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Abstract
Security is a core responsibility for Function-as-a-Service 
(FaaS) providers. The prevailing approach isolates concur-
rent executions of functions in separate containers. However, 
successive invocations of the same function commonly reuse 
the runtime state of a previous invocation in order to avoid 
container cold-start delays. Although efficient, this container 
reuse has security implications for functions that are invoked 
on behalf of differently privileged users or administrative do-
mains: bugs in a function’s implementation — or a third-party 
library/runtime it depends on — may leak private data from 
one invocation of the function to a subsequent one.

Groundhog isolates sequential invocations of a function 
by efficiently reverting to a clean state, free from any private 
data, after each invocation. The system exploits two prop-
erties of typical FaaS platforms: each container executes at 
most one function at a time and legitimate functions do not 
retain state across invocations. This enables Groundhog to 
efficiently snapshot and restore function state between invo-
cations in a manner that is independent of the programming 
language/runtime and does not require any changes to exist-
ing functions, libraries, language runtimes, or OS kernels. We 
describe the design and implementation of Groundhog and 
its integration with OpenWhisk, a popular production-grade 
open-source FaaS framework. On three existing benchmark 
suites, Groundhog isolates sequential invocations with modest 
overhead on end-to-end latency (median: 1.5%, 95p: 7%) and 
throughput (median: 2.5%, 95p: 49.6%), relative to an insecure 
baseline that reuses the container and runtime state.

CCS Concepts: • Security and privacy → Systems security; 
Software and application security.
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1 Introduction
Function-as-a-Service (FaaS) is an emerging high-level ab-
straction for cloud applications. Tenants state their application
logic as a function implementation written in a high-level lan-
guage like Python or JavaScript. The FaaS provider exports
an HTTP/S endpoint, which can be used to invoke the func-
tion with arguments and receive results. The FaaS provider
is responsible for deploying and executing the tenants’ func-
tions, provisioning and scaling resources as workload demand
fluctuates, and maintaining and multiplexing the hardware and
software infrastructure across different tenants and functions.
FaaS has an ‘on-demand’ charge model: a tenant only pays for
the compute time used to execute their functions.

Among the core responsibilities of a FaaS provider is secu-
rity. For scalability and efficiency, FaaS platforms multiplex
functions of different tenants concurrently on a large pool of
shared resources. FaaS platforms rely on various language-,
process-, and VMM-based isolation mechanisms to isolate
functions from one another: each function executes within
its own execution environment and different functions do not
share the same execution environment. Container isolation is
a commonly-used, general, low-entry-barrier function isola-
tion mechanism that relies on standard OS process-isolation
primitives. An alternative to container isolation is VMM-based
isolation, where each function executes in a separate VM. Both
container and VMM-based isolation prevent a malicious or
compromised function from affecting the availability, integrity,
and confidentiality of other function instances.

So far, the focus of security in FaaS has been on isolat-
ing different function instances from one another. Ideally, a
FaaS platform should provide the same degree of isolation
among sequential activations of the same function instance;
otherwise, bugs in a function implementation, or a third-party
library/runtime it depends on, may cause a leak of information
from one activation of a function to a later one. This sequential
request isolation is critical if a function can be invoked by, or
on behalf of, differently privileged callers, such as clients of
a tenant’s service built on top of the function. For example, if
the same function container is first invoked to service Alice’s
request and then invoked again to service Bob’s request, there
is a possibility that a bug in the function, some library, or the
language runtime causes Alice’s data from the first request to
be retained and later leaked into the response to Bob.
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Such leaks may arise despite the fact that FaaS functions are
normally written in memory-safe, high-level languages like
JavaScript or Python. First, functions written in such languages
may still contain logical bugs that leak data. Second, high-level
languages rely on libraries (e.g. NumPy, PyTorch, and Ten-
sorFlow for Python) that are written in unsafe languages like
C/C++ for efficiency. In fact, the preliminary OWASP report
of the Top 10 serverless security risks [47] mentions “inse-
cure shared space" not cleared between sequential uses of a
container as a risk to consider. An attack exploiting the tmp
filesystem, which is an instance of insecure shared storage in
FaaS, was demonstrated in [48]. More generally, unsecured
shared space in FaaS can in principle enable attacks similar
to those known from traditional server environments, such as
the infamous Heartbleed bug [1], the Cloudbleed bug [32],
and many others affecting various programming languages,
frameworks, and libraries [2, 12, 13, 30, 63, 65].

To provide request isolation, FaaS providers like AWS
lambda suggest partitioning clients from different security do-
mains by redirecting them to distinctly named functions [15].
This approach requires code duplication and does not scale
to services that have many mutually distrusting clients, as is
commonly the case in e-commerce, for instance. A trivial way
to ensure sequential request isolation would be for the provider
to execute every activation of a function in a freshly initialized
container. However, this solution is problematic from the per-
spective of performance: Container initialization overheads
are high, ranging from a few seconds when done naively to
hundreds of milliseconds with existing solutions that reduce
the cost of container cold-starts [8, 16, 23, 27, 44, 54, 57, 62],
which is higher than the basic execution time of a significant
fraction of FaaS functions. For example, function execution
times in Microsoft Azure were reported to have a median
of 900 ms and a 25th %-ile of 100 ms [51] and we observe
even lower execution times in our experimental setup. Hence,
this trivial solution would impose impractical overhead. A
more efficient solution would be to fork a copy of a fully ini-
tialized process for each function invocation and discard the
copy once it terminates. Unfortunately, fork does not work for
multi-threaded functions or language runtimes [34].

This paper presents Groundhog, a lightweight sequential re-
quest isolation system for container-based FaaS frameworks.1

Importantly, Groundhog reuses containers across requests to
the same function, thus avoiding the per-activation container
re-initialization cost of the trivial solution above. Groundhog
is independent of the language, runtime, or libraries used to
implement functions, does not require changes to function
implementations, OS kernels or hypervisors, and preserves
most of the performance benefits of container reuse. To the
best of our knowledge, Groundhog is the first system to do so.

1We describe our work in the context of FaaS platforms that use containers to
isolate different functions from each other, but similar design principles should
apply to VMM-based isolation as Groundhog operates on the OS-process level.

Groundhog exploits two properties of FaaS platforms to pro-
vide a general-purpose, lightweight, performant solution: (1)
At most one function activation executes at any time in a con-
tainer; and (2) functions are not expected to retain runtime state
across activations. Accordingly, the core of Groundhog’s se-
quential request isolation is a general, in-memory, lightweight
process snapshot/restore mechanism. Groundhog encapsu-
lates each function in a (containerized) process, and takes a
snapshot of each function process’ fully initialized state just
before the function is invoked for the first time. While this state
typically includes a fully initialized language runtime, possi-
bly with multiple threads, the function has not yet received
activation-specific arguments or credentials, and its state is
therefore guaranteed to be free of secrets. Subsequently, when-
ever the function has finished an activation and returned its
results, Groundhog restores the function’s process to the clean
state recorded in the snapshot.

Groundhog is secure because the restoration ensures that no
data can leak from one activation to a subsequent one. Ground-
hog is efficient because the cost of restoring state is roughly
proportional to the amount of memory modified during an acti-
vation. As we will show, most function activations modify only
a small proportion of the function process’ total state. Finally,
Groundhog restores state between activations of a function,
and therefore does not contribute much to a function’s activa-
tion latency under low to medium server load.

We have implemented Groundhog in C using commodity
Linux kernel facilities. We evaluate Groundhog in OpenWhisk
using Python, Node.js, and C functions from the FaaSPro-
filer [50], pyperformance [60], and PolyBench/C [40] bench-
marks, which cover a wide variety of use cases. We demon-
strate that Groundhog achieves sequential request isolation
with modest overhead on end-to-end latency (median: 1.5%,
95p: 7%) and throughput (median: 2.5%, 95p: 49.6%) relative
to an insecure baseline that reuses containers and runtimes.
The main contributions of this paper include:
1. The design of a language- and runtime-independent, in-

memory lightweight process snapshot/restore mechanism
for general-purpose sequential request isolation in FaaS
while retaining the performance benefits of container reuse.

2. The design and implementation of Groundhog,2 a system
that provides lightweight sequential request isolation on
commodity Linux kernels and its integration into the Open-
Whisk FaaS platform. Groundhog can be retrofitted to ex-
isting commercial systems without any changes to existing
functions, libraries, language runtimes, and OS kernels.

3. An experimental evaluation of Groundhog on functions
from the FaaSProfiler [50], pyperformance [60], and Poly-
Bench/C [40] benchmarks within the OpenWhisk FaaS
platform, which demonstrates that Groundhog provides se-
quential request isolation with low to modest overhead on
function latency and peak throughput.

2Groundhog is open-source and is available at [5].
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2 Background

Functions and Requests In the Function-as-a-Service (FaaS)
model, tenants upload functions for execution by the cloud
provider. A function is usually written in a high-level lan-
guage, accepts input arguments, and returns results. The FaaS
platform exposes an HTTP/S endpoint to which the tenant’s
applications can send requests with arguments, and receive
results in response.
Containers and Function Invocation The FaaS provider
is responsible for executing functions on demand. FaaS plat-
forms execute functions within containers, which may take
the form of language-enforced compartments [20, 25, 52], pro-
cesses [4], OS containers [9, 26, 41, 45], or VMs [3, 6]. When a
request arrives for a particular function, an instance of the con-
tainer needs to execute in order to serve the request. The FaaS
platform may either instantiate a new container instance for the
requested function from scratch—a cold-start—or reuse an
existing idle container instance for the function if one exists.
FaaS platform services Many FaaS platforms offer ten-
ant’s function implementations access to platform services.
These services include storage, such as file access to scratch
storage on a local disk, persistent key-value stores, or full rela-
tional database backends. Platform services may also provide
automatic invocation of tenant’s functions triggered by timers,
writes to certain key-value tuples, or updates to certain rows
in a database.
Access control FaaS providers support client authentication
on HTTP/S endpoints and minimally check if a caller is au-
thorized to invoke the function, based on an access control list
provided by the tenant. Access to platform services by the func-
tion is controlled in this case on a per-tenant basis. Some FaaS
providers like AWS-lambda, Azure FunctionApps, Google
Cloud Functions, and IBM Cloud Functions [6, 26, 29, 41]
associate more fine-grained, per-caller3 credentials to a func-
tion activation. Here, activations of the same function can have
access to different platform services depending on the caller.
Tenants can use this facility to control information flow via
platform services among differently privileged callers of the
same function, such as the different end-users of a tenant’s
deployed application.
Security Security is a chief concern – beyond per-tenant or
per-caller access control to functions and platform services,
FaaS platforms must prevent a buggy or malicious function
from compromising other functions or obtaining unauthorized
access to platform services. Containers are the key design
choice for achieving such function isolation. Each container
instance executes a single function. Moreover, a container may
be reused for repeated invocations of the same function.
Sequential request isolation Our focus in this work is se-
quential request isolation, which isolates repeated invocations

3In this paper, the caller is the entity causally responsible for the activation
of a function.

of the same function within the same container from each other.
This isolation is important because bugs or compromises in a
function implementation, or a third-party library or runtime
that the function relies on, can cause confidentiality breaches
by either (i) exposing private arguments of an activation to
a subsequent activation of the function, or (ii) using the cre-
dentials of an activation to obtain information from platform
services and leak them to a subsequent, less privileged activa-
tion. In addition, such leaks can lead to integrity breaches, e.g.,
when an activation uses credentials leaked from a previous,
more privileged activation.

A trivial method of sequential request isolation is to start
each request in a freshly-initialized container (forcing a cold-
start on each request). However, container initialization is
expensive, as is well-known from studies on FaaS cold start
latencies. Despite excellent progress on reducing container
initialization costs [8, 23, 57, 62], black-box techniques could
still add hundreds of milliseconds of overhead on the critical
execution path relative to standard insecure warm-container
reuse. This overhead is of the same order of magnitude as a
significant fraction of FaaS functions.

Consequently, we seek a different request isolation tech-
nique for FaaS that does not rely on container cold-start on
every request and has low overhead relative to an insecure base-
line that provides no isolation between sequential requests to
the same function. Our solution adds only a few milliseconds
of overhead off the critical path of a request (median: 3.7 ms,
95p: 16.1 ms) and a minimal overhead for tracking modifica-
tions on the critical path (median: 1.5%, 95p: 7%) relative to
an insecure baseline that does not provide sequential request
isolation. We aim for a practical technique and particularly
target a black-box approach that can be applied directly to
functions independent of language or FaaS platform.

3 Design Preliminaries
Groundhog operates at the level of OS processes. It can be read-
ily integrated into FaaS platforms that encapsulate language
runtimes and functions in processes or containers, which in-
cludes most major FaaS platforms currently in production use
as far as we know. Moreover, Groundhog places no restrictions
on function implementations or the programming language,
runtime, or third-party libraries they rely on. Groundhog trans-
parently interposes on API calls between a function implemen-
tation and the FaaS platform. Function implementations as
well as the existing FaaS platforms can remain unchanged.

By interposing on a function’s API calls, Groundhog detects
when the function is invoked and when its execution finishes
and returns results. Groundhog uses this information to trans-
parently create an initial snapshot of a newly created process
before its first invocation and reverts its state after it has fin-
ished executing an invocation. For this purpose, Groundhog
relies on a custom in-memory process snapshot/restore facility.
The facility relies on standard Linux functionality, such as
soft-dirty bits to track modified pages, the /proc filesystem to
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Fig. 1. Groundhog container life cycle

monitor changes to the process’ address space mappings and
read/write process memory, and ptrace to orchestrate state
snapshot and restore.

Fig. 1 illustrates a function process’s life cycle when Ground-
hog is being used. Groundhog avoids container, runtime, and
data initialization steps when reusing a function container
(process), and reverts the process’ state in a median of 3.7 ms
(10p: 0.7 ms, 25p: 1 ms, 75p: 5.4 ms, 90p: 13 ms). From the
perspective of the FaaS platform, the Groundhog-enabled con-
tainer enjoys the benefits of container reuse, while ensuring
sequential request isolation irrespective of bugs in a function’s
implementation, libraries, or runtime.

3.1 Insights
Groundhog relies on two key properties of the FaaS model as
implemented by major FaaS platforms, and one observation
about typical FaaS functions. We start with the two properties
of FaaS platforms.
One-at-a-time function execution In FaaS platforms, each
function container executes at most one request at a time. For
scalable throughput, platforms create separate containers to
concurrently execute activations of different functions or mul-
tiple activations of the same function.
Stateless functions In the FaaS programming model, a func-
tion implementation cannot expect that its internal state is
retained across activations. To maintain persistent state, func-
tions must instead rely on external or platform services such
as a key-value store or a database backend [14].

Some FaaS platforms support global state to enable per-
formance optimizations. This state can be initialized using
tenant-supplied code that is executed once a function container
is initialized. Such an initialization step serves as a mechanism
to pre-compute or cache data and state that can be utilized by
several subsequent function activations independent of their
inputs (e.g., populating data structures, downloading machine
learning models). This state is retained across invocations as
long as the container is reused, but is lost when the FaaS plat-
form shuts down a container. Since the platform is free to shut
down a container at any time, functions must not rely on the
persistence of such global state for correctness.

The statelessness requirement implies that simple statistics
counters or the internal state of a PRNG, for instance, must not
be assumed to persist across invocations of a function; function
implementations should use explicit platform facilities for per-
sistent state and PRNGs instead. Data loss and/or functionality
anomalies may arise if a function implementation or a library it
depends on relies on internal or global state being maintained
across invocations, because the FaaS runtime may destroy and
refresh a container between invocations.

The one-at-a-time and statelessness properties afford FaaS
providers a high degree of flexibility in placing, scheduling,
and dynamically replicating function activations. In the con-
text of Groundhog, these properties imply that each reused
container has well-defined points in its life cycle—namely
between sequential activations—when its state can be safely
restored to a point after the initialization of global state but
before the first function activation, thereby ensuring sequential
request isolation.

Additionally, Groundhog relies on the following observa-
tion about typical FaaS functions for its efficiency.
Small write sets FaaS functions, particularly those writ-
ten in managed languages, often use a substantial amount of
memory, but only a small proportion of it is modified during
an activation. This improves Groundhog’s efficiency because
only modified parts of memory need to be restored after an
activation. Our empirical evaluation on 58 benchmarks shows
that the number of pages actually modified by each function
invocation is only a small fraction of the overall function mem-
ory (mean: 8.5% of the mapped address space is modified,
median: 3.3%, 90p: 17%). A similar observation was reported
by REAP [57], where the examined functions’ working sets
(i.e., modified pages and pages that were only read) were on
average 9% of their memory footprints. Full measurement data
for our benchmarks can be found in [5].

Groundhog’s design and implementation, which is discussed
in §4, were guided by these key insights.

3.2 Design options

Besides the trivial solution of using a fresh container for ev-
ery request, which is inefficient, there are three broad design
approaches for efficient sequential request isolation.
Language-based approaches When using appropriate safe
programming languages [17], compiler instrumentation tech-
niques [61], or runtimes [64] to implement functions, the lan-
guage semantics can ensure efficient request isolation. How-
ever, this approach requires all tenants to use a particular (set
of) programming languages/compilers, prevents the use of
libraries written in unsafe languages for efficiency, and is vul-
nerable to bugs in the language runtime.
Fork A simple process-based technique is to fork a fully
initialized function process, execute an activation within the
child process, and discard the child process after the activa-
tion finishes. The main limitation of this approach is that fork
as implemented in general-purpose operating systems cannot
capture the state of a multi-threaded process. To take full ad-
vantage of container reuse, we need to be able to snapshot the
fully initialized runtime of a managed language like JavaScript,
which typically includes multiple active threads. Additionally,
fork (or any copy-on-write (CoW) based approach) incurs
expensive data-copying page faults during the execution of the
function (i.e., on the critical path of a request).
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Custom snapshot/restore facilities have been explored in
prior work [8, 23, 33, 53, 54, 57] to reduce container cold-start
costs by snapshotting an initialized runtime to disk/memory,
and restoring it when a new container is needed. In principle,
this approach could be used to instantiate a container for each
activation. While substantially better than a cold-start for each
activation, instantiating a container from a snapshot is still
too expensive when compared to container reuse for many
functions in our benchmarks.

3.3 Threat model
The FaaS platform, including the platform software, OS ker-
nels, hypervisors, and platform services are trusted. We assume
that the platform authenticates clients who connect to HTTP/S
endpoints, and enforces access control to functions, as well as
a function activation’s access to platform services according
to the authenticated client’s credentials.

Legitimate tenants are expected to set up access control lists
that allow only legitimate parties to invoke their functions,
and prevent unwanted information flow via platform services
among legitimate callers with different privileges.

Function implementations provided by tenants, including
any libraries they link and the language runtimes they rely
on, are untrusted and may contain bugs that retain credentials
or sensitive data in the function’s memory (e.g., a payment-
processing/invoice-preparation function may retain credit card
information) from one client request and leak it to a later re-
quest from a different client.

Under these assumptions, Groundhog prevents leaks of in-
formation from a function activation to subsequent ones, while
allowing container reuse. Side-channels are out of scope.

4 Groundhog Design and Implementation

Standard 
Linux 
Kernel

Groundhog
Snapshot/Restore

ptraceMemory Tracking
(soft-dirty/userfaultfd) /proc fs

stdin

f
stdout
stderrFaaS

Platform

Fig. 2. Groundhog Architecture: (1) The manager (solid green
box), (2) The function process. Groundhog relies on standard
Linux kernel utilities.

Fig. 2 illustrates the Groundhog architecture. The Ground-
hog manager process (solid green box) runs within an OS
container alongside the function process, and is responsi-
ble for enforcing request isolation. Groundhog uses a novel,
light-weight, in-memory process snapshot/restore facility that
achieves low restore times. The facility relies on standard
Linux kernel features to snapshot, track, and restore processes.
The design was guided by the following goals:

Generality The facility operates on a generic, multi-threaded
POSIX process and makes minimal assumptions about the
code (function) executing inside the process. Groundhog can
be used on an opt-in basis: each tenant can decide whether to
enforce sequential request isolation for their functions.
Restore cost proportional to modified pages To take ad-
vantage of the fact that most function activations only modify
a small proportion of the function process’ state, Groundhog
tracks pages modified during a function activation using the
Linux soft-dirty bits tracking facility. As a result, Groundhog
need only restore modified pages after an activation.
Restore cost off the critical function execution path FaaS
platform servers, and production servers in general, are less
than fully utilized most of the time. Therefore, the design of
Groundhog’s snapshot/restore facility seeks to minimize over-
head during a function’s execution, in favor of performing
all restore-related tasks between function activations. Ground-
hog performs two main operations. First, Groundhog takes an
in-memory snapshot of the function process after a container
is created. This operation contributes only to the cold-start
latency. Second, Groundhog restores the memory layout and
content to the snapshotted state after a function invocation com-
pletes. Groundhog avoids copy-on-write and the associated
expensive data-copying page faults and it does not intercept
memory-layout-modifying syscalls during a function’s execu-
tion. Instead, Groundhog identifies and reverts changes in the
memory layout by diffing the memory layout, and restores the
content of modified pages as indicated by Linux’s soft-dirty
bits; it performs these actions during a restore operation, after
a function invocation completes and has returned its result to
the invoker. Hence, Groundhog performs expensive operations
between function invocations, minimizing overhead during
function execution.

4.1 Container initialization

The Groundhog manager process interposes between the FaaS
platform and the process executing the function. The FaaS plat-
form initializes the Groundhog manager process as if it were
the process executing the function. The Groundhog manager
then receives requests from the FaaS platform, relays them to
the function process, and communicates results back to the
FaaS platform. It communicates with the FaaS platform using
the latter’s standard communication channels (in OpenWhisk—
the platform on which our prototype runs—these are usually
stdin and stdout.)

To initialize the actual function process, Groundhog forks a
new process, prepares pipes for communicating with it, drops
privileges of the child process, and execs the actual function
runtime in the child process.

Next, Groundhog creates a snapshot of the function process.
As a performance optimization, before taking the snapshot,
Groundhog invokes the function with dummy arguments that
are independent of any client secrets. These dummy arguments
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can be provided by the function deployer, once for every func-
tion they deploy, and can be part of the function’s configuration.
After the function returns, Groundhog snapshots the state of
the function process as described in §4.2. After this snapshot
is created, Groundhog informs the platform that it is ready to
receive actual function invocation requests.

The purpose of the dummy invocation is to trigger lazy pag-
ing, lazy class loading, and any application-level initialization
of global state, and to capture these in the snapshot. Snapshot-
ting without a dummy request would cause these (expensive)
operations to happen again after every state restoration, which
would increase the latency of subsequent function activations.
This is particularly relevant when the function runs in an in-
terpreted runtime like Python or Node.js, which may heavily
rely on lazy loading of classes and libraries [38]. We note that
the arguments provided to a dummy invocation may affect
performance but not security.

4.2 Snapshotting the function process

To take a snapshot, the manager interrupts the function process,
then (a) stores the CPU state of all threads using ptrace [35];
(b) scans the /proc file system to collect the memory mapped
regions, memory metadata, and the data of all mapped memory
pages; (c) stores all of this in the memory of the manager pro-
cess; and (d) resets the soft-dirty bits memory tracking state.
Finally, the manager resumes the function process, which then
waits for the first request inputs. After the request is completed,
Groundhog restores the function’s process state back to this
snapshot before accepting a new request.

4.3 Tracking state modifications

Groundhog uses the standard Soft-Dirty Bits (SD) feature of
the Linux kernel [36],4 which provides a page-granular, light-
weight approach to tracking memory modifications. Each page
has an associated bit (in the kernel), initially set to 0, that is set
to 1 if the page is modified (dirtied). When a function invoca-
tion completes, Groundhog scans the SD-bits exposed by the
Linux /proc filesystem to identify the modified pages. After
restoring the function process, Groundhog resets all SD-bits
to 0, ready for the next invocation.

We considered using Linux’s user-space fault tracking file
descriptor (UFFD) [37]5 feature for memory tracking and
prototyped this alternative; however we found UFFD to have
significantly higher overhead compared to SD-bits due to the
frequent context switches to user-space for fault handling.6

UFFD was marginally faster than soft-dirty bits only when the
number of dirtied pages was close to zero.

4Available on stock Linux kernels v3.11+. We identified and reported a bug
that affected the accuracy of the SD-Bits memory tracking in v5.6; the bug
was fixed in v5.12 [42].
5Write protection notifications available on stock Linux kernels v5.7+.
6A custom in-kernel facility that allows an application to request a list of
modified pages presumably could be much faster, but would require kernel
modifications.

4.4 Restoring to the snapshotted state

When a function invocation completes, the function process re-
turns the result to the Groundhog manager. Groundhog’s man-
ager awaits the function response and forwards it to the FaaS
platform (which then sends it to the caller). Next, the manager
interrupts the function process and begins a restore. The man-
ager identifies all changes to the memory layout by consulting
/proc/pid/maps and pagemap (e.g. grown, shrunk, merged,
split, deleted, new memory regions); these changes are later
reversed by injecting syscalls using ptrace [24, 35, 54]. The
manager restores brk, removes added memory regions, remaps
removed memory regions, zeroes the stack, restores memory
contents of pages that have their SD-bit set, madvises newly
paged pages, resets SD-bits, and finally restores registers of all
threads.

After restoration completes, the child process is in an iden-
tical state to when it was snapshotted, and the process is ready
to execute the next request.

There are multiple optimizations that can be applied at the
platform level. For instance, if a function is invoked consecu-
tively by mutually trusting callers, then the FaaS platform can
route the invocations to the same function instance and instruct
Groundhog to skip the rollback between such invocations. Sim-
ilarly, if the system is under heavy load due to invocations of
different functions, then the FaaS platform may quarantine the
containers and instruct Groundhog to defer the restoration.

4.5 Enforcing request isolation

Groundhog enforces request isolation by design. Groundhog
prevents new requests from reaching the function’s process
until it has been restored to a state free from any data of pre-
vious requests. This is achieved by intercepting the end-client
requests before they reach the function and buffering them in
Groundhog until the function’s process has been restored.

Although intercepting the communication ensures control
of the function process and enforces security, it can add an
overhead of copying request input/outputs to and from Ground-
hog’s manager process. This overhead can be eliminated as
follows: (1) The FaaS platform can forward inputs directly to
the function process after waiting for a signal from Ground-
hog’s manager process that the function has been restored to a
clean state. This requires minor changes to the FaaS platform
to wait for the signal from Groundhog. (2) Upon completion
of a request, the function process can return outputs directly
to the FaaS platform and, separately, signal Groundhog’s man-
ager process that its state can be rolled back. The changes
needed can be made in the I/O library that handles communi-
cation with the platform in the function process (no changes
are needed to the code of the individual functions submitted
by the developers).7

7We implemented (2) to facilitate debugging. Our evaluation still intercepts
all inputs and outputs to demonstrate that platform modifications were not
required and show the overhead of such interception on various functions.
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Assumptions: Groundhog relies on some standard Linux
kernel facilities that must not be blocked by the provider,
namely the ptrace system call, the /proc file system, and
the soft-dirty bits tracking. Groundhog expects that function
implementations do not open network connections and files
directly. (None of the benchmarks we use in the evaluation
require them.) Instead, functions are expected to rely on plat-
form services for network communication, storage, and for
maintaining any persistent state.

Groundhog ’s design is generic and agnostic to the function
logic. However, our prototype currently does not support func-
tions that fork child processes.8 In principle, Groundhog could
be extended to intercept fork syscalls and track the child pro-
cesses as well through standard ptrace tracking options. Sim-
ilarly, syscalls (such as seccomp) that can limit the availability
of standard Linux kernel facilities required by Groundhog
can be intercepted and adjusted to remain permissive enough
through standard ptrace options.

Finally, as stated in our threat model, any external state (e.g.
external storage, or the state of network connections and pipe
contents) is assumed to be subject to access control. This is
necessary to prevent data leaks across clients with different
privileges via the external state.

5 Evaluation
In this section we evaluate Groundhog’s performance on a
range of FaaS benchmarks. Overall, we show that:
• For a wide range of benchmark functions using three differ-

ent languages/runtimes, Groundhog has modest overhead
on end-to-end latency and throughput.

• Groundhog’s latency overhead depends primarily on the
memory characteristics of the function and is proportional
to the number of pages dirtied during a function’s execu-
tion. Groundhog’s throughput scales nearly linearly with the
number of available cores.

• Groundhog’s lightweight restoration has equivalent or better
performance than a strawman fork-based isolation approach,
which is less general. We also compare to a WebAssembly-
based isolation approach, and show that Groundhog has
competitive performance despite being more general.

5.1 Evaluation Overview

Implementation. We implemented Groundhog in ~6K lines
of C. Groundhog is compatible with off-the-shelf Linux and
requires no kernel changes.
OpenWhisk Integration. We integrated Groundhog with
OpenWhisk [46] by modifying OpenWhisk’s container run-
times for Python and Node.js to include Groundhog. In addi-
tion, we implemented an OpenWhisk container runtime for
native C, to enable the evaluation of native C FaaS benchmarks.
Most OpenWhisk runtimes use the actionloop-proxy design,
8We have not seen such a computational pattern in the FaaS paradigm;
parallelism is typically achieved in FaaS through multiple function instances.

where a distinct process acts as a proxy that communicates
with the OpenWhisk platform (through HTTP connections),
and forwards the requests to the runtime process (through
stdin), which has a simple wrapper to process inputs, call the
developer’s function, and return results. Groundhog interposes
between the proxy and the runtime, intercepting the stdin and
stdout and forwards the stdin only when the function’s process
is restored to a clean state. OpenWhisk’s container runtime for
Node.js, on the other hand, is built using a single process that
directly interacts with the platform and runs the function. We
refactored it to an actionloop-proxy-like design to maintain
a uniform Groundhog implementation that ensures security
by blocking inputs until the function’s process is restored to
a clean state.9

For the FaaS OpenWhisk-python-runtime, we added to the
FaaS-provider wrapper 15 Lines of Code (LoC) to signal
the function’s readiness for snapshotting and restoration to
Groundhog as well as to collect timing measurements of the
function handler from inside the process. One line was mod-
ified to run Groundhog instead of the runtime with the runtime
command passed as an argument to Groundhog. The container
image was modified to include Groundhog.

For the FaaS OpenWhisk-Node-runtime, we refactored the
runtime to follow the unified proxy design, which required
modifying 150 LoC. If we had chosen to run the un-refactored
runtime under Groundhog, only 30 LoC (same logic as for
the python runtime) would need to be added, in addition to a
signaling mechanism with the platform as described in §4.5.

We implemented a new OpenWhisk-C-runtime; the baseline
required 60 LoC and the Groundhog version required an ad-
ditional 21 LoC (same logic as for the python runtime). An off-
the-shelf cJSON parsing library (2.5K LoC) was also added.

In general, integrating Groundhog with a FaaS platform that
forward requests to (and receives results from) the function
process through file descriptors would require changes simi-
lar to ours for OpenWhisk. Integrating Groundhog with FaaS
platforms that retrieve requests through an HTTP API can be
done by modifying Groundhog to handle the request retrieval
and response sending, and by updating the FaaS runtime to
retrieve the request from and send the response to Groundhog.
Alternatively, a signalling mechanism between Groundhog
and the FaaS platform can be implemented as outlined in §4.5.
Hardware Configuration. We ran all experiments on a
private cluster hosting OpenStack/Microstack (ussuri, r233).
Each physical host has an Intel Xeon E5-2667 v2 2-socket,
8-cores/socket processor, 256GB RAM and a 1TB HDD.
OpenWhisk Deployment. We use the standard distributed
Openwhisk deployment. Our distributed setup comprises 2VMs.
One VM runs all OpenWhisk core components except for the

9Encapsulating the full process would require Groundhog to implement the
platform API or have a small platform modification to allow blocking inputs
until Groundhog signals to the platform that the function’s process is being
restored as described in 4.5.
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invoker, which runs on a separate VM. The invoker is the
component responsible for starting function containers locally
and dispatching function requests to them; this is the compo-
nent that interacts with the containers hosting Groundhog. We
choose to isolate the invoker component in a separate VM to
have more control over variables affecting the experiments.

Both VMs are placed on the same physical host to minimize
network communication overhead, creating favorable baseline
conditions. To reduce potential performance interference, we
pin the two VMs to separate cores and ensure that their mem-
ory is allocated from the corresponding NUMA domain. VMs
are configured with 64GB RAM and an experiment-dependent
number of cores (SMT turned off). The VMs run Ubuntu 20.04
with a stock Linux kernel v5.4. OpenWhisk is configured to run
all functions with a 2GB RAM limit and a 5 minute timeout.
Experiment Configurations. To evaluate Groundhog’s over-
heads, we run two primary configurations: BASE, an insecure
baseline using unmodified OpenWhisk that does not provide
sequential request isolation (we prevent container cold-starts
in our experiments to deliberately create an unfavorable but
conservative baseline); and GH, which uses Groundhog on
OpenWhisk to provide sequential isolation.

We also run a third configuration GHNOP, which includes
Groundhog but does not restore dirtied pages between con-
secutive invocations of the same function. This configuration
represents an optimization for the case where consecutive
requests are from the same security domain (through addi-
tional hints from the FaaS platform which can be implemented
as described in §4.5). The configuration also helps delineate
Groundhog’s page tracking and restoration costs, which is the
difference between the GH and GHNOP configurations.

Lastly, we compare Groundhog to two alternative approaches.
In §5.2.3 and §5.3.2 we implement a fork-based request isola-
tion method, FORK, which is applicable to single-threaded ap-
plications and runtimes only. In §5.3.3 we compare Groundhog
to FAASM, a research FaaS platform designed to reduce cold-
start latencies for WebAssembly-compatible functions. We
detail these alternative approaches in the respective sections.

5.2 Microbenchmarks
In this experiment, we evaluate Groundhog’s impact on request
latency and how that impact varies with the memory size and
the number of pages dirtied.10 We evaluate both the in-function
overheads that are on the critical path of function execution,
and the restoration overhead which occurs off the critical path.
We defer evaluating Groundhog’s snapshotting overheads,
which occur only once after a new container starts, to §5.5.
Microbenchmark. We implement a simple function in C
that pre-allocates an address space of a fixed size. Each invo-
cation (a) dirties a subset of the pages by writing a word to
10We also considered address space fragmentation (same overall address
space size but a varying number of memory maps) as an independent variable,
but found that it has no statistically significant impact on the overhead of GH

or FORK.
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Fig. 3. Latencies varying the number of dirtied pages (top)
and the address space size (bottom). Different colors represent
different request isolation methods (or no isolation for BASE).
Solid lines are latencies with in-function overhead but not
restoration overhead, while dashed lines include both. (The
lines of BASE and GHNOP coincide visually in the figure.)

each page of that subset, then (b) reads one word from each
mapped page, even those that were not dirtied. We set up a
4-core VM with a single function-hosting container (this con-
tainer is limited to 1 core), initialize the container, and then
repeatedly invoke the function. We measure function latencies
at the OpenWhisk invoker.

5.2.1 In-Function Overheads
Low-load Workload. We run the microbenchmark with a
low load workload comprising 150 requests submitted one-at-
a-time, with a small delay between consecutive requests. This
delay is sufficient for Groundhog to complete restoration be-
fore the next request arrives, so measurements for the low-load
workload capture only the in-function overheads.
Results. The solid lines in Fig. 3 (top) plot function latency
as we vary the number of pages dirtied from 0 to 100K with
a fixed 100K mapped pages. As expected, GH introduces some
latency overhead proportional to the number of dirtied pages.
This overhead is due to a minor page fault to set the soft-dirty
(SD) bit when a page is dirtied, which is required by the SD-bit
mechanism on our hardware. In contrast, GHNOP has negligible
overhead relative to BASE since the SD-bits set in the first run
are not reset (there is no memory restoration), and thus these
page faults are not incurred in subsequent runs.
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We also run a variant of the experiment where we fix the
number of dirtied pages to 1K and vary the address space size
from 1K to 100K pages. The solid lines in Fig. 3 (bottom) show
the function latency as we vary the address space size. We
observe that GH’s overhead is constant with respect to address
space size because the in-function overheads depend only on
the number of dirtied pages, which is fixed now.

5.2.2 In-function + Restoration Overheads
High-Load Workload. We repeat the two experiments

above with a high load workload comprising 150 requests
submitted back-to-back with no delay between consecutive
requests. This leads to additional delays while waiting for
Groundhog to complete restoration after the previous request.
In contrast to the low-load workload, the high-load work-
load thus reflects both the in-function and the off-critical-path
restoration overheads.
Results. The dashed lines in Fig. 3 (top) show the func-
tion latency as we vary the number of pages dirtied from 0 to
100K with a fixed 100K mapped pages. We observe higher
latency overheads for the high-load workload (dashed lines)
compared to the low-load workload (solid lines), and these
overheads grow linearly as the percentage of dirtied pages
increases. There is a change in slope at 60K because Ground-
hog is able to coalesce individual page restorations into fewer,
larger memory copy operations, which are more efficient.

Next, we repeat the second experiment variant. Fig. 3 (bot-
tom) shows the function latency as we vary the address space
size from 1K to 100K pages while fixing the number of dirt-
ied pages to 1K. Although in-function overheads are constant,
restoration overheads in this experiment increase linearly with
the address space size, because during restoration Groundhog
must scan the SD-bits of the whole mapped address space to
determine the pages to restore.

5.2.3 Comparison to Fork A potential alternative to our
lightweight restoration is to use copy-on-write techniques such
as fork (§3.2). Fork is not general purpose – it only works
for single-threaded functions – however we provide a perfor-
mance comparison for the purpose of illustration. We imple-
ment fork-based isolation and repeat the two microbenchmark
experiments. In our fork-based implementation, we initialize
the function up to the same point where Groundhog takes its
snapshot (a safe clean state after a dummy request). Instead
of lightweight restoration, each request is then handled by a
separate copy of the process forked at that state.

Fig. 3 (top) shows the function latency of FORK as we vary
the number of pages dirtied from 0 to 100K with a fixed 100K
mapped pages. We observe that the overhead of FORK is higher
than GH because each page fault is significantly more expen-
sive than for GH, entailing an additional page copy.

Fig. 3 (bottom) shows the function latency of FORK as we
vary the address space size from 1K to 100K pages while fixing
the number of dirtied pages to 1K. We see significantly higher

overhead for FORK compared to Groundhog, and a linear in-
crease in latency with the address space size. This increase
is predominantly due to the additional overhead caused by
dTLB misses on the first accesses to each page (even if unmod-
ified) of the new process. This access can additionally require
lazy creation of physical page table entries depending on the
memory layout of the program.

5.3 FaaS Benchmarks

In this section we evaluate Groundhog’s impact on request
latency and throughput for a range of FaaS benchmarks writ-
ten in three different languages. We first compare Groundhog
to an insecure baseline in OpenWhisk (§5.3.1). We then pro-
vide an illustrative comparison to a fork-based implementation
(§5.3.2) and to FAASM, an alternative WebAssembly-based
FaaS platform designed to optimize cold-starts, but that can
also be used for request isolation in limited cases (§5.3.3).
Benchmarks. We evaluate 58 functions across three bench-
marks and three languages: 22 python functions from the
pyperformance benchmark [60], 23 C functions from Poly-
Bench/C [40], and 13 functions (6 python, 7 Node.js) from the
FaaSProfiler benchmark suite [50].

These functions cover a wide variety of real FaaS use cases
such as Web applications, JSON and HTML parsing/conversion,
string encoding, data compression, image processing (2D, 3D),
optical character recognition (OCR), sentiment analysis, ma-
trix computations (e.g. multiplication, triangular solvers), and
statistical computations.
Latency. To measure latency we deploy a 4-core VM with
a single function container that is limited to at most one core,
and run a closed-loop client in a separate VM on the same
machine,11which submits requests one-at-a-time. This work-
load is similar to the low-load setting from §5.2.1 and enables
Groundhog to complete restoration in between consecutive
requests, so latency measurements reflect Groundhog’s in-
function overheads only. We report two latency measurements:
the end-to-end latency of requests as experienced by the end-
client (including all FaaS platform delays); and the invoker
latency, which measures only the function execution time at
the invoker, excluding overheads of the remaining FaaS plat-
form components, which Groundhog does not affect at all. All
measurements are averages of 1,200 invocations, except for C
functions longer than 10 seconds, where we report averages
of 90 invocations.
Measuring Throughput. To measure throughput we de-
ploy a 4-core VM with 4 function containers in a separate
VM that maintains a large number of in-flight requests (both
the number of function containers and in-flight requests are
chosen empirically to maximize throughput). This workload
is similar to the high-load setting from §5.2.2 as it ensures the

11This placement minimizes network latencies to achieve best baseline
performance and to allow easy and efficient scheduling of our 608 benchmark
configurations on our resources.
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FaaS platform is always saturated with requests. Throughput
measurements thus account for Groundhog’s full overheads
including both the in-function overheads and the restoration
overheads. Unless otherwise specified, we report the peak
sustained throughput in 4 runs, each at least 1.5 minutes long.
Detailed Measurements. In addition to the figures pre-
sented in this section, full measurement data for our bench-
marks can be found in [5]. Table 1 shows the absolute latency
and throughput measurements for the BASE, GH, GHNOP, FORK,
and FAASM configurations. Table 2 shows the relative over-
heads compared to an insecure baseline. Table 3 shows the
relation between the latency, overheads, and throughput of
Groundhog.

5.3.1 Baseline Comparison
Fig. 4 (rel. E2E lat.) shows the end-to-end request latency for
all benchmarks. For each benchmark, we normalize the latency
measurements relative to BASE; thus values <1 indicate better
latency than the base line and >1 represent worse latency.

We first consider the results for GH and GHNOP . The main
takeaway is that GH overhead on end-to-end latency relative
to BASE is low overall. In most cases it is negligible (within
one standard deviation). The median, 95th-percentile and max-
imum relative overheads are 1.5%, 7% and 54%, respectively,
and the overhead is below 10.5% in all benchmarks except img-
resize(n), where it is 54.2% (discussed in the next paragraphs).
The low overhead in most benchmarks is unsurprising, because
end-to-end latency measurements include delays within the
FaaS platform that are significant relative to the overhead added
by the SD-bit tracking. These significant platform overheads
are the same in the baseline and Groundhog. Unless otherwise
specified, GHNOP’s performance is on par with that of BASE.

GH overheads are more apparent when we inspect invoker
latencies. Fig. 4 (rel. inv. lat) plots the invocation latency for
all benchmarks, normalized to BASE. We observe that for
python and C benchmarks the Groundhog overhead is rela-
tively low. However, for some specific Node.js benchmarks
(Fig. 4 (FaaSProfiler (node)) the overhead is more pronounced,
up to 70% in the worst case. This occurs for two reasons.

First, GH and GHNOP proxy inputs to functions, which causes
additional overheads for some of the Node.js functions with
large inputs such as json and img-resize (which take inputs
of 200kB and 76kB, respectively). This cost arises due to our
refactoring of OpenWhisk’s Node.js runtime wrapper. This
overhead can be reduced by integrating Groundhog with the
original single-process version of OpenWhisk Node.js.

Second, Node.js has a time-dependent behavior in garbage
collection, namely, garbage collection can be triggered by the
passage of time. Snapshotting and restoration can adversely
affect this behavior, because restoration reverts the garbage
collection state. The impact of this garbage collection was par-
ticularly pronounced on some benchmarks such as img-resize
(n). The problem can be alleviated by virtualizing time such
that the process restoration resets the time to the original time
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Fig. 4. Relative end-to-end latency and invoker-measured
latency of GH, GHNOP, FORK, and FAASM compared to the
insecure baseline BASE. Figures are capped at 2.5X the
baseline. Detailed numbers are in [5]. The symbols (p), (c) and
(n) denote Python, C and Node.js benchmarks, respectively.
Lower numbers are better.

of the snapshot, or by modifying the garbage collection to be
time-independent. This is actually a broader problem in the
space of snapshot and restore techniques; a comprehensive
treatment of this topic is beyond the scope of this paper and
left for future work.

Surprisingly, GH is faster than BASE on the pyperformance
benchmark logging (p). We discovered that this occurred
due to a memory leak in the function’s original implementation
causing it to slow down with repeated invocations. GH’s restora-
tion rolls back the leaked memory, thus avoiding the slowdown.

260



Groundhog: Efficient Request Isolation in FaaS EuroSys ’23, May 8–12, 2023, Rome, Italy

ch
ao

s (
p)

lo
gg

in
g 

(p
)

py
ae

s (
p)

sp
ec

tra
l (

p)
de

lta
bl

ue
 (p

)
go

 (p
)

m
dp

 (p
)

py
fla

te
 (p

)
te

lco
 (p

)
he

xi
om

 (p
)

nb
od

y 
(p

)
ra

yt
ra

ce
 (p

)
un

pa
ck

_s
eq

 (p
)

fa
nn

ku
ch

 (p
)

jso
n_

du
m

ps
 (p

)
pi

ck
le

 (p
)

ric
ha

rd
s (

p)
ve

rs
io

n 
(p

)
flo

at
 (p

)
jso

n_
lo

ad
s (

p)
pi

di
gi

ts
 (p

)
sc

im
ar

k 
(p

)

pyperformance

0.0

0.5

1.0

re
l. 

th
pt

0.99 5.37 0.98 0.97 0.79 0.98 0.99 0.98 0.96 0.98 0.99 1.00 0.41 0.49 0.96 0.97 0.99 0.54 0.82 0.95 1.00 1.00

GHNOP GH fork
2m

m
 (c

)
3m

m
 (c

)
ad

i (
c)

at
ax

 (c
)

bi
cg

 (c
)

ch
ol

es
ky

 (c
)

co
rre

la
tio

n 
(c

)
co

va
ria

nc
e 

(c
)

de
ric

he
 (c

)
do

itg
en

 (c
)

du
rb

in
 (c

)
fd

td
-2

d 
(c

)
flo

yd
-w

ar
sh

al
l (

c)
gr

am
sc

hm
id

t (
c)

he
at

-3
d 

(c
)

ja
co

bi
-1

d 
(c

)
ja

co
bi

-2
d 

(c
)

lu
 (c

)
lu

dc
m

p 
(c

)
m

vt
 (c

)
nu

ss
in

ov
 (c

)
se

id
el

-2
d 

(c
)

tri
so

lv
 (c

)
PolyBench

0.0

0.5

1.0

re
l. 

th
pt

0.94 0.98 0.98 0.96 0.97 0.95 0.94 0.94 1.00 1.00 0.88 1.00 1.00 0.94 0.93 0.80 0.99 0.95 0.97 0.96 1.02 1.00 0.96

ge
t-t

im
e 

(p
)

se
nt

im
en

t (
p)

jso
n 

(p
)

m
d2

ht
m

l (
p)

ba
se

64
 (p

)
pr

im
es

 (p
)

FaaSProfiler (python)

0.0

0.5

1.0

re
l. 

th
pt

0.51 0.43 0.59 0.84 0.97 1.00

ge
t-t

im
e 

(n
)

au
to

co
m

pl
et

e 
(n

)
jso

n 
(n

)
pr

im
es

 (n
)

im
g-

re
siz

e 
(n

)
ba

se
64

 (n
)

oc
r-i

m
g 

(n
)

FaaSProfiler (node)

0.0

0.5

1.0

re
l. 

th
pt

0.20 0.19 0.32 0.74 0.57 0.73 0.99
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Fig. 5 shows the request throughput for all benchmarks,
normalized to BASE. Since functions are invoked sequentially,
the throughput of GH relative to BASE should be inversely pro-
portional to GH’s relative invoker overhead, which is roughly
1 + (in-function overhead + restoration overhead)/(baseline
invoker latency). Our observations are consistent with this cal-
culation: The throughput plots in Fig. 5 show the reciprocal
of this calculation above each benchmark, and the heights of
the GH bars are approximately equal to this value, as expected.
For 40 out of 51 C/Python benchmarks the GH throughput is
within 10% of BASE. It is up to 50% lower on the remaining,
mostly very short benchmarks. On Node.js benchmarks, where
GH’s relative invoker latencies can be very high (as explained
above), GH’s throughput is between 2% and 86% less than
BASE’s. GH’s Node.js restoration overheads tend to be higher
than other runtimes as Node.js’s runtime performs aggressive
memory layout changes 12 (see Fig. 8 for the restoration over-
heads of selected benchmarks). Across all benchmarks, the
median and 95th-percentile throughput reductions are 2.5%
and 49.6%, respectively.

12A less aggressive Node.js runtime would incur lower overheads.
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5.3.2 Comparison to Fork
We also provide a comparison to the FORK alternative de-

scribed in §5.2.3. Recall that fork is only applicable to single-
threaded functions, thus we are unable to provide measure-
ments for the Node.js runtime.

Fig. 4 also plots results for FORK for single-threaded bench-
marks. The latency overhead of GH is slightly less than that
of FORK since GH’s page faults are lighter than those of FORK
(FORK’s page faults also require page copying, while GH’s
page faults only set a SD-bit each).

Fig. 5 shows that the throughput of FORK follows a similar
rule to that of GH. When compared to GH, FORK’s through-
put is similar on all but very short benchmarks, where GH’s
throughput is noticeably higher than FORK’s.

5.3.3 Comparison to Request Isolation using Faasm
A potential alternative to Groundhog’s process-based request

isolation is to implement request isolation in the language
runtime. To illustrate the performance trade-offs of the two
approaches, we compare Groundhog to FAASM [52], a state-
of-the art FaaS platform where functions are isolated from
each other not using OS containers but by compiling them
to WebAssembly, and relying on spatial isolation within We-
bAssembly’s runtime. FAASM is designed to reduce FaaS
cold-start latencies, but it can be used for efficient request
isolation: WebAssembly limits each function to a contiguous
4GB memory map, which FAASM can quickly restore simply
by a copy-on-write remapping after each request. Note that
FAASM is not a fully general solution to the request isolation
problem since it places restrictions on the functions – most
notably, they must compile to WebAssembly.
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Fig. 7. Throughput scaling with number of cores. Error bars (minute) represent the standard deviation across 6 runs.

FAASM comes with its own FaaS platform, which is sig-
nificantly different from OpenWhisk. Despite the differences
in the platforms, which make a direct comparison difficult,
we compare Groundhog and FAASM for completeness. For
the comparison, we use the pyperformance and PolyBench/C
benchmarks, both of which can be compiled to WebAssembly
as demonstrated in [52]. We rely on FAASM’s microbench-
marking infrastructure that reports both the overall latency
(end-to-end and invoker) and the restoration (reset) cost.

Fig. 4 shows latencies for FAASM next to those for GH. On
most pyperformance benchmarks, the latency of FAASM is con-
siderably higher than that of GH, whereas the restoration time
is comparable (Fig. 6). This is because the Python interpreter
and runtime are less efficient when compiled to WebAssem-
bly (which FAASM uses) compared to a natively compiled
interpreter (which GH uses).

On PolyBench functions, FAASM’s latencies are generally
lower than those of GH. However, GH’s poorer relative per-
formance is not because of Groundhog’s overheads. Rather,
WebAssembly’s runtime is specifically optimized for program
patterns that occur in PolyBench, so WebAssembly compiled
PolyBench outperforms natively compiled PolyBench even
in the baseline. (This observation has been noted in prior
work [28, 31, 52].)

The same trends continue to manifest in throughput mea-
surements, where FAASM has lower throughput than GH on
most pyperformance functions, and higher throughput than GH
on most PolyBench functions. We omit the detailed throughput
comparison here as it entangles many variables such as the
differences in the platforms, which have nothing to do with
request isolation, the platforms’ internal components, runtimes
(native vs WebAssembly), as well as the isolation mechanisms.
The reader can find these numbers in [5].

Overall, the performance differences between FAASM and
GH are dominated by differences between native and We-
bAssembly compilation rather than request isolation costs.

5.3.4 Throughput scaling with cores
We expect GH’s throughput to scale linearly with cores as each

core can run a completely independent container instance with
its own function and Groundhog copy. To confirm this, we
repeat the throughput experiment above, varying the number
of cores available to the VM from 1 to 4 (and an equal number
of function container instances, each limited to 1 core). Fig. 7
shows absolute throughputs as a function of the number of
available cores for a subset of 14 representative benchmarks
of varying duration, number of mapped pages and number of
dirtied pages. Reported numbers are sustained throughputs
averaged over 6 runs of at least 1.5 minutes each (excluding a
warm-up). Error bars are standard deviations (which were mini-
mal) over the 6 runs. As expected, the scaling is nearly linear in
all cases. We expect this nearly-linear trend to continue beyond
4 cores until a bottleneck in the kernel or memory buses arises.

5.4 Deconstructing restoration overheads

Groundhog restoration involves several steps that we outlined
in §4.4. In this section we break down the cost of restoration
for the same 14 representative benchmarks (selection criteria
in §5.3.4). The overall restoration cost breaks down into the
following components:

interrupting the function process.
reading the process’ memory mapped regions
scanning all mapped pages to identify which are dirtied
diffing the memory layout to identify how it has changed
restoring the original memory layout by injecting syscalls
(brk, mmap, munmap, madvise, and mprotect)
restoring the contents of modified and removed pages
restoring registers
resetting the soft-dirty bits of all modified pages
detaching from the process

Each of these costs depends on different factors. The costs
of interrupting, restoring registers, and detaching are functions
of the number of threads in the process. The costs of reading,
scanning, diffing the memory layout, and resetting soft-dirty
bits are functions of the address space size and layout. The
syscall injection cost depends on the number of memory lay-
out changes and is heavily dependent on the language runtime.
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Fig. 8. Restoration overhead (deconstructed) and the one-time
snapshotting overhead for a subset of benchmarks.

Lastly, the cost of restoring the contents of pages depends on
the number of pages dirtied or unmapped during an invocation.

Fig. 8 shows these costs normalized to the total restoration
cost for our 14 representative functions. For each benchmark
we also detail the absolute restoration time, the number of
pages, and the time for Groundhog to take its initial snapshot.
(We revisit the snapshotting overhead in §5.5.) In particular,
we note that the memory restoration cost ( ) is strongly cor-
related with the total number of pages restored. Similarly, the
time spent scanning page metadata ( ) is strongly correlated
with the total number of pages. (As discussed in §4.3, opti-
mizations can make the costs correlate to the number of dirtied
pages instead.)

5.5 Snapshotting overhead
The rightmost column of Fig. 8 outlines Groundhog’s snapshot-
ting latency overhead for the same 14 functions that we used
in §5.3.4. Recall that snapshotting is a one-time operation that
occurs upon container initialization. It involves pausing the
process, copying the process’s state to Groundhog’s manager
process memory, and resuming the process. Snapshotting re-
quires scanning the memory layout of the process and copying
its memory. The time and memory costs are primarily propor-
tional to the total number of paged memory pages. The snap-
shotting latency overhead can be alleviated using techniques
that reduce cold start latencies (Catalyzer [23], REAP [57],
FaaSnap [8], Replayable [62], Prebaking [53], Pagurus [33])
by checkpointing the initialized Groundhog process along with
the function’s process. Groundhog’s memory overhead could
be easily reduced to be proportional to the number of dirtied
memory pages. The reduction of the memory overhead comes
at the cost of a one-time on-critical-path copy-on-write per
unique modified page. Since snapshotting is an infrequent
operation in Groundhog, we have not attempted these opti-
mizations.

5.6 Dummy Requests
Groundhog optimizes for the on-critical path latency and
chooses to take a snapshot after a dummy request is processed

se
id

el
-2

d 
(c

)

bi
cg

 (c
)

ge
t-t

im
e 

(p
)

fa
nn

ku
ch

 (p
)

te
lco

 (p
)

m
d2

ht
m

l (
p)

se
nt

im
en

t (
p)

m
dp

 (p
)

py
fla

te
 (p

)

au
to

co
m

pl
et

e 
(n

)

oc
r-i

m
g 

(n
)

he
at

-3
d 

(c
)

im
g-

re
siz

e 
(n

)

ba
se

64
 (n

)

Benchmark

0

1

2

3

re
l. 

in
v.

 la
te

nc
y

1.19 1.48 1.77 3.38 3.84 4.02 13.40 7.97 7.06 14.05 14.25 2.41 72.33 24.33
0.75 0.93 1.66 3.14 3.91 4.25 6.00 9.55 11.67 13.52 13.95 16.09 61.83 161.93

GH-NoDummy GH-WithDummy

Fig. 9. Latency of function invocations, normalized to the
insecure warm baseline BASE, with and without executing a
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symbols (p), (c) and (n) denote Python, C and Node.js bench-
marks, respectively. The figure is capped at 3X the insecure
baseline latency. The sentiment (p) benchmark relative invoker
latency is 10X that of the insecure baseline when snapshotting
without a dummy request. Lower numbers are better.

to allow high-level languages to trigger lazy paging, lazy class
loading and any application-level initialization of global state,
and to capture these in the snapshot. Snapshotting without a
dummy request would cause these relatively expensive oper-
ations to be re-executed after every state restoration, which
would increase the latency of subsequent function activations.
This is particularly relevant when the function runs in an inter-
preted runtime like Python or Node.js, which heavily rely on
lazy loading of classes and libraries [38]. On a representative
set of benchmarks, Fig. 9 shows that most benchmarks benefit
in terms of latency when the snapshot captures the function’s
state after a dummy request. However, taking a snapshot after
the dummy invocation can lead to increased restoration costs
in some cases, if the language runtime aggressively modifies
the memory layout.

6 Related work

Fork-based request isolation A standard technique for re-
quest isolation in services, not FaaS specifically, is to fork a
clean state to serve every request. For example, the Apache
web server [10], using the default Apache Prefork MPM. uses
this approach to isolate client sessions from each other. The
same idea can be used for request isolation in FaaS. However,
fork() does not work with multithreaded functions or run-
times without extensive modifications to prepare all threads for
a consistent snapshot [23]. Even for single-threaded functions,
a fork-based approach is less performant than Groundhog (see
§5) due to the high cost of forking a new process and the page-
copying faults on the critical path for all written pages. The
cost of fork itself can be reduced using lighter process-like
abstractions such as lightweight contexts (lwCs) [39], but this
does not reduce the cost of page copying on the critical path.
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Advances in reducing container cold-start latencies Re-
ducing container cold-start latencies is an active area of re-
search. Several techniques have been proposed, including
maintaining pre-warmed idle containers for a function [7, 11],
maintaining a pool of containers that can be repurposed [43,
54], maintaining partially initialized runtimes with loaded li-
braries as in SOCK [44], relaxing isolation between functions
by allowing functions from the same app developer to share
containers (SAND [4], Azure [41]), and starting from slim con-
tainer images and adding non-essential functions only when
needed (CNTR [55]). These techniques do not provide request
isolation, the problem that Groundhog targets, but they can be
combined with Groundhog to solve the cold-start latency and
the request isolation problems simultaneously.

Other methods of reducing cold-start latencies rely on snap-
shotting and restoration, which Groundhog also uses. Re-
playable [62], making use of the phased nature of runtime
initialization, proposed lowering cold-start latencies by snap-
shotting after the initialization phase and then starting cold
invocations from this snapshot. In principle, this approach can
also be used for request isolation by starting each invocation
from such a snapshot but existing snapshot/restore techniques
have overheads that can be orders of magnitude higher than
those of Groundhog because they start a new execution en-
vironment for each request rather than reusing an existing
environment as Groundhog does.

Snapshotting techniques based on CRIU [19, 21, 22, 49, 58]
serialize snapshots to persistent storage and are insufficient for
request isolation due to the high overhead of deserialization
during restoration, which is on the order of seconds.

CRIU-based techniques that store snapshots in memory
lower this overhead, but not sufficiently. For example, VAS-
CRIU [59] treats the address space as a first-class OS primitive,
allowing an address space to be attached to any process. How-
ever, container restoration time is still on the order of ~0.5s.
SEUSS [18] takes a unikernel approach, building a customized
VM for each function where everything runs in kernel space.
SEUSS allows incremental snapshots to jump-start functions.
However, SEUSS (and VAS-CRIU) rely on copy-on-write,
thus increasing the in-function latency, like the fork-based
approach.

Catalyzer [23] trades function-start latency for in-function
latency using a lazy restoration that incurs page faults. REAP
[57] reduces the cost of these page faults by eagerly pre-
fetching pages that were part of the active working set of the
function in the past. However, overall function latencies after
a restoration are still high: For a simple hello-world function
that executes in 1ms without restoration, Catalyzer and REAP
latencies with restoration are 232ms and 60ms, respectively.
In contrast, Groundhog can restore a C hello world function
in ~0.5 ms and an equivalent Python function in ~1.7 ms off
the critical path. Systems such as Catalyzer [23] offer a warm-
boot configuration that clones a running function instance
by sharing its base-EPT memory mappings on a CoW basis.

Warm boot configurations, if used for request isolation (i.e., a
clone is created to handle each request), will have a fork-like
performance profile.

FaaSnap [8] performs a different optimization – it enhances
the pre-fetching of pages. For instance, it does concurrent
prefetching while the VM is loading, and fetches pages in the
approximate order of loading such that pages have a higher
chance of being fetched by the time the function needs them.
These optimizations further reduce the latency of cold-starts by
1.4x relative to a baseline without the optimizations. Nonethe-
less, overheads are high: The restoration of a simple hello
world in FaaSnap takes as much time as it does in REAP.

Cloudflare Workers [20], Faastly [25, 56], and FAASM [52]
solve the cold-start problem by relying on software-fault iso-
lation (SFI) using V8 isolates and WebAssembly [64]. Here,
several function spaces – called Faaslets in FAASM– are packed
into a single running process, relying on SFI to isolate them
from each other. Obtaining a fresh Faaslet for a function in-
vocation amounts to remapping an unused Faaslet’s heap to
a previously checkpointed, pre-warmed state of the function.
WebAssembly limits the heap to a contiguous 4GB region,
so this remapping is fast and effectively solves the cold-start
problem. The FAASM paper notes that the same idea can be
used for efficient request isolation by applying the remapping
between requests. We compared the performance of this re-
quest isolation approach to that of Groundhog in §5.3.3. Unlike
Groundhog, this technique is limited to languages, runtimes
and threading models that can be compiled to WebAssembly.

7 Conclusion

Groundhog builds an efficient in-memory process state snap-
shot and restore facility to provide sequential request isolation
in FaaS platforms. Groundhog’s design is agnostic to the FaaS
platform, OS kernel, programming languages, runtimes, and
libraries used to write functions. Groundhog overheads on
end-to-end latency and throughput are modest, and lower than
what could be achieved by repurposing state-of-the art tech-
niques for solving the container cold-start problem to provide
sequential request isolation.
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A Artifact Appendix
A.1 Abstract

Our artifact comprises Groundhog which runs on standard
Linux kernels as well as Groundhog’s integration with Open-
Whisk for Python, NodeJS, and C. Our artifact is available on
MPI-SWS’s institutional public repository. The functional cor-
rectness of Groundhog is automatically tested through CI/CD.
We provide automated scripts for deploying OpenWhisk with
Groundhog-enabled runtimes and reproducing the results.

A.2 Description & Requirements

Our artifact was produced on standard server hardware. We ran
all our experiments on VMs hosted on a private cloud hosting
OpenStack/Microstack (ussuri, revision 233). Each physical
host had an Intel Xeon E5-2667 v2 2-socket, 8-cores/socket
processor (SMT turned off), 256GB RAM and a 1 TB HDD.

We evaluated Groundhog on microbenchmarks that we
have developed, in addition to functions from the pyperfor-
mance benchmark [60], the PolyBench/C [40], and the Python/
Node.js FaaSProfiler benchmark [50] suites.

A.2.1 How to access Visit the Groundhog website at https:
//groundhog.mpi-sws.org which links to the project reposito-
ries at https://gitlab.mpi-sws.org/groundhog. Groundhog’s
source code can be found in the project “Groundhog" which
has a README file for getting started. The “Groundhog"
repository is setup to run automatic functionality tests. For re-
producing the results of this paper, an “Instructions" repository
has been setup, which provides instructions on how to use the
scripts that automate deploying OpenStack (if needed) and
OpenWhisk, as well as running and plotting the results of the
experiments.

In addition to the automated deployment scripts, we provide
an Ubuntu VM with a Groundhog-enabled OpenWhisk deploy-
ment. Details are in https://gitlab.mpi-sws.org/groundhog/
instructions.

A.2.2 Hardware dependencies For Groundhog: standard
x86 hardware suffices. For the evaluation, one or more stan-
dard Linux servers (256+ GB of RAM, 2-sockets with 8-
cores/socket processor, and 500GB+ of disk space), or the
ability to provision VMs on a cloud.

A.2.3 Software dependencies For Groundhog: A standard
Linux Operating System (e.g., Ubuntu 20.04) with standard
development packages installed (build-essential and libglib2.0-
dev). The current Groundhog implementation depends on
Linux kernel features available in v3.11+. We identified and
reported a bug that affected the accuracy of the SD-Bits mem-
ory tracking in v5.6-v5.11 [42]. For the evaluation, we used
the stock kernel v5.4 shipped with Ubuntu 20.04. For the ex-
periments: Groundhog + OpenWhisk. For plotting: Python
(jupyter-lab, pandas, numpy, matplotlib, seaborn).

A.2.4 Benchmarks A copy of all used benchmarks is in-
cluded in our source code release (to maintain a uniform struc-
ture and facilitate automation).

A.3 Setup

If you are not able to create VMs with custom resolvable
names, you may want to manage you own private cloud by
installing and configuring OpenStack (automatic OpenStack
deployment scripts available at https://gitlab.mpi-sws.org/
groundhog/automation→ openstack).

In our experiments, OpenWhisk is deployed on 2 VMs to
allow proper performance isolation (core components on one
VM, and the invoker component, which launches functions
containers that can be Groundhog enabled, on another VM).
Latency experiments can be done using 2 VMs, while through-
put experiments need 3 VMs.

A single VM image can be prepared (through our automated
scripts at https://gitlab.mpi-sws.org/groundhog/automation
-> prepare-vm) or downloaded from https://groundhog.mpi-
sws.org/downloads/groundhog-ow-ubuntu20.qcow2. Once
the VM image has been prepared or downloaded, it can be used
to launch all needed VMs with the following naming conven-
tion: ow-core-X, ow-invoker0-X, and ow-client-X (where X
∈N).

A.4 Evaluation workflow

After the setup, experiments can be run using the scripts pro-
vided in the automation repository (https://gitlab.mpi-sws.
org/groundhog/automation→ experiments)

A.4.1 Major Claims
• (C1): Groundhog achieves request isolation at a cheaper

cost compared to CoW-based techniques (e.g., fork()). This
is shown by the experiment (E1) described in 5.2. Results
are illustrated in Fig. 3 and discussed in 5.2.3.

• (C2): Groundhog has a modest latency overhead. This is
shown by the experiment (E2) described in 5.3. Results are
illustrated/reported in Fig. 4.

• (C3): Groundhog throughput overhead is lower than that of
CoW-based techniques (fork). This is shown by the experi-
ment (E3) described in 5.3. Results are illustrated/reported
in Fig. 5.

• (C4): Groundhog throughput scales near-linearly with cores.
This is indicated by the experiment (E4) discussed in 5.3.4.
Results are illustrated/reported in Fig. 7.

• (C5): Groundhog’s restoration overheads are mostly a func-
tion of the function’s memory footprint and the number of
dirtied pages. This is discussed in §5.4. The data from exper-
iment (E1) can be used to produce Fig. 8.

• (C6): Groundhog is transparent to the tenant. This is de-
scribed in the design section (3) and can be verified by notic-
ing that no change was required to the tenants’ provided func-
tions (https://gitlab.mpi-sws.org/groundhog/automation/-
/tree/main/benchmarks/ func.
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Table 1. A summary of the time required (human, compute) to run the down-sized experiments. The human only has to verify
the script configuration on the setup (e.g. VMs IPs/names) and run the script.

Scripts to run Time Corresponding Figure #ExperimentsHuman Compute

E1

run_latency_microbenchmark_vary_dirtied_fast.sh
run_latency_microbenchmark_vary_dirtied_slow.sh
run_latency_microbenchmark_vary_pages_fast.sh
run_latency_microbenchmark_vary_pages_slow.sh

~5 mins ~2 hours Fig. 3 120

E2

run_latency_python.sh
run_latency_nodejs.sh
run_latency_pyperf.sh
run_latency_polybench_long.sh # > 10s per request
run_latency_polybench_short.sh # < 10s per request

~5 mins ~10 hours Fig. 4 232

E3

run_xput_python.sh
run_xput_nodejs.sh
run_xput_pyperf.sh
run_xput_polybench.sh

~5 mins ~20 hours Fig. 5 232

E4

run_scalability_1core.sh
run_scalability_2core.sh
run_scalability_3core.sh
run_scalability_4core.sh

~5 mins ~15 hours Fig. 7 144

A.4.2 Experiments
Experiment automation scripts are available at https://gitlab.
mpi-sws.org/groundhog/automation → experiments. The
scripts default to experiments of a down-sized length to keep
the total runtime reasonable. Full-length raw experiment data
from the paper can be found at https://groundhog.mpi-sws.
org/downloads/DATA-EUROSYS23.tgz

[How to (all experiments)]
[Preparation] After the experiment setup is ready (VM
groups are created and running), we need an additional con-
troller node/VM/server (which can use the same VM image)
that can communicate with the OpenWhisk core VM named
ow-core-X. On this controller node, experiments will be started
and data will be automatically retrieved. A summary of the
down-sized execution time required (human, compute), and
the scripts used to run each experiment (down-sized) can be
found in Table 1.

[Execution] Run the corresponding scripts (as shown in Ta-
ble 1) on one or more VM groups (a latency VM group con-
sists of 2 VMs — ow-core-X and ow-invoker0-X, while a
throughput/scalability VM group consists of 3 VMs — ow-
core-X, ow-invoker0-X, and ow-client-X). All scripts are ex-
pected to run to completion without terminating with an er-
ror/exception.

[Results] Results will be automatically copied back to the con-
troller node at /local/workspace/automation/benchmarks/
benchmarks/. A one-time data clean-up should be run for

experiments E2-4 by passing the results directory as an argu-
ment to (https://gitlab.mpi-sws.org/groundhog/automation
→ plot/prepare_data.sh). Once the data preparation script fin-
ishes, a table of the number of requests per configuration will
be printed.

[Plotting the results] A jupyter notebook for plotting the re-
sults is provided at https://gitlab.mpi-sws.org/groundhog/
automation→ plot. In the top section, update the path to the
data source and run the notebook. Details on how to struc-
ture the directories for plotting are available in the reposi-
tory.

[Comparison with FAASM ] The latency comparison against
FAASM uses FAASM’s microbenchmarks repo https://github.
com/faasm/experiment-microbench.
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