves some of the problems connected with the cosmological constant in general relativity [10–12]. In particular, in
Weyl transverse gravity the vacuum energy does not gravitate, the cosmological constant appears as an integration
constant, and its value is radiatively stable [8, 9, 13].
Here, we generalise the framework we developed for Weyl transverse gravity [6] and obtain the Noether charge

formalism applicable to any local, WTDiff-invariant gravitational theory. While the literature concerned with WTDiff-
invariant gravity mostly deals with the simplest case, Weyl transverse gravity, there exists a wide class of WTDiff-
invariant gravitational theories. In fact, it can be shown that for every Diff-invariant theory there exists a WTDiff-
invariant one with the same classical solutions [14]. We review the main features of these theories in section II. Then,
in section III we derive the Noether currents and charges corresponding to the WTDiff symmetries and expressions
for the symplectic form. In section IV, we apply these general results to obtain a formulation of the first law of black
hole mechanics and an expression for Wald entropy for a general local, WTDiff-invariant gravitational theory. In
section V, we discuss the application of our formalism to causal diamonds, which highlights some differences between
WTDiff and Diff-invariant theories of gravity. Lastly, section VI sums up our findings and discusses possible future
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developments. Although the present paper is self-contained, it is closely related to the previous work of the authors
specialised to Weyl transverse gravity [6] and further builds on its results.
Unless otherwise specified, we consider an arbitrary spacetime dimension n and metric signature (−,+, ...,+). We

set G = c = ~ = kB = 1. Definitions of the curvature-related quantities follow [15].

II. WTDIFF-INVARIANT THEORIES OF GRAVITY

In this section, we review the properties of the most general local, WTDiff-invariant theories of gravity. We start
by discussing the vacuum case and then review how does WTDiff-invariant gravity couple to matter fields.

A. Vacuum WTDiff-invariant gravity

To construct a WTDiff-invariant theory of gravity we must consider a spacetime with a nondynamical background
volume n-form, ω = ω (x) dx0 ∧ dx1 ∧ ... ∧ dxn−1, where ω (x) is a strictly positive function1 [9]. Using ω, we define
an auxiliary metric

g̃µν =
(√

−g/ω
)−2/n

gµν , (1)

where g denotes the determinant of the metric. The auxiliary metric g̃µν is WTDiff invariant but not Diff invariant.
In fact, g̃µν is simply the dynamical metric, gµν , restricted to the unimodular gauge given by the condition

√−g = ω.
While one may formulate WTDiff-invariant gravity completely in the unimodular gauge and use g̃µν as the dynamical
variable, we impose no gauge restrictions and treat g̃µν as a mere notational device. Raising and lowering of indices
is always performed with the dynamical metric, gµν (with the obvious exception of g̃µν defined as an inverse of g̃µν).

An auxiliary Weyl connection Γ̃µνρ that is Levi-Civita with respect to g̃µν , i.e., Γ̃
µ
νρ = Γ̃µ(νρ) and ∇̃ρg̃µν = 0, reads

Γ̃µνρ = Γµνρ −
1

n

(

δµν δ
α
ρ + δµρ δ

α
ν − gνρg

µα
)

∂α ln

√−g

ω
. (2)

The corresponding Riemann tensor equals

R̃µνρσ =2Γ̃µν[σ,ρ] + 2Γ̃µλ[ρΓ̃
λ
σ]ν

=Rµνρσ +
2

n

(

δαν δ
µ
[ρδ

β
σ] − gµαgν[ρδ

β
σ]

)

∇α∇β ln

√−g

ω

+
2

n2

(

gαβgν[ρδ
µ
σ] − 3δαν δ

µ
[ρδ

β
σ] + 3gµαgν[ρδ

β
σ]

)

∇α ln

√−g

ω
∇β ln

√−g

ω
. (3)

These auxiliary quantities allow us to write an action for the most general vacuum, local, WTDiff-invariant theory of
gravity,

S =

∫

V

L
(

g̃µν , R̃
µ
νρσ, ∇̃α1R̃

µ
νρσ , ..., ∇̃(α1

...∇̃αp)R̃
µ
νρσ

)

ωdnx, (4)

where V denotes the spacetime region and p is a natural number. We can limit ourselves to terms with fully
symmetrised derivatives, as a general k-th Weyl covariant derivative can be rewritten as a fully symmetrised one plus
lower derivative terms involving the auxiliary Riemann tensor. By construction, S is invariant with respect to Weyl
transformations

δgµν = e2σgµν , (5)

where σ denotes an arbitrary spacetime function. The action is also invariant under transverse diffeomorphisms. To
make the transversality condition on the diffeomorphism generator ξµ Weyl invariant, we must state it with respect
to the Weyl covariant derivative,

δgµν =2∇(νξµ), (6)

∇̃µξ
µ =0 ⇐⇒ ∇µξ

µ = ξµ∂µ ln

√−g

ω
. (7)

1 In principle, it is possible to introduce dynamics for ω without spoiling the salient features of WTDiff-invariant gravity [16]. However,
such dynamics plays no role for our current purposes. Hence, we treat ω as nondynamical.
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Clearly, the WTDiff-invariant actions are not invariant under diffeomorphisms with a nonzero longitudinal component,
i.e., those with ∇̃µξ

µ 6= 0.
Varying the action (4) with respect to gµν yields the traceless vacuum equations of motion (we will use the symbol

◦ for traceless, WTDiff-invariant tensors)

16π

(√−g

ω

)
2
n δS

δgµν
= Åµν = 0. (8)

The factor (
√−g/ω)

2/n
is added to the left hand side to define the equations of motion as being Weyl invariant. For

illustration, in the case of vacuum Weyl transverse gravity, Åµν is just minus the traceless part of the WTDiff-invariant
(auxiliary) Ricci tensor. The overall sign of the equations of motion is opposite to the usual one because we vary the
action with respect to gµν rather than gµν .
The invariance of S with respect to transverse diffeomorphisms requires

0 =
δS

δgµν
∇(νξµ) =

1

16π

∫

V

(√−g

ω

)− 2
n

Åµν∇(νξµ)ωd
nx

=
1

16π

∫

V

(√−g

ω

)− 2
n

ξµ∇̃νÅ
µνωdnx, (9)

where we impose suitable boundary conditions on the metric and its derivatives to ensure that all the boundary
integrals vanish2. Since equation (9) holds for any ξµ satisfying the transversality condition, it implies

∇̃νÅ
µν = ∇̃µΦ, (10)

for some WTDiff-invariant scalar Φ (the form of Φ can be explicitly determined, up to a constant, by rewriting the
divergence of the traceless equations of motion as a gradient of a scalar). Therefore, we have on shell Φ = −Λ, where
Λ is an arbitrary integration constant. The divergence-free equations of motion then read3

Åµν − (Φ + Λ) g̃µν = 0. (11)

In the unimodular gauge,
√−g = ω, these equations reduce to the equations of motion of some Diff-invariant theory,

which has the same classical solutions [14]. We can see that Λ plays the role of the cosmological constant. Rather
than being a fixed parameter in the Lagrangian, Λ appears as an integration constant in the process of solving the
equations of motion. Hence, its value can in principle be different for each solution.

B. Coupling to matter fields

Upon introducing the vacuum WTDiff-invariant gravity, we discuss its coupling to matter fields. We first introduce
the appropriate action for minimally coupled matter fields. Then, we discuss the equations of motion and the question
of local energy-momentum conservation. Lastly, we introduce a general local, WTDiff-invariant action which allows
non-minimal coupling of matter fields to gravity.
For a matter field minimally coupled to WTDiff-invariant gravity we have the following action

Sψ =

∫

V

(√−g

ω

)2k/n

Lψωd
nx, (12)

2 We briefly explain the use of the Gauss theorem to convert an integral of a Weyl covariant divergence to a boundary integral. Consider
an integral of a Weyl covariant divergence of any Weyl invariant vector Wµ. We have

∫

V
∇̃µWµωα1...αn =

∫

V
(ω∂µW

µ +Wµ∂µω) ǫα1...αn =

∫

V
∂µ (ωWµ) ǫα1...αn ,

where ǫα1...αn denotes the n-dimensional antisymmetrisation symbol and ωα1...αn = ωǫα1...αn gives the background volume element.
Applying the Gauss theorem yields

∫

V
∂µ (ωWµ) dnx =

∫

∂V
Wµnµn

α1ωα1...αn ,

Here, nµ is a unit normal to ∂V , which transforms as n′µ = e−σnµ under Weyl transformations. If nµ corresponds to a coordinate
vector, we have

∫

∂V
Wµnµn

α1ωα1...αn =

∫

∂V

(√
−g/ω

)−1/n
Wµnµd

n−1x.

3 In Weyl transverse gravity, we have Φ = −R̃ (n− 2) /2n, and the divergence-free equations of motion are

− g̃µρg̃νσR̃
ρσ +

1

2
R̃g̃µν + Λg̃µν = 0.
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where Lψ is some function of matter variables ψ, their Weyl covariant derivatives and k contravariant metric tensors,

gµν . The factor (
√−g/ω)

2k/n
is present to compensate the behaviour of gµν under Weyl transformations and make the

action Weyl invariant (Weyl transformations by definition affect only the metric and leave ψ unchanged). If several
matter fields are present, the Lagrangian is simply a sum of several terms of the above described form (including
interaction terms).
A variation of the matter action with respect to ψ yields the matter equations of motion

Aψ = 0, (13)

where we do not specify the index structure. Varying both the gravitational and matter actions with respect to gµν
then gives us the gravitational equations of motion

Åµν = −8πT̊ µν, (14)

where

T̊ µν =

(√−g

ω

)2 k+1
n
(

T µν − 1

n
Tgµν

)

, (15)

denotes the traceless WTDiff-invariant part of the standard Hilbert energy-momentum tensor4

T µν = 2
∂Lψ
∂gµν

+ Lψg
µν , (16)

and T being its trace. For Weyl transformations of T µν we have

T ′µν = e−2(k+1)σT µν , (17)

and the gravitational equations of motion (14) are thus Weyl invariant.
The invariance of the matter action with respect to transverse diffeomorphisms implies [17]

8π∇̃ν

[

(√
−g/ω

)2k/n
T ν
µ

]

= ∇̃µJ , (18)

for some scalar function J defined up to a constant through this equation. J 6= 0 corresponds to breaking of the
local energy-momentum conservation. While the matter equations of motion (13) suffice to ensure J = 0 for many of
the often considered matter fields, the freedom to introduce J 6= 0 has been used, e.g. as a possible way to account
for cosmic acceleration [18, 19]. Therefore, in the present work, we assume the most general situation, J 6= 0, so that
the divergence-free equations of motion then include a term proportional to J

Åµν − (Φ + J + Λ) g̃µν = −8π

(√−g

ω

)2 k+1
n

T µν . (19)

In the following, we will consider a more general class of WTDiff-invariant theories. Their Lagrangian can be
any scalar built from the auxiliary metric, g̃µν , the corresponding Riemann tensor, R̃µνρσ and at most its p-th Weyl
covariant derivatives and some collection of matter fields, collectively denoted by ψ, and at most their q-th Weyl
covariant derivatives (p and q are arbitrary natural numbers). We also allow non-minimal coupling of the matter
fields to gravity. The corresponding action reads

S =

∫

Ω

L
(

g̃µν , R̃
µ
νρσ, ∇̃α1R̃

µ
νρσ, ..., ∇̃(α1

...∇̃αp)R̃
µ
νρσ, ψ, ∇̃α1ψ, ..., ∇̃(α1

...∇̃αq)ψ
)

ωdnx. (20)

In this case, we define the energy-momentum tensor as before and include all the terms coupling matter variables to
the Riemann tensor and its derivatives on the left hand side of the equations of motion. Thus, Åµν can in general
depend on ψ and its derivatives, whereas Tµν depends only on the metric and not on its derivatives.
One can show that for every local, WTDiff-invariant action which implies local energy-momentum conservation there

exists a corresponding local, Diff-invariant action which leads to the same classical gravitational dynamics (except for
the different behaviour of Λ) and vice versa [14]. In other words, we have pairs of Diff and WTDiff-invariant theories
of gravity that are mutually equivalent in the same sense as general relativity and Weyl transverse gravity are.

4 One could instead define the energy-momentum tensor with respect to the auxiliary metric [16]

T̃µν = 2
∂
[

(
√
−g/ω)2k/n Lψ

]

∂g̃µν
+

(√
−g/ω

)

2k/n
Lψ g̃µν ,

making it Weyl invariant. However, the standard definition has the advantage of involving variations with respect to the full dynamical
metric.
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III. NOETHER CHARGE FORMALISM

In this section, we develop the Noether charge formalism for any local, WTDiff-invariant theory of gravity with
matter sources (not necessarily minimally coupled). We first give a brief overview of the Noether charge formalism in
a general context. Specialising to WTDiff-invariant gravity, we derive the symplectic potential and current for general
variations of the metric and the matter fields. Then, we consider variations corresponding to local symmetries, i.e.,
Weyl transformations and transverse diffeomorphisms, and obtain expressions for the Noether currents and charges.
Lastly, we express a perturbation of a Hamiltonian corresponding to evolution along a transverse diffeomorphism
generator in terms of the Noether charge. This expression will be crucial for deriving the first law of black hole
mechanics in the next section.

A. General formalism

Before going to WTDiff-invariant gravity, we introduce the Noether charge formalism in a general setting. Consider
a manifold equipped with a volume form, ε, and a (nonunique) covariant derivative operator satisfying ∇µε = 0. On
this manifold define a Lagrangian L [φ, γ] as a local function of dynamical variables, φ, and nondynamical variables,
γ, and their finitely many covariant derivatives. Under an arbitrary variation of the dynamical variables, δ1φ, the
variation of L obeys

δ1L [φ] = Aφ [φ] δ1φ+∇µθ
µ [δ1] . (21)

Since, due to the Gauss theorem, ∇µθ
µ contributes only a boundary integral to the variation of the action, the

equations of motion read Aφ = 0. The vector θµ [δ] is known as the symplectic potential [1].
Next, we perform a second independent arbitrary variation, δ2φ. The commutator of the variations acting on the

Lagrangian yields

(δ1δ2 − δ2δ1)L [φ, γ] = δ1 (Aφ [φ]) δ2φ− δ2 (Aφ [φ]) δ1φ+∇µΩ
µ [δ1, δ2] , (22)

with

Ωµ [δ1, δ2] = δ1θ
µ [δ2]− δ2θ

µ [δ1] , (23)

being the symplectic current [1]. If we integrate Ωµ [δ1, δ2] over an initial data surface, C, we obtain the symplectic
form5

Ω [δ1, δ2] =

∫

C

Ωµ [δ1, δ2] dCµ. (24)

In the special case of a variation generated by a vector field ξµ, i.e., δ1φ = £ξφ, the Hamilton equations of motion
imply for an arbitrary variation, δ2φ = δφ, applied to the Hamiltonian Hξ corresponding to the evolution along ξµ (if
it exists),

δHξ = Ω [£ξ, δ] . (25)

If the variation we consider corresponds to a local symmetry transformation of the dynamical fields, δ̂φ, it leads

to a variation of the Lagrangian that is a total divergence, δ̂L = ∇µα
µ for some vector αµ. The Noether current

corresponding to a gauge transformation then obeys [1]

jµ
[

δ̂
]

= θµ
[

δ̂
]

− αµ
[

δ̂
]

. (26)

It is easy to see that the covariant divergence of jµ vanishes on-shell, i.e., for Aφ = 0,

∇µj
µ = ∇µθ

µ −∇µα
µ = ∇µθ

µ − δ̂L = −Aφδ̂φ. (27)

Lastly, an integral of jµ over an initial data surface yields a conserved Noether charge [1]

Q =

∫

C

jµdCµ. (28)

5 The form defined in this way is in general degenerate [1]. To construct a true symplectic form, one must restrict it from the space of
field configurations to the phase space. However, this subtlety plays no role in the following.
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B. WTDiff symplectic potential

We now apply the general formalism to the case of local, WTDiff-invariant gravitational theories, starting with
obtaining the symplectic potential. For an arbitrary variation of the Lagrangian (20), some lengthy but fairly straight-
forward manipulations lead to (we discuss the details in Appendix A)

δL =
1

16π

(√−g

ω

)− 2
n (

Åµν + 8πT̊ µν
)

δgµν +Aψδψ + ∇̃α1

[

2

(√−g

ω

)
2
n

Eµνρα1∇̃µδg̃νρ

+Kα1µνδg̃µν +

p
∑

i=2

Mα1α2...αi νρσ
µ δ∇̂(α2

...∇̃αi)R̃
µ
νρσ +

q
∑

i=2

Nα1α2...αiδ∇̃(α2
...∇̂αi)ψ

]

. (29)

The term contracted with δgµν corresponds to the gravitational equations of motion (14) and the one contracted with
ψ to the matter equations of motion (13). The tensors E νρσ

µ , Kα1µν , Mα1α2...αi νρσ
µ , and Nα1α2...αi are assumed to

have the same symmetries as the expressions they are contracted with. In particular, E νρσ
µ possesses the symmetries

of the Riemann tensor and reads

E νρσ
µ =

p
∑

i=0

(−1)
i ∇̃α1 ...∇̃αi

(

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

)

. (30)

The precise forms of Kα1µν , Mα1α2...αi νρσ
µ and Nα1α2...αi are unimportant for our purposes. It only matters that

that they are tensors constructed from g̃µν , ∇̃µ, R̃
µ
νρσ, and ψ, and the terms they are contracted with contain no

derivatives of variations.
By comparing equations (21) and (29), we can easily identify the symplectic potential for WTDiff-invariant theories

θµ [δ] =2

(√−g

ω

)
2
n

Eσνρµ∇̃σδg̃νρ +Kµνρδg̃νρ +

p
∑

i=2

Mµα2...αi νρσ
λ δ∇̃(α2

...∇̃αi)R̃
λ
νρσ

+

q
∑

i=2

Nµα2...αiδ∇̃(α2
...∇̃αi)ψ. (31)

The symplectic potential is by construction WTDiff invariant. In the unimodular gauge and for metric variations
that do not change the determinant, δg = 0, equation (31) reduces to the symplectic potential for local, Diff-invariant
theories of gravity [3].
From the symplectic potential we can directly obtain the symplectic current using the general definition (23),

and, upon integration, the symplectic form, Ω [δ1, δ2]. If we evaluate it for a transformation generated by a vector
field ξµ, δ1gµν = δξgµν

6, and a general metric variation, δ2gµν = δgµν , we obtain the variation of the Hamiltonian
corresponding to the the evolution along ξµ (see equation (25) and the preceding discussion)

δHξ = Ω [δξ, δ] . (32)

Finding δHξ represents one of our main goals. However, while the straightforward evaluation is in principle possible, it
does not yield an easily interpretable result. For that, one would have to consider a Lagrangian of some specific theory
(see section 6 of [6] for an example of such a direct approach). Instead, in the following, we consider an alternative
route, that can be applied to Hamiltonians corresponding to generators of the local symmetries of the theory, i.e., the
WTDiff group [2, 3].

C. WTDiff Noether current

Up to this point, we were concerned with arbitrary variations. We now specialise to the variations that do not
affect the physical content of the theory, i.e., those corresponding to local symmetry transformations. For these, we

6 In general, δξ applied to a WTDiff-invariant expression does not correspond to a Lie derivative. This is because, on the one hand, the

background volume form ω is nondynamical and, therefore, δξω = 0. On the other hand, we have £ξω = ω∇̃µξµ 6= 0. Nevertheless,

for transverse diffeomorphisms, on which we will focus in the rest of this section, ∇̃µξµ = 0 and it holds δξ = £ξ . We return to the

general case ∇̃µξµ 6= 0 in section V.
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obtain the Noether currents and charges and then use them to express a variation of the corresponding Hamiltonian.
For WTDiff-invariant theories the local symmetry transformations are infinitesimal transverse diffeomorphisms and
Weyl transformations.
We first evaluate the Noether current for local infinitesimal Weyl transformations, δWgµν = 2σgµν and δWψ = 0.

The variation of the general local, WTDiff-invariant Lagrangian (20) vanishes by construction, δWL = 0. Therefore,
the vector αµ [δW] present in the general definition of the Noether current (26) equals zero. Moreover, it is easy
to check that equation (31) for the symplectic potential yields θµ [δW] = 0. In total, we obtain jµ [δW] = 0 in
any local, WTDiff-invariant theory of gravity with arbitrary (even non-minimally coupled) matter fields present.
In this way, we generalise the previous proofs of the vanishing Noether current corresponding to Weyl symmetry
for Weyl transverse gravity [20, 21] and a recent proof for arbitrary WTDiff-invariant theories of gravity in four
spacetime dimensions [22]. It has been argued that the vanishing of the Noether current plays an important role in
the radiative stability of the cosmological constant and the absence of a conformal anomaly corresponding to local
Weyl transformations in WTG [21]. Hence, our result supports the view that these properties should carry over to
arbitrary local, WTDiff-invariant theories of gravity.
Next, we derive the Noether current corresponding to a transverse diffeomorphism generated by a vector field ξµ

(for which we have δξ = £ξ), δξgµν = 2∇(µξν), δξψ = £ξψ, ∇̃µξ
µ = 0. For the variation of the Lagrangian, we have

δξL = ξµ∇̃µL, (33)

where we used ∇̃µξ
µ = 0. Then, we have αµ [£ξ] = Lξµ and the Noether current jµξ = jµ [£ξ] reads

jµξ = θµ [£ξ]− Lξµ. (34)

We can obtain a convenient explicit expression for jµξ by studying the divergence of equation (34). It equals

∇̃µj
µ
ξ =∇̃µθ

µ [£ξ]− ξµ∇̃µL

=−Aψ£ξψ − 1

16π

[

(√
−g/ω

)−2/n
(

Åµν + 8πT̊ µν
)

]

£ξgµν +£ξL− ξµ∇̃µL

=− ∇̃µ (ψ ·Aψ · ξ)µ − 1

16π

[

(√
−g/ω

)−2/n
(

Åµν + 8πT̊ µν
)

]

£ξgµν , (35)

where we used the general definition of the symplectic current (21) to get the second equality. The expression

(ψ ·Aψ · ξ)µ stands for ψAψξ
µ for scalar fields and 2ψνA

(µ
ψ ξ

ν) for vector fields (in the case of more general tensorial

fields, a separate treatment is required).

As required for a Noether current, ∇̃µj
µ
ξ vanishes on shell. Off shell, we can use £ξgµν = 2∇(µξν) to rewrite the

last term in equation (35) in the following way

− ∇̃ν

[

ξµ
1

8π

(√
−g/ω

)−2/n
(

Åµν + 8πT̊ µν
)

]

+ ξµ∇̃ν

[

1

8π

(√
−g/ω

)−2/n
(

Åµν + 8πT̊ µν
)

]

. (36)

By virtue of equations (9) and (18) (which both hold off shell) the second term also corresponds to a total divergence,

∇̃µ [(1/8π) (Φ + J ) ξµ] (recall that ∇̃µξ
µ = 0). In total, we have shown that ∇̃µj

µ
ξ can be written as a Weyl covariant

divergence of some expression. It follows that jµξ must be equal to this expression [23], up to a divergence of some

WTDiff-invariant antisymmetric tensor, Qνµξ , and a term of the form λξµ, with λ being an arbitrary constant (it is

easy to check that ∇̃µ∇̃νQ
νµ
ξ = 0 and, therefore, it does not contribute to ∇̃µj

µ
ξ ). The term λξµ has been analysed

by the authors in the case of Weyl transverse gravity and it has been found that we can set λ = 0 without any loss of
generality [6]. Since the argument works without any changes even for general WTDiff-invariant theories, we do not
repeat it here (see subsections 3.3 and 4.3 of [6] for details). Hence, we find that the Noether current corresponding
to a transverse diffeomorphism generated by a vector field ξµ can be written as

jµξ = −
[

1

8π

(√−g

ω

)− 2
n (

Å µ
ν + 8πT̊ µ

ν

)

− 1

8π
(Φ + J ) δµν

]

ξν − (Aψ · ψ · ξ)µ + ∇̃νQ
νµ
ξ . (37)

The antisymmetric tensor Qνµξ corresponds to the Noether charge of the transverse diffeomorphism generated by the
vector field ξµ.
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For future use, we note that, on shell, the Noether current reduces to

jµξ = − 1

8π
Λξµ + ∇̃νQ

νµ
ξ , (38)

where Λ is an integration constant corresponding to the cosmological constant.
The structure of Qνµξ can be partially read off from equation (31) defining the symplectic potential [3, 4]. For

a transverse diffeomorphism, variations correspond to Lie derivatives with respect to the diffeomorphism generator,
ξµ. From the well-known properties of the Lie derivative it follows that only the term 2Eσνρµ∇̃σ (£ξg̃νρ) involves
second derivatives of ξµ as it is the only term containing a derivative of a variation. Only this term then leads to a
contribution to Qνµξ proportional to ∇̃νξµ. Hence, it holds

Qνµξ = 2Eνµρσ∇̃ρξ
σ +W νµ

ρ ξρ, (39)

where W νµ
ρ = W

[νµ]
ρ is some WTDiff invariant tensor independent of ξµ. An explicit expression for W νµ

ρ depends
on the specifics of the Lagrangian.
To conclude, we note that the expressions for the symplectic potentials and currents, as well as the Noether currents

and charges contain ambiguities. These are of the same form as for the Diff-invariant theories [3]. Therefore, we do
not discuss them in detail and simply point out that they are irrelevant for the physical situations we discuss in the
next section. In the following, we will treat all the expressions as effectively unambiguous.

D. Hamiltonian

We now use expressions (37) and (40) for jµξ we obtained in the previous subsection to find a variation of the
Hamiltonian Hξ corresponding to the evolution along a transverse-diffeomorphism generator ξµ. Consider an arbitrary
variation, δgµν , δψ. There are two ways to evaluate the corresponding change of jµξ which, upon identification, will

allow us to obtain δHξ. First, varying equation (37), which expresses jµξ in terms of the equations of motion and the
Noether charge, yields

δjµξ = − 1

8π
ξνδ

[

(√−g

ω

)− 2
n

Å µ
ν − (Φ + J ) δµν + 8π

(√−g

ω

)− 2k
n

T µ
ν

]

− δ (Aψ · ψ · ξ)µ + ∇̃νδQ
νµ
ξ . (40)

Second, we may vary directly the definition of jµξ (34), and express the variation of L in terms of the equations of
motion and the symplectic potential

δjµξ = δθµ [£ξ]− ξµ∇̃νθ
ν [δ]− 1

16π
ξµ
[

(√
−g/ω

)−2/n
(

Åµν + 8πT̊ µν
)

]

δgµν − ξµAψδψ. (41)

In order to find δHξ, we need to relate δjµξ with the symplectic current (23) corresponding to the transverse diffeo-
morphism, £ξ, and the arbitrary variation of the metric, δ,

Ωµ [£ξ, δ] = δθµ [£ξ]−£ξθ
µ [δ] . (42)

The first term appears in equation (41). We can add and subtract the second term, £ξθ
µ [δ], to equation (41), using

that it holds

£ξθ
µ [δ] = ξν∇̃νθ

µ [δ]− θν [δ] ∇̃νξ
µ. (43)

Then, we obtain

δjµξ =Ωµ [£ξ, δ] + 2∇̃ν

(

ξ[νθµ] [δ]
)

− 1

16π
ξµ
(√

−g/ω
)−2/n

(

Åµν + 8πT̊ µν
)

δgµν − ξµAψδψ. (44)

The other way to calculate δjµξ is equation (40). If we now equate expressions (40) and (44) for δjµξ , we obtain an

expression for the symplectic current and hence for δHξ (if it exists)

Ωµ [£ξ, δ] =∇̃ν

(

Qνµξ − 2ξ[νθµ] [δ]
)

+ ξµAψδψ − δ (Aψ · ψ · ξ)µ

+
1

16π
ξµ
(√

−g/ω
)−2/n

(

Åµν + 8πT̊ µν
)

δgµν

− ξνδ

[

1

8π

(√
−g/ω

)− 2
n Åµν − 1

8π
(Φ + J ) δµν +

(√
−g/ω

)2 k
n T µ

ν

]

. (45)
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Let us stress that equation (45) holds even off shell.
We now specialise to the physically interesting situation of two solutions of the equations of motion related by a

small perturbation. Then, both the background fields gµν , ψ and the perturbations δgµν , δψ obey the equations of
motion. In particular, we have

δ

[

1

8π

(√−g

ω

)− 2
n

Å µ
ν − 1

8π
(Φ + J ) δµν +

(√−g

ω

)2 k
n

T µ
ν

]

=
1

8π
δΛδµν (46)

where δΛ is an arbitrary integration constant. The cosmological constant is then perturbed by δΛ to a new value,
Λ + δΛ. In this case, the symplectic current considerably simplifies

Ωµ [£ξ, δ] = ∇̃ν

(

δQνµξ − 2ξ[νθµ] [δ]
)

− 1

8π
ξµδΛ. (47)

Now assume that the unperturbed spacetime possesses a Cauchy surface, C, and introduce a Weyl invariant volume

element on it, dCµ = (
√−g/ω)

−1/n
nµωd

n−1x. Here, nµ is the unit normal to C and dn−1x the coordinate volume
element on C. The Weyl invariant volume element dCµ reduces to the physical one (measured with respect to the
dynamical metric) only in the unimodular gauge,

√−g = ω. The symplectic form Ω [£ξ, δ] on C is then given by an
integral of Ωµ [£ξ, δ] over C (see the general definition (24))

Ω [£ξ, δ] =

∫

C

Ωµ [£ξ, δ] dCµ =

∫

∂C

(

δQνµξ − 2ξνθµ [δ]
)

dCµν −
∫

C

1

8π
δΛξµdCµ, (48)

where dCµν = (
√−g/ω)

−2/n
n[µmν]ωd

n−2x is the Weyl invariant area element on the boundary ∂C (with mµ being

the unit normal to ∂C with respect to its embedding in C and dn−2x being the coordinate area element). Finally, if the
Hamiltonian Hξ corresponding to the evolution along ξµ exists, then its perturbation δHξ is given by equation (48).
The main difference compared to the Hamiltonian perturbation in local, Diff-invariant theories is the presence of a
volume integral proportional to δΛ [2]. It can be traced back to Λ being an integration constant rather than a fixed
parameter in the Lagrangian. As the volume integral in general gives an infinite contribution to δHξ, the situations
with nonzero Λ or δΛ need to be treated separately. Several such examples are discussed in the previous paper of
the authors in the case of Weyl transverse gravity [6]. The results in general local, WTDiff-invariant gravitational
theories are qualitatively the same and we briefly consider it in subsection IVC.
If Λ = 0, i.e., the Hamiltonian Hξ does not contain a volume integral, we have the necessary and sufficient condition

for the existence of Hξ familiar from Diff-invariant theories of gravity [5]
∫

∂C

Ωµ [£ξ, δ] ξ
νdCµν = 0. (49)

To see this, choose some solution of the equations of motion with Λ = 0 and a vector field ξµ such that Hξ exists.
Then consider two independent variations, δ1gµν , δ1ψ, and δ2gµν , δ2ψ, which solve the equations of motion with
δ1Λ = δ2Λ = 0. It holds (δ1δ2 − δ2δ1)Hξ = 0. Expressing the variation of the Hamiltonian from equation (48) and
using the commutation of δ1 and δ2 on the antisymmetric tensor Qνµξ as well as the definition of Ωµ [£ξ, δ], we obtain

the condition (49).

IV. THE FIRST LAW OF BLACK HOLE MECHANICS AND WALD ENTROPY

An important application of the Noether charge formalism for gravitational theories is deriving the first law of
black hole mechanics. Here, we first provide such a derivation for vacuum, asymptotically flat and stationary black
hole solutions in WTDiff-invariant gravity. We then discuss the form of the first law in the presence of minimally
coupled matter fields. Lastly, we invoke the definition of the Hawking temperature to identify the Wald entropy
corresponding to a black hole horizon in local, WTDiff-invariant gravitational theories. We first consider the case
Λ = δΛ = 0. The cosmological constant contribution to the first law will be discussed in subsection IVC on the
example of asymptotically anti-de Sitter spherically symmetric black hole spacetimes.
Before specialising to stationary black hole spacetimes, we first consider a more general case of an asymptotically

flat spacetime possessing a Cauchy surface, C, and a Killing vector, ξµ. We consider a WTDiff-invariant definition of a
Killing vector, i.e., g̃ρ(ν∇̃µ)ξ

ρ = 0, implying £ξg̃µν = 0 and £ξgµν = gµνξ
ρ∂ρ ln (

√−g/ω)7. Hence, the transformation

7 Let us stress that while Killing vectors do not affect g̃µν , this statement depends on the specific form of the metric. Therefore, if we
evaluate Noether currents and charges derived without specifying the metric for a Killing vector, we generically obtain a nonvanishing
result.
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generated by a Killing vector leaves the auxiliary metric invariant and acts as a pure Weyl transformation on the
dynamical metric. This definition ensures that two spacetimes related by a Weyl transformation (which are physically
identical in WTDiff-invariant gravity) have the same Killing vectors. In the unimodular gauge, our definition reduces
to the one standard for Diff-invariant theories. Likewise, we consider a causal structure defined with respect to the
auxiliary metric, g̃µν , to ensure its invariance under the Weyl transformations.
In this asymptotically flat spacetime, we study an arbitrary perturbation of the metric which satisfies the equations

of motion and does not spoil the asymptotic flatness. The symplectic current (23) corresponding to an arbitrary
perturbation and a transformation generated by any Killing vector ξµ vanishes as £ξg̃µν = 0. Hence, the perturbation
of the Hamiltonian δHξ (48) corresponding to the evolution along ξµ also vanishes. Equation (48) then implies

δHξ =

∫

∂C

(

δQνµξ − 2ξνθµ [δ]
)

dCµν = 0, (50)

where the boundary ∂C of the Cauchy surface C in general consists of several components. One of them is an
intersection ∂C∞ of the Cauchy surface C with the spatial infinity, the others are internal components we collectively
denote by ∂CI. These correspond, e.g. to intersections of C with black hole horizons. Equation (50) now becomes

∫

∂C∞

(

δQνµξ − 2ξνθµ [δ]
)

dCµν −
∫

∂CI

(

δQνµξ − 2ξνθµ [δ]
)

dCµν = 0. (51)

The second term cannot be physically interpreted without specifying ∂CI. The first term corresponds to perturbations
of the quantities measured in the asymptotic infinity. In particular, suppose that there is a timelike Killing vector,
tµ, normalised so that g̃µνt

µtν = −1 in the asymptotic infinity. Then, we can identify the contribution to δHt coming
from ∂C∞ with the perturbation of the total canonical energy of the spacetime [2, 3]

δE =

∫

∂C∞

(δQµνt − 2tνθµ [δ]) dCµν . (52)

Likewise, for a rotational Killing vector ϕµ, we obtain the perturbation of the total canonical angular momentum

δJ = −
∫

∂C∞

δQµνϕ dCµν , (53)

where the overall minus sign gives us positive J . As ϕµ is orthogonal to dCµν , δJ lacks a contribution proportional
to ϕνθµ. It is easy to check that the perturbations of the total canonical energy and angular momentum are Weyl
invariant. In the unimodular gauge and for perturbations that do not change the metric determinant, δg = 0, we
recover the corresponding expressions valid for local, Diff-invariant theories of gravity [2, 3].

A. WTDiff-invariant first law of black hole mechanics in vacuum

We now restrict our attention to stationary, axisymmetric, vacuum spacetimes with a single black hole. By definition,
such a spacetime possesses a time translational Killing vector tµ and n−3 rotational Killing vectors ϕµ(i). A combination

of these vectors, ξµ = tµ +Ω
(i)
H ϕµ(i), with Ω

(i)
H being constant angular velocities of the event horizon in directions ϕµ(i),

is a Killing vector orthogonal to the event horizon. The inner boundary ∂CI of the Cauchy surface C now consist of
an intersection of C with the event horizon, H, which we denote by ∂CH. Equation (51) applied to this case yields

δE −
n−3
∑

i=1

Ω
(i)
H δJ(i) −

∫

∂CH

[

δQνµξ − 2ξνθµ
]

dCµν = 0, (54)

where we already identified the perturbations of the canonical energy (52) and the canonical angular momenta (53).
Since the Killing vector ξµ is orthogonal to the horizon, the second term in the integral over ∂CH vanishes. Likewise,
terms proportional to ξµ in the Noether charge Qνµξ (39) do not contribute to the integral (see [3, 24] for details). In
total, we have

δE −
n−3
∑

i=1

Ω
(i)
H δJ(i) − 2

∫

∂CH

δ
(

Eνµρσ∇̃ρξ
σ
)

dCµν = 0. (55)
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To further simplify the last term, we introduce a WTDiff-invariant definition of the surface gravity of the horizon

κ =

√

gµνgρσ∇̃ρξµ∇̃σξν
∣

∣

∣

∂CH

, (56)

and assume the validity of the zeroth law of black hole mechanics, i.e., that κ is constant on the horizon. For proofs
of this assumption in certain modified theories of gravity see, e.g. [25–28] (these proofs directly carry over from Diff

to WTDiff-invariant theories of gravity as the classical solutions are equivalent). Then, we can replace ∇̃ρξσ in
equation (55) by κǫρσ, with ǫρσ being the bi-normal to the horizon [24]. Finally, we arrive at the first law of black
hole mechanics for vacuum, stationary, asymptotically flat spacetimes

δE −
n−3
∑

i=1

Ω
(i)
H δJ(i) − 2κ

∫

∂CH

δ (Eνµρσǫρσ) dCµν = 0, (57)

valid in any local, WTDiff-invariant theory of gravity. We recall that Eνµρσ is given by equation (30). As expected,
in the unimodular gauge and for the metric determinant preserving perturbations, δg = 0, equation (57) reduces to
the first law for Diff-invariant theories [3].

B. Wald entropy for WTDiff-invariant gravity

We derived the first law of black hole mechanics in the setting of purely classical gravity. If we wish to relate it
with the first law of thermodynamics, as is usually done in the literature [2–4], we need to consider insights from the
quantum field theory in a curved background. A well-known result of the quantum effects in black hole spacetime is
emission of black body (Hawking) radiation by the black hole [29]. Since Hawking radiation comes from fluctuations of
the matter fields, which are by construction Weyl invariant (and no quantum anomalies are associated with local Weyl
transformations [13, 30]), we expect its temperature to be Weyl invariant as well. Moreover, Hawking radiation is a
kinematic effect independent of the gravitational dynamics [31]. Therefore, the standard expression for the Hawking
temperature, TH = κ/2π, holds even in local, WTDiff-invariant theories of gravity, although κ must be understood as
the Weyl invariant surface gravity (56).
Upon introducing the Hawking temperature, the last term in the first law (57) can be interpreted as THδS, with

S being Wald entropy of the horizon. For a black hole horizon in a stationary, asymptotically flat spacetime with a
constant κ, its Wald entropy reads

S = −4π

∫

∂CH

EµνρσǫρσdCµν , (58)

where Eµνρσ is given by equation (30). In the unimodular gauge, we recover the prescription for Wald entropy valid
in Diff-invariant gravitational theories [2, 3].
The first law of black hole thermodynamics in any local, WTDiff-invariant theory of gravity then has the usual

form

δE −
n−3
∑

i=1

Ω
(i)
H δJ(i) − THδS = 0. (59)

However, it must be noted that the total energy, angular momenta, Hawking temperature, and Wald entropy are all
Weyl invariant.
To conclude, we stress that the Hawking temperature does not naturally emerge in the Noether charge formalism.

Rather, it must be introduced somewhat ad hoc by using insights from the quantum field theory in a curved background
in an otherwise classical setting. In this subsection, we do not aim to discuss the validity of such approach. Our only
goal has been to obtain Wald entropy for WTDiff-invariant gravity and compare it with the well-known Diff-invariant
result.

C. Contributions of the cosmological constant and matter fields to the first law

The most notable differences between WTDiff and Diff-invariant theories of gravity lie in the origin of the cosmo-
logical constant and in the status of local energy (non)conservation. Hence, in this section we discuss contributions
to the first law of black hole mechanics coming from the cosmological constant and matter fields. Both cases are
discussed in more detail for the special case of Weyl transverse gravity in [6].
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a. Cosmological constant contribution. We illustrate the contribution of a nonzero cosmological constant to the
first law on the example of a static, spherically symmetric, asymptotically anti-de Sitter black hole spacetime. Any such
spacetime possesses a time translational Killing vector field, tµ, and the black hole’s horizon is a Killing horizon with
respect to tµ. For a small vacuum perturbation of this spacetime that solves the equations of motion, equation (48)
implies

δHt =

∫

∂C∞

(δQνµt − 2tνθµ [δ]) dCµν −
∫

∂CH

δQνµt dCµν −
1

8π

∫

C

δΛtµdCµ = 0. (60)

We used that tµ is orthogonal to the horizon.
The perturbation of the cosmological constant, δΛ, appears as an arbitrary integration constant in the process of

solving the equations of motion for the metric perturbation. Hence, δΛ is generically nonzero, i.e., the value of the
cosmological constant differs between two solutions of the equations of motion related by a small perturbation8. Since
the spatial volume of C is infinite, nonzero δΛ leads to a divergent contribution to the first law. However, it is easy
to see that the divergences are the same as in the first law in a pure anti-de Sitter spacetime whose cosmological
constant is perturbed from Λ to Λ+ δΛ. Therefore, we can take anti-de Sitter spacetime as our reference background
and require that the Noether current, charge and the symplectic potential vanish there. In other words, we define
the physical quantities by subtracting their value in the purely anti-de Sitter spacetime (see subsection 4.3 of [6] for
a more detailed discussion):

θµphys [δ] =θ
µ [δ]− θµAdS [δ] , (61)

jµt,phys =j
µ
t − jµt,AdS = ∇̃νQ

νµ
t,phys, (62)

Qνµt,phys =Q
νµ
t −Qνµt,AdS. (63)

The physical perturbation of the Hamiltonian then equals the difference of equation (60) evaluated in the black hole
spacetime and in the reference anti-de Sitter background

δHt,phys = δHt − δHt,AdS =

∫

∂C∞

(

δQνµt,phys − 2tνθµphys [δ]
)

dCµν −
∫

∂CH

δQνµt,physdCµν . (64)

The integral over ∂C∞ yields the perturbation of the total canonical energy, δE (52) (it is easy to realise that it
contains no terms dependent on Λ or δΛ after the subtraction). Since the integral over ∂CH is finite even without
any subtraction (the area of ∂CH is finite), we may evaluate both parts of Qνµt,phys separately. The contribution of Qνµt
equals 2κ

∫

∂CH
δ (Eνµρσǫρσ) dCµν by the same argument as in the vacuum case. Finally, the integral of Qνµt,AdS over ∂CH

gives Vn−1r
n−1
H δΛ/8π, with Vn−1 being the volume of n−1-dimensional flat space ball and rH the black hole horizon’s

radius. In total, we have the following first law of mechanics for a static, spherically symmetric, asymptotically anti-de
Sitter black hole spacetime

δE − 2κ

∫

∂CH

δ (Eνµρσǫρσ) dCµν +
1

8π
Vn−1r

n−1
H δΛ = 0.

As expected the first law is Weyl invariant. Its most interesting feature is the appearance of a term corresponding to
the perturbation of the cosmological constant. The effects of this term has been extensively studied in the context of
general relativity and it has been shown that the cosmological constant then plays a role analogous to that of pressure
in standard thermodynamics (see, e.g. [32, 33]). However, in general relativity (or any Diff-invariant theory) a varying
cosmological constant must be introduced somewhat ad hoc, e.g. by appealing to its interpretation in terms of vacuum
energy. In contrast, WTDiff-invariant gravity allows for cosmological constant variations already on the fully classical
level (and regardless of its interpretation), making the study of contributions to the first law proportional to δΛ more
natural.
b. Matter field contributions. Another feature distinguishing WTDiff-invariant gravitational theories from the

Diff-invariant ones is a possibility to break the local energy-momentum conservation (see equation (18)). We show
its impact on the first law on the example of a black hole spacetime filled with minimally coupled matter. The
contribution of minimally coupled matter fields to the first law has been extensively discussed by the authors in the
context of Weyl transverse gravity [6]. Going from Weyl transverse gravity to general local, WTDiff-invariant theories
affects only the gravitational contributions to the first law, while the matter ones remain the same. We consider the

8 This is of course true even if Λ = 0 in the original spacetime, we just set δΛ = 0 in the previous subsections to simplify the discussion.
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case of a stationary, axisymmetric, asymptotically flat black hole spacetime containing any matter minimally coupled
to gravity. Since we already analysed the gravitational part of the first law in subsection IVA, we can directly state
the final result

δE −
n−3
∑

i=1

Ω
(i)
H δJ

(i)
H + 2κ

∫

∂CH

δ (Eνµρσǫρσ) dCµν

−
∫

C

δ
[

(√
−g/ω

)2k/n
T µ
ν

]

UνdCµ +
1

2

∫

C

(√
−g/ω

)−2/n
T̊αβδgαβξ

µdCµ

+

∫

C

n−3
∑

i=1

Ω(i)δJ̃µ(i)dCµ +

∫

C

δJ ξµdCµ = 0. (65)

The first line is the same as in the vacuum case, except for δJ
(i)
H being perturbations of the horizon (not total)

angular momenta (both notions of course coincide in vacuum). The second line contains terms proportional to the

energy-momentum tensor and its perturbation, with Uν = tν +
∑n−3

i=1 Ω(i)ϕν(i), and Ω(i) being the angular velocity of

matter along ϕν(i). The first integral in the last line corresponds to the perturbations of the matter angular momenta.

Finally, the second term in the last line quantifies the contribution of the local nonconservation of energy-momentum
to the first law (for the meaning of J , see equation (18) and the accompanying discussion). Since, in Diff-invariant
gravitational theories the generalised Bianchi identities enforce J = 0, this contribution represents the main difference
between the WTDiff and Diff-invariant case.
The special case of a black hole spacetime filled with a perfect fluid discussed in [6] again generalises in the same way,

with only the gravitational part affected by replacing Weyl transverse gravity with arbitrary local, WTDiff-invariant
theories.

V. FIRST LAW OF CAUSAL DIAMONDS

So far we were concerned with Hamiltonians corresponding to generators of transverse diffeomorphisms, which
are local symmetries of WTDiff-invariant theories. However, more general vector fields are also of interest. For
example, the Noether charge formalism for Diff-invariant gravity has been employed to derive the first law of causal
diamonds [34–37]. Hence, one would expect that the same should be possible for WTDiff-invariant theories. This
cannot be done by a direct application of the results of section III, since causal diamonds do not possess a timelike
Killing vector. Instead, they have an isometry generated by a timelike conformal Killing vector defined for a given
metric by the conformal Killing equation

δζgµν = £ζgµν = 2∇(µζν) =
1

n
∇ρζ

ρgµν . (66)

A conformal Killing vector does not satisfy the transversality condition as ∇̃µζ
µ 6= 0. While equation (66) corresponds

to a pure Weyl transformation which belongs to the WTDiff group, this statement is metric dependent. In other words,
there does not exist a vector satisfying the conformal Killing equation for a general metric (in the same way a general
metric has no true Killing vectors). Then, to derive the first law of causal diamonds, we need an expression for
a perturbation of a Hamiltonian corresponding to evolution along any vector field, even if it does not generate a
transformation belonging to the WTDiff group. Here, we obtain such an expression following the direct approach we
previously applied in the case of Weyl transverse gravity [6], although we modify it to obtain results valid even off
shell.
While it would be possible to work with arbitrary local, WTDiff-invariant theories of gravity as before, the results

turn out to be very difficult to interpret as there appears a large number of terms containing derivatives of ∇̃µζ
µ, not

present in the transverse case. Instead, we concentrate on Lagrangians that depend only on the auxiliary Riemann
tensor and not on its derivatives. We also restrict our attention to minimally coupled matter fields. We choose
this class of theories mainly because it is the choice typically made in works concerned with mechanics of causal
diamonds [34–37], which we discuss as an example in subsection VB.

A. Hamiltonian

We start by discussing the derivation of an expression for a perturbation of a Hamiltonian corresponding to the

evolution along any vector field. We consider a local gravitational Lagrangian of the form L
(

g̃µν , R̃
µ
νρσ

)

and a
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minimally coupled matter field described by the action (II B)9. Since we cannot define Noether currents and charges
for general vector fields (they do not belong in the WTDiff symmetry group), we instead proceed by directly evaluating
the symplectic potential and current. Integrating the symplectic current over a suitable Cauchy surface then yields
the symplectic form and, hence, the Hamiltonian perturbation. Details of the derivation are rather technical and we
leave them for Appendix B.
The final expression for the perturbation δHζ of the Hamiltonian corresponding to the evolution along an arbitrary

vector field ζµ (assuming that both the original and perturbed spacetime satisfy the equations of motion) is

δHζ =

∫

∂C

[

2δEνµρσ∇̃ρζ
σ − 4ζσδ

(

∇̃ρE
νµρ

σ

)

+ ∇̃νδQ
νµ
ψ,ζ − 2ζνθµ [δ]

]

dCµν −
∫

C

1

8π
δΛζµdCµ

+

∫

C

(

Πµ [ζ, δ]− ζµ∇̃νθ
ν [δ] +

4

n
δEµνρν∇̃ρ∇̃λζ

λ − 4

n
δ
(

∇̃ρE
µνρ

ν

)

∇̃λζ
λ

)

dCµ. (67)

where the tensor E νρσ
µ reduces to E νρσ

µ = ∂L/∂R̃µνρσ in this case, θµ [δ] is the usual symplectic potential, and

Πµ [ζ, δ] corresponds to a lengthy expression (B10) given in Appendix B. Furthermore, Qνµψ,ζ is an antisymmetric
tensor built from the matter variables ψ and their at most first derivatives, the auxiliary metric g̃µν and the vector
field ζµ (it contains no derivatives of ζµ).

The volume integral on the second line of equation (67) vanishes if ∇̃µζ
µ = 0, i.e., ζµ generates a transverse

diffeomorphism. In that case, we of course recover equation (48). Then, terms 2Eνµρσ∇̃ρζ
σ − 4ζσ∇̃ρE

νµρ
σ and

Qνµψ,ζ correspond to the gravitational and matter part of the antisymmetric Noether charge tensor Qνµζ , respectively.
We discuss the interpretation of the additional volume integral on the example of a causal diamond in the following
subsection.

B. Causal diamonds

We now apply the general equation (67) to the case of a causal diamond in a flat spacetime. The main interest
in causal diamonds comes from exploring the connection between gravity and thermodynamics, as they are locally
constructed objects that exhibit thermodynamic properties analogous to those of black holes [34–39].
To construct a geodesic causal diamond centred at some spacetime point P , select an arbitrary unit timelike vector,

nµ (P ), and a length scale, l. In every direction orthogonal to nµ (P ) we send out of P geodesics of affine parameter
length l forming a spacelike geodesic ball Σ0. The region causally determined by Σ0 is known as a geodesic causal
diamond.
We will work with a causal diamond constructed in a flat spacetime. In that case, we have an exact conformal

isometry of the diamond generated by a conformal Killing vector, ζµ [35]. In a coordinate system in which time is
defined by n (P ) = ∂/∂t and spatial coordinates are spherical, the conformal Killing vector reads, up to an arbitrary
normalisation constant, C,

ζ = C

(

(

l2 − t2 − r2
) ∂

∂t
− 2tr

∂

∂r

)

. (68)

The null boundary of the causal diamond is a conformal Killing horizon with respect to ζµ and its cross-section with
Σ0, ∂Σ0, is a bifurcate surface on which ζµ vanishes. The surface gravity κ (56) corresponding to ζµ at ∂Σ0 is κ = 2lC.
Our aim is to derive the first law of causal diamonds, a formula governing small on-shell perturbations analogous to

the first law of black hole mechanics. To do so, we consider a simultaneous perturbation of the metric and the matter
fields around the flat background. Assuming that the perturbations satisfy the equations of motion, we obtain the
perturbation of the Hamiltonian corresponding to the evolution along ζµ by directly applying equation (67), taking
the geodesic ball Σ0 as the Cauchy surface. The Hamiltonian perturbation significantly simplifies since ζµ vanishes
on ∂Σ0. Moreover, on Σ0 we have ∇̃µζ

µ = 0, ∇̃ν∇̃µζ
µ = −2nCδtν , and all the higher derivatives of ∇̃µζ

µ vanish

identically. One can easily show that ∇̃ρζσ = κǫρσ, where ǫρσ denotes the bi-normal to ∂Σ0. Furthermore, for flat
spacetime the terms proportional to the Riemann tensor in the definition (B10) of Πµ [ζ, δ] vanish and Eσνρµ =

(
√−g/ω)

2/n
(gµνgρσ − gµσgνρ) /32π, so that

Πµ [ζ, δ] =
1

16π

κ

l
δtσδg̃

σµ. (69)

9 If we were to include more than one matter field, the matter Lagrangian would be simply a sum of several terms of the form specified
in equation (II B). We work with a single matter field for notational simplicity.
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In total, the general equation (67) becomes in this case

δHζ =

∫

∂Σ0

2κǫλσg̃λρδE
νµρ

σdCµν −
∫

Σ0

1

8π
δΛζµdCµ +

∫

Σ0

κ

l
δtσ

(

1

16π
δg̃σµ − 4δEµνρν

)

dCµ. (70)

The perturbation of the Hamiltonian consists of two parts, one coming from the gravitational field and the other
from the matter fields, δHζ = δHg,ζ + δHψ,ζ. Evaluating Ωµψ [δζ , δ] proceeds along the same lines as in section 5 of [6].
Since flat spacetime implies a vanishing background value of the energy-momentum tensor, we have

δHψ,ζ =

∫

Σ0

[

(√
−g/ω

)2k/n
δT µ

ν − δJ δµν
]

ζνdCµ. (71)

The purely gravitational part of δHζ , δHg,ζ vanishes because δζ g̃µν = 0 implies Ωµg [δζ , δ] = 0. However, the matter
contribution, δHψ,ζ , is generically nonvanishing [4, 6, 34]. In total, the WTDiff-invariant first law of causal diamonds
reads

∫

Σ0

[

(√
−g/ω

)2k/n
δT µ

ν − δJ δµν
]

ζνdCµ =

∫

∂Σ0

2κǫλσg̃λρδE
νµρ

σdCµν

−
∫

Σ0

1

8π
δΛζµdCµ +

∫

Σ0

κ

l
δtσ

(

1

16π
δg̃σµ − 4δEµνρν

)

dCµ. (72)

The first term on the right hand side can be interpreted in terms of variation of Wald entropy (58). However, this
interpretation again requires insights from quantum field theory and we will not discuss it further in this work.
The second term is proportional to the perturbation of the cosmological constant. While its presence has been

discussed in the case of Diff-invariant gravity, it had to be justified by appealing to an interpretation of Λ as a matter
field rather than a fixed Lagrangian parameter [34]. In our case, it appears naturally without any further assumptions,
given the status of Λ as a solution-dependent integration constant in WTDiff-invariant theories.
The last term corresponds to the perturbation of the so called generalised volume W of Σ0 [36, 37]

δW = − 8π

n− 2

∫

Σ0

δtσ

(

1

16π
δg̃σµ − 4δEµνρν

)

dCµ. (73)

Of course, our expression for δW is Weyl invariant and only reduces to the one defined in the context of Diff-invariant

gravity in the unimodular gauge. In the case of Weyl transverse gravity, δW equals (
√−g/ω)

2(n−1)/n
δVn−1, with

Vn−1 being the geometric volume of Σ0.
We stress that the generalised volume perturbation enters the first law in a different way than in Diff-invariant

theories. There, the Hamiltonian is expressed entirely as a surface integral and δW comes from the volume integral
of the gravitational part of the symplectic current. However, the WTDiff-invariant gravitational symplectic current
vanishes for conformal Killing vectors since δζ g̃µν = 0. Instead, δW appears in the first law from the volume integral
present in δζH (67).
To sum up, the first law of causal diamonds (72) we derived for WTDiff-invariant gravity is physically equivalent to

the one valid in Diff-invariant theories [36, 37]. However, it involves only Weyl invariant quantities and the generalised
volume term appears in a different manner. Furthermore, it generically contains contributions corresponding to the
cosmological constant perturbation and the local energy-momentum nonconservation.

VI. DISCUSSION

In this paper, we present two principal results on the Noether formalism for WTDiff-invariant theories of gravity and
its applications. First, we have obtained the expressions for Noether currents and charges corresponding to transverse
diffeomorphisms in any local, WTDiff-invariant theory of gravity. As an aside, we have also showed that the Noether
current corresponding to the local Weyl symmetry identically vanishes in any local, WTDiff-invariant theory in an
arbitrary spacetime dimension, generalising the earlier proof valid in four dimensions [22]. We have then expressed
the perturbation of the Hamiltonian corresponding to the evolution along any transverse diffeomorphism generator
in terms of the Noether charge for this generator. In contrast to the Diff-invariant theories, here the Hamiltonian
perturbation generically contains a volume integral corresponding to the perturbation of the cosmological constant.
Second, we have employed the Noether charge formalism to derive the first law of black hole mechanics in an

arbitrary local WTDiff-invariant gravitational theory. In particular, we have explicitly found the form of the first law
for a stationary, axisymmetric, asymptotically flat black hole spacetime filled with matter and for a static, spherically
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symmetric, asymptotically anti-de Sitter black hole spacetime. The resulting first law is in most respects physically
equivalent to that valid in Diff-invariant gravity, although it involves Weyl invariant quantities. This is of course
expected, since to every Diff-invariant theory there exist a WTDiff-invariant one with equivalent classical solutions.
However, the WTDiff-invariant first law includes a contribution coming from a possible local nonconservation of
energy-momentum, which is forbidden by the Diff invariance. Furthermore, it naturally contains a cosmological
constant perturbation even on the level of fully classical physics. While a varying Λ is sometimes considered even in
Diff-invariant gravity, it is incompatible with its interpretation as a fixed parameter in the Lagrangian. Instead, some
specific microscopic origin of Λ needs to be assumed, at least implicitly.

As an additional result, we have also derived an expression for a perturbation of a Hamiltonian corresponding to a
general vector field, including those that do not generate a transformation belonging to the WTDiff symmetry group.
In this case, one does not have a conserved Noether current for the vector field and the Hamiltonian perturbation
must be found by a direct calculation of the symplectic form. We have restricted our analysis to Lagrangians
without derivatives of the auxiliary Riemann tensor and to minimally coupled matter fields, as the results become
overly cumbersome in more general situations. We have found that the perturbation of the Hamiltonian contains an
additional volume integral corresponding to the perturbation of the generalised volume. As an example, we then used
the formula for the Hamiltonian perturbation to derive the first law of causal diamonds. We have again obtained a
result physically equivalent to the one previously found for Diff-invariant theories (with the aforementioned differences
regarding the energy-momentum nonconservation and the cosmological constant).

Aside from the specific results we have obtained, the formalism presented in this work offers a practical tool for
further exploration of WTDiff-invariant theories of gravity. Among other things, it can be used to construct the
solution phase space for any such theory (see [40] and references therein), providing a possible way to study the
(in)equivalence of WTDiff and Diff-invariant gravity. Our formalism might also be extended to study possible effects
of the underlying dynamics of the background volume n-form, ω, on the first law of black hole mechanics. Lastly,
it can serve to study the connection of WTDiff-invariant gravity and thermodynamics, either in the setting of black
holes or locally constructed objects such as causal diamonds. In particular, it appears that thermodynamic arguments
favour unimodular/WTDiff-invariant theories of gravity over the Diff-invariant ones [39, 41, 42]. The WTDiff-invariant
Noether charge formalism applied to causal diamonds will allow a more rigorous examination of these claims (along
the lines of [36, 37]).
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APPENDICES

Appendix A: Derivation of the symplectic potential

Here, we present the detailed derivation of the expression for the symplectic potential presented in subsection III B.
Starting from an arbitrary variation of the Lagrangian (20) carried out independently with respect to gµν , R̃

µ
νρσ and

ψ,

δL =
∂L

∂gµν
δgµν +

p
∑

i=0

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

δ∇̃(α1
...∇̃αi)R̃

µ
νρσ +

q
∑

i=0

∂L

∂∇̃(α1
...∇̃αi)ψ

δ∇̃(α1
...∇̃αi)ψ, (A1)
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we can use the following strategy to rewrite the terms containing derivatives of the auxiliary Riemann tensor

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

δ∇̃(α1
...∇̃αi)R̃

µ
νρσ

=
∂L

∂∇̃(α1
...∇̃αi)R̃µνρσ

∇̃α1δ∇̃α2 ...∇̃αi
R̃µνρσ + “terms proportional to ∇̃δgµν and δgµν”

= ∇̃α1

(

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

δ∇̃α2 ...∇̃αi
R̃µνρσ

)

− ∇̃α1

(

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

)

δ∇̃α2 ...∇̃αi
R̃µνρσ

+ ∇̃α1“terms proportional to δgµν” + “terms proportional to δgµν”

= ∇̃α1

(

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

δ∇̃α2 ...∇̃αi
R̃µνρσ

)

− ∇̃α1

(

∂L

∂∇̃(α1
...∇̃αi)R̃

µ
νρσ

)

δ∇̃α2 ...∇̃αi
R̃µνρσ

+ ∇̃α1“terms proportional to δgµν” + “terms proportional to δgµν”. (A2)

We have obtained a lower derivative term, some Weyl covariant divergences, and terms proportional to δgµν which
contribute to equations of motion. Terms with derivatives of the matter fields can be modified in an analogous way.
A repeated use of this procedure then yields

δL =Âµνδgµν + E νρσ
µ δR̃µνρσ +Aψδψ

+ ∇̃α1

[

(

Kα1µν + 2g̃α1σ∇̃ρE
µνρ
σ

)

δg̃µν +

p
∑

i=2

Mα1α2...αi νρσ
µ δ∇̃(α2

...∇̃αi)R̃
µ
νρσ

+

q
∑

i=2

Nα1α2...αkδ∇̃(α2
...∇̃αi)ψ

]

, (A3)

where tensors Kα1µν , Mα1α2...αi νρσ
µ , and Nα1α2...αk appear in the process of modifying the derivatives of δR̃µνρσ and

δψ, using the procedure outlined in equation (A2). Their explicit form is not relevant.

If the auxiliary Riemann tensor were an independent field, Âµν = 0 would be the gravitational equations of motion.
Of course, δR̃µνρσ actually depends on the variation of the auxiliary metric,

δg̃µν =

(√−g
ω

)− 2
n
(

δgµν −
1

n
gµν

δg

g

)

, (A4)

and we can express it in terms of δg̃µν and its derivatives

E νρσ
µ R̃µνρσ = 2E νρσ

µ g̃µλ∇̃λ∇̃σδg̃νρ + E νρσ
µ R̃µνρλg̃

λτ δg̃στ , (A5)

where we have taken advantage of the symmetries of E νρσ
µ (given in equation (30)) to simplify the variations. Then,

the variation of the Lagrangian takes the form cited in the main text (29). The traceless equations of motion read

Åµν + 8πT̊µν =8π

(√−g
ω

)− 2
n
[

Â(µν) + 2E ρσ(µ|
ι R̃ι |ν)

ρσ − 1

n
E ρσλ
ι R̃ιρσλg

µν

+ 4∇̃σ∇̃ρE (µν)σ
ρ − 4

n
gιλ

(

∇̃σ∇̃ρE ιλσ
ρ

)

gµν
]

= 0. (A6)

Appendix B: Hamiltonians corresponding to general vector fields

In this appendix, we present a detailed derivation of the perturbation (67) of the Hamiltonian corresponding to an
arbitrary vector field ζµ.

Consider a local gravitational Lagrangian of the form L
(

g̃µν , R̃
µ
νρσ

)

and a minimally coupled matter field described

by the action (II B). The traceless gravitational equations of motion read

0 = Åµν + 8πT̊ µν =−
(√−g

ω

)
2
n

EµλρσR̃νλρσ + 2∇̃ρ∇̃σ

[

(√−g

ω

)
2
n

Eµρσν

]

+
1

n

(

Eλρστ R̃λρστ − 2∇̃ρ∇̃σE
ρσλ
λ

)

g̃µν + 8πT̊ µν, (B1)
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where the tensor E νρσ
µ reduces to

E νρσ
µ =

∂L

∂R̃µνρσ
. (B2)

The corresponding divergence-free equations (11) (obtained by adding a scalar function multiplied by the auxiliary
metric to equations (B1)) read

0 = Aµν =−
(√−g

ω

)
2
n

EµλρσR̃νλρσ + 2∇̃ρ∇̃σ

[

(√−g

ω

)
2
n

Eµρσν

]

+
1

2
Lg̃µν

− Λg̃µν + 8π

(√−g

ω

)

2(k+1)
n

T µν − J g̃µν , (B3)

where J is defined by equation (18). As always in WTDiff-invariant gravity, Λ appears as an arbitrary integration
constant.
The symplectic potential is easily worked out from the general expression (31). Since the Lagrangian does not

depend on derivatives of the auxiliary Riemann tensor, the terms containing tensors Mµα2...αi νρσ = 0 do not appear

and we have Kµνρ = −2∇̃σ

[

(
√−g/ω)

2/n
Eµνρσ

]

. For the matter part of the symplectic potential we have θµψ =

[∂Lψ/∂ (∂µψ)] δψ (a WTDiff invariant matter Lagrangian minimally coupled to gravity can only depend on g̃µν , ψ

and ∂µψ = ∇̃µψ). In total, we obtain

θµ [δ] = 2

(√−g

ω

)
2
n

Eσνρµ∇̃σδg̃νρ − 2∇̃σ

[

(√−g

ω

)
2
n

Eµνρσ

]

δg̃νρ +
∂Lψ

∂ (∂µψ)
δψ. (B4)

The symplectic current corresponding to a transformation generated by any vector field ζµ and an arbitrary variation
of the metric and the matter fields reads

Ωµ [δζ , δ] = δζθ
µ [δ]− δθµ [δζ ] . (B5)

As we already mentioned in subsection III B, δζ does not in general correspond to a Lie derivative. The reason is

that δζω = 0 as the background volume form is nondynamical. However, £ζω = ω∇̃µζ
µ 6= 0 which equals zero only

if ζµ generates a transverse diffeomorphism, i.e., ∇̃µζ
µ = 0. Straightforward calculations show that the differences

between δζ and £ζ acting on the building blocks of θµ [δ] are

(δζ −£ζ)

√−g

ω
=

√−g

ω
∇̃µζ

µ, (B6)

(δζ −£ζ) Γ̃
µ
νρ =− 1

n

(

δµν δ
α
ρ + δµρ δ

α
ν − gνρg

µα
)

∇̃α∇̃λζ
λ (B7)

(δζ −£ζ) R̃
µ
νρσ =

2

n

(

δαν δ
µ
[ρδ

β
σ] − gµαgν[ρδ

β
σ]

)

∇̃α∇̃β∇̃λζ
λ (B8)

(δζ −£ζ) ∇̃τ R̃
µ
νρσ =

2

n

(

δαν δ
µ
[ρδ

β
σ] − gµαgν[ρδ

β
σ]

)

∇̃τ ∇̃α∇̃β∇̃λζ
λ. (B9)

After some straightforward manipulations, we obtain a somewhat lengthy expression for Πµ [ζ, δ] = (δζ −£ζ) θ
µ [δ],

Πµ [ζ, δ] =− 8

n

(√−g

ω

)
2
n

F σνρµ βαγ
α ∇̃σ∇̃β∇̃γ∇̃λζ

λδg̃νρ

+
8

n

(√−g

ω

)
2
n

F σνρµ βαγ
α ∇̃β∇̃γ∇̃λζ

λ∇̃σδg̃νρ

− 8

n

(√−g

ω

)
2
n

Gσνρµ βαγ τϑω
α ξ ∇̃σR̃

ξ
τϑω∇̃β∇̃γ∇̃λζ

λδg̃νρ

− 2

n

(√−g

ω

)
2
n

Eσνρµ∇̃σ∇̃λζ
λδg̃νρ +

4

n

(√−g

ω

)
2
n

F σνρµ βγη
α R̃ατϑω∇̃κ∇̃λζ

λδg̃νρ

(

δκβ δ
τ
σδ
ϑ
γ δ

ω
η + δκη δ

τ
βδ
ϑ
γ δ
ω
σ + δκσ δ

τ
βδ
ϑ
γ δ
ω
η − gσβg

κτδϑγ δ
ω
η − gσηg

κωδτβδ
ϑ
γ

)

+
2k

n

∂Lψ
∂ (∂µψ)

δψ∇̃λζ
λ, (B10)
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where

F νρσ βγη
µ α =

∂E νρσ
µ

∂R̃αβγη
=

∂2L

∂R̃αβγη∂R̃
µ
νρσ

, (B11)

G νρσ βγη τϑω
µ α ξ =

∂2E νρσ
µ

∂R̃ξτϑω∂R̃
α
βγη

=
∂3L

∂R̃ξτϑω∂R̃
α
βγη∂R̃

µ
νρσ

. (B12)

We now use that δζθ
µ [δ] = £ζθ

µ [δ] + Πµ [ζ, δ]. Expanding £ζθ
µ [δ] then yields

δζθ
µ [δ] =£ζθ

µ [δ] + Πµ [ζ, δ] = ζν∇̃νθ
µ [δ]− θν [δ] ∇̃νζ

ν +Πµ [ζ, δ]

=− 2∇̃ν

(

θ[ν [δ] ζµ]
)

+ ζµ
1

16π

(√−g

ω

)
2
n (

Åαβ + 8πT̊αβ
)

δgαβ

+ ζµAψδψ − ζµδL− θµ [δ] ∇̃νζ
ν +Πµ [ζ, δ] , (B13)

where we used the general equation (21) to express ∇̃νθ
ν [δ] in the second equality.

Regarding the second term in Ωµ [δζ , δ], a direct calculation leads to

−δθµ [δζ ] =− 1

8π

(√−g

ω

)
2
n

A µ
ν ζ

ν + ζµδL− δ (ζ ·Aψ · ψ)µ

+
4

n
δEµνρν∇̃ρ∇̃λζ

λ − 4

n
δ
(

∇̃ρE
µνρ

ν

)

∇̃λζ
λ

+ ∇̃ν

[

2∇̃ρζ
σδEνµρσ − 4ζσδ

(

∇̃ρE
νµρ

σ

)]

+ ∇̃νδQ
νµ
ψ,ζ , (B14)

where Qνµψ,ζ is an antisymmetric tensor that arises from the matter part of θµ [δζ ] which depends on ζµ but not

its derivatives10. If ζµ generates a transverse diffeomorphism, the last line can be identified as the Weyl covariant
divergence of the corresponding Noether charge (this is clear from the comparison with equation (45)).
Altogether, we have for the symplectic current Ωµ [δζ , δ]

Ωµ [δζ , δ] =∇̃ν

[

2∇̃ρζ
σδEνµρσ − 4ζσδ

(

∇̃ρE
νµρ

σ

)]

− 2∇̃ν

(

θ[ν [δ] ζµ]
)

+ ∇̃νδQ
νµ
ψ,ζ

+Πµ [ζ, δ]− θµ [δ] ∇̃νζ
ν +

4

n
δEµνρν∇̃ρ∇̃λζ

λ − 4

n
δ
(

∇̃ρE
µνρ

ν

)

∇̃λζ
λζµ

+
1

16π

(√−g

ω

)
2
n (

Åαβ + 8πT̊αβ
)

δgαβ − 1

8π

(√−g

ω

)
2
n

A µ
ν ζν

+ ζµAψδψ − δ (ζ ·Aψ · ψ)µ . (B15)

So far, we have been working off shell. Assuming that both the original and the perturbed spacetime satisfy the
equations of motion, it holds

Ωµ [δζ , δ] = ∇̃ν

[

2∇̃ρζ
σδEνµρσ − 4ζσδ

(

∇̃ρE
νµρ

σ

)]

+ ∇̃νδQ
νµ
ψ,ζ − 2∇̃ν

(

θ[ν [δ] ζµ]
)

− 1

8π
ζµδΛ +Πµ [ζ, δ]− θµ [δ] ∇̃νζ

ν +
4

n
δEµνρν∇̃ρ∇̃λζ

λ − 4

n
δ
(

∇̃ρE
µνρ

ν

)

∇̃λζ
λ. (B16)

Finally, integrating over a suitable Cauchy surface C yields the symplectic form Ω [δζ , δ] and, therefore, the perturbation
of the Hamiltonian corresponding to the evolution along ζµ (67).
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[6] A. Alonso-Serrano, L. J. Garay and M. Lǐska, “Noether charge formalism for Weyl transverse gravity,” [gr-qc/2204.08245].
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[8] C. Barceló, R. Carballo-Rubio and L. J. Garay, “Unimodular gravity and general relativity from graviton self-interactions,”
Phys. Rev. D 89 (2014) 124019 [gr-qc/1401.2941].
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